xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_bo.h"
29 #include "vmwgfx_drv.h"
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 struct ttm_placement vmw_vram_placement = {
47 	.num_placement = 1,
48 	.placement = &vram_placement_flags,
49 };
50 
51 struct ttm_placement vmw_sys_placement = {
52 	.num_placement = 1,
53 	.placement = &sys_placement_flags,
54 };
55 
56 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
57 
58 /**
59  * __vmw_piter_non_sg_next: Helper functions to advance
60  * a struct vmw_piter iterator.
61  *
62  * @viter: Pointer to the iterator.
63  *
64  * These functions return false if past the end of the list,
65  * true otherwise. Functions are selected depending on the current
66  * DMA mapping mode.
67  */
68 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
69 {
70 	return ++(viter->i) < viter->num_pages;
71 }
72 
73 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
74 {
75 	bool ret = __vmw_piter_non_sg_next(viter);
76 
77 	return __sg_page_iter_dma_next(&viter->iter) && ret;
78 }
79 
80 
81 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
82 {
83 	return viter->addrs[viter->i];
84 }
85 
86 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
87 {
88 	return sg_page_iter_dma_address(&viter->iter);
89 }
90 
91 
92 /**
93  * vmw_piter_start - Initialize a struct vmw_piter.
94  *
95  * @viter: Pointer to the iterator to initialize
96  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
97  * @p_offset: Pointer offset used to update current array position
98  *
99  * Note that we're following the convention of __sg_page_iter_start, so that
100  * the iterator doesn't point to a valid page after initialization; it has
101  * to be advanced one step first.
102  */
103 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
104 		     unsigned long p_offset)
105 {
106 	viter->i = p_offset - 1;
107 	viter->num_pages = vsgt->num_pages;
108 	viter->pages = vsgt->pages;
109 	switch (vsgt->mode) {
110 	case vmw_dma_alloc_coherent:
111 		viter->next = &__vmw_piter_non_sg_next;
112 		viter->dma_address = &__vmw_piter_dma_addr;
113 		viter->addrs = vsgt->addrs;
114 		break;
115 	case vmw_dma_map_populate:
116 	case vmw_dma_map_bind:
117 		viter->next = &__vmw_piter_sg_next;
118 		viter->dma_address = &__vmw_piter_sg_addr;
119 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
120 				     vsgt->sgt->orig_nents, p_offset);
121 		break;
122 	default:
123 		BUG();
124 	}
125 }
126 
127 /**
128  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
129  * TTM pages
130  *
131  * @vmw_tt: Pointer to a struct vmw_ttm_backend
132  *
133  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
134  */
135 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
136 {
137 	struct device *dev = vmw_tt->dev_priv->drm.dev;
138 
139 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
140 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
141 }
142 
143 /**
144  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
145  *
146  * @vmw_tt: Pointer to a struct vmw_ttm_backend
147  *
148  * This function is used to get device addresses from the kernel DMA layer.
149  * However, it's violating the DMA API in that when this operation has been
150  * performed, it's illegal for the CPU to write to the pages without first
151  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
152  * therefore only legal to call this function if we know that the function
153  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
154  * a CPU write buffer flush.
155  */
156 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
157 {
158 	struct device *dev = vmw_tt->dev_priv->drm.dev;
159 
160 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
161 }
162 
163 /**
164  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
165  *
166  * @vmw_tt: Pointer to a struct vmw_ttm_tt
167  *
168  * Select the correct function for and make sure the TTM pages are
169  * visible to the device. Allocate storage for the device mappings.
170  * If a mapping has already been performed, indicated by the storage
171  * pointer being non NULL, the function returns success.
172  */
173 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
174 {
175 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
176 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
177 	int ret = 0;
178 
179 	if (vmw_tt->mapped)
180 		return 0;
181 
182 	vsgt->mode = dev_priv->map_mode;
183 	vsgt->pages = vmw_tt->dma_ttm.pages;
184 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
185 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
186 	vsgt->sgt = NULL;
187 
188 	switch (dev_priv->map_mode) {
189 	case vmw_dma_map_bind:
190 	case vmw_dma_map_populate:
191 		if (vmw_tt->dma_ttm.page_flags  & TTM_TT_FLAG_EXTERNAL) {
192 			vsgt->sgt = vmw_tt->dma_ttm.sg;
193 		} else {
194 			vsgt->sgt = &vmw_tt->sgt;
195 			ret = sg_alloc_table_from_pages_segment(&vmw_tt->sgt,
196 				vsgt->pages, vsgt->num_pages, 0,
197 				(unsigned long)vsgt->num_pages << PAGE_SHIFT,
198 				dma_get_max_seg_size(dev_priv->drm.dev),
199 				GFP_KERNEL);
200 			if (ret)
201 				goto out_sg_alloc_fail;
202 		}
203 
204 		ret = vmw_ttm_map_for_dma(vmw_tt);
205 		if (unlikely(ret != 0))
206 			goto out_map_fail;
207 
208 		break;
209 	default:
210 		break;
211 	}
212 
213 	vmw_tt->mapped = true;
214 	return 0;
215 
216 out_map_fail:
217 	drm_warn(&dev_priv->drm, "VSG table map failed!");
218 	sg_free_table(vsgt->sgt);
219 	vsgt->sgt = NULL;
220 out_sg_alloc_fail:
221 	return ret;
222 }
223 
224 /**
225  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
226  *
227  * @vmw_tt: Pointer to a struct vmw_ttm_tt
228  *
229  * Tear down any previously set up device DMA mappings and free
230  * any storage space allocated for them. If there are no mappings set up,
231  * this function is a NOP.
232  */
233 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
234 {
235 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
236 
237 	if (!vmw_tt->vsgt.sgt)
238 		return;
239 
240 	switch (dev_priv->map_mode) {
241 	case vmw_dma_map_bind:
242 	case vmw_dma_map_populate:
243 		vmw_ttm_unmap_from_dma(vmw_tt);
244 		sg_free_table(vmw_tt->vsgt.sgt);
245 		vmw_tt->vsgt.sgt = NULL;
246 		break;
247 	default:
248 		break;
249 	}
250 	vmw_tt->mapped = false;
251 }
252 
253 /**
254  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
255  * TTM buffer object
256  *
257  * @bo: Pointer to a struct ttm_buffer_object
258  *
259  * Returns a pointer to a struct vmw_sg_table object. The object should
260  * not be freed after use.
261  * Note that for the device addresses to be valid, the buffer object must
262  * either be reserved or pinned.
263  */
264 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
265 {
266 	struct vmw_ttm_tt *vmw_tt =
267 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
268 
269 	return &vmw_tt->vsgt;
270 }
271 
272 
273 static int vmw_ttm_bind(struct ttm_device *bdev,
274 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
275 {
276 	struct vmw_ttm_tt *vmw_be =
277 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
278 	int ret = 0;
279 
280 	if (!bo_mem)
281 		return -EINVAL;
282 
283 	if (vmw_be->bound)
284 		return 0;
285 
286 	ret = vmw_ttm_map_dma(vmw_be);
287 	if (unlikely(ret != 0))
288 		return ret;
289 
290 	vmw_be->gmr_id = bo_mem->start;
291 	vmw_be->mem_type = bo_mem->mem_type;
292 
293 	switch (bo_mem->mem_type) {
294 	case VMW_PL_GMR:
295 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
296 				    ttm->num_pages, vmw_be->gmr_id);
297 		break;
298 	case VMW_PL_MOB:
299 		if (unlikely(vmw_be->mob == NULL)) {
300 			vmw_be->mob =
301 				vmw_mob_create(ttm->num_pages);
302 			if (unlikely(vmw_be->mob == NULL))
303 				return -ENOMEM;
304 		}
305 
306 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
307 				    &vmw_be->vsgt, ttm->num_pages,
308 				    vmw_be->gmr_id);
309 		break;
310 	case VMW_PL_SYSTEM:
311 		/* Nothing to be done for a system bind */
312 		break;
313 	default:
314 		BUG();
315 	}
316 	vmw_be->bound = true;
317 	return ret;
318 }
319 
320 static void vmw_ttm_unbind(struct ttm_device *bdev,
321 			   struct ttm_tt *ttm)
322 {
323 	struct vmw_ttm_tt *vmw_be =
324 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
325 
326 	if (!vmw_be->bound)
327 		return;
328 
329 	switch (vmw_be->mem_type) {
330 	case VMW_PL_GMR:
331 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
332 		break;
333 	case VMW_PL_MOB:
334 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
335 		break;
336 	case VMW_PL_SYSTEM:
337 		break;
338 	default:
339 		BUG();
340 	}
341 
342 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
343 		vmw_ttm_unmap_dma(vmw_be);
344 	vmw_be->bound = false;
345 }
346 
347 
348 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
349 {
350 	struct vmw_ttm_tt *vmw_be =
351 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
352 
353 	vmw_ttm_unmap_dma(vmw_be);
354 	ttm_tt_fini(ttm);
355 	if (vmw_be->mob)
356 		vmw_mob_destroy(vmw_be->mob);
357 
358 	kfree(vmw_be);
359 }
360 
361 
362 static int vmw_ttm_populate(struct ttm_device *bdev,
363 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
364 {
365 	bool external = (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) != 0;
366 
367 	if (ttm_tt_is_populated(ttm))
368 		return 0;
369 
370 	if (external && ttm->sg)
371 		return  drm_prime_sg_to_dma_addr_array(ttm->sg,
372 						       ttm->dma_address,
373 						       ttm->num_pages);
374 
375 	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
376 }
377 
378 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
379 			       struct ttm_tt *ttm)
380 {
381 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
382 						 dma_ttm);
383 	bool external = (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) != 0;
384 
385 	if (external)
386 		return;
387 
388 	vmw_ttm_unbind(bdev, ttm);
389 
390 	if (vmw_tt->mob) {
391 		vmw_mob_destroy(vmw_tt->mob);
392 		vmw_tt->mob = NULL;
393 	}
394 
395 	vmw_ttm_unmap_dma(vmw_tt);
396 
397 	ttm_pool_free(&bdev->pool, ttm);
398 }
399 
400 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
401 					uint32_t page_flags)
402 {
403 	struct vmw_ttm_tt *vmw_be;
404 	int ret;
405 	bool external = bo->type == ttm_bo_type_sg;
406 
407 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
408 	if (!vmw_be)
409 		return NULL;
410 
411 	vmw_be->dev_priv = vmw_priv_from_ttm(bo->bdev);
412 	vmw_be->mob = NULL;
413 
414 	if (external)
415 		page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
416 
417 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent || external)
418 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
419 				     ttm_cached);
420 	else
421 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
422 				  ttm_cached, 0);
423 	if (unlikely(ret != 0))
424 		goto out_no_init;
425 
426 	return &vmw_be->dma_ttm;
427 out_no_init:
428 	kfree(vmw_be);
429 	return NULL;
430 }
431 
432 static void vmw_evict_flags(struct ttm_buffer_object *bo,
433 		     struct ttm_placement *placement)
434 {
435 	*placement = vmw_sys_placement;
436 }
437 
438 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
439 {
440 	struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev);
441 
442 	switch (mem->mem_type) {
443 	case TTM_PL_SYSTEM:
444 	case VMW_PL_SYSTEM:
445 	case VMW_PL_GMR:
446 	case VMW_PL_MOB:
447 		return 0;
448 	case TTM_PL_VRAM:
449 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
450 			dev_priv->vram_start;
451 		mem->bus.is_iomem = true;
452 		mem->bus.caching = ttm_cached;
453 		break;
454 	default:
455 		return -EINVAL;
456 	}
457 	return 0;
458 }
459 
460 /**
461  * vmw_move_notify - TTM move_notify_callback
462  *
463  * @bo: The TTM buffer object about to move.
464  * @old_mem: The old memory where we move from
465  * @new_mem: The struct ttm_resource indicating to what memory
466  *       region the move is taking place.
467  *
468  * Calls move_notify for all subsystems needing it.
469  * (currently only resources).
470  */
471 static void vmw_move_notify(struct ttm_buffer_object *bo,
472 			    struct ttm_resource *old_mem,
473 			    struct ttm_resource *new_mem)
474 {
475 	vmw_bo_move_notify(bo, new_mem);
476 	vmw_query_move_notify(bo, old_mem, new_mem);
477 }
478 
479 
480 /**
481  * vmw_swap_notify - TTM move_notify_callback
482  *
483  * @bo: The TTM buffer object about to be swapped out.
484  */
485 static void vmw_swap_notify(struct ttm_buffer_object *bo)
486 {
487 	vmw_bo_swap_notify(bo);
488 	(void) ttm_bo_wait(bo, false, false);
489 }
490 
491 static bool vmw_memtype_is_system(uint32_t mem_type)
492 {
493 	return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
494 }
495 
496 static int vmw_move(struct ttm_buffer_object *bo,
497 		    bool evict,
498 		    struct ttm_operation_ctx *ctx,
499 		    struct ttm_resource *new_mem,
500 		    struct ttm_place *hop)
501 {
502 	struct ttm_resource_manager *new_man;
503 	struct ttm_resource_manager *old_man = NULL;
504 	int ret = 0;
505 
506 	new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
507 	if (bo->resource)
508 		old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
509 
510 	if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
511 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
512 		if (ret)
513 			return ret;
514 	}
515 
516 	if (!bo->resource || (bo->resource->mem_type == TTM_PL_SYSTEM &&
517 			      bo->ttm == NULL)) {
518 		ttm_bo_move_null(bo, new_mem);
519 		return 0;
520 	}
521 
522 	vmw_move_notify(bo, bo->resource, new_mem);
523 
524 	if (old_man && old_man->use_tt && new_man->use_tt) {
525 		if (vmw_memtype_is_system(bo->resource->mem_type)) {
526 			ttm_bo_move_null(bo, new_mem);
527 			return 0;
528 		}
529 		ret = ttm_bo_wait_ctx(bo, ctx);
530 		if (ret)
531 			goto fail;
532 
533 		vmw_ttm_unbind(bo->bdev, bo->ttm);
534 		ttm_resource_free(bo, &bo->resource);
535 		ttm_bo_assign_mem(bo, new_mem);
536 		return 0;
537 	} else {
538 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
539 		if (ret)
540 			goto fail;
541 	}
542 	return 0;
543 fail:
544 	vmw_move_notify(bo, new_mem, bo->resource);
545 	return ret;
546 }
547 
548 struct ttm_device_funcs vmw_bo_driver = {
549 	.ttm_tt_create = &vmw_ttm_tt_create,
550 	.ttm_tt_populate = &vmw_ttm_populate,
551 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
552 	.ttm_tt_destroy = &vmw_ttm_destroy,
553 	.eviction_valuable = ttm_bo_eviction_valuable,
554 	.evict_flags = vmw_evict_flags,
555 	.move = vmw_move,
556 	.swap_notify = vmw_swap_notify,
557 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
558 };
559 
560 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
561 			       size_t bo_size, u32 domain,
562 			       struct vmw_bo **bo_p)
563 {
564 	struct ttm_operation_ctx ctx = {
565 		.interruptible = false,
566 		.no_wait_gpu = false
567 	};
568 	struct vmw_bo *vbo;
569 	int ret;
570 	struct vmw_bo_params bo_params = {
571 		.domain = domain,
572 		.busy_domain = domain,
573 		.bo_type = ttm_bo_type_kernel,
574 		.size = bo_size,
575 		.pin = true
576 	};
577 
578 	ret = vmw_bo_create(dev_priv, &bo_params, &vbo);
579 	if (unlikely(ret != 0))
580 		return ret;
581 
582 	ret = ttm_bo_reserve(&vbo->tbo, false, true, NULL);
583 	BUG_ON(ret != 0);
584 	ret = vmw_ttm_populate(vbo->tbo.bdev, vbo->tbo.ttm, &ctx);
585 	if (likely(ret == 0)) {
586 		struct vmw_ttm_tt *vmw_tt =
587 			container_of(vbo->tbo.ttm, struct vmw_ttm_tt, dma_ttm);
588 		ret = vmw_ttm_map_dma(vmw_tt);
589 	}
590 
591 	ttm_bo_unreserve(&vbo->tbo);
592 
593 	if (likely(ret == 0))
594 		*bo_p = vbo;
595 	return ret;
596 }
597