1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 10 #include <drm/drm_drv.h> 11 #include <drm/drm_gem_ttm_helper.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_device.h> 14 #include <drm/ttm/ttm_placement.h> 15 #include <drm/ttm/ttm_tt.h> 16 #include <drm/xe_drm.h> 17 18 #include "xe_device.h" 19 #include "xe_dma_buf.h" 20 #include "xe_drm_client.h" 21 #include "xe_ggtt.h" 22 #include "xe_gt.h" 23 #include "xe_map.h" 24 #include "xe_migrate.h" 25 #include "xe_pm.h" 26 #include "xe_preempt_fence.h" 27 #include "xe_res_cursor.h" 28 #include "xe_trace_bo.h" 29 #include "xe_ttm_stolen_mgr.h" 30 #include "xe_vm.h" 31 32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 33 [XE_PL_SYSTEM] = "system", 34 [XE_PL_TT] = "gtt", 35 [XE_PL_VRAM0] = "vram0", 36 [XE_PL_VRAM1] = "vram1", 37 [XE_PL_STOLEN] = "stolen" 38 }; 39 40 static const struct ttm_place sys_placement_flags = { 41 .fpfn = 0, 42 .lpfn = 0, 43 .mem_type = XE_PL_SYSTEM, 44 .flags = 0, 45 }; 46 47 static struct ttm_placement sys_placement = { 48 .num_placement = 1, 49 .placement = &sys_placement_flags, 50 }; 51 52 static const struct ttm_place tt_placement_flags[] = { 53 { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = XE_PL_TT, 57 .flags = TTM_PL_FLAG_DESIRED, 58 }, 59 { 60 .fpfn = 0, 61 .lpfn = 0, 62 .mem_type = XE_PL_SYSTEM, 63 .flags = TTM_PL_FLAG_FALLBACK, 64 } 65 }; 66 67 static struct ttm_placement tt_placement = { 68 .num_placement = 2, 69 .placement = tt_placement_flags, 70 }; 71 72 bool mem_type_is_vram(u32 mem_type) 73 { 74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 75 } 76 77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 78 { 79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 80 } 81 82 static bool resource_is_vram(struct ttm_resource *res) 83 { 84 return mem_type_is_vram(res->mem_type); 85 } 86 87 bool xe_bo_is_vram(struct xe_bo *bo) 88 { 89 return resource_is_vram(bo->ttm.resource) || 90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 91 } 92 93 bool xe_bo_is_stolen(struct xe_bo *bo) 94 { 95 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 96 } 97 98 /** 99 * xe_bo_has_single_placement - check if BO is placed only in one memory location 100 * @bo: The BO 101 * 102 * This function checks whether a given BO is placed in only one memory location. 103 * 104 * Returns: true if the BO is placed in a single memory location, false otherwise. 105 * 106 */ 107 bool xe_bo_has_single_placement(struct xe_bo *bo) 108 { 109 return bo->placement.num_placement == 1; 110 } 111 112 /** 113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 114 * @bo: The BO 115 * 116 * The stolen memory is accessed through the PCI BAR for both DGFX and some 117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 118 * 119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 120 */ 121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 122 { 123 return xe_bo_is_stolen(bo) && 124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 125 } 126 127 static bool xe_bo_is_user(struct xe_bo *bo) 128 { 129 return bo->flags & XE_BO_FLAG_USER; 130 } 131 132 static struct xe_migrate * 133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 134 { 135 struct xe_tile *tile; 136 137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 139 return tile->migrate; 140 } 141 142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) 143 { 144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 145 struct ttm_resource_manager *mgr; 146 147 xe_assert(xe, resource_is_vram(res)); 148 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 149 return to_xe_ttm_vram_mgr(mgr)->vram; 150 } 151 152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 153 u32 bo_flags, u32 *c) 154 { 155 if (bo_flags & XE_BO_FLAG_SYSTEM) { 156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 157 158 bo->placements[*c] = (struct ttm_place) { 159 .mem_type = XE_PL_TT, 160 }; 161 *c += 1; 162 } 163 } 164 165 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 167 { 168 struct ttm_place place = { .mem_type = mem_type }; 169 struct xe_mem_region *vram; 170 u64 io_size; 171 172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 173 174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; 175 xe_assert(xe, vram && vram->usable_size); 176 io_size = vram->io_size; 177 178 /* 179 * For eviction / restore on suspend / resume objects 180 * pinned in VRAM must be contiguous 181 */ 182 if (bo_flags & (XE_BO_FLAG_PINNED | 183 XE_BO_FLAG_GGTT)) 184 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 185 186 if (io_size < vram->usable_size) { 187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 188 place.fpfn = 0; 189 place.lpfn = io_size >> PAGE_SHIFT; 190 } else { 191 place.flags |= TTM_PL_FLAG_TOPDOWN; 192 } 193 } 194 places[*c] = place; 195 *c += 1; 196 } 197 198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 199 u32 bo_flags, u32 *c) 200 { 201 if (bo_flags & XE_BO_FLAG_VRAM0) 202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 203 if (bo_flags & XE_BO_FLAG_VRAM1) 204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 205 } 206 207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 208 u32 bo_flags, u32 *c) 209 { 210 if (bo_flags & XE_BO_FLAG_STOLEN) { 211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 212 213 bo->placements[*c] = (struct ttm_place) { 214 .mem_type = XE_PL_STOLEN, 215 .flags = bo_flags & (XE_BO_FLAG_PINNED | 216 XE_BO_FLAG_GGTT) ? 217 TTM_PL_FLAG_CONTIGUOUS : 0, 218 }; 219 *c += 1; 220 } 221 } 222 223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 224 u32 bo_flags) 225 { 226 u32 c = 0; 227 228 try_add_vram(xe, bo, bo_flags, &c); 229 try_add_system(xe, bo, bo_flags, &c); 230 try_add_stolen(xe, bo, bo_flags, &c); 231 232 if (!c) 233 return -EINVAL; 234 235 bo->placement = (struct ttm_placement) { 236 .num_placement = c, 237 .placement = bo->placements, 238 }; 239 240 return 0; 241 } 242 243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 244 u32 bo_flags) 245 { 246 xe_bo_assert_held(bo); 247 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 248 } 249 250 static void xe_evict_flags(struct ttm_buffer_object *tbo, 251 struct ttm_placement *placement) 252 { 253 if (!xe_bo_is_xe_bo(tbo)) { 254 /* Don't handle scatter gather BOs */ 255 if (tbo->type == ttm_bo_type_sg) { 256 placement->num_placement = 0; 257 return; 258 } 259 260 *placement = sys_placement; 261 return; 262 } 263 264 /* 265 * For xe, sg bos that are evicted to system just triggers a 266 * rebind of the sg list upon subsequent validation to XE_PL_TT. 267 */ 268 switch (tbo->resource->mem_type) { 269 case XE_PL_VRAM0: 270 case XE_PL_VRAM1: 271 case XE_PL_STOLEN: 272 *placement = tt_placement; 273 break; 274 case XE_PL_TT: 275 default: 276 *placement = sys_placement; 277 break; 278 } 279 } 280 281 struct xe_ttm_tt { 282 struct ttm_tt ttm; 283 struct device *dev; 284 struct sg_table sgt; 285 struct sg_table *sg; 286 }; 287 288 static int xe_tt_map_sg(struct ttm_tt *tt) 289 { 290 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 291 unsigned long num_pages = tt->num_pages; 292 int ret; 293 294 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); 295 296 if (xe_tt->sg) 297 return 0; 298 299 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 300 num_pages, 0, 301 (u64)num_pages << PAGE_SHIFT, 302 xe_sg_segment_size(xe_tt->dev), 303 GFP_KERNEL); 304 if (ret) 305 return ret; 306 307 xe_tt->sg = &xe_tt->sgt; 308 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 309 DMA_ATTR_SKIP_CPU_SYNC); 310 if (ret) { 311 sg_free_table(xe_tt->sg); 312 xe_tt->sg = NULL; 313 return ret; 314 } 315 316 return 0; 317 } 318 319 static void xe_tt_unmap_sg(struct ttm_tt *tt) 320 { 321 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 322 323 if (xe_tt->sg) { 324 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, 325 DMA_BIDIRECTIONAL, 0); 326 sg_free_table(xe_tt->sg); 327 xe_tt->sg = NULL; 328 } 329 } 330 331 struct sg_table *xe_bo_sg(struct xe_bo *bo) 332 { 333 struct ttm_tt *tt = bo->ttm.ttm; 334 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 335 336 return xe_tt->sg; 337 } 338 339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 340 u32 page_flags) 341 { 342 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 343 struct xe_device *xe = xe_bo_device(bo); 344 struct xe_ttm_tt *tt; 345 unsigned long extra_pages; 346 enum ttm_caching caching; 347 int err; 348 349 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 350 if (!tt) 351 return NULL; 352 353 tt->dev = xe->drm.dev; 354 355 extra_pages = 0; 356 if (xe_bo_needs_ccs_pages(bo)) 357 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), 358 PAGE_SIZE); 359 360 switch (bo->cpu_caching) { 361 case DRM_XE_GEM_CPU_CACHING_WC: 362 caching = ttm_write_combined; 363 break; 364 default: 365 caching = ttm_cached; 366 break; 367 } 368 369 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 370 371 /* 372 * Display scanout is always non-coherent with the CPU cache. 373 * 374 * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and 375 * require a CPU:WC mapping. 376 */ 377 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 378 (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_FLAG_PAGETABLE)) 379 caching = ttm_write_combined; 380 381 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 382 /* 383 * Valid only for internally-created buffers only, for 384 * which cpu_caching is never initialized. 385 */ 386 xe_assert(xe, bo->cpu_caching == 0); 387 caching = ttm_uncached; 388 } 389 390 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); 391 if (err) { 392 kfree(tt); 393 return NULL; 394 } 395 396 return &tt->ttm; 397 } 398 399 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 400 struct ttm_operation_ctx *ctx) 401 { 402 int err; 403 404 /* 405 * dma-bufs are not populated with pages, and the dma- 406 * addresses are set up when moved to XE_PL_TT. 407 */ 408 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 409 return 0; 410 411 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 412 if (err) 413 return err; 414 415 return err; 416 } 417 418 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 419 { 420 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) 421 return; 422 423 xe_tt_unmap_sg(tt); 424 425 return ttm_pool_free(&ttm_dev->pool, tt); 426 } 427 428 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 429 { 430 ttm_tt_fini(tt); 431 kfree(tt); 432 } 433 434 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 435 struct ttm_resource *mem) 436 { 437 struct xe_device *xe = ttm_to_xe_device(bdev); 438 439 switch (mem->mem_type) { 440 case XE_PL_SYSTEM: 441 case XE_PL_TT: 442 return 0; 443 case XE_PL_VRAM0: 444 case XE_PL_VRAM1: { 445 struct xe_ttm_vram_mgr_resource *vres = 446 to_xe_ttm_vram_mgr_resource(mem); 447 struct xe_mem_region *vram = res_to_mem_region(mem); 448 449 if (vres->used_visible_size < mem->size) 450 return -EINVAL; 451 452 mem->bus.offset = mem->start << PAGE_SHIFT; 453 454 if (vram->mapping && 455 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 456 mem->bus.addr = (u8 __force *)vram->mapping + 457 mem->bus.offset; 458 459 mem->bus.offset += vram->io_start; 460 mem->bus.is_iomem = true; 461 462 #if !defined(CONFIG_X86) 463 mem->bus.caching = ttm_write_combined; 464 #endif 465 return 0; 466 } case XE_PL_STOLEN: 467 return xe_ttm_stolen_io_mem_reserve(xe, mem); 468 default: 469 return -EINVAL; 470 } 471 } 472 473 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 474 const struct ttm_operation_ctx *ctx) 475 { 476 struct dma_resv_iter cursor; 477 struct dma_fence *fence; 478 struct drm_gem_object *obj = &bo->ttm.base; 479 struct drm_gpuvm_bo *vm_bo; 480 bool idle = false; 481 int ret = 0; 482 483 dma_resv_assert_held(bo->ttm.base.resv); 484 485 if (!list_empty(&bo->ttm.base.gpuva.list)) { 486 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 487 DMA_RESV_USAGE_BOOKKEEP); 488 dma_resv_for_each_fence_unlocked(&cursor, fence) 489 dma_fence_enable_sw_signaling(fence); 490 dma_resv_iter_end(&cursor); 491 } 492 493 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 494 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 495 struct drm_gpuva *gpuva; 496 497 if (!xe_vm_in_fault_mode(vm)) { 498 drm_gpuvm_bo_evict(vm_bo, true); 499 continue; 500 } 501 502 if (!idle) { 503 long timeout; 504 505 if (ctx->no_wait_gpu && 506 !dma_resv_test_signaled(bo->ttm.base.resv, 507 DMA_RESV_USAGE_BOOKKEEP)) 508 return -EBUSY; 509 510 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 511 DMA_RESV_USAGE_BOOKKEEP, 512 ctx->interruptible, 513 MAX_SCHEDULE_TIMEOUT); 514 if (!timeout) 515 return -ETIME; 516 if (timeout < 0) 517 return timeout; 518 519 idle = true; 520 } 521 522 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 523 struct xe_vma *vma = gpuva_to_vma(gpuva); 524 525 trace_xe_vma_evict(vma); 526 ret = xe_vm_invalidate_vma(vma); 527 if (XE_WARN_ON(ret)) 528 return ret; 529 } 530 } 531 532 return ret; 533 } 534 535 /* 536 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 537 * Note that unmapping the attachment is deferred to the next 538 * map_attachment time, or to bo destroy (after idling) whichever comes first. 539 * This is to avoid syncing before unmap_attachment(), assuming that the 540 * caller relies on idling the reservation object before moving the 541 * backing store out. Should that assumption not hold, then we will be able 542 * to unconditionally call unmap_attachment() when moving out to system. 543 */ 544 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 545 struct ttm_resource *new_res) 546 { 547 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 548 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 549 ttm); 550 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 551 struct sg_table *sg; 552 553 xe_assert(xe, attach); 554 xe_assert(xe, ttm_bo->ttm); 555 556 if (new_res->mem_type == XE_PL_SYSTEM) 557 goto out; 558 559 if (ttm_bo->sg) { 560 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 561 ttm_bo->sg = NULL; 562 } 563 564 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 565 if (IS_ERR(sg)) 566 return PTR_ERR(sg); 567 568 ttm_bo->sg = sg; 569 xe_tt->sg = sg; 570 571 out: 572 ttm_bo_move_null(ttm_bo, new_res); 573 574 return 0; 575 } 576 577 /** 578 * xe_bo_move_notify - Notify subsystems of a pending move 579 * @bo: The buffer object 580 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 581 * 582 * This function notifies subsystems of an upcoming buffer move. 583 * Upon receiving such a notification, subsystems should schedule 584 * halting access to the underlying pages and optionally add a fence 585 * to the buffer object's dma_resv object, that signals when access is 586 * stopped. The caller will wait on all dma_resv fences before 587 * starting the move. 588 * 589 * A subsystem may commence access to the object after obtaining 590 * bindings to the new backing memory under the object lock. 591 * 592 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 593 * negative error code on error. 594 */ 595 static int xe_bo_move_notify(struct xe_bo *bo, 596 const struct ttm_operation_ctx *ctx) 597 { 598 struct ttm_buffer_object *ttm_bo = &bo->ttm; 599 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 600 struct ttm_resource *old_mem = ttm_bo->resource; 601 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 602 int ret; 603 604 /* 605 * If this starts to call into many components, consider 606 * using a notification chain here. 607 */ 608 609 if (xe_bo_is_pinned(bo)) 610 return -EINVAL; 611 612 xe_bo_vunmap(bo); 613 ret = xe_bo_trigger_rebind(xe, bo, ctx); 614 if (ret) 615 return ret; 616 617 /* Don't call move_notify() for imported dma-bufs. */ 618 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 619 dma_buf_move_notify(ttm_bo->base.dma_buf); 620 621 /* 622 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 623 * so if we moved from VRAM make sure to unlink this from the userfault 624 * tracking. 625 */ 626 if (mem_type_is_vram(old_mem_type)) { 627 mutex_lock(&xe->mem_access.vram_userfault.lock); 628 if (!list_empty(&bo->vram_userfault_link)) 629 list_del_init(&bo->vram_userfault_link); 630 mutex_unlock(&xe->mem_access.vram_userfault.lock); 631 } 632 633 return 0; 634 } 635 636 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 637 struct ttm_operation_ctx *ctx, 638 struct ttm_resource *new_mem, 639 struct ttm_place *hop) 640 { 641 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 642 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 643 struct ttm_resource *old_mem = ttm_bo->resource; 644 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 645 struct ttm_tt *ttm = ttm_bo->ttm; 646 struct xe_migrate *migrate = NULL; 647 struct dma_fence *fence; 648 bool move_lacks_source; 649 bool tt_has_data; 650 bool needs_clear; 651 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 652 ttm && ttm_tt_is_populated(ttm)) ? true : false; 653 int ret = 0; 654 655 /* Bo creation path, moving to system or TT. */ 656 if ((!old_mem && ttm) && !handle_system_ccs) { 657 if (new_mem->mem_type == XE_PL_TT) 658 ret = xe_tt_map_sg(ttm); 659 if (!ret) 660 ttm_bo_move_null(ttm_bo, new_mem); 661 goto out; 662 } 663 664 if (ttm_bo->type == ttm_bo_type_sg) { 665 ret = xe_bo_move_notify(bo, ctx); 666 if (!ret) 667 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 668 return ret; 669 } 670 671 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || 672 (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 673 674 move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : 675 (!mem_type_is_vram(old_mem_type) && !tt_has_data); 676 677 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 678 (!ttm && ttm_bo->type == ttm_bo_type_device); 679 680 if (new_mem->mem_type == XE_PL_TT) { 681 ret = xe_tt_map_sg(ttm); 682 if (ret) 683 goto out; 684 } 685 686 if ((move_lacks_source && !needs_clear)) { 687 ttm_bo_move_null(ttm_bo, new_mem); 688 goto out; 689 } 690 691 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 692 ttm_bo_move_null(ttm_bo, new_mem); 693 goto out; 694 } 695 696 /* 697 * Failed multi-hop where the old_mem is still marked as 698 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 699 */ 700 if (old_mem_type == XE_PL_TT && 701 new_mem->mem_type == XE_PL_TT) { 702 ttm_bo_move_null(ttm_bo, new_mem); 703 goto out; 704 } 705 706 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 707 ret = xe_bo_move_notify(bo, ctx); 708 if (ret) 709 goto out; 710 } 711 712 if (old_mem_type == XE_PL_TT && 713 new_mem->mem_type == XE_PL_SYSTEM) { 714 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 715 DMA_RESV_USAGE_BOOKKEEP, 716 true, 717 MAX_SCHEDULE_TIMEOUT); 718 if (timeout < 0) { 719 ret = timeout; 720 goto out; 721 } 722 723 if (!handle_system_ccs) { 724 ttm_bo_move_null(ttm_bo, new_mem); 725 goto out; 726 } 727 } 728 729 if (!move_lacks_source && 730 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 731 (mem_type_is_vram(old_mem_type) && 732 new_mem->mem_type == XE_PL_SYSTEM))) { 733 hop->fpfn = 0; 734 hop->lpfn = 0; 735 hop->mem_type = XE_PL_TT; 736 hop->flags = TTM_PL_FLAG_TEMPORARY; 737 ret = -EMULTIHOP; 738 goto out; 739 } 740 741 if (bo->tile) 742 migrate = bo->tile->migrate; 743 else if (resource_is_vram(new_mem)) 744 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 745 else if (mem_type_is_vram(old_mem_type)) 746 migrate = mem_type_to_migrate(xe, old_mem_type); 747 else 748 migrate = xe->tiles[0].migrate; 749 750 xe_assert(xe, migrate); 751 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 752 xe_pm_runtime_get_noresume(xe); 753 754 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { 755 /* 756 * Kernel memory that is pinned should only be moved on suspend 757 * / resume, some of the pinned memory is required for the 758 * device to resume / use the GPU to move other evicted memory 759 * (user memory) around. This likely could be optimized a bit 760 * futher where we find the minimum set of pinned memory 761 * required for resume but for simplity doing a memcpy for all 762 * pinned memory. 763 */ 764 ret = xe_bo_vmap(bo); 765 if (!ret) { 766 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); 767 768 /* Create a new VMAP once kernel BO back in VRAM */ 769 if (!ret && resource_is_vram(new_mem)) { 770 struct xe_mem_region *vram = res_to_mem_region(new_mem); 771 void __iomem *new_addr = vram->mapping + 772 (new_mem->start << PAGE_SHIFT); 773 774 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { 775 ret = -EINVAL; 776 xe_pm_runtime_put(xe); 777 goto out; 778 } 779 780 xe_assert(xe, new_mem->start == 781 bo->placements->fpfn); 782 783 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); 784 } 785 } 786 } else { 787 if (move_lacks_source) 788 fence = xe_migrate_clear(migrate, bo, new_mem); 789 else 790 fence = xe_migrate_copy(migrate, bo, bo, old_mem, 791 new_mem, handle_system_ccs); 792 if (IS_ERR(fence)) { 793 ret = PTR_ERR(fence); 794 xe_pm_runtime_put(xe); 795 goto out; 796 } 797 if (!move_lacks_source) { 798 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, 799 true, new_mem); 800 if (ret) { 801 dma_fence_wait(fence, false); 802 ttm_bo_move_null(ttm_bo, new_mem); 803 ret = 0; 804 } 805 } else { 806 /* 807 * ttm_bo_move_accel_cleanup() may blow up if 808 * bo->resource == NULL, so just attach the 809 * fence and set the new resource. 810 */ 811 dma_resv_add_fence(ttm_bo->base.resv, fence, 812 DMA_RESV_USAGE_KERNEL); 813 ttm_bo_move_null(ttm_bo, new_mem); 814 } 815 816 dma_fence_put(fence); 817 } 818 819 xe_pm_runtime_put(xe); 820 821 out: 822 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 823 ttm_bo->ttm) 824 xe_tt_unmap_sg(ttm_bo->ttm); 825 826 return ret; 827 } 828 829 /** 830 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 831 * @bo: The buffer object to move. 832 * 833 * On successful completion, the object memory will be moved to sytem memory. 834 * 835 * This is needed to for special handling of pinned VRAM object during 836 * suspend-resume. 837 * 838 * Return: 0 on success. Negative error code on failure. 839 */ 840 int xe_bo_evict_pinned(struct xe_bo *bo) 841 { 842 struct ttm_place place = { 843 .mem_type = XE_PL_TT, 844 }; 845 struct ttm_placement placement = { 846 .placement = &place, 847 .num_placement = 1, 848 }; 849 struct ttm_operation_ctx ctx = { 850 .interruptible = false, 851 }; 852 struct ttm_resource *new_mem; 853 int ret; 854 855 xe_bo_assert_held(bo); 856 857 if (WARN_ON(!bo->ttm.resource)) 858 return -EINVAL; 859 860 if (WARN_ON(!xe_bo_is_pinned(bo))) 861 return -EINVAL; 862 863 if (WARN_ON(!xe_bo_is_vram(bo))) 864 return -EINVAL; 865 866 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); 867 if (ret) 868 return ret; 869 870 if (!bo->ttm.ttm) { 871 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); 872 if (!bo->ttm.ttm) { 873 ret = -ENOMEM; 874 goto err_res_free; 875 } 876 } 877 878 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 879 if (ret) 880 goto err_res_free; 881 882 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 883 if (ret) 884 goto err_res_free; 885 886 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 887 if (ret) 888 goto err_res_free; 889 890 return 0; 891 892 err_res_free: 893 ttm_resource_free(&bo->ttm, &new_mem); 894 return ret; 895 } 896 897 /** 898 * xe_bo_restore_pinned() - Restore a pinned VRAM object 899 * @bo: The buffer object to move. 900 * 901 * On successful completion, the object memory will be moved back to VRAM. 902 * 903 * This is needed to for special handling of pinned VRAM object during 904 * suspend-resume. 905 * 906 * Return: 0 on success. Negative error code on failure. 907 */ 908 int xe_bo_restore_pinned(struct xe_bo *bo) 909 { 910 struct ttm_operation_ctx ctx = { 911 .interruptible = false, 912 }; 913 struct ttm_resource *new_mem; 914 int ret; 915 916 xe_bo_assert_held(bo); 917 918 if (WARN_ON(!bo->ttm.resource)) 919 return -EINVAL; 920 921 if (WARN_ON(!xe_bo_is_pinned(bo))) 922 return -EINVAL; 923 924 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) 925 return -EINVAL; 926 927 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); 928 if (ret) 929 return ret; 930 931 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); 932 if (ret) 933 goto err_res_free; 934 935 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 936 if (ret) 937 goto err_res_free; 938 939 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); 940 if (ret) 941 goto err_res_free; 942 943 return 0; 944 945 err_res_free: 946 ttm_resource_free(&bo->ttm, &new_mem); 947 return ret; 948 } 949 950 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 951 unsigned long page_offset) 952 { 953 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 954 struct xe_res_cursor cursor; 955 struct xe_mem_region *vram; 956 957 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 958 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 959 960 vram = res_to_mem_region(ttm_bo->resource); 961 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 962 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 963 } 964 965 static void __xe_bo_vunmap(struct xe_bo *bo); 966 967 /* 968 * TODO: Move this function to TTM so we don't rely on how TTM does its 969 * locking, thereby abusing TTM internals. 970 */ 971 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 972 { 973 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 974 bool locked; 975 976 xe_assert(xe, !kref_read(&ttm_bo->kref)); 977 978 /* 979 * We can typically only race with TTM trylocking under the 980 * lru_lock, which will immediately be unlocked again since 981 * the ttm_bo refcount is zero at this point. So trylocking *should* 982 * always succeed here, as long as we hold the lru lock. 983 */ 984 spin_lock(&ttm_bo->bdev->lru_lock); 985 locked = dma_resv_trylock(ttm_bo->base.resv); 986 spin_unlock(&ttm_bo->bdev->lru_lock); 987 xe_assert(xe, locked); 988 989 return locked; 990 } 991 992 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 993 { 994 struct dma_resv_iter cursor; 995 struct dma_fence *fence; 996 struct dma_fence *replacement = NULL; 997 struct xe_bo *bo; 998 999 if (!xe_bo_is_xe_bo(ttm_bo)) 1000 return; 1001 1002 bo = ttm_to_xe_bo(ttm_bo); 1003 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1004 1005 /* 1006 * Corner case where TTM fails to allocate memory and this BOs resv 1007 * still points the VMs resv 1008 */ 1009 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1010 return; 1011 1012 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1013 return; 1014 1015 /* 1016 * Scrub the preempt fences if any. The unbind fence is already 1017 * attached to the resv. 1018 * TODO: Don't do this for external bos once we scrub them after 1019 * unbind. 1020 */ 1021 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1022 DMA_RESV_USAGE_BOOKKEEP, fence) { 1023 if (xe_fence_is_xe_preempt(fence) && 1024 !dma_fence_is_signaled(fence)) { 1025 if (!replacement) 1026 replacement = dma_fence_get_stub(); 1027 1028 dma_resv_replace_fences(ttm_bo->base.resv, 1029 fence->context, 1030 replacement, 1031 DMA_RESV_USAGE_BOOKKEEP); 1032 } 1033 } 1034 dma_fence_put(replacement); 1035 1036 dma_resv_unlock(ttm_bo->base.resv); 1037 } 1038 1039 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1040 { 1041 if (!xe_bo_is_xe_bo(ttm_bo)) 1042 return; 1043 1044 /* 1045 * Object is idle and about to be destroyed. Release the 1046 * dma-buf attachment. 1047 */ 1048 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1049 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1050 struct xe_ttm_tt, ttm); 1051 1052 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1053 DMA_BIDIRECTIONAL); 1054 ttm_bo->sg = NULL; 1055 xe_tt->sg = NULL; 1056 } 1057 } 1058 1059 const struct ttm_device_funcs xe_ttm_funcs = { 1060 .ttm_tt_create = xe_ttm_tt_create, 1061 .ttm_tt_populate = xe_ttm_tt_populate, 1062 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1063 .ttm_tt_destroy = xe_ttm_tt_destroy, 1064 .evict_flags = xe_evict_flags, 1065 .move = xe_bo_move, 1066 .io_mem_reserve = xe_ttm_io_mem_reserve, 1067 .io_mem_pfn = xe_ttm_io_mem_pfn, 1068 .release_notify = xe_ttm_bo_release_notify, 1069 .eviction_valuable = ttm_bo_eviction_valuable, 1070 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1071 }; 1072 1073 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1074 { 1075 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1076 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1077 1078 if (bo->ttm.base.import_attach) 1079 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1080 drm_gem_object_release(&bo->ttm.base); 1081 1082 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1083 1084 if (bo->ggtt_node.size) 1085 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); 1086 1087 #ifdef CONFIG_PROC_FS 1088 if (bo->client) 1089 xe_drm_client_remove_bo(bo); 1090 #endif 1091 1092 if (bo->vm && xe_bo_is_user(bo)) 1093 xe_vm_put(bo->vm); 1094 1095 mutex_lock(&xe->mem_access.vram_userfault.lock); 1096 if (!list_empty(&bo->vram_userfault_link)) 1097 list_del(&bo->vram_userfault_link); 1098 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1099 1100 kfree(bo); 1101 } 1102 1103 static void xe_gem_object_free(struct drm_gem_object *obj) 1104 { 1105 /* Our BO reference counting scheme works as follows: 1106 * 1107 * The gem object kref is typically used throughout the driver, 1108 * and the gem object holds a ttm_buffer_object refcount, so 1109 * that when the last gem object reference is put, which is when 1110 * we end up in this function, we put also that ttm_buffer_object 1111 * refcount. Anything using gem interfaces is then no longer 1112 * allowed to access the object in a way that requires a gem 1113 * refcount, including locking the object. 1114 * 1115 * driver ttm callbacks is allowed to use the ttm_buffer_object 1116 * refcount directly if needed. 1117 */ 1118 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1119 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1120 } 1121 1122 static void xe_gem_object_close(struct drm_gem_object *obj, 1123 struct drm_file *file_priv) 1124 { 1125 struct xe_bo *bo = gem_to_xe_bo(obj); 1126 1127 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1128 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1129 1130 xe_bo_lock(bo, false); 1131 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1132 xe_bo_unlock(bo); 1133 } 1134 } 1135 1136 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1137 { 1138 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1139 struct drm_device *ddev = tbo->base.dev; 1140 struct xe_device *xe = to_xe_device(ddev); 1141 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1142 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1143 vm_fault_t ret; 1144 int idx; 1145 1146 if (needs_rpm) 1147 xe_pm_runtime_get(xe); 1148 1149 ret = ttm_bo_vm_reserve(tbo, vmf); 1150 if (ret) 1151 goto out; 1152 1153 if (drm_dev_enter(ddev, &idx)) { 1154 trace_xe_bo_cpu_fault(bo); 1155 1156 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1157 TTM_BO_VM_NUM_PREFAULT); 1158 drm_dev_exit(idx); 1159 } else { 1160 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1161 } 1162 1163 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1164 goto out; 1165 /* 1166 * ttm_bo_vm_reserve() already has dma_resv_lock. 1167 */ 1168 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { 1169 mutex_lock(&xe->mem_access.vram_userfault.lock); 1170 if (list_empty(&bo->vram_userfault_link)) 1171 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); 1172 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1173 } 1174 1175 dma_resv_unlock(tbo->base.resv); 1176 out: 1177 if (needs_rpm) 1178 xe_pm_runtime_put(xe); 1179 1180 return ret; 1181 } 1182 1183 static const struct vm_operations_struct xe_gem_vm_ops = { 1184 .fault = xe_gem_fault, 1185 .open = ttm_bo_vm_open, 1186 .close = ttm_bo_vm_close, 1187 .access = ttm_bo_vm_access 1188 }; 1189 1190 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1191 .free = xe_gem_object_free, 1192 .close = xe_gem_object_close, 1193 .mmap = drm_gem_ttm_mmap, 1194 .export = xe_gem_prime_export, 1195 .vm_ops = &xe_gem_vm_ops, 1196 }; 1197 1198 /** 1199 * xe_bo_alloc - Allocate storage for a struct xe_bo 1200 * 1201 * This funcition is intended to allocate storage to be used for input 1202 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1203 * created is needed before the call to __xe_bo_create_locked(). 1204 * If __xe_bo_create_locked ends up never to be called, then the 1205 * storage allocated with this function needs to be freed using 1206 * xe_bo_free(). 1207 * 1208 * Return: A pointer to an uninitialized struct xe_bo on success, 1209 * ERR_PTR(-ENOMEM) on error. 1210 */ 1211 struct xe_bo *xe_bo_alloc(void) 1212 { 1213 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1214 1215 if (!bo) 1216 return ERR_PTR(-ENOMEM); 1217 1218 return bo; 1219 } 1220 1221 /** 1222 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1223 * @bo: The buffer object storage. 1224 * 1225 * Refer to xe_bo_alloc() documentation for valid use-cases. 1226 */ 1227 void xe_bo_free(struct xe_bo *bo) 1228 { 1229 kfree(bo); 1230 } 1231 1232 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1233 struct xe_tile *tile, struct dma_resv *resv, 1234 struct ttm_lru_bulk_move *bulk, size_t size, 1235 u16 cpu_caching, enum ttm_bo_type type, 1236 u32 flags) 1237 { 1238 struct ttm_operation_ctx ctx = { 1239 .interruptible = true, 1240 .no_wait_gpu = false, 1241 }; 1242 struct ttm_placement *placement; 1243 uint32_t alignment; 1244 size_t aligned_size; 1245 int err; 1246 1247 /* Only kernel objects should set GT */ 1248 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1249 1250 if (XE_WARN_ON(!size)) { 1251 xe_bo_free(bo); 1252 return ERR_PTR(-EINVAL); 1253 } 1254 1255 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1256 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1257 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1258 (flags & XE_BO_NEEDS_64K))) { 1259 aligned_size = ALIGN(size, SZ_64K); 1260 if (type != ttm_bo_type_device) 1261 size = ALIGN(size, SZ_64K); 1262 flags |= XE_BO_FLAG_INTERNAL_64K; 1263 alignment = SZ_64K >> PAGE_SHIFT; 1264 1265 } else { 1266 aligned_size = ALIGN(size, SZ_4K); 1267 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1268 alignment = SZ_4K >> PAGE_SHIFT; 1269 } 1270 1271 if (type == ttm_bo_type_device && aligned_size != size) 1272 return ERR_PTR(-EINVAL); 1273 1274 if (!bo) { 1275 bo = xe_bo_alloc(); 1276 if (IS_ERR(bo)) 1277 return bo; 1278 } 1279 1280 bo->ccs_cleared = false; 1281 bo->tile = tile; 1282 bo->size = size; 1283 bo->flags = flags; 1284 bo->cpu_caching = cpu_caching; 1285 bo->ttm.base.funcs = &xe_gem_object_funcs; 1286 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1287 INIT_LIST_HEAD(&bo->pinned_link); 1288 #ifdef CONFIG_PROC_FS 1289 INIT_LIST_HEAD(&bo->client_link); 1290 #endif 1291 INIT_LIST_HEAD(&bo->vram_userfault_link); 1292 1293 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1294 1295 if (resv) { 1296 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1297 ctx.resv = resv; 1298 } 1299 1300 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1301 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1302 if (WARN_ON(err)) { 1303 xe_ttm_bo_destroy(&bo->ttm); 1304 return ERR_PTR(err); 1305 } 1306 } 1307 1308 /* Defer populating type_sg bos */ 1309 placement = (type == ttm_bo_type_sg || 1310 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1311 &bo->placement; 1312 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1313 placement, alignment, 1314 &ctx, NULL, resv, xe_ttm_bo_destroy); 1315 if (err) 1316 return ERR_PTR(err); 1317 1318 /* 1319 * The VRAM pages underneath are potentially still being accessed by the 1320 * GPU, as per async GPU clearing and async evictions. However TTM makes 1321 * sure to add any corresponding move/clear fences into the objects 1322 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1323 * 1324 * For KMD internal buffers we don't care about GPU clearing, however we 1325 * still need to handle async evictions, where the VRAM is still being 1326 * accessed by the GPU. Most internal callers are not expecting this, 1327 * since they are missing the required synchronisation before accessing 1328 * the memory. To keep things simple just sync wait any kernel fences 1329 * here, if the buffer is designated KMD internal. 1330 * 1331 * For normal userspace objects we should already have the required 1332 * pipelining or sync waiting elsewhere, since we already have to deal 1333 * with things like async GPU clearing. 1334 */ 1335 if (type == ttm_bo_type_kernel) { 1336 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1337 DMA_RESV_USAGE_KERNEL, 1338 ctx.interruptible, 1339 MAX_SCHEDULE_TIMEOUT); 1340 1341 if (timeout < 0) { 1342 if (!resv) 1343 dma_resv_unlock(bo->ttm.base.resv); 1344 xe_bo_put(bo); 1345 return ERR_PTR(timeout); 1346 } 1347 } 1348 1349 bo->created = true; 1350 if (bulk) 1351 ttm_bo_set_bulk_move(&bo->ttm, bulk); 1352 else 1353 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1354 1355 return bo; 1356 } 1357 1358 static int __xe_bo_fixed_placement(struct xe_device *xe, 1359 struct xe_bo *bo, 1360 u32 flags, 1361 u64 start, u64 end, u64 size) 1362 { 1363 struct ttm_place *place = bo->placements; 1364 1365 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 1366 return -EINVAL; 1367 1368 place->flags = TTM_PL_FLAG_CONTIGUOUS; 1369 place->fpfn = start >> PAGE_SHIFT; 1370 place->lpfn = end >> PAGE_SHIFT; 1371 1372 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 1373 case XE_BO_FLAG_VRAM0: 1374 place->mem_type = XE_PL_VRAM0; 1375 break; 1376 case XE_BO_FLAG_VRAM1: 1377 place->mem_type = XE_PL_VRAM1; 1378 break; 1379 case XE_BO_FLAG_STOLEN: 1380 place->mem_type = XE_PL_STOLEN; 1381 break; 1382 1383 default: 1384 /* 0 or multiple of the above set */ 1385 return -EINVAL; 1386 } 1387 1388 bo->placement = (struct ttm_placement) { 1389 .num_placement = 1, 1390 .placement = place, 1391 }; 1392 1393 return 0; 1394 } 1395 1396 static struct xe_bo * 1397 __xe_bo_create_locked(struct xe_device *xe, 1398 struct xe_tile *tile, struct xe_vm *vm, 1399 size_t size, u64 start, u64 end, 1400 u16 cpu_caching, enum ttm_bo_type type, u32 flags) 1401 { 1402 struct xe_bo *bo = NULL; 1403 int err; 1404 1405 if (vm) 1406 xe_vm_assert_held(vm); 1407 1408 if (start || end != ~0ULL) { 1409 bo = xe_bo_alloc(); 1410 if (IS_ERR(bo)) 1411 return bo; 1412 1413 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 1414 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 1415 if (err) { 1416 xe_bo_free(bo); 1417 return ERR_PTR(err); 1418 } 1419 } 1420 1421 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 1422 vm && !xe_vm_in_fault_mode(vm) && 1423 flags & XE_BO_FLAG_USER ? 1424 &vm->lru_bulk_move : NULL, size, 1425 cpu_caching, type, flags); 1426 if (IS_ERR(bo)) 1427 return bo; 1428 1429 /* 1430 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 1431 * to ensure the shared resv doesn't disappear under the bo, the bo 1432 * will keep a reference to the vm, and avoid circular references 1433 * by having all the vm's bo refereferences released at vm close 1434 * time. 1435 */ 1436 if (vm && xe_bo_is_user(bo)) 1437 xe_vm_get(vm); 1438 bo->vm = vm; 1439 1440 if (bo->flags & XE_BO_FLAG_GGTT) { 1441 if (!tile && flags & XE_BO_FLAG_STOLEN) 1442 tile = xe_device_get_root_tile(xe); 1443 1444 xe_assert(xe, tile); 1445 1446 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 1447 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, 1448 start + bo->size, U64_MAX); 1449 } else { 1450 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); 1451 } 1452 if (err) 1453 goto err_unlock_put_bo; 1454 } 1455 1456 return bo; 1457 1458 err_unlock_put_bo: 1459 __xe_bo_unset_bulk_move(bo); 1460 xe_bo_unlock_vm_held(bo); 1461 xe_bo_put(bo); 1462 return ERR_PTR(err); 1463 } 1464 1465 struct xe_bo * 1466 xe_bo_create_locked_range(struct xe_device *xe, 1467 struct xe_tile *tile, struct xe_vm *vm, 1468 size_t size, u64 start, u64 end, 1469 enum ttm_bo_type type, u32 flags) 1470 { 1471 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); 1472 } 1473 1474 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 1475 struct xe_vm *vm, size_t size, 1476 enum ttm_bo_type type, u32 flags) 1477 { 1478 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); 1479 } 1480 1481 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 1482 struct xe_vm *vm, size_t size, 1483 u16 cpu_caching, 1484 enum ttm_bo_type type, 1485 u32 flags) 1486 { 1487 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 1488 cpu_caching, type, 1489 flags | XE_BO_FLAG_USER); 1490 if (!IS_ERR(bo)) 1491 xe_bo_unlock_vm_held(bo); 1492 1493 return bo; 1494 } 1495 1496 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 1497 struct xe_vm *vm, size_t size, 1498 enum ttm_bo_type type, u32 flags) 1499 { 1500 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 1501 1502 if (!IS_ERR(bo)) 1503 xe_bo_unlock_vm_held(bo); 1504 1505 return bo; 1506 } 1507 1508 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 1509 struct xe_vm *vm, 1510 size_t size, u64 offset, 1511 enum ttm_bo_type type, u32 flags) 1512 { 1513 struct xe_bo *bo; 1514 int err; 1515 u64 start = offset == ~0ull ? 0 : offset; 1516 u64 end = offset == ~0ull ? offset : start + size; 1517 1518 if (flags & XE_BO_FLAG_STOLEN && 1519 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 1520 flags |= XE_BO_FLAG_GGTT; 1521 1522 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 1523 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS); 1524 if (IS_ERR(bo)) 1525 return bo; 1526 1527 err = xe_bo_pin(bo); 1528 if (err) 1529 goto err_put; 1530 1531 err = xe_bo_vmap(bo); 1532 if (err) 1533 goto err_unpin; 1534 1535 xe_bo_unlock_vm_held(bo); 1536 1537 return bo; 1538 1539 err_unpin: 1540 xe_bo_unpin(bo); 1541 err_put: 1542 xe_bo_unlock_vm_held(bo); 1543 xe_bo_put(bo); 1544 return ERR_PTR(err); 1545 } 1546 1547 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1548 struct xe_vm *vm, size_t size, 1549 enum ttm_bo_type type, u32 flags) 1550 { 1551 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 1552 } 1553 1554 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1555 const void *data, size_t size, 1556 enum ttm_bo_type type, u32 flags) 1557 { 1558 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, 1559 ALIGN(size, PAGE_SIZE), 1560 type, flags); 1561 if (IS_ERR(bo)) 1562 return bo; 1563 1564 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1565 1566 return bo; 1567 } 1568 1569 static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) 1570 { 1571 xe_bo_unpin_map_no_vm(arg); 1572 } 1573 1574 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 1575 size_t size, u32 flags) 1576 { 1577 struct xe_bo *bo; 1578 int ret; 1579 1580 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 1581 if (IS_ERR(bo)) 1582 return bo; 1583 1584 ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); 1585 if (ret) 1586 return ERR_PTR(ret); 1587 1588 return bo; 1589 } 1590 1591 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 1592 const void *data, size_t size, u32 flags) 1593 { 1594 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 1595 1596 if (IS_ERR(bo)) 1597 return bo; 1598 1599 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 1600 1601 return bo; 1602 } 1603 1604 /** 1605 * xe_managed_bo_reinit_in_vram 1606 * @xe: xe device 1607 * @tile: Tile where the new buffer will be created 1608 * @src: Managed buffer object allocated in system memory 1609 * 1610 * Replace a managed src buffer object allocated in system memory with a new 1611 * one allocated in vram, copying the data between them. 1612 * Buffer object in VRAM is not going to have the same GGTT address, the caller 1613 * is responsible for making sure that any old references to it are updated. 1614 * 1615 * Returns 0 for success, negative error code otherwise. 1616 */ 1617 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 1618 { 1619 struct xe_bo *bo; 1620 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 1621 1622 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; 1623 1624 xe_assert(xe, IS_DGFX(xe)); 1625 xe_assert(xe, !(*src)->vmap.is_iomem); 1626 1627 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 1628 (*src)->size, dst_flags); 1629 if (IS_ERR(bo)) 1630 return PTR_ERR(bo); 1631 1632 drmm_release_action(&xe->drm, __xe_bo_unpin_map_no_vm, *src); 1633 *src = bo; 1634 1635 return 0; 1636 } 1637 1638 /* 1639 * XXX: This is in the VM bind data path, likely should calculate this once and 1640 * store, with a recalculation if the BO is moved. 1641 */ 1642 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 1643 { 1644 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 1645 1646 if (res->mem_type == XE_PL_STOLEN) 1647 return xe_ttm_stolen_gpu_offset(xe); 1648 1649 return res_to_mem_region(res)->dpa_base; 1650 } 1651 1652 /** 1653 * xe_bo_pin_external - pin an external BO 1654 * @bo: buffer object to be pinned 1655 * 1656 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1657 * BO. Unique call compared to xe_bo_pin as this function has it own set of 1658 * asserts and code to ensure evict / restore on suspend / resume. 1659 * 1660 * Returns 0 for success, negative error code otherwise. 1661 */ 1662 int xe_bo_pin_external(struct xe_bo *bo) 1663 { 1664 struct xe_device *xe = xe_bo_device(bo); 1665 int err; 1666 1667 xe_assert(xe, !bo->vm); 1668 xe_assert(xe, xe_bo_is_user(bo)); 1669 1670 if (!xe_bo_is_pinned(bo)) { 1671 err = xe_bo_validate(bo, NULL, false); 1672 if (err) 1673 return err; 1674 1675 if (xe_bo_is_vram(bo)) { 1676 spin_lock(&xe->pinned.lock); 1677 list_add_tail(&bo->pinned_link, 1678 &xe->pinned.external_vram); 1679 spin_unlock(&xe->pinned.lock); 1680 } 1681 } 1682 1683 ttm_bo_pin(&bo->ttm); 1684 1685 /* 1686 * FIXME: If we always use the reserve / unreserve functions for locking 1687 * we do not need this. 1688 */ 1689 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1690 1691 return 0; 1692 } 1693 1694 int xe_bo_pin(struct xe_bo *bo) 1695 { 1696 struct xe_device *xe = xe_bo_device(bo); 1697 int err; 1698 1699 /* We currently don't expect user BO to be pinned */ 1700 xe_assert(xe, !xe_bo_is_user(bo)); 1701 1702 /* Pinned object must be in GGTT or have pinned flag */ 1703 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 1704 XE_BO_FLAG_GGTT)); 1705 1706 /* 1707 * No reason we can't support pinning imported dma-bufs we just don't 1708 * expect to pin an imported dma-buf. 1709 */ 1710 xe_assert(xe, !bo->ttm.base.import_attach); 1711 1712 /* We only expect at most 1 pin */ 1713 xe_assert(xe, !xe_bo_is_pinned(bo)); 1714 1715 err = xe_bo_validate(bo, NULL, false); 1716 if (err) 1717 return err; 1718 1719 /* 1720 * For pinned objects in on DGFX, which are also in vram, we expect 1721 * these to be in contiguous VRAM memory. Required eviction / restore 1722 * during suspend / resume (force restore to same physical address). 1723 */ 1724 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1725 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1726 struct ttm_place *place = &(bo->placements[0]); 1727 1728 if (mem_type_is_vram(place->mem_type)) { 1729 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); 1730 1731 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - 1732 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; 1733 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); 1734 1735 spin_lock(&xe->pinned.lock); 1736 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); 1737 spin_unlock(&xe->pinned.lock); 1738 } 1739 } 1740 1741 ttm_bo_pin(&bo->ttm); 1742 1743 /* 1744 * FIXME: If we always use the reserve / unreserve functions for locking 1745 * we do not need this. 1746 */ 1747 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1748 1749 return 0; 1750 } 1751 1752 /** 1753 * xe_bo_unpin_external - unpin an external BO 1754 * @bo: buffer object to be unpinned 1755 * 1756 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 1757 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 1758 * asserts and code to ensure evict / restore on suspend / resume. 1759 * 1760 * Returns 0 for success, negative error code otherwise. 1761 */ 1762 void xe_bo_unpin_external(struct xe_bo *bo) 1763 { 1764 struct xe_device *xe = xe_bo_device(bo); 1765 1766 xe_assert(xe, !bo->vm); 1767 xe_assert(xe, xe_bo_is_pinned(bo)); 1768 xe_assert(xe, xe_bo_is_user(bo)); 1769 1770 spin_lock(&xe->pinned.lock); 1771 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 1772 list_del_init(&bo->pinned_link); 1773 spin_unlock(&xe->pinned.lock); 1774 1775 ttm_bo_unpin(&bo->ttm); 1776 1777 /* 1778 * FIXME: If we always use the reserve / unreserve functions for locking 1779 * we do not need this. 1780 */ 1781 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 1782 } 1783 1784 void xe_bo_unpin(struct xe_bo *bo) 1785 { 1786 struct xe_device *xe = xe_bo_device(bo); 1787 1788 xe_assert(xe, !bo->ttm.base.import_attach); 1789 xe_assert(xe, xe_bo_is_pinned(bo)); 1790 1791 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && 1792 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { 1793 struct ttm_place *place = &(bo->placements[0]); 1794 1795 if (mem_type_is_vram(place->mem_type)) { 1796 spin_lock(&xe->pinned.lock); 1797 xe_assert(xe, !list_empty(&bo->pinned_link)); 1798 list_del_init(&bo->pinned_link); 1799 spin_unlock(&xe->pinned.lock); 1800 } 1801 } 1802 1803 ttm_bo_unpin(&bo->ttm); 1804 } 1805 1806 /** 1807 * xe_bo_validate() - Make sure the bo is in an allowed placement 1808 * @bo: The bo, 1809 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 1810 * NULL. Used together with @allow_res_evict. 1811 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 1812 * reservation object. 1813 * 1814 * Make sure the bo is in allowed placement, migrating it if necessary. If 1815 * needed, other bos will be evicted. If bos selected for eviction shares 1816 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 1817 * set to true, otherwise they will be bypassed. 1818 * 1819 * Return: 0 on success, negative error code on failure. May return 1820 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 1821 */ 1822 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 1823 { 1824 struct ttm_operation_ctx ctx = { 1825 .interruptible = true, 1826 .no_wait_gpu = false, 1827 }; 1828 1829 if (vm) { 1830 lockdep_assert_held(&vm->lock); 1831 xe_vm_assert_held(vm); 1832 1833 ctx.allow_res_evict = allow_res_evict; 1834 ctx.resv = xe_vm_resv(vm); 1835 } 1836 1837 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 1838 } 1839 1840 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 1841 { 1842 if (bo->destroy == &xe_ttm_bo_destroy) 1843 return true; 1844 1845 return false; 1846 } 1847 1848 /* 1849 * Resolve a BO address. There is no assert to check if the proper lock is held 1850 * so it should only be used in cases where it is not fatal to get the wrong 1851 * address, such as printing debug information, but not in cases where memory is 1852 * written based on this result. 1853 */ 1854 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1855 { 1856 struct xe_device *xe = xe_bo_device(bo); 1857 struct xe_res_cursor cur; 1858 u64 page; 1859 1860 xe_assert(xe, page_size <= PAGE_SIZE); 1861 page = offset >> PAGE_SHIFT; 1862 offset &= (PAGE_SIZE - 1); 1863 1864 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 1865 xe_assert(xe, bo->ttm.ttm); 1866 1867 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 1868 page_size, &cur); 1869 return xe_res_dma(&cur) + offset; 1870 } else { 1871 struct xe_res_cursor cur; 1872 1873 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 1874 page_size, &cur); 1875 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 1876 } 1877 } 1878 1879 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 1880 { 1881 if (!READ_ONCE(bo->ttm.pin_count)) 1882 xe_bo_assert_held(bo); 1883 return __xe_bo_addr(bo, offset, page_size); 1884 } 1885 1886 int xe_bo_vmap(struct xe_bo *bo) 1887 { 1888 void *virtual; 1889 bool is_iomem; 1890 int ret; 1891 1892 xe_bo_assert_held(bo); 1893 1894 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) 1895 return -EINVAL; 1896 1897 if (!iosys_map_is_null(&bo->vmap)) 1898 return 0; 1899 1900 /* 1901 * We use this more or less deprecated interface for now since 1902 * ttm_bo_vmap() doesn't offer the optimization of kmapping 1903 * single page bos, which is done here. 1904 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 1905 * to use struct iosys_map. 1906 */ 1907 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); 1908 if (ret) 1909 return ret; 1910 1911 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 1912 if (is_iomem) 1913 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 1914 else 1915 iosys_map_set_vaddr(&bo->vmap, virtual); 1916 1917 return 0; 1918 } 1919 1920 static void __xe_bo_vunmap(struct xe_bo *bo) 1921 { 1922 if (!iosys_map_is_null(&bo->vmap)) { 1923 iosys_map_clear(&bo->vmap); 1924 ttm_bo_kunmap(&bo->kmap); 1925 } 1926 } 1927 1928 void xe_bo_vunmap(struct xe_bo *bo) 1929 { 1930 xe_bo_assert_held(bo); 1931 __xe_bo_vunmap(bo); 1932 } 1933 1934 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 1935 struct drm_file *file) 1936 { 1937 struct xe_device *xe = to_xe_device(dev); 1938 struct xe_file *xef = to_xe_file(file); 1939 struct drm_xe_gem_create *args = data; 1940 struct xe_vm *vm = NULL; 1941 struct xe_bo *bo; 1942 unsigned int bo_flags; 1943 u32 handle; 1944 int err; 1945 1946 if (XE_IOCTL_DBG(xe, args->extensions) || 1947 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 1948 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 1949 return -EINVAL; 1950 1951 /* at least one valid memory placement must be specified */ 1952 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 1953 !args->placement)) 1954 return -EINVAL; 1955 1956 if (XE_IOCTL_DBG(xe, args->flags & 1957 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 1958 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 1959 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 1960 return -EINVAL; 1961 1962 if (XE_IOCTL_DBG(xe, args->handle)) 1963 return -EINVAL; 1964 1965 if (XE_IOCTL_DBG(xe, !args->size)) 1966 return -EINVAL; 1967 1968 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 1969 return -EINVAL; 1970 1971 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 1972 return -EINVAL; 1973 1974 bo_flags = 0; 1975 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 1976 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 1977 1978 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 1979 bo_flags |= XE_BO_FLAG_SCANOUT; 1980 1981 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 1982 1983 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 1984 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 1985 return -EINVAL; 1986 1987 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 1988 } 1989 1990 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 1991 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 1992 return -EINVAL; 1993 1994 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 1995 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 1996 return -EINVAL; 1997 1998 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 1999 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2000 return -EINVAL; 2001 2002 if (args->vm_id) { 2003 vm = xe_vm_lookup(xef, args->vm_id); 2004 if (XE_IOCTL_DBG(xe, !vm)) 2005 return -ENOENT; 2006 err = xe_vm_lock(vm, true); 2007 if (err) 2008 goto out_vm; 2009 } 2010 2011 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2012 ttm_bo_type_device, bo_flags); 2013 2014 if (vm) 2015 xe_vm_unlock(vm); 2016 2017 if (IS_ERR(bo)) { 2018 err = PTR_ERR(bo); 2019 goto out_vm; 2020 } 2021 2022 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2023 if (err) 2024 goto out_bulk; 2025 2026 args->handle = handle; 2027 goto out_put; 2028 2029 out_bulk: 2030 if (vm && !xe_vm_in_fault_mode(vm)) { 2031 xe_vm_lock(vm, false); 2032 __xe_bo_unset_bulk_move(bo); 2033 xe_vm_unlock(vm); 2034 } 2035 out_put: 2036 xe_bo_put(bo); 2037 out_vm: 2038 if (vm) 2039 xe_vm_put(vm); 2040 2041 return err; 2042 } 2043 2044 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2045 struct drm_file *file) 2046 { 2047 struct xe_device *xe = to_xe_device(dev); 2048 struct drm_xe_gem_mmap_offset *args = data; 2049 struct drm_gem_object *gem_obj; 2050 2051 if (XE_IOCTL_DBG(xe, args->extensions) || 2052 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2053 return -EINVAL; 2054 2055 if (XE_IOCTL_DBG(xe, args->flags)) 2056 return -EINVAL; 2057 2058 gem_obj = drm_gem_object_lookup(file, args->handle); 2059 if (XE_IOCTL_DBG(xe, !gem_obj)) 2060 return -ENOENT; 2061 2062 /* The mmap offset was set up at BO allocation time. */ 2063 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2064 2065 xe_bo_put(gem_to_xe_bo(gem_obj)); 2066 return 0; 2067 } 2068 2069 /** 2070 * xe_bo_lock() - Lock the buffer object's dma_resv object 2071 * @bo: The struct xe_bo whose lock is to be taken 2072 * @intr: Whether to perform any wait interruptible 2073 * 2074 * Locks the buffer object's dma_resv object. If the buffer object is 2075 * pointing to a shared dma_resv object, that shared lock is locked. 2076 * 2077 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2078 * contended lock was interrupted. If @intr is set to false, the 2079 * function always returns 0. 2080 */ 2081 int xe_bo_lock(struct xe_bo *bo, bool intr) 2082 { 2083 if (intr) 2084 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2085 2086 dma_resv_lock(bo->ttm.base.resv, NULL); 2087 2088 return 0; 2089 } 2090 2091 /** 2092 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2093 * @bo: The struct xe_bo whose lock is to be released. 2094 * 2095 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2096 */ 2097 void xe_bo_unlock(struct xe_bo *bo) 2098 { 2099 dma_resv_unlock(bo->ttm.base.resv); 2100 } 2101 2102 /** 2103 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2104 * @bo: The buffer object to migrate 2105 * @mem_type: The TTM memory type intended to migrate to 2106 * 2107 * Check whether the buffer object supports migration to the 2108 * given memory type. Note that pinning may affect the ability to migrate as 2109 * returned by this function. 2110 * 2111 * This function is primarily intended as a helper for checking the 2112 * possibility to migrate buffer objects and can be called without 2113 * the object lock held. 2114 * 2115 * Return: true if migration is possible, false otherwise. 2116 */ 2117 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2118 { 2119 unsigned int cur_place; 2120 2121 if (bo->ttm.type == ttm_bo_type_kernel) 2122 return true; 2123 2124 if (bo->ttm.type == ttm_bo_type_sg) 2125 return false; 2126 2127 for (cur_place = 0; cur_place < bo->placement.num_placement; 2128 cur_place++) { 2129 if (bo->placements[cur_place].mem_type == mem_type) 2130 return true; 2131 } 2132 2133 return false; 2134 } 2135 2136 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2137 { 2138 memset(place, 0, sizeof(*place)); 2139 place->mem_type = mem_type; 2140 } 2141 2142 /** 2143 * xe_bo_migrate - Migrate an object to the desired region id 2144 * @bo: The buffer object to migrate. 2145 * @mem_type: The TTM region type to migrate to. 2146 * 2147 * Attempt to migrate the buffer object to the desired memory region. The 2148 * buffer object may not be pinned, and must be locked. 2149 * On successful completion, the object memory type will be updated, 2150 * but an async migration task may not have completed yet, and to 2151 * accomplish that, the object's kernel fences must be signaled with 2152 * the object lock held. 2153 * 2154 * Return: 0 on success. Negative error code on failure. In particular may 2155 * return -EINTR or -ERESTARTSYS if signal pending. 2156 */ 2157 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2158 { 2159 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2160 struct ttm_operation_ctx ctx = { 2161 .interruptible = true, 2162 .no_wait_gpu = false, 2163 }; 2164 struct ttm_placement placement; 2165 struct ttm_place requested; 2166 2167 xe_bo_assert_held(bo); 2168 2169 if (bo->ttm.resource->mem_type == mem_type) 2170 return 0; 2171 2172 if (xe_bo_is_pinned(bo)) 2173 return -EBUSY; 2174 2175 if (!xe_bo_can_migrate(bo, mem_type)) 2176 return -EINVAL; 2177 2178 xe_place_from_ttm_type(mem_type, &requested); 2179 placement.num_placement = 1; 2180 placement.placement = &requested; 2181 2182 /* 2183 * Stolen needs to be handled like below VRAM handling if we ever need 2184 * to support it. 2185 */ 2186 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2187 2188 if (mem_type_is_vram(mem_type)) { 2189 u32 c = 0; 2190 2191 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2192 } 2193 2194 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2195 } 2196 2197 /** 2198 * xe_bo_evict - Evict an object to evict placement 2199 * @bo: The buffer object to migrate. 2200 * @force_alloc: Set force_alloc in ttm_operation_ctx 2201 * 2202 * On successful completion, the object memory will be moved to evict 2203 * placement. Ths function blocks until the object has been fully moved. 2204 * 2205 * Return: 0 on success. Negative error code on failure. 2206 */ 2207 int xe_bo_evict(struct xe_bo *bo, bool force_alloc) 2208 { 2209 struct ttm_operation_ctx ctx = { 2210 .interruptible = false, 2211 .no_wait_gpu = false, 2212 .force_alloc = force_alloc, 2213 }; 2214 struct ttm_placement placement; 2215 int ret; 2216 2217 xe_evict_flags(&bo->ttm, &placement); 2218 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 2219 if (ret) 2220 return ret; 2221 2222 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 2223 false, MAX_SCHEDULE_TIMEOUT); 2224 2225 return 0; 2226 } 2227 2228 /** 2229 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 2230 * placed in system memory. 2231 * @bo: The xe_bo 2232 * 2233 * Return: true if extra pages need to be allocated, false otherwise. 2234 */ 2235 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 2236 { 2237 struct xe_device *xe = xe_bo_device(bo); 2238 2239 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 2240 return false; 2241 2242 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 2243 return false; 2244 2245 /* On discrete GPUs, if the GPU can access this buffer from 2246 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 2247 * can't be used since there's no CCS storage associated with 2248 * non-VRAM addresses. 2249 */ 2250 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 2251 return false; 2252 2253 return true; 2254 } 2255 2256 /** 2257 * __xe_bo_release_dummy() - Dummy kref release function 2258 * @kref: The embedded struct kref. 2259 * 2260 * Dummy release function for xe_bo_put_deferred(). Keep off. 2261 */ 2262 void __xe_bo_release_dummy(struct kref *kref) 2263 { 2264 } 2265 2266 /** 2267 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 2268 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 2269 * 2270 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 2271 * The @deferred list can be either an onstack local list or a global 2272 * shared list used by a workqueue. 2273 */ 2274 void xe_bo_put_commit(struct llist_head *deferred) 2275 { 2276 struct llist_node *freed; 2277 struct xe_bo *bo, *next; 2278 2279 if (!deferred) 2280 return; 2281 2282 freed = llist_del_all(deferred); 2283 if (!freed) 2284 return; 2285 2286 llist_for_each_entry_safe(bo, next, freed, freed) 2287 drm_gem_object_free(&bo->ttm.base.refcount); 2288 } 2289 2290 /** 2291 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 2292 * @file_priv: ... 2293 * @dev: ... 2294 * @args: ... 2295 * 2296 * See dumb_create() hook in include/drm/drm_drv.h 2297 * 2298 * Return: ... 2299 */ 2300 int xe_bo_dumb_create(struct drm_file *file_priv, 2301 struct drm_device *dev, 2302 struct drm_mode_create_dumb *args) 2303 { 2304 struct xe_device *xe = to_xe_device(dev); 2305 struct xe_bo *bo; 2306 uint32_t handle; 2307 int cpp = DIV_ROUND_UP(args->bpp, 8); 2308 int err; 2309 u32 page_size = max_t(u32, PAGE_SIZE, 2310 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 2311 2312 args->pitch = ALIGN(args->width * cpp, 64); 2313 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 2314 page_size); 2315 2316 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 2317 DRM_XE_GEM_CPU_CACHING_WC, 2318 ttm_bo_type_device, 2319 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 2320 XE_BO_FLAG_SCANOUT | 2321 XE_BO_FLAG_NEEDS_CPU_ACCESS); 2322 if (IS_ERR(bo)) 2323 return PTR_ERR(bo); 2324 2325 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 2326 /* drop reference from allocate - handle holds it now */ 2327 drm_gem_object_put(&bo->ttm.base); 2328 if (!err) 2329 args->handle = handle; 2330 return err; 2331 } 2332 2333 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 2334 { 2335 struct ttm_buffer_object *tbo = &bo->ttm; 2336 struct ttm_device *bdev = tbo->bdev; 2337 2338 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 2339 2340 list_del_init(&bo->vram_userfault_link); 2341 } 2342 2343 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 2344 #include "tests/xe_bo.c" 2345 #endif 2346