1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_drv.h" 29 #include <drm/ttm/ttm_bo_driver.h> 30 #include <drm/ttm/ttm_placement.h> 31 32 static const struct ttm_place vram_placement_flags = { 33 .fpfn = 0, 34 .lpfn = 0, 35 .mem_type = TTM_PL_VRAM, 36 .flags = 0 37 }; 38 39 static const struct ttm_place sys_placement_flags = { 40 .fpfn = 0, 41 .lpfn = 0, 42 .mem_type = TTM_PL_SYSTEM, 43 .flags = 0 44 }; 45 46 static const struct ttm_place gmr_placement_flags = { 47 .fpfn = 0, 48 .lpfn = 0, 49 .mem_type = VMW_PL_GMR, 50 .flags = 0 51 }; 52 53 static const struct ttm_place mob_placement_flags = { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = VMW_PL_MOB, 57 .flags = 0 58 }; 59 60 struct ttm_placement vmw_vram_placement = { 61 .num_placement = 1, 62 .placement = &vram_placement_flags, 63 .num_busy_placement = 1, 64 .busy_placement = &vram_placement_flags 65 }; 66 67 static const struct ttm_place vram_gmr_placement_flags[] = { 68 { 69 .fpfn = 0, 70 .lpfn = 0, 71 .mem_type = TTM_PL_VRAM, 72 .flags = 0 73 }, { 74 .fpfn = 0, 75 .lpfn = 0, 76 .mem_type = VMW_PL_GMR, 77 .flags = 0 78 } 79 }; 80 81 static const struct ttm_place gmr_vram_placement_flags[] = { 82 { 83 .fpfn = 0, 84 .lpfn = 0, 85 .mem_type = VMW_PL_GMR, 86 .flags = 0 87 }, { 88 .fpfn = 0, 89 .lpfn = 0, 90 .mem_type = TTM_PL_VRAM, 91 .flags = 0 92 } 93 }; 94 95 struct ttm_placement vmw_vram_gmr_placement = { 96 .num_placement = 2, 97 .placement = vram_gmr_placement_flags, 98 .num_busy_placement = 1, 99 .busy_placement = &gmr_placement_flags 100 }; 101 102 struct ttm_placement vmw_vram_sys_placement = { 103 .num_placement = 1, 104 .placement = &vram_placement_flags, 105 .num_busy_placement = 1, 106 .busy_placement = &sys_placement_flags 107 }; 108 109 struct ttm_placement vmw_sys_placement = { 110 .num_placement = 1, 111 .placement = &sys_placement_flags, 112 .num_busy_placement = 1, 113 .busy_placement = &sys_placement_flags 114 }; 115 116 static const struct ttm_place evictable_placement_flags[] = { 117 { 118 .fpfn = 0, 119 .lpfn = 0, 120 .mem_type = TTM_PL_SYSTEM, 121 .flags = 0 122 }, { 123 .fpfn = 0, 124 .lpfn = 0, 125 .mem_type = TTM_PL_VRAM, 126 .flags = 0 127 }, { 128 .fpfn = 0, 129 .lpfn = 0, 130 .mem_type = VMW_PL_GMR, 131 .flags = 0 132 }, { 133 .fpfn = 0, 134 .lpfn = 0, 135 .mem_type = VMW_PL_MOB, 136 .flags = 0 137 } 138 }; 139 140 static const struct ttm_place nonfixed_placement_flags[] = { 141 { 142 .fpfn = 0, 143 .lpfn = 0, 144 .mem_type = TTM_PL_SYSTEM, 145 .flags = 0 146 }, { 147 .fpfn = 0, 148 .lpfn = 0, 149 .mem_type = VMW_PL_GMR, 150 .flags = 0 151 }, { 152 .fpfn = 0, 153 .lpfn = 0, 154 .mem_type = VMW_PL_MOB, 155 .flags = 0 156 } 157 }; 158 159 struct ttm_placement vmw_evictable_placement = { 160 .num_placement = 4, 161 .placement = evictable_placement_flags, 162 .num_busy_placement = 1, 163 .busy_placement = &sys_placement_flags 164 }; 165 166 struct ttm_placement vmw_srf_placement = { 167 .num_placement = 1, 168 .num_busy_placement = 2, 169 .placement = &gmr_placement_flags, 170 .busy_placement = gmr_vram_placement_flags 171 }; 172 173 struct ttm_placement vmw_mob_placement = { 174 .num_placement = 1, 175 .num_busy_placement = 1, 176 .placement = &mob_placement_flags, 177 .busy_placement = &mob_placement_flags 178 }; 179 180 struct ttm_placement vmw_nonfixed_placement = { 181 .num_placement = 3, 182 .placement = nonfixed_placement_flags, 183 .num_busy_placement = 1, 184 .busy_placement = &sys_placement_flags 185 }; 186 187 struct vmw_ttm_tt { 188 struct ttm_tt dma_ttm; 189 struct vmw_private *dev_priv; 190 int gmr_id; 191 struct vmw_mob *mob; 192 int mem_type; 193 struct sg_table sgt; 194 struct vmw_sg_table vsgt; 195 uint64_t sg_alloc_size; 196 bool mapped; 197 bool bound; 198 }; 199 200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt); 201 202 /** 203 * Helper functions to advance a struct vmw_piter iterator. 204 * 205 * @viter: Pointer to the iterator. 206 * 207 * These functions return false if past the end of the list, 208 * true otherwise. Functions are selected depending on the current 209 * DMA mapping mode. 210 */ 211 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter) 212 { 213 return ++(viter->i) < viter->num_pages; 214 } 215 216 static bool __vmw_piter_sg_next(struct vmw_piter *viter) 217 { 218 bool ret = __vmw_piter_non_sg_next(viter); 219 220 return __sg_page_iter_dma_next(&viter->iter) && ret; 221 } 222 223 224 /** 225 * Helper functions to return a pointer to the current page. 226 * 227 * @viter: Pointer to the iterator 228 * 229 * These functions return a pointer to the page currently 230 * pointed to by @viter. Functions are selected depending on the 231 * current mapping mode. 232 */ 233 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter) 234 { 235 return viter->pages[viter->i]; 236 } 237 238 /** 239 * Helper functions to return the DMA address of the current page. 240 * 241 * @viter: Pointer to the iterator 242 * 243 * These functions return the DMA address of the page currently 244 * pointed to by @viter. Functions are selected depending on the 245 * current mapping mode. 246 */ 247 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter) 248 { 249 return page_to_phys(viter->pages[viter->i]); 250 } 251 252 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter) 253 { 254 return viter->addrs[viter->i]; 255 } 256 257 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter) 258 { 259 return sg_page_iter_dma_address(&viter->iter); 260 } 261 262 263 /** 264 * vmw_piter_start - Initialize a struct vmw_piter. 265 * 266 * @viter: Pointer to the iterator to initialize 267 * @vsgt: Pointer to a struct vmw_sg_table to initialize from 268 * 269 * Note that we're following the convention of __sg_page_iter_start, so that 270 * the iterator doesn't point to a valid page after initialization; it has 271 * to be advanced one step first. 272 */ 273 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt, 274 unsigned long p_offset) 275 { 276 viter->i = p_offset - 1; 277 viter->num_pages = vsgt->num_pages; 278 viter->page = &__vmw_piter_non_sg_page; 279 viter->pages = vsgt->pages; 280 switch (vsgt->mode) { 281 case vmw_dma_phys: 282 viter->next = &__vmw_piter_non_sg_next; 283 viter->dma_address = &__vmw_piter_phys_addr; 284 break; 285 case vmw_dma_alloc_coherent: 286 viter->next = &__vmw_piter_non_sg_next; 287 viter->dma_address = &__vmw_piter_dma_addr; 288 viter->addrs = vsgt->addrs; 289 break; 290 case vmw_dma_map_populate: 291 case vmw_dma_map_bind: 292 viter->next = &__vmw_piter_sg_next; 293 viter->dma_address = &__vmw_piter_sg_addr; 294 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl, 295 vsgt->sgt->orig_nents, p_offset); 296 break; 297 default: 298 BUG(); 299 } 300 } 301 302 /** 303 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for 304 * TTM pages 305 * 306 * @vmw_tt: Pointer to a struct vmw_ttm_backend 307 * 308 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma. 309 */ 310 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt) 311 { 312 struct device *dev = vmw_tt->dev_priv->dev->dev; 313 314 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 315 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents; 316 } 317 318 /** 319 * vmw_ttm_map_for_dma - map TTM pages to get device addresses 320 * 321 * @vmw_tt: Pointer to a struct vmw_ttm_backend 322 * 323 * This function is used to get device addresses from the kernel DMA layer. 324 * However, it's violating the DMA API in that when this operation has been 325 * performed, it's illegal for the CPU to write to the pages without first 326 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is 327 * therefore only legal to call this function if we know that the function 328 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most 329 * a CPU write buffer flush. 330 */ 331 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt) 332 { 333 struct device *dev = vmw_tt->dev_priv->dev->dev; 334 335 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 336 } 337 338 /** 339 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device 340 * 341 * @vmw_tt: Pointer to a struct vmw_ttm_tt 342 * 343 * Select the correct function for and make sure the TTM pages are 344 * visible to the device. Allocate storage for the device mappings. 345 * If a mapping has already been performed, indicated by the storage 346 * pointer being non NULL, the function returns success. 347 */ 348 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt) 349 { 350 struct vmw_private *dev_priv = vmw_tt->dev_priv; 351 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv); 352 struct vmw_sg_table *vsgt = &vmw_tt->vsgt; 353 struct ttm_operation_ctx ctx = { 354 .interruptible = true, 355 .no_wait_gpu = false 356 }; 357 struct vmw_piter iter; 358 dma_addr_t old; 359 int ret = 0; 360 static size_t sgl_size; 361 static size_t sgt_size; 362 struct scatterlist *sg; 363 364 if (vmw_tt->mapped) 365 return 0; 366 367 vsgt->mode = dev_priv->map_mode; 368 vsgt->pages = vmw_tt->dma_ttm.pages; 369 vsgt->num_pages = vmw_tt->dma_ttm.num_pages; 370 vsgt->addrs = vmw_tt->dma_ttm.dma_address; 371 vsgt->sgt = &vmw_tt->sgt; 372 373 switch (dev_priv->map_mode) { 374 case vmw_dma_map_bind: 375 case vmw_dma_map_populate: 376 if (unlikely(!sgl_size)) { 377 sgl_size = ttm_round_pot(sizeof(struct scatterlist)); 378 sgt_size = ttm_round_pot(sizeof(struct sg_table)); 379 } 380 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages; 381 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx); 382 if (unlikely(ret != 0)) 383 return ret; 384 385 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages, 386 vsgt->num_pages, 0, 387 (unsigned long) vsgt->num_pages << PAGE_SHIFT, 388 dma_get_max_seg_size(dev_priv->dev->dev), 389 NULL, 0, GFP_KERNEL); 390 if (IS_ERR(sg)) { 391 ret = PTR_ERR(sg); 392 goto out_sg_alloc_fail; 393 } 394 395 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) { 396 uint64_t over_alloc = 397 sgl_size * (vsgt->num_pages - 398 vmw_tt->sgt.orig_nents); 399 400 ttm_mem_global_free(glob, over_alloc); 401 vmw_tt->sg_alloc_size -= over_alloc; 402 } 403 404 ret = vmw_ttm_map_for_dma(vmw_tt); 405 if (unlikely(ret != 0)) 406 goto out_map_fail; 407 408 break; 409 default: 410 break; 411 } 412 413 old = ~((dma_addr_t) 0); 414 vmw_tt->vsgt.num_regions = 0; 415 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) { 416 dma_addr_t cur = vmw_piter_dma_addr(&iter); 417 418 if (cur != old + PAGE_SIZE) 419 vmw_tt->vsgt.num_regions++; 420 old = cur; 421 } 422 423 vmw_tt->mapped = true; 424 return 0; 425 426 out_map_fail: 427 sg_free_table(vmw_tt->vsgt.sgt); 428 vmw_tt->vsgt.sgt = NULL; 429 out_sg_alloc_fail: 430 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size); 431 return ret; 432 } 433 434 /** 435 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings 436 * 437 * @vmw_tt: Pointer to a struct vmw_ttm_tt 438 * 439 * Tear down any previously set up device DMA mappings and free 440 * any storage space allocated for them. If there are no mappings set up, 441 * this function is a NOP. 442 */ 443 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt) 444 { 445 struct vmw_private *dev_priv = vmw_tt->dev_priv; 446 447 if (!vmw_tt->vsgt.sgt) 448 return; 449 450 switch (dev_priv->map_mode) { 451 case vmw_dma_map_bind: 452 case vmw_dma_map_populate: 453 vmw_ttm_unmap_from_dma(vmw_tt); 454 sg_free_table(vmw_tt->vsgt.sgt); 455 vmw_tt->vsgt.sgt = NULL; 456 ttm_mem_global_free(vmw_mem_glob(dev_priv), 457 vmw_tt->sg_alloc_size); 458 break; 459 default: 460 break; 461 } 462 vmw_tt->mapped = false; 463 } 464 465 /** 466 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a 467 * TTM buffer object 468 * 469 * @bo: Pointer to a struct ttm_buffer_object 470 * 471 * Returns a pointer to a struct vmw_sg_table object. The object should 472 * not be freed after use. 473 * Note that for the device addresses to be valid, the buffer object must 474 * either be reserved or pinned. 475 */ 476 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo) 477 { 478 struct vmw_ttm_tt *vmw_tt = 479 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); 480 481 return &vmw_tt->vsgt; 482 } 483 484 485 static int vmw_ttm_bind(struct ttm_bo_device *bdev, 486 struct ttm_tt *ttm, struct ttm_resource *bo_mem) 487 { 488 struct vmw_ttm_tt *vmw_be = 489 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 490 int ret = 0; 491 492 if (!bo_mem) 493 return -EINVAL; 494 495 if (vmw_be->bound) 496 return 0; 497 498 ret = vmw_ttm_map_dma(vmw_be); 499 if (unlikely(ret != 0)) 500 return ret; 501 502 vmw_be->gmr_id = bo_mem->start; 503 vmw_be->mem_type = bo_mem->mem_type; 504 505 switch (bo_mem->mem_type) { 506 case VMW_PL_GMR: 507 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt, 508 ttm->num_pages, vmw_be->gmr_id); 509 break; 510 case VMW_PL_MOB: 511 if (unlikely(vmw_be->mob == NULL)) { 512 vmw_be->mob = 513 vmw_mob_create(ttm->num_pages); 514 if (unlikely(vmw_be->mob == NULL)) 515 return -ENOMEM; 516 } 517 518 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob, 519 &vmw_be->vsgt, ttm->num_pages, 520 vmw_be->gmr_id); 521 break; 522 default: 523 BUG(); 524 } 525 vmw_be->bound = true; 526 return ret; 527 } 528 529 static void vmw_ttm_unbind(struct ttm_bo_device *bdev, 530 struct ttm_tt *ttm) 531 { 532 struct vmw_ttm_tt *vmw_be = 533 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 534 535 if (!vmw_be->bound) 536 return; 537 538 switch (vmw_be->mem_type) { 539 case VMW_PL_GMR: 540 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id); 541 break; 542 case VMW_PL_MOB: 543 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob); 544 break; 545 default: 546 BUG(); 547 } 548 549 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind) 550 vmw_ttm_unmap_dma(vmw_be); 551 vmw_be->bound = false; 552 } 553 554 555 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm) 556 { 557 struct vmw_ttm_tt *vmw_be = 558 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 559 560 vmw_ttm_unbind(bdev, ttm); 561 ttm_tt_destroy_common(bdev, ttm); 562 vmw_ttm_unmap_dma(vmw_be); 563 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) 564 ttm_tt_fini(&vmw_be->dma_ttm); 565 else 566 ttm_tt_fini(ttm); 567 568 if (vmw_be->mob) 569 vmw_mob_destroy(vmw_be->mob); 570 571 kfree(vmw_be); 572 } 573 574 575 static int vmw_ttm_populate(struct ttm_bo_device *bdev, 576 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 577 { 578 /* TODO: maybe completely drop this ? */ 579 if (ttm_tt_is_populated(ttm)) 580 return 0; 581 582 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 583 } 584 585 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev, 586 struct ttm_tt *ttm) 587 { 588 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, 589 dma_ttm); 590 591 if (vmw_tt->mob) { 592 vmw_mob_destroy(vmw_tt->mob); 593 vmw_tt->mob = NULL; 594 } 595 596 vmw_ttm_unmap_dma(vmw_tt); 597 ttm_pool_free(&bdev->pool, ttm); 598 } 599 600 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo, 601 uint32_t page_flags) 602 { 603 struct vmw_ttm_tt *vmw_be; 604 int ret; 605 606 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL); 607 if (!vmw_be) 608 return NULL; 609 610 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev); 611 vmw_be->mob = NULL; 612 613 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) 614 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags, 615 ttm_cached); 616 else 617 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags, 618 ttm_cached); 619 if (unlikely(ret != 0)) 620 goto out_no_init; 621 622 return &vmw_be->dma_ttm; 623 out_no_init: 624 kfree(vmw_be); 625 return NULL; 626 } 627 628 static void vmw_evict_flags(struct ttm_buffer_object *bo, 629 struct ttm_placement *placement) 630 { 631 *placement = vmw_sys_placement; 632 } 633 634 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp) 635 { 636 struct ttm_object_file *tfile = 637 vmw_fpriv((struct drm_file *)filp->private_data)->tfile; 638 639 return vmw_user_bo_verify_access(bo, tfile); 640 } 641 642 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem) 643 { 644 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); 645 646 switch (mem->mem_type) { 647 case TTM_PL_SYSTEM: 648 case VMW_PL_GMR: 649 case VMW_PL_MOB: 650 return 0; 651 case TTM_PL_VRAM: 652 mem->bus.offset = (mem->start << PAGE_SHIFT) + 653 dev_priv->vram_start; 654 mem->bus.is_iomem = true; 655 mem->bus.caching = ttm_cached; 656 break; 657 default: 658 return -EINVAL; 659 } 660 return 0; 661 } 662 663 /** 664 * vmw_move_notify - TTM move_notify_callback 665 * 666 * @bo: The TTM buffer object about to move. 667 * @mem: The struct ttm_resource indicating to what memory 668 * region the move is taking place. 669 * 670 * Calls move_notify for all subsystems needing it. 671 * (currently only resources). 672 */ 673 static void vmw_move_notify(struct ttm_buffer_object *bo, 674 bool evict, 675 struct ttm_resource *mem) 676 { 677 if (!mem) 678 return; 679 vmw_bo_move_notify(bo, mem); 680 vmw_query_move_notify(bo, mem); 681 } 682 683 684 /** 685 * vmw_swap_notify - TTM move_notify_callback 686 * 687 * @bo: The TTM buffer object about to be swapped out. 688 */ 689 static void vmw_swap_notify(struct ttm_buffer_object *bo) 690 { 691 vmw_bo_swap_notify(bo); 692 (void) ttm_bo_wait(bo, false, false); 693 } 694 695 static int vmw_move(struct ttm_buffer_object *bo, 696 bool evict, 697 struct ttm_operation_ctx *ctx, 698 struct ttm_resource *new_mem, 699 struct ttm_place *hop) 700 { 701 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type); 702 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type); 703 int ret; 704 705 if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) { 706 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem); 707 if (ret) 708 return ret; 709 } 710 711 vmw_move_notify(bo, evict, new_mem); 712 713 if (old_man->use_tt && new_man->use_tt) { 714 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 715 ttm_bo_assign_mem(bo, new_mem); 716 return 0; 717 } 718 ret = ttm_bo_wait_ctx(bo, ctx); 719 if (ret) 720 goto fail; 721 722 vmw_ttm_unbind(bo->bdev, bo->ttm); 723 ttm_resource_free(bo, &bo->mem); 724 ttm_bo_assign_mem(bo, new_mem); 725 return 0; 726 } else { 727 ret = ttm_bo_move_memcpy(bo, ctx, new_mem); 728 if (ret) 729 goto fail; 730 } 731 return 0; 732 fail: 733 swap(*new_mem, bo->mem); 734 vmw_move_notify(bo, false, new_mem); 735 swap(*new_mem, bo->mem); 736 return ret; 737 } 738 739 static void 740 vmw_delete_mem_notify(struct ttm_buffer_object *bo) 741 { 742 vmw_move_notify(bo, false, NULL); 743 } 744 745 struct ttm_bo_driver vmw_bo_driver = { 746 .ttm_tt_create = &vmw_ttm_tt_create, 747 .ttm_tt_populate = &vmw_ttm_populate, 748 .ttm_tt_unpopulate = &vmw_ttm_unpopulate, 749 .ttm_tt_destroy = &vmw_ttm_destroy, 750 .eviction_valuable = ttm_bo_eviction_valuable, 751 .evict_flags = vmw_evict_flags, 752 .move = vmw_move, 753 .verify_access = vmw_verify_access, 754 .delete_mem_notify = vmw_delete_mem_notify, 755 .swap_notify = vmw_swap_notify, 756 .io_mem_reserve = &vmw_ttm_io_mem_reserve, 757 }; 758 759 int vmw_bo_create_and_populate(struct vmw_private *dev_priv, 760 unsigned long bo_size, 761 struct ttm_buffer_object **bo_p) 762 { 763 struct ttm_operation_ctx ctx = { 764 .interruptible = false, 765 .no_wait_gpu = false 766 }; 767 struct ttm_buffer_object *bo; 768 int ret; 769 770 ret = vmw_bo_create_kernel(dev_priv, bo_size, 771 &vmw_sys_placement, 772 &bo); 773 if (unlikely(ret != 0)) 774 return ret; 775 776 ret = ttm_bo_reserve(bo, false, true, NULL); 777 BUG_ON(ret != 0); 778 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx); 779 if (likely(ret == 0)) { 780 struct vmw_ttm_tt *vmw_tt = 781 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); 782 ret = vmw_ttm_map_dma(vmw_tt); 783 } 784 785 ttm_bo_unreserve(bo); 786 787 if (likely(ret == 0)) 788 *bo_p = bo; 789 return ret; 790 } 791