xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision 2845f512232de9e436b9e3b5529e906e62414013)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <drm/xe_drm.h>
17 
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31 
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
33 	[XE_PL_SYSTEM] = "system",
34 	[XE_PL_TT] = "gtt",
35 	[XE_PL_VRAM0] = "vram0",
36 	[XE_PL_VRAM1] = "vram1",
37 	[XE_PL_STOLEN] = "stolen"
38 };
39 
40 static const struct ttm_place sys_placement_flags = {
41 	.fpfn = 0,
42 	.lpfn = 0,
43 	.mem_type = XE_PL_SYSTEM,
44 	.flags = 0,
45 };
46 
47 static struct ttm_placement sys_placement = {
48 	.num_placement = 1,
49 	.placement = &sys_placement_flags,
50 };
51 
52 static const struct ttm_place tt_placement_flags[] = {
53 	{
54 		.fpfn = 0,
55 		.lpfn = 0,
56 		.mem_type = XE_PL_TT,
57 		.flags = TTM_PL_FLAG_DESIRED,
58 	},
59 	{
60 		.fpfn = 0,
61 		.lpfn = 0,
62 		.mem_type = XE_PL_SYSTEM,
63 		.flags = TTM_PL_FLAG_FALLBACK,
64 	}
65 };
66 
67 static struct ttm_placement tt_placement = {
68 	.num_placement = 2,
69 	.placement = tt_placement_flags,
70 };
71 
72 bool mem_type_is_vram(u32 mem_type)
73 {
74 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76 
77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81 
82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 	return mem_type_is_vram(res->mem_type);
85 }
86 
87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 	return resource_is_vram(bo->ttm.resource) ||
90 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92 
93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97 
98 /**
99  * xe_bo_has_single_placement - check if BO is placed only in one memory location
100  * @bo: The BO
101  *
102  * This function checks whether a given BO is placed in only one memory location.
103  *
104  * Returns: true if the BO is placed in a single memory location, false otherwise.
105  *
106  */
107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 	return bo->placement.num_placement == 1;
110 }
111 
112 /**
113  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114  * @bo: The BO
115  *
116  * The stolen memory is accessed through the PCI BAR for both DGFX and some
117  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118  *
119  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120  */
121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 	return xe_bo_is_stolen(bo) &&
124 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126 
127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 	return bo->flags & XE_BO_FLAG_USER;
130 }
131 
132 static struct xe_migrate *
133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 	struct xe_tile *tile;
136 
137 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 	return tile->migrate;
140 }
141 
142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 	struct ttm_resource_manager *mgr;
146 
147 	xe_assert(xe, resource_is_vram(res));
148 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 	return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151 
152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 			   u32 bo_flags, u32 *c)
154 {
155 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157 
158 		bo->placements[*c] = (struct ttm_place) {
159 			.mem_type = XE_PL_TT,
160 		};
161 		*c += 1;
162 	}
163 }
164 
165 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
166 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
167 {
168 	struct ttm_place place = { .mem_type = mem_type };
169 	struct xe_mem_region *vram;
170 	u64 io_size;
171 
172 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
173 
174 	vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
175 	xe_assert(xe, vram && vram->usable_size);
176 	io_size = vram->io_size;
177 
178 	/*
179 	 * For eviction / restore on suspend / resume objects
180 	 * pinned in VRAM must be contiguous
181 	 */
182 	if (bo_flags & (XE_BO_FLAG_PINNED |
183 			XE_BO_FLAG_GGTT))
184 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
185 
186 	if (io_size < vram->usable_size) {
187 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
188 			place.fpfn = 0;
189 			place.lpfn = io_size >> PAGE_SHIFT;
190 		} else {
191 			place.flags |= TTM_PL_FLAG_TOPDOWN;
192 		}
193 	}
194 	places[*c] = place;
195 	*c += 1;
196 }
197 
198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
199 			 u32 bo_flags, u32 *c)
200 {
201 	if (bo_flags & XE_BO_FLAG_VRAM0)
202 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
203 	if (bo_flags & XE_BO_FLAG_VRAM1)
204 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
205 }
206 
207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
208 			   u32 bo_flags, u32 *c)
209 {
210 	if (bo_flags & XE_BO_FLAG_STOLEN) {
211 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
212 
213 		bo->placements[*c] = (struct ttm_place) {
214 			.mem_type = XE_PL_STOLEN,
215 			.flags = bo_flags & (XE_BO_FLAG_PINNED |
216 					     XE_BO_FLAG_GGTT) ?
217 				TTM_PL_FLAG_CONTIGUOUS : 0,
218 		};
219 		*c += 1;
220 	}
221 }
222 
223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
224 				       u32 bo_flags)
225 {
226 	u32 c = 0;
227 
228 	try_add_vram(xe, bo, bo_flags, &c);
229 	try_add_system(xe, bo, bo_flags, &c);
230 	try_add_stolen(xe, bo, bo_flags, &c);
231 
232 	if (!c)
233 		return -EINVAL;
234 
235 	bo->placement = (struct ttm_placement) {
236 		.num_placement = c,
237 		.placement = bo->placements,
238 	};
239 
240 	return 0;
241 }
242 
243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
244 			      u32 bo_flags)
245 {
246 	xe_bo_assert_held(bo);
247 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
248 }
249 
250 static void xe_evict_flags(struct ttm_buffer_object *tbo,
251 			   struct ttm_placement *placement)
252 {
253 	if (!xe_bo_is_xe_bo(tbo)) {
254 		/* Don't handle scatter gather BOs */
255 		if (tbo->type == ttm_bo_type_sg) {
256 			placement->num_placement = 0;
257 			return;
258 		}
259 
260 		*placement = sys_placement;
261 		return;
262 	}
263 
264 	/*
265 	 * For xe, sg bos that are evicted to system just triggers a
266 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
267 	 */
268 	switch (tbo->resource->mem_type) {
269 	case XE_PL_VRAM0:
270 	case XE_PL_VRAM1:
271 	case XE_PL_STOLEN:
272 		*placement = tt_placement;
273 		break;
274 	case XE_PL_TT:
275 	default:
276 		*placement = sys_placement;
277 		break;
278 	}
279 }
280 
281 struct xe_ttm_tt {
282 	struct ttm_tt ttm;
283 	struct device *dev;
284 	struct sg_table sgt;
285 	struct sg_table *sg;
286 };
287 
288 static int xe_tt_map_sg(struct ttm_tt *tt)
289 {
290 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
291 	unsigned long num_pages = tt->num_pages;
292 	int ret;
293 
294 	XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
295 
296 	if (xe_tt->sg)
297 		return 0;
298 
299 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
300 						num_pages, 0,
301 						(u64)num_pages << PAGE_SHIFT,
302 						xe_sg_segment_size(xe_tt->dev),
303 						GFP_KERNEL);
304 	if (ret)
305 		return ret;
306 
307 	xe_tt->sg = &xe_tt->sgt;
308 	ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
309 			      DMA_ATTR_SKIP_CPU_SYNC);
310 	if (ret) {
311 		sg_free_table(xe_tt->sg);
312 		xe_tt->sg = NULL;
313 		return ret;
314 	}
315 
316 	return 0;
317 }
318 
319 static void xe_tt_unmap_sg(struct ttm_tt *tt)
320 {
321 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
322 
323 	if (xe_tt->sg) {
324 		dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
325 				  DMA_BIDIRECTIONAL, 0);
326 		sg_free_table(xe_tt->sg);
327 		xe_tt->sg = NULL;
328 	}
329 }
330 
331 struct sg_table *xe_bo_sg(struct xe_bo *bo)
332 {
333 	struct ttm_tt *tt = bo->ttm.ttm;
334 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
335 
336 	return xe_tt->sg;
337 }
338 
339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
340 				       u32 page_flags)
341 {
342 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
343 	struct xe_device *xe = xe_bo_device(bo);
344 	struct xe_ttm_tt *tt;
345 	unsigned long extra_pages;
346 	enum ttm_caching caching;
347 	int err;
348 
349 	tt = kzalloc(sizeof(*tt), GFP_KERNEL);
350 	if (!tt)
351 		return NULL;
352 
353 	tt->dev = xe->drm.dev;
354 
355 	extra_pages = 0;
356 	if (xe_bo_needs_ccs_pages(bo))
357 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
358 					   PAGE_SIZE);
359 
360 	switch (bo->cpu_caching) {
361 	case DRM_XE_GEM_CPU_CACHING_WC:
362 		caching = ttm_write_combined;
363 		break;
364 	default:
365 		caching = ttm_cached;
366 		break;
367 	}
368 
369 	WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
370 
371 	/*
372 	 * Display scanout is always non-coherent with the CPU cache.
373 	 *
374 	 * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and
375 	 * require a CPU:WC mapping.
376 	 */
377 	if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
378 	    (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_FLAG_PAGETABLE))
379 		caching = ttm_write_combined;
380 
381 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
382 		/*
383 		 * Valid only for internally-created buffers only, for
384 		 * which cpu_caching is never initialized.
385 		 */
386 		xe_assert(xe, bo->cpu_caching == 0);
387 		caching = ttm_uncached;
388 	}
389 
390 	err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
391 	if (err) {
392 		kfree(tt);
393 		return NULL;
394 	}
395 
396 	return &tt->ttm;
397 }
398 
399 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
400 			      struct ttm_operation_ctx *ctx)
401 {
402 	int err;
403 
404 	/*
405 	 * dma-bufs are not populated with pages, and the dma-
406 	 * addresses are set up when moved to XE_PL_TT.
407 	 */
408 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
409 		return 0;
410 
411 	err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
412 	if (err)
413 		return err;
414 
415 	return err;
416 }
417 
418 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
419 {
420 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
421 		return;
422 
423 	xe_tt_unmap_sg(tt);
424 
425 	return ttm_pool_free(&ttm_dev->pool, tt);
426 }
427 
428 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
429 {
430 	ttm_tt_fini(tt);
431 	kfree(tt);
432 }
433 
434 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
435 				 struct ttm_resource *mem)
436 {
437 	struct xe_device *xe = ttm_to_xe_device(bdev);
438 
439 	switch (mem->mem_type) {
440 	case XE_PL_SYSTEM:
441 	case XE_PL_TT:
442 		return 0;
443 	case XE_PL_VRAM0:
444 	case XE_PL_VRAM1: {
445 		struct xe_ttm_vram_mgr_resource *vres =
446 			to_xe_ttm_vram_mgr_resource(mem);
447 		struct xe_mem_region *vram = res_to_mem_region(mem);
448 
449 		if (vres->used_visible_size < mem->size)
450 			return -EINVAL;
451 
452 		mem->bus.offset = mem->start << PAGE_SHIFT;
453 
454 		if (vram->mapping &&
455 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
456 			mem->bus.addr = (u8 __force *)vram->mapping +
457 				mem->bus.offset;
458 
459 		mem->bus.offset += vram->io_start;
460 		mem->bus.is_iomem = true;
461 
462 #if  !defined(CONFIG_X86)
463 		mem->bus.caching = ttm_write_combined;
464 #endif
465 		return 0;
466 	} case XE_PL_STOLEN:
467 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
468 	default:
469 		return -EINVAL;
470 	}
471 }
472 
473 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
474 				const struct ttm_operation_ctx *ctx)
475 {
476 	struct dma_resv_iter cursor;
477 	struct dma_fence *fence;
478 	struct drm_gem_object *obj = &bo->ttm.base;
479 	struct drm_gpuvm_bo *vm_bo;
480 	bool idle = false;
481 	int ret = 0;
482 
483 	dma_resv_assert_held(bo->ttm.base.resv);
484 
485 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
486 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
487 				    DMA_RESV_USAGE_BOOKKEEP);
488 		dma_resv_for_each_fence_unlocked(&cursor, fence)
489 			dma_fence_enable_sw_signaling(fence);
490 		dma_resv_iter_end(&cursor);
491 	}
492 
493 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
494 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
495 		struct drm_gpuva *gpuva;
496 
497 		if (!xe_vm_in_fault_mode(vm)) {
498 			drm_gpuvm_bo_evict(vm_bo, true);
499 			continue;
500 		}
501 
502 		if (!idle) {
503 			long timeout;
504 
505 			if (ctx->no_wait_gpu &&
506 			    !dma_resv_test_signaled(bo->ttm.base.resv,
507 						    DMA_RESV_USAGE_BOOKKEEP))
508 				return -EBUSY;
509 
510 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
511 							DMA_RESV_USAGE_BOOKKEEP,
512 							ctx->interruptible,
513 							MAX_SCHEDULE_TIMEOUT);
514 			if (!timeout)
515 				return -ETIME;
516 			if (timeout < 0)
517 				return timeout;
518 
519 			idle = true;
520 		}
521 
522 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
523 			struct xe_vma *vma = gpuva_to_vma(gpuva);
524 
525 			trace_xe_vma_evict(vma);
526 			ret = xe_vm_invalidate_vma(vma);
527 			if (XE_WARN_ON(ret))
528 				return ret;
529 		}
530 	}
531 
532 	return ret;
533 }
534 
535 /*
536  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
537  * Note that unmapping the attachment is deferred to the next
538  * map_attachment time, or to bo destroy (after idling) whichever comes first.
539  * This is to avoid syncing before unmap_attachment(), assuming that the
540  * caller relies on idling the reservation object before moving the
541  * backing store out. Should that assumption not hold, then we will be able
542  * to unconditionally call unmap_attachment() when moving out to system.
543  */
544 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
545 			     struct ttm_resource *new_res)
546 {
547 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
548 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
549 					       ttm);
550 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
551 	struct sg_table *sg;
552 
553 	xe_assert(xe, attach);
554 	xe_assert(xe, ttm_bo->ttm);
555 
556 	if (new_res->mem_type == XE_PL_SYSTEM)
557 		goto out;
558 
559 	if (ttm_bo->sg) {
560 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
561 		ttm_bo->sg = NULL;
562 	}
563 
564 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
565 	if (IS_ERR(sg))
566 		return PTR_ERR(sg);
567 
568 	ttm_bo->sg = sg;
569 	xe_tt->sg = sg;
570 
571 out:
572 	ttm_bo_move_null(ttm_bo, new_res);
573 
574 	return 0;
575 }
576 
577 /**
578  * xe_bo_move_notify - Notify subsystems of a pending move
579  * @bo: The buffer object
580  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
581  *
582  * This function notifies subsystems of an upcoming buffer move.
583  * Upon receiving such a notification, subsystems should schedule
584  * halting access to the underlying pages and optionally add a fence
585  * to the buffer object's dma_resv object, that signals when access is
586  * stopped. The caller will wait on all dma_resv fences before
587  * starting the move.
588  *
589  * A subsystem may commence access to the object after obtaining
590  * bindings to the new backing memory under the object lock.
591  *
592  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
593  * negative error code on error.
594  */
595 static int xe_bo_move_notify(struct xe_bo *bo,
596 			     const struct ttm_operation_ctx *ctx)
597 {
598 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
599 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
600 	struct ttm_resource *old_mem = ttm_bo->resource;
601 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
602 	int ret;
603 
604 	/*
605 	 * If this starts to call into many components, consider
606 	 * using a notification chain here.
607 	 */
608 
609 	if (xe_bo_is_pinned(bo))
610 		return -EINVAL;
611 
612 	xe_bo_vunmap(bo);
613 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
614 	if (ret)
615 		return ret;
616 
617 	/* Don't call move_notify() for imported dma-bufs. */
618 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
619 		dma_buf_move_notify(ttm_bo->base.dma_buf);
620 
621 	/*
622 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
623 	 * so if we moved from VRAM make sure to unlink this from the userfault
624 	 * tracking.
625 	 */
626 	if (mem_type_is_vram(old_mem_type)) {
627 		mutex_lock(&xe->mem_access.vram_userfault.lock);
628 		if (!list_empty(&bo->vram_userfault_link))
629 			list_del_init(&bo->vram_userfault_link);
630 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
631 	}
632 
633 	return 0;
634 }
635 
636 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
637 		      struct ttm_operation_ctx *ctx,
638 		      struct ttm_resource *new_mem,
639 		      struct ttm_place *hop)
640 {
641 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
642 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
643 	struct ttm_resource *old_mem = ttm_bo->resource;
644 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
645 	struct ttm_tt *ttm = ttm_bo->ttm;
646 	struct xe_migrate *migrate = NULL;
647 	struct dma_fence *fence;
648 	bool move_lacks_source;
649 	bool tt_has_data;
650 	bool needs_clear;
651 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
652 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
653 	int ret = 0;
654 
655 	/* Bo creation path, moving to system or TT. */
656 	if ((!old_mem && ttm) && !handle_system_ccs) {
657 		if (new_mem->mem_type == XE_PL_TT)
658 			ret = xe_tt_map_sg(ttm);
659 		if (!ret)
660 			ttm_bo_move_null(ttm_bo, new_mem);
661 		goto out;
662 	}
663 
664 	if (ttm_bo->type == ttm_bo_type_sg) {
665 		ret = xe_bo_move_notify(bo, ctx);
666 		if (!ret)
667 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
668 		return ret;
669 	}
670 
671 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
672 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
673 
674 	move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared)  :
675 						(!mem_type_is_vram(old_mem_type) && !tt_has_data);
676 
677 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
678 		(!ttm && ttm_bo->type == ttm_bo_type_device);
679 
680 	if (new_mem->mem_type == XE_PL_TT) {
681 		ret = xe_tt_map_sg(ttm);
682 		if (ret)
683 			goto out;
684 	}
685 
686 	if ((move_lacks_source && !needs_clear)) {
687 		ttm_bo_move_null(ttm_bo, new_mem);
688 		goto out;
689 	}
690 
691 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
692 		ttm_bo_move_null(ttm_bo, new_mem);
693 		goto out;
694 	}
695 
696 	/*
697 	 * Failed multi-hop where the old_mem is still marked as
698 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
699 	 */
700 	if (old_mem_type == XE_PL_TT &&
701 	    new_mem->mem_type == XE_PL_TT) {
702 		ttm_bo_move_null(ttm_bo, new_mem);
703 		goto out;
704 	}
705 
706 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
707 		ret = xe_bo_move_notify(bo, ctx);
708 		if (ret)
709 			goto out;
710 	}
711 
712 	if (old_mem_type == XE_PL_TT &&
713 	    new_mem->mem_type == XE_PL_SYSTEM) {
714 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
715 						     DMA_RESV_USAGE_BOOKKEEP,
716 						     true,
717 						     MAX_SCHEDULE_TIMEOUT);
718 		if (timeout < 0) {
719 			ret = timeout;
720 			goto out;
721 		}
722 
723 		if (!handle_system_ccs) {
724 			ttm_bo_move_null(ttm_bo, new_mem);
725 			goto out;
726 		}
727 	}
728 
729 	if (!move_lacks_source &&
730 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
731 	     (mem_type_is_vram(old_mem_type) &&
732 	      new_mem->mem_type == XE_PL_SYSTEM))) {
733 		hop->fpfn = 0;
734 		hop->lpfn = 0;
735 		hop->mem_type = XE_PL_TT;
736 		hop->flags = TTM_PL_FLAG_TEMPORARY;
737 		ret = -EMULTIHOP;
738 		goto out;
739 	}
740 
741 	if (bo->tile)
742 		migrate = bo->tile->migrate;
743 	else if (resource_is_vram(new_mem))
744 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
745 	else if (mem_type_is_vram(old_mem_type))
746 		migrate = mem_type_to_migrate(xe, old_mem_type);
747 	else
748 		migrate = xe->tiles[0].migrate;
749 
750 	xe_assert(xe, migrate);
751 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
752 	xe_pm_runtime_get_noresume(xe);
753 
754 	if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
755 		/*
756 		 * Kernel memory that is pinned should only be moved on suspend
757 		 * / resume, some of the pinned memory is required for the
758 		 * device to resume / use the GPU to move other evicted memory
759 		 * (user memory) around. This likely could be optimized a bit
760 		 * futher where we find the minimum set of pinned memory
761 		 * required for resume but for simplity doing a memcpy for all
762 		 * pinned memory.
763 		 */
764 		ret = xe_bo_vmap(bo);
765 		if (!ret) {
766 			ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
767 
768 			/* Create a new VMAP once kernel BO back in VRAM */
769 			if (!ret && resource_is_vram(new_mem)) {
770 				struct xe_mem_region *vram = res_to_mem_region(new_mem);
771 				void __iomem *new_addr = vram->mapping +
772 					(new_mem->start << PAGE_SHIFT);
773 
774 				if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
775 					ret = -EINVAL;
776 					xe_pm_runtime_put(xe);
777 					goto out;
778 				}
779 
780 				xe_assert(xe, new_mem->start ==
781 					  bo->placements->fpfn);
782 
783 				iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
784 			}
785 		}
786 	} else {
787 		if (move_lacks_source)
788 			fence = xe_migrate_clear(migrate, bo, new_mem);
789 		else
790 			fence = xe_migrate_copy(migrate, bo, bo, old_mem,
791 						new_mem, handle_system_ccs);
792 		if (IS_ERR(fence)) {
793 			ret = PTR_ERR(fence);
794 			xe_pm_runtime_put(xe);
795 			goto out;
796 		}
797 		if (!move_lacks_source) {
798 			ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
799 							true, new_mem);
800 			if (ret) {
801 				dma_fence_wait(fence, false);
802 				ttm_bo_move_null(ttm_bo, new_mem);
803 				ret = 0;
804 			}
805 		} else {
806 			/*
807 			 * ttm_bo_move_accel_cleanup() may blow up if
808 			 * bo->resource == NULL, so just attach the
809 			 * fence and set the new resource.
810 			 */
811 			dma_resv_add_fence(ttm_bo->base.resv, fence,
812 					   DMA_RESV_USAGE_KERNEL);
813 			ttm_bo_move_null(ttm_bo, new_mem);
814 		}
815 
816 		dma_fence_put(fence);
817 	}
818 
819 	xe_pm_runtime_put(xe);
820 
821 out:
822 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
823 	    ttm_bo->ttm)
824 		xe_tt_unmap_sg(ttm_bo->ttm);
825 
826 	return ret;
827 }
828 
829 /**
830  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
831  * @bo: The buffer object to move.
832  *
833  * On successful completion, the object memory will be moved to sytem memory.
834  *
835  * This is needed to for special handling of pinned VRAM object during
836  * suspend-resume.
837  *
838  * Return: 0 on success. Negative error code on failure.
839  */
840 int xe_bo_evict_pinned(struct xe_bo *bo)
841 {
842 	struct ttm_place place = {
843 		.mem_type = XE_PL_TT,
844 	};
845 	struct ttm_placement placement = {
846 		.placement = &place,
847 		.num_placement = 1,
848 	};
849 	struct ttm_operation_ctx ctx = {
850 		.interruptible = false,
851 	};
852 	struct ttm_resource *new_mem;
853 	int ret;
854 
855 	xe_bo_assert_held(bo);
856 
857 	if (WARN_ON(!bo->ttm.resource))
858 		return -EINVAL;
859 
860 	if (WARN_ON(!xe_bo_is_pinned(bo)))
861 		return -EINVAL;
862 
863 	if (WARN_ON(!xe_bo_is_vram(bo)))
864 		return -EINVAL;
865 
866 	ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
867 	if (ret)
868 		return ret;
869 
870 	if (!bo->ttm.ttm) {
871 		bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
872 		if (!bo->ttm.ttm) {
873 			ret = -ENOMEM;
874 			goto err_res_free;
875 		}
876 	}
877 
878 	ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
879 	if (ret)
880 		goto err_res_free;
881 
882 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
883 	if (ret)
884 		goto err_res_free;
885 
886 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
887 	if (ret)
888 		goto err_res_free;
889 
890 	return 0;
891 
892 err_res_free:
893 	ttm_resource_free(&bo->ttm, &new_mem);
894 	return ret;
895 }
896 
897 /**
898  * xe_bo_restore_pinned() - Restore a pinned VRAM object
899  * @bo: The buffer object to move.
900  *
901  * On successful completion, the object memory will be moved back to VRAM.
902  *
903  * This is needed to for special handling of pinned VRAM object during
904  * suspend-resume.
905  *
906  * Return: 0 on success. Negative error code on failure.
907  */
908 int xe_bo_restore_pinned(struct xe_bo *bo)
909 {
910 	struct ttm_operation_ctx ctx = {
911 		.interruptible = false,
912 	};
913 	struct ttm_resource *new_mem;
914 	int ret;
915 
916 	xe_bo_assert_held(bo);
917 
918 	if (WARN_ON(!bo->ttm.resource))
919 		return -EINVAL;
920 
921 	if (WARN_ON(!xe_bo_is_pinned(bo)))
922 		return -EINVAL;
923 
924 	if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm))
925 		return -EINVAL;
926 
927 	ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
928 	if (ret)
929 		return ret;
930 
931 	ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
932 	if (ret)
933 		goto err_res_free;
934 
935 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
936 	if (ret)
937 		goto err_res_free;
938 
939 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
940 	if (ret)
941 		goto err_res_free;
942 
943 	return 0;
944 
945 err_res_free:
946 	ttm_resource_free(&bo->ttm, &new_mem);
947 	return ret;
948 }
949 
950 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
951 				       unsigned long page_offset)
952 {
953 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
954 	struct xe_res_cursor cursor;
955 	struct xe_mem_region *vram;
956 
957 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
958 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
959 
960 	vram = res_to_mem_region(ttm_bo->resource);
961 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
962 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
963 }
964 
965 static void __xe_bo_vunmap(struct xe_bo *bo);
966 
967 /*
968  * TODO: Move this function to TTM so we don't rely on how TTM does its
969  * locking, thereby abusing TTM internals.
970  */
971 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
972 {
973 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
974 	bool locked;
975 
976 	xe_assert(xe, !kref_read(&ttm_bo->kref));
977 
978 	/*
979 	 * We can typically only race with TTM trylocking under the
980 	 * lru_lock, which will immediately be unlocked again since
981 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
982 	 * always succeed here, as long as we hold the lru lock.
983 	 */
984 	spin_lock(&ttm_bo->bdev->lru_lock);
985 	locked = dma_resv_trylock(ttm_bo->base.resv);
986 	spin_unlock(&ttm_bo->bdev->lru_lock);
987 	xe_assert(xe, locked);
988 
989 	return locked;
990 }
991 
992 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
993 {
994 	struct dma_resv_iter cursor;
995 	struct dma_fence *fence;
996 	struct dma_fence *replacement = NULL;
997 	struct xe_bo *bo;
998 
999 	if (!xe_bo_is_xe_bo(ttm_bo))
1000 		return;
1001 
1002 	bo = ttm_to_xe_bo(ttm_bo);
1003 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1004 
1005 	/*
1006 	 * Corner case where TTM fails to allocate memory and this BOs resv
1007 	 * still points the VMs resv
1008 	 */
1009 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1010 		return;
1011 
1012 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1013 		return;
1014 
1015 	/*
1016 	 * Scrub the preempt fences if any. The unbind fence is already
1017 	 * attached to the resv.
1018 	 * TODO: Don't do this for external bos once we scrub them after
1019 	 * unbind.
1020 	 */
1021 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1022 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1023 		if (xe_fence_is_xe_preempt(fence) &&
1024 		    !dma_fence_is_signaled(fence)) {
1025 			if (!replacement)
1026 				replacement = dma_fence_get_stub();
1027 
1028 			dma_resv_replace_fences(ttm_bo->base.resv,
1029 						fence->context,
1030 						replacement,
1031 						DMA_RESV_USAGE_BOOKKEEP);
1032 		}
1033 	}
1034 	dma_fence_put(replacement);
1035 
1036 	dma_resv_unlock(ttm_bo->base.resv);
1037 }
1038 
1039 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1040 {
1041 	if (!xe_bo_is_xe_bo(ttm_bo))
1042 		return;
1043 
1044 	/*
1045 	 * Object is idle and about to be destroyed. Release the
1046 	 * dma-buf attachment.
1047 	 */
1048 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1049 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1050 						       struct xe_ttm_tt, ttm);
1051 
1052 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1053 					 DMA_BIDIRECTIONAL);
1054 		ttm_bo->sg = NULL;
1055 		xe_tt->sg = NULL;
1056 	}
1057 }
1058 
1059 const struct ttm_device_funcs xe_ttm_funcs = {
1060 	.ttm_tt_create = xe_ttm_tt_create,
1061 	.ttm_tt_populate = xe_ttm_tt_populate,
1062 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1063 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1064 	.evict_flags = xe_evict_flags,
1065 	.move = xe_bo_move,
1066 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1067 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1068 	.release_notify = xe_ttm_bo_release_notify,
1069 	.eviction_valuable = ttm_bo_eviction_valuable,
1070 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1071 };
1072 
1073 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1074 {
1075 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1076 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1077 
1078 	if (bo->ttm.base.import_attach)
1079 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1080 	drm_gem_object_release(&bo->ttm.base);
1081 
1082 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1083 
1084 	if (bo->ggtt_node.size)
1085 		xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
1086 
1087 #ifdef CONFIG_PROC_FS
1088 	if (bo->client)
1089 		xe_drm_client_remove_bo(bo);
1090 #endif
1091 
1092 	if (bo->vm && xe_bo_is_user(bo))
1093 		xe_vm_put(bo->vm);
1094 
1095 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1096 	if (!list_empty(&bo->vram_userfault_link))
1097 		list_del(&bo->vram_userfault_link);
1098 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1099 
1100 	kfree(bo);
1101 }
1102 
1103 static void xe_gem_object_free(struct drm_gem_object *obj)
1104 {
1105 	/* Our BO reference counting scheme works as follows:
1106 	 *
1107 	 * The gem object kref is typically used throughout the driver,
1108 	 * and the gem object holds a ttm_buffer_object refcount, so
1109 	 * that when the last gem object reference is put, which is when
1110 	 * we end up in this function, we put also that ttm_buffer_object
1111 	 * refcount. Anything using gem interfaces is then no longer
1112 	 * allowed to access the object in a way that requires a gem
1113 	 * refcount, including locking the object.
1114 	 *
1115 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1116 	 * refcount directly if needed.
1117 	 */
1118 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1119 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1120 }
1121 
1122 static void xe_gem_object_close(struct drm_gem_object *obj,
1123 				struct drm_file *file_priv)
1124 {
1125 	struct xe_bo *bo = gem_to_xe_bo(obj);
1126 
1127 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1128 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1129 
1130 		xe_bo_lock(bo, false);
1131 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1132 		xe_bo_unlock(bo);
1133 	}
1134 }
1135 
1136 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1137 {
1138 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1139 	struct drm_device *ddev = tbo->base.dev;
1140 	struct xe_device *xe = to_xe_device(ddev);
1141 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1142 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1143 	vm_fault_t ret;
1144 	int idx;
1145 
1146 	if (needs_rpm)
1147 		xe_pm_runtime_get(xe);
1148 
1149 	ret = ttm_bo_vm_reserve(tbo, vmf);
1150 	if (ret)
1151 		goto out;
1152 
1153 	if (drm_dev_enter(ddev, &idx)) {
1154 		trace_xe_bo_cpu_fault(bo);
1155 
1156 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1157 					       TTM_BO_VM_NUM_PREFAULT);
1158 		drm_dev_exit(idx);
1159 	} else {
1160 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1161 	}
1162 
1163 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1164 		goto out;
1165 	/*
1166 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1167 	 */
1168 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1169 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1170 		if (list_empty(&bo->vram_userfault_link))
1171 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1172 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1173 	}
1174 
1175 	dma_resv_unlock(tbo->base.resv);
1176 out:
1177 	if (needs_rpm)
1178 		xe_pm_runtime_put(xe);
1179 
1180 	return ret;
1181 }
1182 
1183 static const struct vm_operations_struct xe_gem_vm_ops = {
1184 	.fault = xe_gem_fault,
1185 	.open = ttm_bo_vm_open,
1186 	.close = ttm_bo_vm_close,
1187 	.access = ttm_bo_vm_access
1188 };
1189 
1190 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1191 	.free = xe_gem_object_free,
1192 	.close = xe_gem_object_close,
1193 	.mmap = drm_gem_ttm_mmap,
1194 	.export = xe_gem_prime_export,
1195 	.vm_ops = &xe_gem_vm_ops,
1196 };
1197 
1198 /**
1199  * xe_bo_alloc - Allocate storage for a struct xe_bo
1200  *
1201  * This funcition is intended to allocate storage to be used for input
1202  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1203  * created is needed before the call to __xe_bo_create_locked().
1204  * If __xe_bo_create_locked ends up never to be called, then the
1205  * storage allocated with this function needs to be freed using
1206  * xe_bo_free().
1207  *
1208  * Return: A pointer to an uninitialized struct xe_bo on success,
1209  * ERR_PTR(-ENOMEM) on error.
1210  */
1211 struct xe_bo *xe_bo_alloc(void)
1212 {
1213 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1214 
1215 	if (!bo)
1216 		return ERR_PTR(-ENOMEM);
1217 
1218 	return bo;
1219 }
1220 
1221 /**
1222  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1223  * @bo: The buffer object storage.
1224  *
1225  * Refer to xe_bo_alloc() documentation for valid use-cases.
1226  */
1227 void xe_bo_free(struct xe_bo *bo)
1228 {
1229 	kfree(bo);
1230 }
1231 
1232 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1233 				     struct xe_tile *tile, struct dma_resv *resv,
1234 				     struct ttm_lru_bulk_move *bulk, size_t size,
1235 				     u16 cpu_caching, enum ttm_bo_type type,
1236 				     u32 flags)
1237 {
1238 	struct ttm_operation_ctx ctx = {
1239 		.interruptible = true,
1240 		.no_wait_gpu = false,
1241 	};
1242 	struct ttm_placement *placement;
1243 	uint32_t alignment;
1244 	size_t aligned_size;
1245 	int err;
1246 
1247 	/* Only kernel objects should set GT */
1248 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1249 
1250 	if (XE_WARN_ON(!size)) {
1251 		xe_bo_free(bo);
1252 		return ERR_PTR(-EINVAL);
1253 	}
1254 
1255 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1256 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1257 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1258 	     (flags & XE_BO_NEEDS_64K))) {
1259 		aligned_size = ALIGN(size, SZ_64K);
1260 		if (type != ttm_bo_type_device)
1261 			size = ALIGN(size, SZ_64K);
1262 		flags |= XE_BO_FLAG_INTERNAL_64K;
1263 		alignment = SZ_64K >> PAGE_SHIFT;
1264 
1265 	} else {
1266 		aligned_size = ALIGN(size, SZ_4K);
1267 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1268 		alignment = SZ_4K >> PAGE_SHIFT;
1269 	}
1270 
1271 	if (type == ttm_bo_type_device && aligned_size != size)
1272 		return ERR_PTR(-EINVAL);
1273 
1274 	if (!bo) {
1275 		bo = xe_bo_alloc();
1276 		if (IS_ERR(bo))
1277 			return bo;
1278 	}
1279 
1280 	bo->ccs_cleared = false;
1281 	bo->tile = tile;
1282 	bo->size = size;
1283 	bo->flags = flags;
1284 	bo->cpu_caching = cpu_caching;
1285 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1286 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1287 	INIT_LIST_HEAD(&bo->pinned_link);
1288 #ifdef CONFIG_PROC_FS
1289 	INIT_LIST_HEAD(&bo->client_link);
1290 #endif
1291 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1292 
1293 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1294 
1295 	if (resv) {
1296 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1297 		ctx.resv = resv;
1298 	}
1299 
1300 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1301 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1302 		if (WARN_ON(err)) {
1303 			xe_ttm_bo_destroy(&bo->ttm);
1304 			return ERR_PTR(err);
1305 		}
1306 	}
1307 
1308 	/* Defer populating type_sg bos */
1309 	placement = (type == ttm_bo_type_sg ||
1310 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1311 		&bo->placement;
1312 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1313 				   placement, alignment,
1314 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1315 	if (err)
1316 		return ERR_PTR(err);
1317 
1318 	/*
1319 	 * The VRAM pages underneath are potentially still being accessed by the
1320 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1321 	 * sure to add any corresponding move/clear fences into the objects
1322 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1323 	 *
1324 	 * For KMD internal buffers we don't care about GPU clearing, however we
1325 	 * still need to handle async evictions, where the VRAM is still being
1326 	 * accessed by the GPU. Most internal callers are not expecting this,
1327 	 * since they are missing the required synchronisation before accessing
1328 	 * the memory. To keep things simple just sync wait any kernel fences
1329 	 * here, if the buffer is designated KMD internal.
1330 	 *
1331 	 * For normal userspace objects we should already have the required
1332 	 * pipelining or sync waiting elsewhere, since we already have to deal
1333 	 * with things like async GPU clearing.
1334 	 */
1335 	if (type == ttm_bo_type_kernel) {
1336 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1337 						     DMA_RESV_USAGE_KERNEL,
1338 						     ctx.interruptible,
1339 						     MAX_SCHEDULE_TIMEOUT);
1340 
1341 		if (timeout < 0) {
1342 			if (!resv)
1343 				dma_resv_unlock(bo->ttm.base.resv);
1344 			xe_bo_put(bo);
1345 			return ERR_PTR(timeout);
1346 		}
1347 	}
1348 
1349 	bo->created = true;
1350 	if (bulk)
1351 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1352 	else
1353 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1354 
1355 	return bo;
1356 }
1357 
1358 static int __xe_bo_fixed_placement(struct xe_device *xe,
1359 				   struct xe_bo *bo,
1360 				   u32 flags,
1361 				   u64 start, u64 end, u64 size)
1362 {
1363 	struct ttm_place *place = bo->placements;
1364 
1365 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1366 		return -EINVAL;
1367 
1368 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1369 	place->fpfn = start >> PAGE_SHIFT;
1370 	place->lpfn = end >> PAGE_SHIFT;
1371 
1372 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1373 	case XE_BO_FLAG_VRAM0:
1374 		place->mem_type = XE_PL_VRAM0;
1375 		break;
1376 	case XE_BO_FLAG_VRAM1:
1377 		place->mem_type = XE_PL_VRAM1;
1378 		break;
1379 	case XE_BO_FLAG_STOLEN:
1380 		place->mem_type = XE_PL_STOLEN;
1381 		break;
1382 
1383 	default:
1384 		/* 0 or multiple of the above set */
1385 		return -EINVAL;
1386 	}
1387 
1388 	bo->placement = (struct ttm_placement) {
1389 		.num_placement = 1,
1390 		.placement = place,
1391 	};
1392 
1393 	return 0;
1394 }
1395 
1396 static struct xe_bo *
1397 __xe_bo_create_locked(struct xe_device *xe,
1398 		      struct xe_tile *tile, struct xe_vm *vm,
1399 		      size_t size, u64 start, u64 end,
1400 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags)
1401 {
1402 	struct xe_bo *bo = NULL;
1403 	int err;
1404 
1405 	if (vm)
1406 		xe_vm_assert_held(vm);
1407 
1408 	if (start || end != ~0ULL) {
1409 		bo = xe_bo_alloc();
1410 		if (IS_ERR(bo))
1411 			return bo;
1412 
1413 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1414 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1415 		if (err) {
1416 			xe_bo_free(bo);
1417 			return ERR_PTR(err);
1418 		}
1419 	}
1420 
1421 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1422 				    vm && !xe_vm_in_fault_mode(vm) &&
1423 				    flags & XE_BO_FLAG_USER ?
1424 				    &vm->lru_bulk_move : NULL, size,
1425 				    cpu_caching, type, flags);
1426 	if (IS_ERR(bo))
1427 		return bo;
1428 
1429 	/*
1430 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1431 	 * to ensure the shared resv doesn't disappear under the bo, the bo
1432 	 * will keep a reference to the vm, and avoid circular references
1433 	 * by having all the vm's bo refereferences released at vm close
1434 	 * time.
1435 	 */
1436 	if (vm && xe_bo_is_user(bo))
1437 		xe_vm_get(vm);
1438 	bo->vm = vm;
1439 
1440 	if (bo->flags & XE_BO_FLAG_GGTT) {
1441 		if (!tile && flags & XE_BO_FLAG_STOLEN)
1442 			tile = xe_device_get_root_tile(xe);
1443 
1444 		xe_assert(xe, tile);
1445 
1446 		if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1447 			err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
1448 						   start + bo->size, U64_MAX);
1449 		} else {
1450 			err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
1451 		}
1452 		if (err)
1453 			goto err_unlock_put_bo;
1454 	}
1455 
1456 	return bo;
1457 
1458 err_unlock_put_bo:
1459 	__xe_bo_unset_bulk_move(bo);
1460 	xe_bo_unlock_vm_held(bo);
1461 	xe_bo_put(bo);
1462 	return ERR_PTR(err);
1463 }
1464 
1465 struct xe_bo *
1466 xe_bo_create_locked_range(struct xe_device *xe,
1467 			  struct xe_tile *tile, struct xe_vm *vm,
1468 			  size_t size, u64 start, u64 end,
1469 			  enum ttm_bo_type type, u32 flags)
1470 {
1471 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags);
1472 }
1473 
1474 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1475 				  struct xe_vm *vm, size_t size,
1476 				  enum ttm_bo_type type, u32 flags)
1477 {
1478 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags);
1479 }
1480 
1481 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1482 				struct xe_vm *vm, size_t size,
1483 				u16 cpu_caching,
1484 				enum ttm_bo_type type,
1485 				u32 flags)
1486 {
1487 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1488 						 cpu_caching, type,
1489 						 flags | XE_BO_FLAG_USER);
1490 	if (!IS_ERR(bo))
1491 		xe_bo_unlock_vm_held(bo);
1492 
1493 	return bo;
1494 }
1495 
1496 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1497 			   struct xe_vm *vm, size_t size,
1498 			   enum ttm_bo_type type, u32 flags)
1499 {
1500 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1501 
1502 	if (!IS_ERR(bo))
1503 		xe_bo_unlock_vm_held(bo);
1504 
1505 	return bo;
1506 }
1507 
1508 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1509 				      struct xe_vm *vm,
1510 				      size_t size, u64 offset,
1511 				      enum ttm_bo_type type, u32 flags)
1512 {
1513 	struct xe_bo *bo;
1514 	int err;
1515 	u64 start = offset == ~0ull ? 0 : offset;
1516 	u64 end = offset == ~0ull ? offset : start + size;
1517 
1518 	if (flags & XE_BO_FLAG_STOLEN &&
1519 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1520 		flags |= XE_BO_FLAG_GGTT;
1521 
1522 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1523 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS);
1524 	if (IS_ERR(bo))
1525 		return bo;
1526 
1527 	err = xe_bo_pin(bo);
1528 	if (err)
1529 		goto err_put;
1530 
1531 	err = xe_bo_vmap(bo);
1532 	if (err)
1533 		goto err_unpin;
1534 
1535 	xe_bo_unlock_vm_held(bo);
1536 
1537 	return bo;
1538 
1539 err_unpin:
1540 	xe_bo_unpin(bo);
1541 err_put:
1542 	xe_bo_unlock_vm_held(bo);
1543 	xe_bo_put(bo);
1544 	return ERR_PTR(err);
1545 }
1546 
1547 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1548 				   struct xe_vm *vm, size_t size,
1549 				   enum ttm_bo_type type, u32 flags)
1550 {
1551 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1552 }
1553 
1554 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1555 				     const void *data, size_t size,
1556 				     enum ttm_bo_type type, u32 flags)
1557 {
1558 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1559 						ALIGN(size, PAGE_SIZE),
1560 						type, flags);
1561 	if (IS_ERR(bo))
1562 		return bo;
1563 
1564 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1565 
1566 	return bo;
1567 }
1568 
1569 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg)
1570 {
1571 	xe_bo_unpin_map_no_vm(arg);
1572 }
1573 
1574 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1575 					   size_t size, u32 flags)
1576 {
1577 	struct xe_bo *bo;
1578 	int ret;
1579 
1580 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1581 	if (IS_ERR(bo))
1582 		return bo;
1583 
1584 	ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo);
1585 	if (ret)
1586 		return ERR_PTR(ret);
1587 
1588 	return bo;
1589 }
1590 
1591 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1592 					     const void *data, size_t size, u32 flags)
1593 {
1594 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1595 
1596 	if (IS_ERR(bo))
1597 		return bo;
1598 
1599 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1600 
1601 	return bo;
1602 }
1603 
1604 /**
1605  * xe_managed_bo_reinit_in_vram
1606  * @xe: xe device
1607  * @tile: Tile where the new buffer will be created
1608  * @src: Managed buffer object allocated in system memory
1609  *
1610  * Replace a managed src buffer object allocated in system memory with a new
1611  * one allocated in vram, copying the data between them.
1612  * Buffer object in VRAM is not going to have the same GGTT address, the caller
1613  * is responsible for making sure that any old references to it are updated.
1614  *
1615  * Returns 0 for success, negative error code otherwise.
1616  */
1617 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1618 {
1619 	struct xe_bo *bo;
1620 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1621 
1622 	dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1623 
1624 	xe_assert(xe, IS_DGFX(xe));
1625 	xe_assert(xe, !(*src)->vmap.is_iomem);
1626 
1627 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1628 					    (*src)->size, dst_flags);
1629 	if (IS_ERR(bo))
1630 		return PTR_ERR(bo);
1631 
1632 	drmm_release_action(&xe->drm, __xe_bo_unpin_map_no_vm, *src);
1633 	*src = bo;
1634 
1635 	return 0;
1636 }
1637 
1638 /*
1639  * XXX: This is in the VM bind data path, likely should calculate this once and
1640  * store, with a recalculation if the BO is moved.
1641  */
1642 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1643 {
1644 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1645 
1646 	if (res->mem_type == XE_PL_STOLEN)
1647 		return xe_ttm_stolen_gpu_offset(xe);
1648 
1649 	return res_to_mem_region(res)->dpa_base;
1650 }
1651 
1652 /**
1653  * xe_bo_pin_external - pin an external BO
1654  * @bo: buffer object to be pinned
1655  *
1656  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1657  * BO. Unique call compared to xe_bo_pin as this function has it own set of
1658  * asserts and code to ensure evict / restore on suspend / resume.
1659  *
1660  * Returns 0 for success, negative error code otherwise.
1661  */
1662 int xe_bo_pin_external(struct xe_bo *bo)
1663 {
1664 	struct xe_device *xe = xe_bo_device(bo);
1665 	int err;
1666 
1667 	xe_assert(xe, !bo->vm);
1668 	xe_assert(xe, xe_bo_is_user(bo));
1669 
1670 	if (!xe_bo_is_pinned(bo)) {
1671 		err = xe_bo_validate(bo, NULL, false);
1672 		if (err)
1673 			return err;
1674 
1675 		if (xe_bo_is_vram(bo)) {
1676 			spin_lock(&xe->pinned.lock);
1677 			list_add_tail(&bo->pinned_link,
1678 				      &xe->pinned.external_vram);
1679 			spin_unlock(&xe->pinned.lock);
1680 		}
1681 	}
1682 
1683 	ttm_bo_pin(&bo->ttm);
1684 
1685 	/*
1686 	 * FIXME: If we always use the reserve / unreserve functions for locking
1687 	 * we do not need this.
1688 	 */
1689 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1690 
1691 	return 0;
1692 }
1693 
1694 int xe_bo_pin(struct xe_bo *bo)
1695 {
1696 	struct xe_device *xe = xe_bo_device(bo);
1697 	int err;
1698 
1699 	/* We currently don't expect user BO to be pinned */
1700 	xe_assert(xe, !xe_bo_is_user(bo));
1701 
1702 	/* Pinned object must be in GGTT or have pinned flag */
1703 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1704 				   XE_BO_FLAG_GGTT));
1705 
1706 	/*
1707 	 * No reason we can't support pinning imported dma-bufs we just don't
1708 	 * expect to pin an imported dma-buf.
1709 	 */
1710 	xe_assert(xe, !bo->ttm.base.import_attach);
1711 
1712 	/* We only expect at most 1 pin */
1713 	xe_assert(xe, !xe_bo_is_pinned(bo));
1714 
1715 	err = xe_bo_validate(bo, NULL, false);
1716 	if (err)
1717 		return err;
1718 
1719 	/*
1720 	 * For pinned objects in on DGFX, which are also in vram, we expect
1721 	 * these to be in contiguous VRAM memory. Required eviction / restore
1722 	 * during suspend / resume (force restore to same physical address).
1723 	 */
1724 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1725 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1726 		struct ttm_place *place = &(bo->placements[0]);
1727 
1728 		if (mem_type_is_vram(place->mem_type)) {
1729 			xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1730 
1731 			place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1732 				       vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1733 			place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1734 
1735 			spin_lock(&xe->pinned.lock);
1736 			list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1737 			spin_unlock(&xe->pinned.lock);
1738 		}
1739 	}
1740 
1741 	ttm_bo_pin(&bo->ttm);
1742 
1743 	/*
1744 	 * FIXME: If we always use the reserve / unreserve functions for locking
1745 	 * we do not need this.
1746 	 */
1747 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1748 
1749 	return 0;
1750 }
1751 
1752 /**
1753  * xe_bo_unpin_external - unpin an external BO
1754  * @bo: buffer object to be unpinned
1755  *
1756  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1757  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1758  * asserts and code to ensure evict / restore on suspend / resume.
1759  *
1760  * Returns 0 for success, negative error code otherwise.
1761  */
1762 void xe_bo_unpin_external(struct xe_bo *bo)
1763 {
1764 	struct xe_device *xe = xe_bo_device(bo);
1765 
1766 	xe_assert(xe, !bo->vm);
1767 	xe_assert(xe, xe_bo_is_pinned(bo));
1768 	xe_assert(xe, xe_bo_is_user(bo));
1769 
1770 	spin_lock(&xe->pinned.lock);
1771 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1772 		list_del_init(&bo->pinned_link);
1773 	spin_unlock(&xe->pinned.lock);
1774 
1775 	ttm_bo_unpin(&bo->ttm);
1776 
1777 	/*
1778 	 * FIXME: If we always use the reserve / unreserve functions for locking
1779 	 * we do not need this.
1780 	 */
1781 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1782 }
1783 
1784 void xe_bo_unpin(struct xe_bo *bo)
1785 {
1786 	struct xe_device *xe = xe_bo_device(bo);
1787 
1788 	xe_assert(xe, !bo->ttm.base.import_attach);
1789 	xe_assert(xe, xe_bo_is_pinned(bo));
1790 
1791 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1792 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1793 		struct ttm_place *place = &(bo->placements[0]);
1794 
1795 		if (mem_type_is_vram(place->mem_type)) {
1796 			spin_lock(&xe->pinned.lock);
1797 			xe_assert(xe, !list_empty(&bo->pinned_link));
1798 			list_del_init(&bo->pinned_link);
1799 			spin_unlock(&xe->pinned.lock);
1800 		}
1801 	}
1802 
1803 	ttm_bo_unpin(&bo->ttm);
1804 }
1805 
1806 /**
1807  * xe_bo_validate() - Make sure the bo is in an allowed placement
1808  * @bo: The bo,
1809  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
1810  *      NULL. Used together with @allow_res_evict.
1811  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
1812  *                   reservation object.
1813  *
1814  * Make sure the bo is in allowed placement, migrating it if necessary. If
1815  * needed, other bos will be evicted. If bos selected for eviction shares
1816  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
1817  * set to true, otherwise they will be bypassed.
1818  *
1819  * Return: 0 on success, negative error code on failure. May return
1820  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
1821  */
1822 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
1823 {
1824 	struct ttm_operation_ctx ctx = {
1825 		.interruptible = true,
1826 		.no_wait_gpu = false,
1827 	};
1828 
1829 	if (vm) {
1830 		lockdep_assert_held(&vm->lock);
1831 		xe_vm_assert_held(vm);
1832 
1833 		ctx.allow_res_evict = allow_res_evict;
1834 		ctx.resv = xe_vm_resv(vm);
1835 	}
1836 
1837 	return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
1838 }
1839 
1840 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
1841 {
1842 	if (bo->destroy == &xe_ttm_bo_destroy)
1843 		return true;
1844 
1845 	return false;
1846 }
1847 
1848 /*
1849  * Resolve a BO address. There is no assert to check if the proper lock is held
1850  * so it should only be used in cases where it is not fatal to get the wrong
1851  * address, such as printing debug information, but not in cases where memory is
1852  * written based on this result.
1853  */
1854 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1855 {
1856 	struct xe_device *xe = xe_bo_device(bo);
1857 	struct xe_res_cursor cur;
1858 	u64 page;
1859 
1860 	xe_assert(xe, page_size <= PAGE_SIZE);
1861 	page = offset >> PAGE_SHIFT;
1862 	offset &= (PAGE_SIZE - 1);
1863 
1864 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
1865 		xe_assert(xe, bo->ttm.ttm);
1866 
1867 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
1868 				page_size, &cur);
1869 		return xe_res_dma(&cur) + offset;
1870 	} else {
1871 		struct xe_res_cursor cur;
1872 
1873 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
1874 			     page_size, &cur);
1875 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
1876 	}
1877 }
1878 
1879 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1880 {
1881 	if (!READ_ONCE(bo->ttm.pin_count))
1882 		xe_bo_assert_held(bo);
1883 	return __xe_bo_addr(bo, offset, page_size);
1884 }
1885 
1886 int xe_bo_vmap(struct xe_bo *bo)
1887 {
1888 	void *virtual;
1889 	bool is_iomem;
1890 	int ret;
1891 
1892 	xe_bo_assert_held(bo);
1893 
1894 	if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
1895 		return -EINVAL;
1896 
1897 	if (!iosys_map_is_null(&bo->vmap))
1898 		return 0;
1899 
1900 	/*
1901 	 * We use this more or less deprecated interface for now since
1902 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
1903 	 * single page bos, which is done here.
1904 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
1905 	 * to use struct iosys_map.
1906 	 */
1907 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
1908 	if (ret)
1909 		return ret;
1910 
1911 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
1912 	if (is_iomem)
1913 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
1914 	else
1915 		iosys_map_set_vaddr(&bo->vmap, virtual);
1916 
1917 	return 0;
1918 }
1919 
1920 static void __xe_bo_vunmap(struct xe_bo *bo)
1921 {
1922 	if (!iosys_map_is_null(&bo->vmap)) {
1923 		iosys_map_clear(&bo->vmap);
1924 		ttm_bo_kunmap(&bo->kmap);
1925 	}
1926 }
1927 
1928 void xe_bo_vunmap(struct xe_bo *bo)
1929 {
1930 	xe_bo_assert_held(bo);
1931 	__xe_bo_vunmap(bo);
1932 }
1933 
1934 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
1935 			struct drm_file *file)
1936 {
1937 	struct xe_device *xe = to_xe_device(dev);
1938 	struct xe_file *xef = to_xe_file(file);
1939 	struct drm_xe_gem_create *args = data;
1940 	struct xe_vm *vm = NULL;
1941 	struct xe_bo *bo;
1942 	unsigned int bo_flags;
1943 	u32 handle;
1944 	int err;
1945 
1946 	if (XE_IOCTL_DBG(xe, args->extensions) ||
1947 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
1948 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1949 		return -EINVAL;
1950 
1951 	/* at least one valid memory placement must be specified */
1952 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
1953 			 !args->placement))
1954 		return -EINVAL;
1955 
1956 	if (XE_IOCTL_DBG(xe, args->flags &
1957 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
1958 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
1959 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
1960 		return -EINVAL;
1961 
1962 	if (XE_IOCTL_DBG(xe, args->handle))
1963 		return -EINVAL;
1964 
1965 	if (XE_IOCTL_DBG(xe, !args->size))
1966 		return -EINVAL;
1967 
1968 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
1969 		return -EINVAL;
1970 
1971 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
1972 		return -EINVAL;
1973 
1974 	bo_flags = 0;
1975 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
1976 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
1977 
1978 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
1979 		bo_flags |= XE_BO_FLAG_SCANOUT;
1980 
1981 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
1982 
1983 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
1984 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
1985 			return -EINVAL;
1986 
1987 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
1988 	}
1989 
1990 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
1991 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
1992 		return -EINVAL;
1993 
1994 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
1995 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
1996 		return -EINVAL;
1997 
1998 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
1999 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2000 		return -EINVAL;
2001 
2002 	if (args->vm_id) {
2003 		vm = xe_vm_lookup(xef, args->vm_id);
2004 		if (XE_IOCTL_DBG(xe, !vm))
2005 			return -ENOENT;
2006 		err = xe_vm_lock(vm, true);
2007 		if (err)
2008 			goto out_vm;
2009 	}
2010 
2011 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2012 			       ttm_bo_type_device, bo_flags);
2013 
2014 	if (vm)
2015 		xe_vm_unlock(vm);
2016 
2017 	if (IS_ERR(bo)) {
2018 		err = PTR_ERR(bo);
2019 		goto out_vm;
2020 	}
2021 
2022 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2023 	if (err)
2024 		goto out_bulk;
2025 
2026 	args->handle = handle;
2027 	goto out_put;
2028 
2029 out_bulk:
2030 	if (vm && !xe_vm_in_fault_mode(vm)) {
2031 		xe_vm_lock(vm, false);
2032 		__xe_bo_unset_bulk_move(bo);
2033 		xe_vm_unlock(vm);
2034 	}
2035 out_put:
2036 	xe_bo_put(bo);
2037 out_vm:
2038 	if (vm)
2039 		xe_vm_put(vm);
2040 
2041 	return err;
2042 }
2043 
2044 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2045 			     struct drm_file *file)
2046 {
2047 	struct xe_device *xe = to_xe_device(dev);
2048 	struct drm_xe_gem_mmap_offset *args = data;
2049 	struct drm_gem_object *gem_obj;
2050 
2051 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2052 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2053 		return -EINVAL;
2054 
2055 	if (XE_IOCTL_DBG(xe, args->flags))
2056 		return -EINVAL;
2057 
2058 	gem_obj = drm_gem_object_lookup(file, args->handle);
2059 	if (XE_IOCTL_DBG(xe, !gem_obj))
2060 		return -ENOENT;
2061 
2062 	/* The mmap offset was set up at BO allocation time. */
2063 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2064 
2065 	xe_bo_put(gem_to_xe_bo(gem_obj));
2066 	return 0;
2067 }
2068 
2069 /**
2070  * xe_bo_lock() - Lock the buffer object's dma_resv object
2071  * @bo: The struct xe_bo whose lock is to be taken
2072  * @intr: Whether to perform any wait interruptible
2073  *
2074  * Locks the buffer object's dma_resv object. If the buffer object is
2075  * pointing to a shared dma_resv object, that shared lock is locked.
2076  *
2077  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2078  * contended lock was interrupted. If @intr is set to false, the
2079  * function always returns 0.
2080  */
2081 int xe_bo_lock(struct xe_bo *bo, bool intr)
2082 {
2083 	if (intr)
2084 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2085 
2086 	dma_resv_lock(bo->ttm.base.resv, NULL);
2087 
2088 	return 0;
2089 }
2090 
2091 /**
2092  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2093  * @bo: The struct xe_bo whose lock is to be released.
2094  *
2095  * Unlock a buffer object lock that was locked by xe_bo_lock().
2096  */
2097 void xe_bo_unlock(struct xe_bo *bo)
2098 {
2099 	dma_resv_unlock(bo->ttm.base.resv);
2100 }
2101 
2102 /**
2103  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2104  * @bo: The buffer object to migrate
2105  * @mem_type: The TTM memory type intended to migrate to
2106  *
2107  * Check whether the buffer object supports migration to the
2108  * given memory type. Note that pinning may affect the ability to migrate as
2109  * returned by this function.
2110  *
2111  * This function is primarily intended as a helper for checking the
2112  * possibility to migrate buffer objects and can be called without
2113  * the object lock held.
2114  *
2115  * Return: true if migration is possible, false otherwise.
2116  */
2117 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2118 {
2119 	unsigned int cur_place;
2120 
2121 	if (bo->ttm.type == ttm_bo_type_kernel)
2122 		return true;
2123 
2124 	if (bo->ttm.type == ttm_bo_type_sg)
2125 		return false;
2126 
2127 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2128 	     cur_place++) {
2129 		if (bo->placements[cur_place].mem_type == mem_type)
2130 			return true;
2131 	}
2132 
2133 	return false;
2134 }
2135 
2136 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2137 {
2138 	memset(place, 0, sizeof(*place));
2139 	place->mem_type = mem_type;
2140 }
2141 
2142 /**
2143  * xe_bo_migrate - Migrate an object to the desired region id
2144  * @bo: The buffer object to migrate.
2145  * @mem_type: The TTM region type to migrate to.
2146  *
2147  * Attempt to migrate the buffer object to the desired memory region. The
2148  * buffer object may not be pinned, and must be locked.
2149  * On successful completion, the object memory type will be updated,
2150  * but an async migration task may not have completed yet, and to
2151  * accomplish that, the object's kernel fences must be signaled with
2152  * the object lock held.
2153  *
2154  * Return: 0 on success. Negative error code on failure. In particular may
2155  * return -EINTR or -ERESTARTSYS if signal pending.
2156  */
2157 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2158 {
2159 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2160 	struct ttm_operation_ctx ctx = {
2161 		.interruptible = true,
2162 		.no_wait_gpu = false,
2163 	};
2164 	struct ttm_placement placement;
2165 	struct ttm_place requested;
2166 
2167 	xe_bo_assert_held(bo);
2168 
2169 	if (bo->ttm.resource->mem_type == mem_type)
2170 		return 0;
2171 
2172 	if (xe_bo_is_pinned(bo))
2173 		return -EBUSY;
2174 
2175 	if (!xe_bo_can_migrate(bo, mem_type))
2176 		return -EINVAL;
2177 
2178 	xe_place_from_ttm_type(mem_type, &requested);
2179 	placement.num_placement = 1;
2180 	placement.placement = &requested;
2181 
2182 	/*
2183 	 * Stolen needs to be handled like below VRAM handling if we ever need
2184 	 * to support it.
2185 	 */
2186 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2187 
2188 	if (mem_type_is_vram(mem_type)) {
2189 		u32 c = 0;
2190 
2191 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2192 	}
2193 
2194 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2195 }
2196 
2197 /**
2198  * xe_bo_evict - Evict an object to evict placement
2199  * @bo: The buffer object to migrate.
2200  * @force_alloc: Set force_alloc in ttm_operation_ctx
2201  *
2202  * On successful completion, the object memory will be moved to evict
2203  * placement. Ths function blocks until the object has been fully moved.
2204  *
2205  * Return: 0 on success. Negative error code on failure.
2206  */
2207 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2208 {
2209 	struct ttm_operation_ctx ctx = {
2210 		.interruptible = false,
2211 		.no_wait_gpu = false,
2212 		.force_alloc = force_alloc,
2213 	};
2214 	struct ttm_placement placement;
2215 	int ret;
2216 
2217 	xe_evict_flags(&bo->ttm, &placement);
2218 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2219 	if (ret)
2220 		return ret;
2221 
2222 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2223 			      false, MAX_SCHEDULE_TIMEOUT);
2224 
2225 	return 0;
2226 }
2227 
2228 /**
2229  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2230  * placed in system memory.
2231  * @bo: The xe_bo
2232  *
2233  * Return: true if extra pages need to be allocated, false otherwise.
2234  */
2235 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2236 {
2237 	struct xe_device *xe = xe_bo_device(bo);
2238 
2239 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2240 		return false;
2241 
2242 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2243 		return false;
2244 
2245 	/* On discrete GPUs, if the GPU can access this buffer from
2246 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2247 	 * can't be used since there's no CCS storage associated with
2248 	 * non-VRAM addresses.
2249 	 */
2250 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2251 		return false;
2252 
2253 	return true;
2254 }
2255 
2256 /**
2257  * __xe_bo_release_dummy() - Dummy kref release function
2258  * @kref: The embedded struct kref.
2259  *
2260  * Dummy release function for xe_bo_put_deferred(). Keep off.
2261  */
2262 void __xe_bo_release_dummy(struct kref *kref)
2263 {
2264 }
2265 
2266 /**
2267  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2268  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2269  *
2270  * Puts all bos whose put was deferred by xe_bo_put_deferred().
2271  * The @deferred list can be either an onstack local list or a global
2272  * shared list used by a workqueue.
2273  */
2274 void xe_bo_put_commit(struct llist_head *deferred)
2275 {
2276 	struct llist_node *freed;
2277 	struct xe_bo *bo, *next;
2278 
2279 	if (!deferred)
2280 		return;
2281 
2282 	freed = llist_del_all(deferred);
2283 	if (!freed)
2284 		return;
2285 
2286 	llist_for_each_entry_safe(bo, next, freed, freed)
2287 		drm_gem_object_free(&bo->ttm.base.refcount);
2288 }
2289 
2290 /**
2291  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2292  * @file_priv: ...
2293  * @dev: ...
2294  * @args: ...
2295  *
2296  * See dumb_create() hook in include/drm/drm_drv.h
2297  *
2298  * Return: ...
2299  */
2300 int xe_bo_dumb_create(struct drm_file *file_priv,
2301 		      struct drm_device *dev,
2302 		      struct drm_mode_create_dumb *args)
2303 {
2304 	struct xe_device *xe = to_xe_device(dev);
2305 	struct xe_bo *bo;
2306 	uint32_t handle;
2307 	int cpp = DIV_ROUND_UP(args->bpp, 8);
2308 	int err;
2309 	u32 page_size = max_t(u32, PAGE_SIZE,
2310 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2311 
2312 	args->pitch = ALIGN(args->width * cpp, 64);
2313 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2314 			   page_size);
2315 
2316 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2317 			       DRM_XE_GEM_CPU_CACHING_WC,
2318 			       ttm_bo_type_device,
2319 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2320 			       XE_BO_FLAG_SCANOUT |
2321 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
2322 	if (IS_ERR(bo))
2323 		return PTR_ERR(bo);
2324 
2325 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2326 	/* drop reference from allocate - handle holds it now */
2327 	drm_gem_object_put(&bo->ttm.base);
2328 	if (!err)
2329 		args->handle = handle;
2330 	return err;
2331 }
2332 
2333 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2334 {
2335 	struct ttm_buffer_object *tbo = &bo->ttm;
2336 	struct ttm_device *bdev = tbo->bdev;
2337 
2338 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2339 
2340 	list_del_init(&bo->vram_userfault_link);
2341 }
2342 
2343 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2344 #include "tests/xe_bo.c"
2345 #endif
2346