xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 static const struct ttm_place gmr_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = VMW_PL_GMR,
50 	.flags = 0
51 };
52 
53 static const struct ttm_place mob_placement_flags = {
54 	.fpfn = 0,
55 	.lpfn = 0,
56 	.mem_type = VMW_PL_MOB,
57 	.flags = 0
58 };
59 
60 struct ttm_placement vmw_vram_placement = {
61 	.num_placement = 1,
62 	.placement = &vram_placement_flags,
63 	.num_busy_placement = 1,
64 	.busy_placement = &vram_placement_flags
65 };
66 
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 	{
69 		.fpfn = 0,
70 		.lpfn = 0,
71 		.mem_type = TTM_PL_VRAM,
72 		.flags = 0
73 	}, {
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = VMW_PL_GMR,
77 		.flags = 0
78 	}
79 };
80 
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 	{
83 		.fpfn = 0,
84 		.lpfn = 0,
85 		.mem_type = VMW_PL_GMR,
86 		.flags = 0
87 	}, {
88 		.fpfn = 0,
89 		.lpfn = 0,
90 		.mem_type = TTM_PL_VRAM,
91 		.flags = 0
92 	}
93 };
94 
95 struct ttm_placement vmw_vram_gmr_placement = {
96 	.num_placement = 2,
97 	.placement = vram_gmr_placement_flags,
98 	.num_busy_placement = 1,
99 	.busy_placement = &gmr_placement_flags
100 };
101 
102 struct ttm_placement vmw_vram_sys_placement = {
103 	.num_placement = 1,
104 	.placement = &vram_placement_flags,
105 	.num_busy_placement = 1,
106 	.busy_placement = &sys_placement_flags
107 };
108 
109 struct ttm_placement vmw_sys_placement = {
110 	.num_placement = 1,
111 	.placement = &sys_placement_flags,
112 	.num_busy_placement = 1,
113 	.busy_placement = &sys_placement_flags
114 };
115 
116 static const struct ttm_place evictable_placement_flags[] = {
117 	{
118 		.fpfn = 0,
119 		.lpfn = 0,
120 		.mem_type = TTM_PL_SYSTEM,
121 		.flags = 0
122 	}, {
123 		.fpfn = 0,
124 		.lpfn = 0,
125 		.mem_type = TTM_PL_VRAM,
126 		.flags = 0
127 	}, {
128 		.fpfn = 0,
129 		.lpfn = 0,
130 		.mem_type = VMW_PL_GMR,
131 		.flags = 0
132 	}, {
133 		.fpfn = 0,
134 		.lpfn = 0,
135 		.mem_type = VMW_PL_MOB,
136 		.flags = 0
137 	}
138 };
139 
140 static const struct ttm_place nonfixed_placement_flags[] = {
141 	{
142 		.fpfn = 0,
143 		.lpfn = 0,
144 		.mem_type = TTM_PL_SYSTEM,
145 		.flags = 0
146 	}, {
147 		.fpfn = 0,
148 		.lpfn = 0,
149 		.mem_type = VMW_PL_GMR,
150 		.flags = 0
151 	}, {
152 		.fpfn = 0,
153 		.lpfn = 0,
154 		.mem_type = VMW_PL_MOB,
155 		.flags = 0
156 	}
157 };
158 
159 struct ttm_placement vmw_evictable_placement = {
160 	.num_placement = 4,
161 	.placement = evictable_placement_flags,
162 	.num_busy_placement = 1,
163 	.busy_placement = &sys_placement_flags
164 };
165 
166 struct ttm_placement vmw_srf_placement = {
167 	.num_placement = 1,
168 	.num_busy_placement = 2,
169 	.placement = &gmr_placement_flags,
170 	.busy_placement = gmr_vram_placement_flags
171 };
172 
173 struct ttm_placement vmw_mob_placement = {
174 	.num_placement = 1,
175 	.num_busy_placement = 1,
176 	.placement = &mob_placement_flags,
177 	.busy_placement = &mob_placement_flags
178 };
179 
180 struct ttm_placement vmw_nonfixed_placement = {
181 	.num_placement = 3,
182 	.placement = nonfixed_placement_flags,
183 	.num_busy_placement = 1,
184 	.busy_placement = &sys_placement_flags
185 };
186 
187 struct vmw_ttm_tt {
188 	struct ttm_tt dma_ttm;
189 	struct vmw_private *dev_priv;
190 	int gmr_id;
191 	struct vmw_mob *mob;
192 	int mem_type;
193 	struct sg_table sgt;
194 	struct vmw_sg_table vsgt;
195 	uint64_t sg_alloc_size;
196 	bool mapped;
197 	bool bound;
198 };
199 
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201 
202 /**
203  * Helper functions to advance a struct vmw_piter iterator.
204  *
205  * @viter: Pointer to the iterator.
206  *
207  * These functions return false if past the end of the list,
208  * true otherwise. Functions are selected depending on the current
209  * DMA mapping mode.
210  */
211 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
212 {
213 	return ++(viter->i) < viter->num_pages;
214 }
215 
216 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
217 {
218 	bool ret = __vmw_piter_non_sg_next(viter);
219 
220 	return __sg_page_iter_dma_next(&viter->iter) && ret;
221 }
222 
223 
224 /**
225  * Helper functions to return a pointer to the current page.
226  *
227  * @viter: Pointer to the iterator
228  *
229  * These functions return a pointer to the page currently
230  * pointed to by @viter. Functions are selected depending on the
231  * current mapping mode.
232  */
233 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
234 {
235 	return viter->pages[viter->i];
236 }
237 
238 /**
239  * Helper functions to return the DMA address of the current page.
240  *
241  * @viter: Pointer to the iterator
242  *
243  * These functions return the DMA address of the page currently
244  * pointed to by @viter. Functions are selected depending on the
245  * current mapping mode.
246  */
247 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
248 {
249 	return page_to_phys(viter->pages[viter->i]);
250 }
251 
252 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
253 {
254 	return viter->addrs[viter->i];
255 }
256 
257 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
258 {
259 	return sg_page_iter_dma_address(&viter->iter);
260 }
261 
262 
263 /**
264  * vmw_piter_start - Initialize a struct vmw_piter.
265  *
266  * @viter: Pointer to the iterator to initialize
267  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
268  * @p_offset: Pointer offset used to update current array position
269  *
270  * Note that we're following the convention of __sg_page_iter_start, so that
271  * the iterator doesn't point to a valid page after initialization; it has
272  * to be advanced one step first.
273  */
274 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
275 		     unsigned long p_offset)
276 {
277 	viter->i = p_offset - 1;
278 	viter->num_pages = vsgt->num_pages;
279 	viter->page = &__vmw_piter_non_sg_page;
280 	viter->pages = vsgt->pages;
281 	switch (vsgt->mode) {
282 	case vmw_dma_phys:
283 		viter->next = &__vmw_piter_non_sg_next;
284 		viter->dma_address = &__vmw_piter_phys_addr;
285 		break;
286 	case vmw_dma_alloc_coherent:
287 		viter->next = &__vmw_piter_non_sg_next;
288 		viter->dma_address = &__vmw_piter_dma_addr;
289 		viter->addrs = vsgt->addrs;
290 		break;
291 	case vmw_dma_map_populate:
292 	case vmw_dma_map_bind:
293 		viter->next = &__vmw_piter_sg_next;
294 		viter->dma_address = &__vmw_piter_sg_addr;
295 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
296 				     vsgt->sgt->orig_nents, p_offset);
297 		break;
298 	default:
299 		BUG();
300 	}
301 }
302 
303 /**
304  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
305  * TTM pages
306  *
307  * @vmw_tt: Pointer to a struct vmw_ttm_backend
308  *
309  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
310  */
311 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
312 {
313 	struct device *dev = vmw_tt->dev_priv->drm.dev;
314 
315 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
316 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
317 }
318 
319 /**
320  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
321  *
322  * @vmw_tt: Pointer to a struct vmw_ttm_backend
323  *
324  * This function is used to get device addresses from the kernel DMA layer.
325  * However, it's violating the DMA API in that when this operation has been
326  * performed, it's illegal for the CPU to write to the pages without first
327  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
328  * therefore only legal to call this function if we know that the function
329  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
330  * a CPU write buffer flush.
331  */
332 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
333 {
334 	struct device *dev = vmw_tt->dev_priv->drm.dev;
335 
336 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
337 }
338 
339 /**
340  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
341  *
342  * @vmw_tt: Pointer to a struct vmw_ttm_tt
343  *
344  * Select the correct function for and make sure the TTM pages are
345  * visible to the device. Allocate storage for the device mappings.
346  * If a mapping has already been performed, indicated by the storage
347  * pointer being non NULL, the function returns success.
348  */
349 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
350 {
351 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
352 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
353 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
354 	struct ttm_operation_ctx ctx = {
355 		.interruptible = true,
356 		.no_wait_gpu = false
357 	};
358 	struct vmw_piter iter;
359 	dma_addr_t old;
360 	int ret = 0;
361 	static size_t sgl_size;
362 	static size_t sgt_size;
363 	struct scatterlist *sg;
364 
365 	if (vmw_tt->mapped)
366 		return 0;
367 
368 	vsgt->mode = dev_priv->map_mode;
369 	vsgt->pages = vmw_tt->dma_ttm.pages;
370 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
371 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
372 	vsgt->sgt = &vmw_tt->sgt;
373 
374 	switch (dev_priv->map_mode) {
375 	case vmw_dma_map_bind:
376 	case vmw_dma_map_populate:
377 		if (unlikely(!sgl_size)) {
378 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
379 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
380 		}
381 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
382 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
383 		if (unlikely(ret != 0))
384 			return ret;
385 
386 		sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
387 				vsgt->num_pages, 0,
388 				(unsigned long) vsgt->num_pages << PAGE_SHIFT,
389 				dma_get_max_seg_size(dev_priv->drm.dev),
390 				NULL, 0, GFP_KERNEL);
391 		if (IS_ERR(sg)) {
392 			ret = PTR_ERR(sg);
393 			goto out_sg_alloc_fail;
394 		}
395 
396 		if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
397 			uint64_t over_alloc =
398 				sgl_size * (vsgt->num_pages -
399 					    vmw_tt->sgt.orig_nents);
400 
401 			ttm_mem_global_free(glob, over_alloc);
402 			vmw_tt->sg_alloc_size -= over_alloc;
403 		}
404 
405 		ret = vmw_ttm_map_for_dma(vmw_tt);
406 		if (unlikely(ret != 0))
407 			goto out_map_fail;
408 
409 		break;
410 	default:
411 		break;
412 	}
413 
414 	old = ~((dma_addr_t) 0);
415 	vmw_tt->vsgt.num_regions = 0;
416 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
417 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
418 
419 		if (cur != old + PAGE_SIZE)
420 			vmw_tt->vsgt.num_regions++;
421 		old = cur;
422 	}
423 
424 	vmw_tt->mapped = true;
425 	return 0;
426 
427 out_map_fail:
428 	sg_free_table(vmw_tt->vsgt.sgt);
429 	vmw_tt->vsgt.sgt = NULL;
430 out_sg_alloc_fail:
431 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
432 	return ret;
433 }
434 
435 /**
436  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
437  *
438  * @vmw_tt: Pointer to a struct vmw_ttm_tt
439  *
440  * Tear down any previously set up device DMA mappings and free
441  * any storage space allocated for them. If there are no mappings set up,
442  * this function is a NOP.
443  */
444 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
445 {
446 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
447 
448 	if (!vmw_tt->vsgt.sgt)
449 		return;
450 
451 	switch (dev_priv->map_mode) {
452 	case vmw_dma_map_bind:
453 	case vmw_dma_map_populate:
454 		vmw_ttm_unmap_from_dma(vmw_tt);
455 		sg_free_table(vmw_tt->vsgt.sgt);
456 		vmw_tt->vsgt.sgt = NULL;
457 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
458 				    vmw_tt->sg_alloc_size);
459 		break;
460 	default:
461 		break;
462 	}
463 	vmw_tt->mapped = false;
464 }
465 
466 /**
467  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
468  * TTM buffer object
469  *
470  * @bo: Pointer to a struct ttm_buffer_object
471  *
472  * Returns a pointer to a struct vmw_sg_table object. The object should
473  * not be freed after use.
474  * Note that for the device addresses to be valid, the buffer object must
475  * either be reserved or pinned.
476  */
477 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
478 {
479 	struct vmw_ttm_tt *vmw_tt =
480 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
481 
482 	return &vmw_tt->vsgt;
483 }
484 
485 
486 static int vmw_ttm_bind(struct ttm_device *bdev,
487 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
488 {
489 	struct vmw_ttm_tt *vmw_be =
490 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
491 	int ret = 0;
492 
493 	if (!bo_mem)
494 		return -EINVAL;
495 
496 	if (vmw_be->bound)
497 		return 0;
498 
499 	ret = vmw_ttm_map_dma(vmw_be);
500 	if (unlikely(ret != 0))
501 		return ret;
502 
503 	vmw_be->gmr_id = bo_mem->start;
504 	vmw_be->mem_type = bo_mem->mem_type;
505 
506 	switch (bo_mem->mem_type) {
507 	case VMW_PL_GMR:
508 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
509 				    ttm->num_pages, vmw_be->gmr_id);
510 		break;
511 	case VMW_PL_MOB:
512 		if (unlikely(vmw_be->mob == NULL)) {
513 			vmw_be->mob =
514 				vmw_mob_create(ttm->num_pages);
515 			if (unlikely(vmw_be->mob == NULL))
516 				return -ENOMEM;
517 		}
518 
519 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
520 				    &vmw_be->vsgt, ttm->num_pages,
521 				    vmw_be->gmr_id);
522 		break;
523 	default:
524 		BUG();
525 	}
526 	vmw_be->bound = true;
527 	return ret;
528 }
529 
530 static void vmw_ttm_unbind(struct ttm_device *bdev,
531 			   struct ttm_tt *ttm)
532 {
533 	struct vmw_ttm_tt *vmw_be =
534 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
535 
536 	if (!vmw_be->bound)
537 		return;
538 
539 	switch (vmw_be->mem_type) {
540 	case VMW_PL_GMR:
541 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
542 		break;
543 	case VMW_PL_MOB:
544 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
545 		break;
546 	default:
547 		BUG();
548 	}
549 
550 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
551 		vmw_ttm_unmap_dma(vmw_be);
552 	vmw_be->bound = false;
553 }
554 
555 
556 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
557 {
558 	struct vmw_ttm_tt *vmw_be =
559 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
560 
561 	vmw_ttm_unbind(bdev, ttm);
562 	ttm_tt_destroy_common(bdev, ttm);
563 	vmw_ttm_unmap_dma(vmw_be);
564 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
565 		ttm_tt_fini(&vmw_be->dma_ttm);
566 	else
567 		ttm_tt_fini(ttm);
568 
569 	if (vmw_be->mob)
570 		vmw_mob_destroy(vmw_be->mob);
571 
572 	kfree(vmw_be);
573 }
574 
575 
576 static int vmw_ttm_populate(struct ttm_device *bdev,
577 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
578 {
579 	unsigned int i;
580 	int ret;
581 
582 	/* TODO: maybe completely drop this ? */
583 	if (ttm_tt_is_populated(ttm))
584 		return 0;
585 
586 	ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
587 	if (ret)
588 		return ret;
589 
590 	for (i = 0; i < ttm->num_pages; ++i) {
591 		ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
592 						PAGE_SIZE, ctx);
593 		if (ret)
594 			goto error;
595 	}
596 	return 0;
597 
598 error:
599 	while (i--)
600 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
601 					 PAGE_SIZE);
602 	ttm_pool_free(&bdev->pool, ttm);
603 	return ret;
604 }
605 
606 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
607 			       struct ttm_tt *ttm)
608 {
609 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
610 						 dma_ttm);
611 	unsigned int i;
612 
613 	if (vmw_tt->mob) {
614 		vmw_mob_destroy(vmw_tt->mob);
615 		vmw_tt->mob = NULL;
616 	}
617 
618 	vmw_ttm_unmap_dma(vmw_tt);
619 
620 	for (i = 0; i < ttm->num_pages; ++i)
621 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
622 					 PAGE_SIZE);
623 
624 	ttm_pool_free(&bdev->pool, ttm);
625 }
626 
627 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
628 					uint32_t page_flags)
629 {
630 	struct vmw_ttm_tt *vmw_be;
631 	int ret;
632 
633 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
634 	if (!vmw_be)
635 		return NULL;
636 
637 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
638 	vmw_be->mob = NULL;
639 
640 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
641 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
642 				     ttm_cached);
643 	else
644 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
645 				  ttm_cached);
646 	if (unlikely(ret != 0))
647 		goto out_no_init;
648 
649 	return &vmw_be->dma_ttm;
650 out_no_init:
651 	kfree(vmw_be);
652 	return NULL;
653 }
654 
655 static void vmw_evict_flags(struct ttm_buffer_object *bo,
656 		     struct ttm_placement *placement)
657 {
658 	*placement = vmw_sys_placement;
659 }
660 
661 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
662 {
663 	struct ttm_object_file *tfile =
664 		vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
665 
666 	return vmw_user_bo_verify_access(bo, tfile);
667 }
668 
669 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
670 {
671 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
672 
673 	switch (mem->mem_type) {
674 	case TTM_PL_SYSTEM:
675 	case VMW_PL_GMR:
676 	case VMW_PL_MOB:
677 		return 0;
678 	case TTM_PL_VRAM:
679 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
680 			dev_priv->vram_start;
681 		mem->bus.is_iomem = true;
682 		mem->bus.caching = ttm_cached;
683 		break;
684 	default:
685 		return -EINVAL;
686 	}
687 	return 0;
688 }
689 
690 /**
691  * vmw_move_notify - TTM move_notify_callback
692  *
693  * @bo: The TTM buffer object about to move.
694  * @old_mem: The old memory where we move from
695  * @new_mem: The struct ttm_resource indicating to what memory
696  *       region the move is taking place.
697  *
698  * Calls move_notify for all subsystems needing it.
699  * (currently only resources).
700  */
701 static void vmw_move_notify(struct ttm_buffer_object *bo,
702 			    struct ttm_resource *old_mem,
703 			    struct ttm_resource *new_mem)
704 {
705 	vmw_bo_move_notify(bo, new_mem);
706 	vmw_query_move_notify(bo, old_mem, new_mem);
707 }
708 
709 
710 /**
711  * vmw_swap_notify - TTM move_notify_callback
712  *
713  * @bo: The TTM buffer object about to be swapped out.
714  */
715 static void vmw_swap_notify(struct ttm_buffer_object *bo)
716 {
717 	vmw_bo_swap_notify(bo);
718 	(void) ttm_bo_wait(bo, false, false);
719 }
720 
721 static int vmw_move(struct ttm_buffer_object *bo,
722 		    bool evict,
723 		    struct ttm_operation_ctx *ctx,
724 		    struct ttm_resource *new_mem,
725 		    struct ttm_place *hop)
726 {
727 	struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
728 	struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
729 	int ret;
730 
731 	if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
732 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
733 		if (ret)
734 			return ret;
735 	}
736 
737 	vmw_move_notify(bo, &bo->mem, new_mem);
738 
739 	if (old_man->use_tt && new_man->use_tt) {
740 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
741 			ttm_bo_assign_mem(bo, new_mem);
742 			return 0;
743 		}
744 		ret = ttm_bo_wait_ctx(bo, ctx);
745 		if (ret)
746 			goto fail;
747 
748 		vmw_ttm_unbind(bo->bdev, bo->ttm);
749 		ttm_resource_free(bo, &bo->mem);
750 		ttm_bo_assign_mem(bo, new_mem);
751 		return 0;
752 	} else {
753 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
754 		if (ret)
755 			goto fail;
756 	}
757 	return 0;
758 fail:
759 	vmw_move_notify(bo, new_mem, &bo->mem);
760 	return ret;
761 }
762 
763 struct ttm_device_funcs vmw_bo_driver = {
764 	.ttm_tt_create = &vmw_ttm_tt_create,
765 	.ttm_tt_populate = &vmw_ttm_populate,
766 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
767 	.ttm_tt_destroy = &vmw_ttm_destroy,
768 	.eviction_valuable = ttm_bo_eviction_valuable,
769 	.evict_flags = vmw_evict_flags,
770 	.move = vmw_move,
771 	.verify_access = vmw_verify_access,
772 	.swap_notify = vmw_swap_notify,
773 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
774 };
775 
776 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
777 			       unsigned long bo_size,
778 			       struct ttm_buffer_object **bo_p)
779 {
780 	struct ttm_operation_ctx ctx = {
781 		.interruptible = false,
782 		.no_wait_gpu = false
783 	};
784 	struct ttm_buffer_object *bo;
785 	int ret;
786 
787 	ret = vmw_bo_create_kernel(dev_priv, bo_size,
788 				   &vmw_sys_placement,
789 				   &bo);
790 	if (unlikely(ret != 0))
791 		return ret;
792 
793 	ret = ttm_bo_reserve(bo, false, true, NULL);
794 	BUG_ON(ret != 0);
795 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
796 	if (likely(ret == 0)) {
797 		struct vmw_ttm_tt *vmw_tt =
798 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
799 		ret = vmw_ttm_map_dma(vmw_tt);
800 	}
801 
802 	ttm_bo_unreserve(bo);
803 
804 	if (likely(ret == 0))
805 		*bo_p = bo;
806 	return ret;
807 }
808