xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c (revision 0c7c237b1c35011ef0b8d30c1d5c20bc6ae7b69b)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_bo.h"
29 #include "vmwgfx_drv.h"
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 static const struct ttm_place gmr_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = VMW_PL_GMR,
50 	.flags = 0
51 };
52 
53 struct ttm_placement vmw_vram_placement = {
54 	.num_placement = 1,
55 	.placement = &vram_placement_flags,
56 	.num_busy_placement = 1,
57 	.busy_placement = &vram_placement_flags
58 };
59 
60 static const struct ttm_place vram_gmr_placement_flags[] = {
61 	{
62 		.fpfn = 0,
63 		.lpfn = 0,
64 		.mem_type = TTM_PL_VRAM,
65 		.flags = 0
66 	}, {
67 		.fpfn = 0,
68 		.lpfn = 0,
69 		.mem_type = VMW_PL_GMR,
70 		.flags = 0
71 	}
72 };
73 
74 struct ttm_placement vmw_vram_gmr_placement = {
75 	.num_placement = 2,
76 	.placement = vram_gmr_placement_flags,
77 	.num_busy_placement = 1,
78 	.busy_placement = &gmr_placement_flags
79 };
80 
81 struct ttm_placement vmw_sys_placement = {
82 	.num_placement = 1,
83 	.placement = &sys_placement_flags,
84 	.num_busy_placement = 1,
85 	.busy_placement = &sys_placement_flags
86 };
87 
88 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
89 
90 /**
91  * __vmw_piter_non_sg_next: Helper functions to advance
92  * a struct vmw_piter iterator.
93  *
94  * @viter: Pointer to the iterator.
95  *
96  * These functions return false if past the end of the list,
97  * true otherwise. Functions are selected depending on the current
98  * DMA mapping mode.
99  */
100 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
101 {
102 	return ++(viter->i) < viter->num_pages;
103 }
104 
105 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
106 {
107 	bool ret = __vmw_piter_non_sg_next(viter);
108 
109 	return __sg_page_iter_dma_next(&viter->iter) && ret;
110 }
111 
112 
113 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
114 {
115 	return viter->addrs[viter->i];
116 }
117 
118 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
119 {
120 	return sg_page_iter_dma_address(&viter->iter);
121 }
122 
123 
124 /**
125  * vmw_piter_start - Initialize a struct vmw_piter.
126  *
127  * @viter: Pointer to the iterator to initialize
128  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
129  * @p_offset: Pointer offset used to update current array position
130  *
131  * Note that we're following the convention of __sg_page_iter_start, so that
132  * the iterator doesn't point to a valid page after initialization; it has
133  * to be advanced one step first.
134  */
135 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
136 		     unsigned long p_offset)
137 {
138 	viter->i = p_offset - 1;
139 	viter->num_pages = vsgt->num_pages;
140 	viter->pages = vsgt->pages;
141 	switch (vsgt->mode) {
142 	case vmw_dma_alloc_coherent:
143 		viter->next = &__vmw_piter_non_sg_next;
144 		viter->dma_address = &__vmw_piter_dma_addr;
145 		viter->addrs = vsgt->addrs;
146 		break;
147 	case vmw_dma_map_populate:
148 	case vmw_dma_map_bind:
149 		viter->next = &__vmw_piter_sg_next;
150 		viter->dma_address = &__vmw_piter_sg_addr;
151 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
152 				     vsgt->sgt->orig_nents, p_offset);
153 		break;
154 	default:
155 		BUG();
156 	}
157 }
158 
159 /**
160  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
161  * TTM pages
162  *
163  * @vmw_tt: Pointer to a struct vmw_ttm_backend
164  *
165  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
166  */
167 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
168 {
169 	struct device *dev = vmw_tt->dev_priv->drm.dev;
170 
171 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
172 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
173 }
174 
175 /**
176  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
177  *
178  * @vmw_tt: Pointer to a struct vmw_ttm_backend
179  *
180  * This function is used to get device addresses from the kernel DMA layer.
181  * However, it's violating the DMA API in that when this operation has been
182  * performed, it's illegal for the CPU to write to the pages without first
183  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
184  * therefore only legal to call this function if we know that the function
185  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
186  * a CPU write buffer flush.
187  */
188 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
189 {
190 	struct device *dev = vmw_tt->dev_priv->drm.dev;
191 
192 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
193 }
194 
195 /**
196  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
197  *
198  * @vmw_tt: Pointer to a struct vmw_ttm_tt
199  *
200  * Select the correct function for and make sure the TTM pages are
201  * visible to the device. Allocate storage for the device mappings.
202  * If a mapping has already been performed, indicated by the storage
203  * pointer being non NULL, the function returns success.
204  */
205 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
206 {
207 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
208 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
209 	int ret = 0;
210 
211 	if (vmw_tt->mapped)
212 		return 0;
213 
214 	vsgt->mode = dev_priv->map_mode;
215 	vsgt->pages = vmw_tt->dma_ttm.pages;
216 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
217 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
218 	vsgt->sgt = NULL;
219 
220 	switch (dev_priv->map_mode) {
221 	case vmw_dma_map_bind:
222 	case vmw_dma_map_populate:
223 		vsgt->sgt = &vmw_tt->sgt;
224 		ret = sg_alloc_table_from_pages_segment(
225 			&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
226 			(unsigned long)vsgt->num_pages << PAGE_SHIFT,
227 			dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
228 		if (ret)
229 			goto out_sg_alloc_fail;
230 
231 		ret = vmw_ttm_map_for_dma(vmw_tt);
232 		if (unlikely(ret != 0))
233 			goto out_map_fail;
234 
235 		break;
236 	default:
237 		break;
238 	}
239 
240 	vmw_tt->mapped = true;
241 	return 0;
242 
243 out_map_fail:
244 	sg_free_table(vmw_tt->vsgt.sgt);
245 	vmw_tt->vsgt.sgt = NULL;
246 out_sg_alloc_fail:
247 	return ret;
248 }
249 
250 /**
251  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
252  *
253  * @vmw_tt: Pointer to a struct vmw_ttm_tt
254  *
255  * Tear down any previously set up device DMA mappings and free
256  * any storage space allocated for them. If there are no mappings set up,
257  * this function is a NOP.
258  */
259 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
260 {
261 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
262 
263 	if (!vmw_tt->vsgt.sgt)
264 		return;
265 
266 	switch (dev_priv->map_mode) {
267 	case vmw_dma_map_bind:
268 	case vmw_dma_map_populate:
269 		vmw_ttm_unmap_from_dma(vmw_tt);
270 		sg_free_table(vmw_tt->vsgt.sgt);
271 		vmw_tt->vsgt.sgt = NULL;
272 		break;
273 	default:
274 		break;
275 	}
276 	vmw_tt->mapped = false;
277 }
278 
279 /**
280  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
281  * TTM buffer object
282  *
283  * @bo: Pointer to a struct ttm_buffer_object
284  *
285  * Returns a pointer to a struct vmw_sg_table object. The object should
286  * not be freed after use.
287  * Note that for the device addresses to be valid, the buffer object must
288  * either be reserved or pinned.
289  */
290 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
291 {
292 	struct vmw_ttm_tt *vmw_tt =
293 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
294 
295 	return &vmw_tt->vsgt;
296 }
297 
298 
299 static int vmw_ttm_bind(struct ttm_device *bdev,
300 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
301 {
302 	struct vmw_ttm_tt *vmw_be =
303 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
304 	int ret = 0;
305 
306 	if (!bo_mem)
307 		return -EINVAL;
308 
309 	if (vmw_be->bound)
310 		return 0;
311 
312 	ret = vmw_ttm_map_dma(vmw_be);
313 	if (unlikely(ret != 0))
314 		return ret;
315 
316 	vmw_be->gmr_id = bo_mem->start;
317 	vmw_be->mem_type = bo_mem->mem_type;
318 
319 	switch (bo_mem->mem_type) {
320 	case VMW_PL_GMR:
321 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
322 				    ttm->num_pages, vmw_be->gmr_id);
323 		break;
324 	case VMW_PL_MOB:
325 		if (unlikely(vmw_be->mob == NULL)) {
326 			vmw_be->mob =
327 				vmw_mob_create(ttm->num_pages);
328 			if (unlikely(vmw_be->mob == NULL))
329 				return -ENOMEM;
330 		}
331 
332 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
333 				    &vmw_be->vsgt, ttm->num_pages,
334 				    vmw_be->gmr_id);
335 		break;
336 	case VMW_PL_SYSTEM:
337 		/* Nothing to be done for a system bind */
338 		break;
339 	default:
340 		BUG();
341 	}
342 	vmw_be->bound = true;
343 	return ret;
344 }
345 
346 static void vmw_ttm_unbind(struct ttm_device *bdev,
347 			   struct ttm_tt *ttm)
348 {
349 	struct vmw_ttm_tt *vmw_be =
350 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
351 
352 	if (!vmw_be->bound)
353 		return;
354 
355 	switch (vmw_be->mem_type) {
356 	case VMW_PL_GMR:
357 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
358 		break;
359 	case VMW_PL_MOB:
360 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
361 		break;
362 	case VMW_PL_SYSTEM:
363 		break;
364 	default:
365 		BUG();
366 	}
367 
368 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
369 		vmw_ttm_unmap_dma(vmw_be);
370 	vmw_be->bound = false;
371 }
372 
373 
374 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
375 {
376 	struct vmw_ttm_tt *vmw_be =
377 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
378 
379 	vmw_ttm_unmap_dma(vmw_be);
380 	ttm_tt_fini(ttm);
381 	if (vmw_be->mob)
382 		vmw_mob_destroy(vmw_be->mob);
383 
384 	kfree(vmw_be);
385 }
386 
387 
388 static int vmw_ttm_populate(struct ttm_device *bdev,
389 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
390 {
391 	int ret;
392 
393 	/* TODO: maybe completely drop this ? */
394 	if (ttm_tt_is_populated(ttm))
395 		return 0;
396 
397 	ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
398 
399 	return ret;
400 }
401 
402 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
403 			       struct ttm_tt *ttm)
404 {
405 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
406 						 dma_ttm);
407 
408 	vmw_ttm_unbind(bdev, ttm);
409 
410 	if (vmw_tt->mob) {
411 		vmw_mob_destroy(vmw_tt->mob);
412 		vmw_tt->mob = NULL;
413 	}
414 
415 	vmw_ttm_unmap_dma(vmw_tt);
416 
417 	ttm_pool_free(&bdev->pool, ttm);
418 }
419 
420 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
421 					uint32_t page_flags)
422 {
423 	struct vmw_ttm_tt *vmw_be;
424 	int ret;
425 
426 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
427 	if (!vmw_be)
428 		return NULL;
429 
430 	vmw_be->dev_priv = vmw_priv_from_ttm(bo->bdev);
431 	vmw_be->mob = NULL;
432 
433 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
434 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
435 				     ttm_cached);
436 	else
437 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
438 				  ttm_cached, 0);
439 	if (unlikely(ret != 0))
440 		goto out_no_init;
441 
442 	return &vmw_be->dma_ttm;
443 out_no_init:
444 	kfree(vmw_be);
445 	return NULL;
446 }
447 
448 static void vmw_evict_flags(struct ttm_buffer_object *bo,
449 		     struct ttm_placement *placement)
450 {
451 	*placement = vmw_sys_placement;
452 }
453 
454 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
455 {
456 	struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev);
457 
458 	switch (mem->mem_type) {
459 	case TTM_PL_SYSTEM:
460 	case VMW_PL_SYSTEM:
461 	case VMW_PL_GMR:
462 	case VMW_PL_MOB:
463 		return 0;
464 	case TTM_PL_VRAM:
465 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
466 			dev_priv->vram_start;
467 		mem->bus.is_iomem = true;
468 		mem->bus.caching = ttm_cached;
469 		break;
470 	default:
471 		return -EINVAL;
472 	}
473 	return 0;
474 }
475 
476 /**
477  * vmw_move_notify - TTM move_notify_callback
478  *
479  * @bo: The TTM buffer object about to move.
480  * @old_mem: The old memory where we move from
481  * @new_mem: The struct ttm_resource indicating to what memory
482  *       region the move is taking place.
483  *
484  * Calls move_notify for all subsystems needing it.
485  * (currently only resources).
486  */
487 static void vmw_move_notify(struct ttm_buffer_object *bo,
488 			    struct ttm_resource *old_mem,
489 			    struct ttm_resource *new_mem)
490 {
491 	vmw_bo_move_notify(bo, new_mem);
492 	vmw_query_move_notify(bo, old_mem, new_mem);
493 }
494 
495 
496 /**
497  * vmw_swap_notify - TTM move_notify_callback
498  *
499  * @bo: The TTM buffer object about to be swapped out.
500  */
501 static void vmw_swap_notify(struct ttm_buffer_object *bo)
502 {
503 	vmw_bo_swap_notify(bo);
504 	(void) ttm_bo_wait(bo, false, false);
505 }
506 
507 static bool vmw_memtype_is_system(uint32_t mem_type)
508 {
509 	return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
510 }
511 
512 static int vmw_move(struct ttm_buffer_object *bo,
513 		    bool evict,
514 		    struct ttm_operation_ctx *ctx,
515 		    struct ttm_resource *new_mem,
516 		    struct ttm_place *hop)
517 {
518 	struct ttm_resource_manager *new_man;
519 	struct ttm_resource_manager *old_man = NULL;
520 	int ret = 0;
521 
522 	new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
523 	if (bo->resource)
524 		old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
525 
526 	if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
527 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
528 		if (ret)
529 			return ret;
530 	}
531 
532 	if (!bo->resource || (bo->resource->mem_type == TTM_PL_SYSTEM &&
533 			      bo->ttm == NULL)) {
534 		ttm_bo_move_null(bo, new_mem);
535 		return 0;
536 	}
537 
538 	vmw_move_notify(bo, bo->resource, new_mem);
539 
540 	if (old_man && old_man->use_tt && new_man->use_tt) {
541 		if (vmw_memtype_is_system(bo->resource->mem_type)) {
542 			ttm_bo_move_null(bo, new_mem);
543 			return 0;
544 		}
545 		ret = ttm_bo_wait_ctx(bo, ctx);
546 		if (ret)
547 			goto fail;
548 
549 		vmw_ttm_unbind(bo->bdev, bo->ttm);
550 		ttm_resource_free(bo, &bo->resource);
551 		ttm_bo_assign_mem(bo, new_mem);
552 		return 0;
553 	} else {
554 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
555 		if (ret)
556 			goto fail;
557 	}
558 	return 0;
559 fail:
560 	vmw_move_notify(bo, new_mem, bo->resource);
561 	return ret;
562 }
563 
564 struct ttm_device_funcs vmw_bo_driver = {
565 	.ttm_tt_create = &vmw_ttm_tt_create,
566 	.ttm_tt_populate = &vmw_ttm_populate,
567 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
568 	.ttm_tt_destroy = &vmw_ttm_destroy,
569 	.eviction_valuable = ttm_bo_eviction_valuable,
570 	.evict_flags = vmw_evict_flags,
571 	.move = vmw_move,
572 	.swap_notify = vmw_swap_notify,
573 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
574 };
575 
576 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
577 			       size_t bo_size, u32 domain,
578 			       struct vmw_bo **bo_p)
579 {
580 	struct ttm_operation_ctx ctx = {
581 		.interruptible = false,
582 		.no_wait_gpu = false
583 	};
584 	struct vmw_bo *vbo;
585 	int ret;
586 	struct vmw_bo_params bo_params = {
587 		.domain = domain,
588 		.busy_domain = domain,
589 		.bo_type = ttm_bo_type_kernel,
590 		.size = bo_size,
591 		.pin = true
592 	};
593 
594 	ret = vmw_bo_create(dev_priv, &bo_params, &vbo);
595 	if (unlikely(ret != 0))
596 		return ret;
597 
598 	ret = ttm_bo_reserve(&vbo->tbo, false, true, NULL);
599 	BUG_ON(ret != 0);
600 	ret = vmw_ttm_populate(vbo->tbo.bdev, vbo->tbo.ttm, &ctx);
601 	if (likely(ret == 0)) {
602 		struct vmw_ttm_tt *vmw_tt =
603 			container_of(vbo->tbo.ttm, struct vmw_ttm_tt, dma_ttm);
604 		ret = vmw_ttm_map_dma(vmw_tt);
605 	}
606 
607 	ttm_bo_unreserve(&vbo->tbo);
608 
609 	if (likely(ret == 0))
610 		*bo_p = vbo;
611 	return ret;
612 }
613