xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 static const struct ttm_place gmr_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = VMW_PL_GMR,
50 	.flags = 0
51 };
52 
53 static const struct ttm_place mob_placement_flags = {
54 	.fpfn = 0,
55 	.lpfn = 0,
56 	.mem_type = VMW_PL_MOB,
57 	.flags = 0
58 };
59 
60 struct ttm_placement vmw_vram_placement = {
61 	.num_placement = 1,
62 	.placement = &vram_placement_flags,
63 	.num_busy_placement = 1,
64 	.busy_placement = &vram_placement_flags
65 };
66 
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 	{
69 		.fpfn = 0,
70 		.lpfn = 0,
71 		.mem_type = TTM_PL_VRAM,
72 		.flags = 0
73 	}, {
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = VMW_PL_GMR,
77 		.flags = 0
78 	}
79 };
80 
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 	{
83 		.fpfn = 0,
84 		.lpfn = 0,
85 		.mem_type = VMW_PL_GMR,
86 		.flags = 0
87 	}, {
88 		.fpfn = 0,
89 		.lpfn = 0,
90 		.mem_type = TTM_PL_VRAM,
91 		.flags = 0
92 	}
93 };
94 
95 struct ttm_placement vmw_vram_gmr_placement = {
96 	.num_placement = 2,
97 	.placement = vram_gmr_placement_flags,
98 	.num_busy_placement = 1,
99 	.busy_placement = &gmr_placement_flags
100 };
101 
102 struct ttm_placement vmw_vram_sys_placement = {
103 	.num_placement = 1,
104 	.placement = &vram_placement_flags,
105 	.num_busy_placement = 1,
106 	.busy_placement = &sys_placement_flags
107 };
108 
109 struct ttm_placement vmw_sys_placement = {
110 	.num_placement = 1,
111 	.placement = &sys_placement_flags,
112 	.num_busy_placement = 1,
113 	.busy_placement = &sys_placement_flags
114 };
115 
116 static const struct ttm_place evictable_placement_flags[] = {
117 	{
118 		.fpfn = 0,
119 		.lpfn = 0,
120 		.mem_type = TTM_PL_SYSTEM,
121 		.flags = 0
122 	}, {
123 		.fpfn = 0,
124 		.lpfn = 0,
125 		.mem_type = TTM_PL_VRAM,
126 		.flags = 0
127 	}, {
128 		.fpfn = 0,
129 		.lpfn = 0,
130 		.mem_type = VMW_PL_GMR,
131 		.flags = 0
132 	}, {
133 		.fpfn = 0,
134 		.lpfn = 0,
135 		.mem_type = VMW_PL_MOB,
136 		.flags = 0
137 	}
138 };
139 
140 static const struct ttm_place nonfixed_placement_flags[] = {
141 	{
142 		.fpfn = 0,
143 		.lpfn = 0,
144 		.mem_type = TTM_PL_SYSTEM,
145 		.flags = 0
146 	}, {
147 		.fpfn = 0,
148 		.lpfn = 0,
149 		.mem_type = VMW_PL_GMR,
150 		.flags = 0
151 	}, {
152 		.fpfn = 0,
153 		.lpfn = 0,
154 		.mem_type = VMW_PL_MOB,
155 		.flags = 0
156 	}
157 };
158 
159 struct ttm_placement vmw_evictable_placement = {
160 	.num_placement = 4,
161 	.placement = evictable_placement_flags,
162 	.num_busy_placement = 1,
163 	.busy_placement = &sys_placement_flags
164 };
165 
166 struct ttm_placement vmw_srf_placement = {
167 	.num_placement = 1,
168 	.num_busy_placement = 2,
169 	.placement = &gmr_placement_flags,
170 	.busy_placement = gmr_vram_placement_flags
171 };
172 
173 struct ttm_placement vmw_mob_placement = {
174 	.num_placement = 1,
175 	.num_busy_placement = 1,
176 	.placement = &mob_placement_flags,
177 	.busy_placement = &mob_placement_flags
178 };
179 
180 struct ttm_placement vmw_nonfixed_placement = {
181 	.num_placement = 3,
182 	.placement = nonfixed_placement_flags,
183 	.num_busy_placement = 1,
184 	.busy_placement = &sys_placement_flags
185 };
186 
187 struct vmw_ttm_tt {
188 	struct ttm_tt dma_ttm;
189 	struct vmw_private *dev_priv;
190 	int gmr_id;
191 	struct vmw_mob *mob;
192 	int mem_type;
193 	struct sg_table sgt;
194 	struct vmw_sg_table vsgt;
195 	uint64_t sg_alloc_size;
196 	bool mapped;
197 	bool bound;
198 };
199 
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201 
202 /**
203  * __vmw_piter_non_sg_next: Helper functions to advance
204  * a struct vmw_piter iterator.
205  *
206  * @viter: Pointer to the iterator.
207  *
208  * These functions return false if past the end of the list,
209  * true otherwise. Functions are selected depending on the current
210  * DMA mapping mode.
211  */
212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214 	return ++(viter->i) < viter->num_pages;
215 }
216 
217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219 	bool ret = __vmw_piter_non_sg_next(viter);
220 
221 	return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223 
224 
225 /**
226  * __vmw_piter_non_sg_page: Helper functions to return a pointer
227  * to the current page.
228  *
229  * @viter: Pointer to the iterator
230  *
231  * These functions return a pointer to the page currently
232  * pointed to by @viter. Functions are selected depending on the
233  * current mapping mode.
234  */
235 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
236 {
237 	return viter->pages[viter->i];
238 }
239 
240 /**
241  * __vmw_piter_phys_addr: Helper functions to return the DMA
242  * address of the current page.
243  *
244  * @viter: Pointer to the iterator
245  *
246  * These functions return the DMA address of the page currently
247  * pointed to by @viter. Functions are selected depending on the
248  * current mapping mode.
249  */
250 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
251 {
252 	return page_to_phys(viter->pages[viter->i]);
253 }
254 
255 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
256 {
257 	return viter->addrs[viter->i];
258 }
259 
260 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
261 {
262 	return sg_page_iter_dma_address(&viter->iter);
263 }
264 
265 
266 /**
267  * vmw_piter_start - Initialize a struct vmw_piter.
268  *
269  * @viter: Pointer to the iterator to initialize
270  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
271  * @p_offset: Pointer offset used to update current array position
272  *
273  * Note that we're following the convention of __sg_page_iter_start, so that
274  * the iterator doesn't point to a valid page after initialization; it has
275  * to be advanced one step first.
276  */
277 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
278 		     unsigned long p_offset)
279 {
280 	viter->i = p_offset - 1;
281 	viter->num_pages = vsgt->num_pages;
282 	viter->page = &__vmw_piter_non_sg_page;
283 	viter->pages = vsgt->pages;
284 	switch (vsgt->mode) {
285 	case vmw_dma_phys:
286 		viter->next = &__vmw_piter_non_sg_next;
287 		viter->dma_address = &__vmw_piter_phys_addr;
288 		break;
289 	case vmw_dma_alloc_coherent:
290 		viter->next = &__vmw_piter_non_sg_next;
291 		viter->dma_address = &__vmw_piter_dma_addr;
292 		viter->addrs = vsgt->addrs;
293 		break;
294 	case vmw_dma_map_populate:
295 	case vmw_dma_map_bind:
296 		viter->next = &__vmw_piter_sg_next;
297 		viter->dma_address = &__vmw_piter_sg_addr;
298 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
299 				     vsgt->sgt->orig_nents, p_offset);
300 		break;
301 	default:
302 		BUG();
303 	}
304 }
305 
306 /**
307  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
308  * TTM pages
309  *
310  * @vmw_tt: Pointer to a struct vmw_ttm_backend
311  *
312  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
313  */
314 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
315 {
316 	struct device *dev = vmw_tt->dev_priv->drm.dev;
317 
318 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
319 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
320 }
321 
322 /**
323  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
324  *
325  * @vmw_tt: Pointer to a struct vmw_ttm_backend
326  *
327  * This function is used to get device addresses from the kernel DMA layer.
328  * However, it's violating the DMA API in that when this operation has been
329  * performed, it's illegal for the CPU to write to the pages without first
330  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
331  * therefore only legal to call this function if we know that the function
332  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
333  * a CPU write buffer flush.
334  */
335 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
336 {
337 	struct device *dev = vmw_tt->dev_priv->drm.dev;
338 
339 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
340 }
341 
342 /**
343  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
344  *
345  * @vmw_tt: Pointer to a struct vmw_ttm_tt
346  *
347  * Select the correct function for and make sure the TTM pages are
348  * visible to the device. Allocate storage for the device mappings.
349  * If a mapping has already been performed, indicated by the storage
350  * pointer being non NULL, the function returns success.
351  */
352 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
353 {
354 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
355 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
356 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
357 	struct ttm_operation_ctx ctx = {
358 		.interruptible = true,
359 		.no_wait_gpu = false
360 	};
361 	struct vmw_piter iter;
362 	dma_addr_t old;
363 	int ret = 0;
364 	static size_t sgl_size;
365 	static size_t sgt_size;
366 	struct scatterlist *sg;
367 
368 	if (vmw_tt->mapped)
369 		return 0;
370 
371 	vsgt->mode = dev_priv->map_mode;
372 	vsgt->pages = vmw_tt->dma_ttm.pages;
373 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
374 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
375 	vsgt->sgt = &vmw_tt->sgt;
376 
377 	switch (dev_priv->map_mode) {
378 	case vmw_dma_map_bind:
379 	case vmw_dma_map_populate:
380 		if (unlikely(!sgl_size)) {
381 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
382 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
383 		}
384 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
385 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
386 		if (unlikely(ret != 0))
387 			return ret;
388 
389 		sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
390 				vsgt->num_pages, 0,
391 				(unsigned long) vsgt->num_pages << PAGE_SHIFT,
392 				dma_get_max_seg_size(dev_priv->drm.dev),
393 				NULL, 0, GFP_KERNEL);
394 		if (IS_ERR(sg)) {
395 			ret = PTR_ERR(sg);
396 			goto out_sg_alloc_fail;
397 		}
398 
399 		if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
400 			uint64_t over_alloc =
401 				sgl_size * (vsgt->num_pages -
402 					    vmw_tt->sgt.orig_nents);
403 
404 			ttm_mem_global_free(glob, over_alloc);
405 			vmw_tt->sg_alloc_size -= over_alloc;
406 		}
407 
408 		ret = vmw_ttm_map_for_dma(vmw_tt);
409 		if (unlikely(ret != 0))
410 			goto out_map_fail;
411 
412 		break;
413 	default:
414 		break;
415 	}
416 
417 	old = ~((dma_addr_t) 0);
418 	vmw_tt->vsgt.num_regions = 0;
419 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
420 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
421 
422 		if (cur != old + PAGE_SIZE)
423 			vmw_tt->vsgt.num_regions++;
424 		old = cur;
425 	}
426 
427 	vmw_tt->mapped = true;
428 	return 0;
429 
430 out_map_fail:
431 	sg_free_table(vmw_tt->vsgt.sgt);
432 	vmw_tt->vsgt.sgt = NULL;
433 out_sg_alloc_fail:
434 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
435 	return ret;
436 }
437 
438 /**
439  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
440  *
441  * @vmw_tt: Pointer to a struct vmw_ttm_tt
442  *
443  * Tear down any previously set up device DMA mappings and free
444  * any storage space allocated for them. If there are no mappings set up,
445  * this function is a NOP.
446  */
447 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
448 {
449 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
450 
451 	if (!vmw_tt->vsgt.sgt)
452 		return;
453 
454 	switch (dev_priv->map_mode) {
455 	case vmw_dma_map_bind:
456 	case vmw_dma_map_populate:
457 		vmw_ttm_unmap_from_dma(vmw_tt);
458 		sg_free_table(vmw_tt->vsgt.sgt);
459 		vmw_tt->vsgt.sgt = NULL;
460 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
461 				    vmw_tt->sg_alloc_size);
462 		break;
463 	default:
464 		break;
465 	}
466 	vmw_tt->mapped = false;
467 }
468 
469 /**
470  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
471  * TTM buffer object
472  *
473  * @bo: Pointer to a struct ttm_buffer_object
474  *
475  * Returns a pointer to a struct vmw_sg_table object. The object should
476  * not be freed after use.
477  * Note that for the device addresses to be valid, the buffer object must
478  * either be reserved or pinned.
479  */
480 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
481 {
482 	struct vmw_ttm_tt *vmw_tt =
483 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
484 
485 	return &vmw_tt->vsgt;
486 }
487 
488 
489 static int vmw_ttm_bind(struct ttm_device *bdev,
490 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
491 {
492 	struct vmw_ttm_tt *vmw_be =
493 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
494 	int ret = 0;
495 
496 	if (!bo_mem)
497 		return -EINVAL;
498 
499 	if (vmw_be->bound)
500 		return 0;
501 
502 	ret = vmw_ttm_map_dma(vmw_be);
503 	if (unlikely(ret != 0))
504 		return ret;
505 
506 	vmw_be->gmr_id = bo_mem->start;
507 	vmw_be->mem_type = bo_mem->mem_type;
508 
509 	switch (bo_mem->mem_type) {
510 	case VMW_PL_GMR:
511 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
512 				    ttm->num_pages, vmw_be->gmr_id);
513 		break;
514 	case VMW_PL_MOB:
515 		if (unlikely(vmw_be->mob == NULL)) {
516 			vmw_be->mob =
517 				vmw_mob_create(ttm->num_pages);
518 			if (unlikely(vmw_be->mob == NULL))
519 				return -ENOMEM;
520 		}
521 
522 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
523 				    &vmw_be->vsgt, ttm->num_pages,
524 				    vmw_be->gmr_id);
525 		break;
526 	default:
527 		BUG();
528 	}
529 	vmw_be->bound = true;
530 	return ret;
531 }
532 
533 static void vmw_ttm_unbind(struct ttm_device *bdev,
534 			   struct ttm_tt *ttm)
535 {
536 	struct vmw_ttm_tt *vmw_be =
537 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
538 
539 	if (!vmw_be->bound)
540 		return;
541 
542 	switch (vmw_be->mem_type) {
543 	case VMW_PL_GMR:
544 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
545 		break;
546 	case VMW_PL_MOB:
547 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
548 		break;
549 	default:
550 		BUG();
551 	}
552 
553 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
554 		vmw_ttm_unmap_dma(vmw_be);
555 	vmw_be->bound = false;
556 }
557 
558 
559 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
560 {
561 	struct vmw_ttm_tt *vmw_be =
562 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
563 
564 	vmw_ttm_unbind(bdev, ttm);
565 	ttm_tt_destroy_common(bdev, ttm);
566 	vmw_ttm_unmap_dma(vmw_be);
567 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
568 		ttm_tt_fini(&vmw_be->dma_ttm);
569 	else
570 		ttm_tt_fini(ttm);
571 
572 	if (vmw_be->mob)
573 		vmw_mob_destroy(vmw_be->mob);
574 
575 	kfree(vmw_be);
576 }
577 
578 
579 static int vmw_ttm_populate(struct ttm_device *bdev,
580 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
581 {
582 	unsigned int i;
583 	int ret;
584 
585 	/* TODO: maybe completely drop this ? */
586 	if (ttm_tt_is_populated(ttm))
587 		return 0;
588 
589 	ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
590 	if (ret)
591 		return ret;
592 
593 	for (i = 0; i < ttm->num_pages; ++i) {
594 		ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
595 						PAGE_SIZE, ctx);
596 		if (ret)
597 			goto error;
598 	}
599 	return 0;
600 
601 error:
602 	while (i--)
603 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
604 					 PAGE_SIZE);
605 	ttm_pool_free(&bdev->pool, ttm);
606 	return ret;
607 }
608 
609 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
610 			       struct ttm_tt *ttm)
611 {
612 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
613 						 dma_ttm);
614 	unsigned int i;
615 
616 	if (vmw_tt->mob) {
617 		vmw_mob_destroy(vmw_tt->mob);
618 		vmw_tt->mob = NULL;
619 	}
620 
621 	vmw_ttm_unmap_dma(vmw_tt);
622 
623 	for (i = 0; i < ttm->num_pages; ++i)
624 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
625 					 PAGE_SIZE);
626 
627 	ttm_pool_free(&bdev->pool, ttm);
628 }
629 
630 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
631 					uint32_t page_flags)
632 {
633 	struct vmw_ttm_tt *vmw_be;
634 	int ret;
635 
636 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
637 	if (!vmw_be)
638 		return NULL;
639 
640 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
641 	vmw_be->mob = NULL;
642 
643 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
644 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
645 				     ttm_cached);
646 	else
647 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
648 				  ttm_cached);
649 	if (unlikely(ret != 0))
650 		goto out_no_init;
651 
652 	return &vmw_be->dma_ttm;
653 out_no_init:
654 	kfree(vmw_be);
655 	return NULL;
656 }
657 
658 static void vmw_evict_flags(struct ttm_buffer_object *bo,
659 		     struct ttm_placement *placement)
660 {
661 	*placement = vmw_sys_placement;
662 }
663 
664 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
665 {
666 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
667 
668 	switch (mem->mem_type) {
669 	case TTM_PL_SYSTEM:
670 	case VMW_PL_GMR:
671 	case VMW_PL_MOB:
672 		return 0;
673 	case TTM_PL_VRAM:
674 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
675 			dev_priv->vram_start;
676 		mem->bus.is_iomem = true;
677 		mem->bus.caching = ttm_cached;
678 		break;
679 	default:
680 		return -EINVAL;
681 	}
682 	return 0;
683 }
684 
685 /**
686  * vmw_move_notify - TTM move_notify_callback
687  *
688  * @bo: The TTM buffer object about to move.
689  * @old_mem: The old memory where we move from
690  * @new_mem: The struct ttm_resource indicating to what memory
691  *       region the move is taking place.
692  *
693  * Calls move_notify for all subsystems needing it.
694  * (currently only resources).
695  */
696 static void vmw_move_notify(struct ttm_buffer_object *bo,
697 			    struct ttm_resource *old_mem,
698 			    struct ttm_resource *new_mem)
699 {
700 	vmw_bo_move_notify(bo, new_mem);
701 	vmw_query_move_notify(bo, old_mem, new_mem);
702 }
703 
704 
705 /**
706  * vmw_swap_notify - TTM move_notify_callback
707  *
708  * @bo: The TTM buffer object about to be swapped out.
709  */
710 static void vmw_swap_notify(struct ttm_buffer_object *bo)
711 {
712 	vmw_bo_swap_notify(bo);
713 	(void) ttm_bo_wait(bo, false, false);
714 }
715 
716 static int vmw_move(struct ttm_buffer_object *bo,
717 		    bool evict,
718 		    struct ttm_operation_ctx *ctx,
719 		    struct ttm_resource *new_mem,
720 		    struct ttm_place *hop)
721 {
722 	struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
723 	struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
724 	int ret;
725 
726 	if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
727 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
728 		if (ret)
729 			return ret;
730 	}
731 
732 	vmw_move_notify(bo, &bo->mem, new_mem);
733 
734 	if (old_man->use_tt && new_man->use_tt) {
735 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
736 			ttm_bo_assign_mem(bo, new_mem);
737 			return 0;
738 		}
739 		ret = ttm_bo_wait_ctx(bo, ctx);
740 		if (ret)
741 			goto fail;
742 
743 		vmw_ttm_unbind(bo->bdev, bo->ttm);
744 		ttm_resource_free(bo, &bo->mem);
745 		ttm_bo_assign_mem(bo, new_mem);
746 		return 0;
747 	} else {
748 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
749 		if (ret)
750 			goto fail;
751 	}
752 	return 0;
753 fail:
754 	vmw_move_notify(bo, new_mem, &bo->mem);
755 	return ret;
756 }
757 
758 struct ttm_device_funcs vmw_bo_driver = {
759 	.ttm_tt_create = &vmw_ttm_tt_create,
760 	.ttm_tt_populate = &vmw_ttm_populate,
761 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
762 	.ttm_tt_destroy = &vmw_ttm_destroy,
763 	.eviction_valuable = ttm_bo_eviction_valuable,
764 	.evict_flags = vmw_evict_flags,
765 	.move = vmw_move,
766 	.swap_notify = vmw_swap_notify,
767 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
768 };
769 
770 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
771 			       unsigned long bo_size,
772 			       struct ttm_buffer_object **bo_p)
773 {
774 	struct ttm_operation_ctx ctx = {
775 		.interruptible = false,
776 		.no_wait_gpu = false
777 	};
778 	struct ttm_buffer_object *bo;
779 	int ret;
780 
781 	ret = vmw_bo_create_kernel(dev_priv, bo_size,
782 				   &vmw_sys_placement,
783 				   &bo);
784 	if (unlikely(ret != 0))
785 		return ret;
786 
787 	ret = ttm_bo_reserve(bo, false, true, NULL);
788 	BUG_ON(ret != 0);
789 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
790 	if (likely(ret == 0)) {
791 		struct vmw_ttm_tt *vmw_tt =
792 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
793 		ret = vmw_ttm_map_dma(vmw_tt);
794 	}
795 
796 	ttm_bo_unreserve(bo);
797 
798 	if (likely(ret == 0))
799 		*bo_p = bo;
800 	return ret;
801 }
802