1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_drv.h" 29 #include <drm/ttm/ttm_bo_driver.h> 30 #include <drm/ttm/ttm_placement.h> 31 32 static const struct ttm_place vram_placement_flags = { 33 .fpfn = 0, 34 .lpfn = 0, 35 .mem_type = TTM_PL_VRAM, 36 .flags = 0 37 }; 38 39 static const struct ttm_place sys_placement_flags = { 40 .fpfn = 0, 41 .lpfn = 0, 42 .mem_type = TTM_PL_SYSTEM, 43 .flags = 0 44 }; 45 46 static const struct ttm_place gmr_placement_flags = { 47 .fpfn = 0, 48 .lpfn = 0, 49 .mem_type = VMW_PL_GMR, 50 .flags = 0 51 }; 52 53 static const struct ttm_place mob_placement_flags = { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = VMW_PL_MOB, 57 .flags = 0 58 }; 59 60 struct ttm_placement vmw_vram_placement = { 61 .num_placement = 1, 62 .placement = &vram_placement_flags, 63 .num_busy_placement = 1, 64 .busy_placement = &vram_placement_flags 65 }; 66 67 static const struct ttm_place vram_gmr_placement_flags[] = { 68 { 69 .fpfn = 0, 70 .lpfn = 0, 71 .mem_type = TTM_PL_VRAM, 72 .flags = 0 73 }, { 74 .fpfn = 0, 75 .lpfn = 0, 76 .mem_type = VMW_PL_GMR, 77 .flags = 0 78 } 79 }; 80 81 static const struct ttm_place gmr_vram_placement_flags[] = { 82 { 83 .fpfn = 0, 84 .lpfn = 0, 85 .mem_type = VMW_PL_GMR, 86 .flags = 0 87 }, { 88 .fpfn = 0, 89 .lpfn = 0, 90 .mem_type = TTM_PL_VRAM, 91 .flags = 0 92 } 93 }; 94 95 struct ttm_placement vmw_vram_gmr_placement = { 96 .num_placement = 2, 97 .placement = vram_gmr_placement_flags, 98 .num_busy_placement = 1, 99 .busy_placement = &gmr_placement_flags 100 }; 101 102 struct ttm_placement vmw_vram_sys_placement = { 103 .num_placement = 1, 104 .placement = &vram_placement_flags, 105 .num_busy_placement = 1, 106 .busy_placement = &sys_placement_flags 107 }; 108 109 struct ttm_placement vmw_sys_placement = { 110 .num_placement = 1, 111 .placement = &sys_placement_flags, 112 .num_busy_placement = 1, 113 .busy_placement = &sys_placement_flags 114 }; 115 116 static const struct ttm_place evictable_placement_flags[] = { 117 { 118 .fpfn = 0, 119 .lpfn = 0, 120 .mem_type = TTM_PL_SYSTEM, 121 .flags = 0 122 }, { 123 .fpfn = 0, 124 .lpfn = 0, 125 .mem_type = TTM_PL_VRAM, 126 .flags = 0 127 }, { 128 .fpfn = 0, 129 .lpfn = 0, 130 .mem_type = VMW_PL_GMR, 131 .flags = 0 132 }, { 133 .fpfn = 0, 134 .lpfn = 0, 135 .mem_type = VMW_PL_MOB, 136 .flags = 0 137 } 138 }; 139 140 static const struct ttm_place nonfixed_placement_flags[] = { 141 { 142 .fpfn = 0, 143 .lpfn = 0, 144 .mem_type = TTM_PL_SYSTEM, 145 .flags = 0 146 }, { 147 .fpfn = 0, 148 .lpfn = 0, 149 .mem_type = VMW_PL_GMR, 150 .flags = 0 151 }, { 152 .fpfn = 0, 153 .lpfn = 0, 154 .mem_type = VMW_PL_MOB, 155 .flags = 0 156 } 157 }; 158 159 struct ttm_placement vmw_evictable_placement = { 160 .num_placement = 4, 161 .placement = evictable_placement_flags, 162 .num_busy_placement = 1, 163 .busy_placement = &sys_placement_flags 164 }; 165 166 struct ttm_placement vmw_srf_placement = { 167 .num_placement = 1, 168 .num_busy_placement = 2, 169 .placement = &gmr_placement_flags, 170 .busy_placement = gmr_vram_placement_flags 171 }; 172 173 struct ttm_placement vmw_mob_placement = { 174 .num_placement = 1, 175 .num_busy_placement = 1, 176 .placement = &mob_placement_flags, 177 .busy_placement = &mob_placement_flags 178 }; 179 180 struct ttm_placement vmw_nonfixed_placement = { 181 .num_placement = 3, 182 .placement = nonfixed_placement_flags, 183 .num_busy_placement = 1, 184 .busy_placement = &sys_placement_flags 185 }; 186 187 struct vmw_ttm_tt { 188 struct ttm_tt dma_ttm; 189 struct vmw_private *dev_priv; 190 int gmr_id; 191 struct vmw_mob *mob; 192 int mem_type; 193 struct sg_table sgt; 194 struct vmw_sg_table vsgt; 195 uint64_t sg_alloc_size; 196 bool mapped; 197 bool bound; 198 }; 199 200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt); 201 202 /** 203 * __vmw_piter_non_sg_next: Helper functions to advance 204 * a struct vmw_piter iterator. 205 * 206 * @viter: Pointer to the iterator. 207 * 208 * These functions return false if past the end of the list, 209 * true otherwise. Functions are selected depending on the current 210 * DMA mapping mode. 211 */ 212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter) 213 { 214 return ++(viter->i) < viter->num_pages; 215 } 216 217 static bool __vmw_piter_sg_next(struct vmw_piter *viter) 218 { 219 bool ret = __vmw_piter_non_sg_next(viter); 220 221 return __sg_page_iter_dma_next(&viter->iter) && ret; 222 } 223 224 225 /** 226 * __vmw_piter_non_sg_page: Helper functions to return a pointer 227 * to the current page. 228 * 229 * @viter: Pointer to the iterator 230 * 231 * These functions return a pointer to the page currently 232 * pointed to by @viter. Functions are selected depending on the 233 * current mapping mode. 234 */ 235 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter) 236 { 237 return viter->pages[viter->i]; 238 } 239 240 /** 241 * __vmw_piter_phys_addr: Helper functions to return the DMA 242 * address of the current page. 243 * 244 * @viter: Pointer to the iterator 245 * 246 * These functions return the DMA address of the page currently 247 * pointed to by @viter. Functions are selected depending on the 248 * current mapping mode. 249 */ 250 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter) 251 { 252 return page_to_phys(viter->pages[viter->i]); 253 } 254 255 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter) 256 { 257 return viter->addrs[viter->i]; 258 } 259 260 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter) 261 { 262 return sg_page_iter_dma_address(&viter->iter); 263 } 264 265 266 /** 267 * vmw_piter_start - Initialize a struct vmw_piter. 268 * 269 * @viter: Pointer to the iterator to initialize 270 * @vsgt: Pointer to a struct vmw_sg_table to initialize from 271 * @p_offset: Pointer offset used to update current array position 272 * 273 * Note that we're following the convention of __sg_page_iter_start, so that 274 * the iterator doesn't point to a valid page after initialization; it has 275 * to be advanced one step first. 276 */ 277 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt, 278 unsigned long p_offset) 279 { 280 viter->i = p_offset - 1; 281 viter->num_pages = vsgt->num_pages; 282 viter->page = &__vmw_piter_non_sg_page; 283 viter->pages = vsgt->pages; 284 switch (vsgt->mode) { 285 case vmw_dma_phys: 286 viter->next = &__vmw_piter_non_sg_next; 287 viter->dma_address = &__vmw_piter_phys_addr; 288 break; 289 case vmw_dma_alloc_coherent: 290 viter->next = &__vmw_piter_non_sg_next; 291 viter->dma_address = &__vmw_piter_dma_addr; 292 viter->addrs = vsgt->addrs; 293 break; 294 case vmw_dma_map_populate: 295 case vmw_dma_map_bind: 296 viter->next = &__vmw_piter_sg_next; 297 viter->dma_address = &__vmw_piter_sg_addr; 298 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl, 299 vsgt->sgt->orig_nents, p_offset); 300 break; 301 default: 302 BUG(); 303 } 304 } 305 306 /** 307 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for 308 * TTM pages 309 * 310 * @vmw_tt: Pointer to a struct vmw_ttm_backend 311 * 312 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma. 313 */ 314 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt) 315 { 316 struct device *dev = vmw_tt->dev_priv->drm.dev; 317 318 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 319 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents; 320 } 321 322 /** 323 * vmw_ttm_map_for_dma - map TTM pages to get device addresses 324 * 325 * @vmw_tt: Pointer to a struct vmw_ttm_backend 326 * 327 * This function is used to get device addresses from the kernel DMA layer. 328 * However, it's violating the DMA API in that when this operation has been 329 * performed, it's illegal for the CPU to write to the pages without first 330 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is 331 * therefore only legal to call this function if we know that the function 332 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most 333 * a CPU write buffer flush. 334 */ 335 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt) 336 { 337 struct device *dev = vmw_tt->dev_priv->drm.dev; 338 339 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 340 } 341 342 /** 343 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device 344 * 345 * @vmw_tt: Pointer to a struct vmw_ttm_tt 346 * 347 * Select the correct function for and make sure the TTM pages are 348 * visible to the device. Allocate storage for the device mappings. 349 * If a mapping has already been performed, indicated by the storage 350 * pointer being non NULL, the function returns success. 351 */ 352 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt) 353 { 354 struct vmw_private *dev_priv = vmw_tt->dev_priv; 355 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv); 356 struct vmw_sg_table *vsgt = &vmw_tt->vsgt; 357 struct ttm_operation_ctx ctx = { 358 .interruptible = true, 359 .no_wait_gpu = false 360 }; 361 struct vmw_piter iter; 362 dma_addr_t old; 363 int ret = 0; 364 static size_t sgl_size; 365 static size_t sgt_size; 366 struct scatterlist *sg; 367 368 if (vmw_tt->mapped) 369 return 0; 370 371 vsgt->mode = dev_priv->map_mode; 372 vsgt->pages = vmw_tt->dma_ttm.pages; 373 vsgt->num_pages = vmw_tt->dma_ttm.num_pages; 374 vsgt->addrs = vmw_tt->dma_ttm.dma_address; 375 vsgt->sgt = &vmw_tt->sgt; 376 377 switch (dev_priv->map_mode) { 378 case vmw_dma_map_bind: 379 case vmw_dma_map_populate: 380 if (unlikely(!sgl_size)) { 381 sgl_size = ttm_round_pot(sizeof(struct scatterlist)); 382 sgt_size = ttm_round_pot(sizeof(struct sg_table)); 383 } 384 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages; 385 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx); 386 if (unlikely(ret != 0)) 387 return ret; 388 389 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages, 390 vsgt->num_pages, 0, 391 (unsigned long) vsgt->num_pages << PAGE_SHIFT, 392 dma_get_max_seg_size(dev_priv->drm.dev), 393 NULL, 0, GFP_KERNEL); 394 if (IS_ERR(sg)) { 395 ret = PTR_ERR(sg); 396 goto out_sg_alloc_fail; 397 } 398 399 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) { 400 uint64_t over_alloc = 401 sgl_size * (vsgt->num_pages - 402 vmw_tt->sgt.orig_nents); 403 404 ttm_mem_global_free(glob, over_alloc); 405 vmw_tt->sg_alloc_size -= over_alloc; 406 } 407 408 ret = vmw_ttm_map_for_dma(vmw_tt); 409 if (unlikely(ret != 0)) 410 goto out_map_fail; 411 412 break; 413 default: 414 break; 415 } 416 417 old = ~((dma_addr_t) 0); 418 vmw_tt->vsgt.num_regions = 0; 419 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) { 420 dma_addr_t cur = vmw_piter_dma_addr(&iter); 421 422 if (cur != old + PAGE_SIZE) 423 vmw_tt->vsgt.num_regions++; 424 old = cur; 425 } 426 427 vmw_tt->mapped = true; 428 return 0; 429 430 out_map_fail: 431 sg_free_table(vmw_tt->vsgt.sgt); 432 vmw_tt->vsgt.sgt = NULL; 433 out_sg_alloc_fail: 434 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size); 435 return ret; 436 } 437 438 /** 439 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings 440 * 441 * @vmw_tt: Pointer to a struct vmw_ttm_tt 442 * 443 * Tear down any previously set up device DMA mappings and free 444 * any storage space allocated for them. If there are no mappings set up, 445 * this function is a NOP. 446 */ 447 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt) 448 { 449 struct vmw_private *dev_priv = vmw_tt->dev_priv; 450 451 if (!vmw_tt->vsgt.sgt) 452 return; 453 454 switch (dev_priv->map_mode) { 455 case vmw_dma_map_bind: 456 case vmw_dma_map_populate: 457 vmw_ttm_unmap_from_dma(vmw_tt); 458 sg_free_table(vmw_tt->vsgt.sgt); 459 vmw_tt->vsgt.sgt = NULL; 460 ttm_mem_global_free(vmw_mem_glob(dev_priv), 461 vmw_tt->sg_alloc_size); 462 break; 463 default: 464 break; 465 } 466 vmw_tt->mapped = false; 467 } 468 469 /** 470 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a 471 * TTM buffer object 472 * 473 * @bo: Pointer to a struct ttm_buffer_object 474 * 475 * Returns a pointer to a struct vmw_sg_table object. The object should 476 * not be freed after use. 477 * Note that for the device addresses to be valid, the buffer object must 478 * either be reserved or pinned. 479 */ 480 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo) 481 { 482 struct vmw_ttm_tt *vmw_tt = 483 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); 484 485 return &vmw_tt->vsgt; 486 } 487 488 489 static int vmw_ttm_bind(struct ttm_device *bdev, 490 struct ttm_tt *ttm, struct ttm_resource *bo_mem) 491 { 492 struct vmw_ttm_tt *vmw_be = 493 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 494 int ret = 0; 495 496 if (!bo_mem) 497 return -EINVAL; 498 499 if (vmw_be->bound) 500 return 0; 501 502 ret = vmw_ttm_map_dma(vmw_be); 503 if (unlikely(ret != 0)) 504 return ret; 505 506 vmw_be->gmr_id = bo_mem->start; 507 vmw_be->mem_type = bo_mem->mem_type; 508 509 switch (bo_mem->mem_type) { 510 case VMW_PL_GMR: 511 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt, 512 ttm->num_pages, vmw_be->gmr_id); 513 break; 514 case VMW_PL_MOB: 515 if (unlikely(vmw_be->mob == NULL)) { 516 vmw_be->mob = 517 vmw_mob_create(ttm->num_pages); 518 if (unlikely(vmw_be->mob == NULL)) 519 return -ENOMEM; 520 } 521 522 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob, 523 &vmw_be->vsgt, ttm->num_pages, 524 vmw_be->gmr_id); 525 break; 526 default: 527 BUG(); 528 } 529 vmw_be->bound = true; 530 return ret; 531 } 532 533 static void vmw_ttm_unbind(struct ttm_device *bdev, 534 struct ttm_tt *ttm) 535 { 536 struct vmw_ttm_tt *vmw_be = 537 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 538 539 if (!vmw_be->bound) 540 return; 541 542 switch (vmw_be->mem_type) { 543 case VMW_PL_GMR: 544 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id); 545 break; 546 case VMW_PL_MOB: 547 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob); 548 break; 549 default: 550 BUG(); 551 } 552 553 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind) 554 vmw_ttm_unmap_dma(vmw_be); 555 vmw_be->bound = false; 556 } 557 558 559 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 560 { 561 struct vmw_ttm_tt *vmw_be = 562 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 563 564 vmw_ttm_unbind(bdev, ttm); 565 ttm_tt_destroy_common(bdev, ttm); 566 vmw_ttm_unmap_dma(vmw_be); 567 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) 568 ttm_tt_fini(&vmw_be->dma_ttm); 569 else 570 ttm_tt_fini(ttm); 571 572 if (vmw_be->mob) 573 vmw_mob_destroy(vmw_be->mob); 574 575 kfree(vmw_be); 576 } 577 578 579 static int vmw_ttm_populate(struct ttm_device *bdev, 580 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 581 { 582 unsigned int i; 583 int ret; 584 585 /* TODO: maybe completely drop this ? */ 586 if (ttm_tt_is_populated(ttm)) 587 return 0; 588 589 ret = ttm_pool_alloc(&bdev->pool, ttm, ctx); 590 if (ret) 591 return ret; 592 593 for (i = 0; i < ttm->num_pages; ++i) { 594 ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i], 595 PAGE_SIZE, ctx); 596 if (ret) 597 goto error; 598 } 599 return 0; 600 601 error: 602 while (i--) 603 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i], 604 PAGE_SIZE); 605 ttm_pool_free(&bdev->pool, ttm); 606 return ret; 607 } 608 609 static void vmw_ttm_unpopulate(struct ttm_device *bdev, 610 struct ttm_tt *ttm) 611 { 612 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, 613 dma_ttm); 614 unsigned int i; 615 616 if (vmw_tt->mob) { 617 vmw_mob_destroy(vmw_tt->mob); 618 vmw_tt->mob = NULL; 619 } 620 621 vmw_ttm_unmap_dma(vmw_tt); 622 623 for (i = 0; i < ttm->num_pages; ++i) 624 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i], 625 PAGE_SIZE); 626 627 ttm_pool_free(&bdev->pool, ttm); 628 } 629 630 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo, 631 uint32_t page_flags) 632 { 633 struct vmw_ttm_tt *vmw_be; 634 int ret; 635 636 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL); 637 if (!vmw_be) 638 return NULL; 639 640 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev); 641 vmw_be->mob = NULL; 642 643 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) 644 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags, 645 ttm_cached); 646 else 647 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags, 648 ttm_cached); 649 if (unlikely(ret != 0)) 650 goto out_no_init; 651 652 return &vmw_be->dma_ttm; 653 out_no_init: 654 kfree(vmw_be); 655 return NULL; 656 } 657 658 static void vmw_evict_flags(struct ttm_buffer_object *bo, 659 struct ttm_placement *placement) 660 { 661 *placement = vmw_sys_placement; 662 } 663 664 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 665 { 666 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); 667 668 switch (mem->mem_type) { 669 case TTM_PL_SYSTEM: 670 case VMW_PL_GMR: 671 case VMW_PL_MOB: 672 return 0; 673 case TTM_PL_VRAM: 674 mem->bus.offset = (mem->start << PAGE_SHIFT) + 675 dev_priv->vram_start; 676 mem->bus.is_iomem = true; 677 mem->bus.caching = ttm_cached; 678 break; 679 default: 680 return -EINVAL; 681 } 682 return 0; 683 } 684 685 /** 686 * vmw_move_notify - TTM move_notify_callback 687 * 688 * @bo: The TTM buffer object about to move. 689 * @old_mem: The old memory where we move from 690 * @new_mem: The struct ttm_resource indicating to what memory 691 * region the move is taking place. 692 * 693 * Calls move_notify for all subsystems needing it. 694 * (currently only resources). 695 */ 696 static void vmw_move_notify(struct ttm_buffer_object *bo, 697 struct ttm_resource *old_mem, 698 struct ttm_resource *new_mem) 699 { 700 vmw_bo_move_notify(bo, new_mem); 701 vmw_query_move_notify(bo, old_mem, new_mem); 702 } 703 704 705 /** 706 * vmw_swap_notify - TTM move_notify_callback 707 * 708 * @bo: The TTM buffer object about to be swapped out. 709 */ 710 static void vmw_swap_notify(struct ttm_buffer_object *bo) 711 { 712 vmw_bo_swap_notify(bo); 713 (void) ttm_bo_wait(bo, false, false); 714 } 715 716 static int vmw_move(struct ttm_buffer_object *bo, 717 bool evict, 718 struct ttm_operation_ctx *ctx, 719 struct ttm_resource *new_mem, 720 struct ttm_place *hop) 721 { 722 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type); 723 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type); 724 int ret; 725 726 if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) { 727 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem); 728 if (ret) 729 return ret; 730 } 731 732 vmw_move_notify(bo, &bo->mem, new_mem); 733 734 if (old_man->use_tt && new_man->use_tt) { 735 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 736 ttm_bo_assign_mem(bo, new_mem); 737 return 0; 738 } 739 ret = ttm_bo_wait_ctx(bo, ctx); 740 if (ret) 741 goto fail; 742 743 vmw_ttm_unbind(bo->bdev, bo->ttm); 744 ttm_resource_free(bo, &bo->mem); 745 ttm_bo_assign_mem(bo, new_mem); 746 return 0; 747 } else { 748 ret = ttm_bo_move_memcpy(bo, ctx, new_mem); 749 if (ret) 750 goto fail; 751 } 752 return 0; 753 fail: 754 vmw_move_notify(bo, new_mem, &bo->mem); 755 return ret; 756 } 757 758 struct ttm_device_funcs vmw_bo_driver = { 759 .ttm_tt_create = &vmw_ttm_tt_create, 760 .ttm_tt_populate = &vmw_ttm_populate, 761 .ttm_tt_unpopulate = &vmw_ttm_unpopulate, 762 .ttm_tt_destroy = &vmw_ttm_destroy, 763 .eviction_valuable = ttm_bo_eviction_valuable, 764 .evict_flags = vmw_evict_flags, 765 .move = vmw_move, 766 .swap_notify = vmw_swap_notify, 767 .io_mem_reserve = &vmw_ttm_io_mem_reserve, 768 }; 769 770 int vmw_bo_create_and_populate(struct vmw_private *dev_priv, 771 unsigned long bo_size, 772 struct ttm_buffer_object **bo_p) 773 { 774 struct ttm_operation_ctx ctx = { 775 .interruptible = false, 776 .no_wait_gpu = false 777 }; 778 struct ttm_buffer_object *bo; 779 int ret; 780 781 ret = vmw_bo_create_kernel(dev_priv, bo_size, 782 &vmw_sys_placement, 783 &bo); 784 if (unlikely(ret != 0)) 785 return ret; 786 787 ret = ttm_bo_reserve(bo, false, true, NULL); 788 BUG_ON(ret != 0); 789 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx); 790 if (likely(ret == 0)) { 791 struct vmw_ttm_tt *vmw_tt = 792 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); 793 ret = vmw_ttm_map_dma(vmw_tt); 794 } 795 796 ttm_bo_unreserve(bo); 797 798 if (likely(ret == 0)) 799 *bo_p = bo; 800 return ret; 801 } 802