1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <drm/ttm/ttm_placement.h> 29 30 #include "vmwgfx_binding.h" 31 #include "vmwgfx_bo.h" 32 #include "vmwgfx_drv.h" 33 #include "vmwgfx_resource_priv.h" 34 35 #define VMW_RES_EVICT_ERR_COUNT 10 36 37 /** 38 * vmw_resource_mob_attach - Mark a resource as attached to its backing mob 39 * @res: The resource 40 */ 41 void vmw_resource_mob_attach(struct vmw_resource *res) 42 { 43 struct vmw_bo *gbo = res->guest_memory_bo; 44 struct rb_node **new = &gbo->res_tree.rb_node, *parent = NULL; 45 46 dma_resv_assert_held(gbo->tbo.base.resv); 47 res->used_prio = (res->res_dirty) ? res->func->dirty_prio : 48 res->func->prio; 49 50 while (*new) { 51 struct vmw_resource *this = 52 container_of(*new, struct vmw_resource, mob_node); 53 54 parent = *new; 55 new = (res->guest_memory_offset < this->guest_memory_offset) ? 56 &((*new)->rb_left) : &((*new)->rb_right); 57 } 58 59 rb_link_node(&res->mob_node, parent, new); 60 rb_insert_color(&res->mob_node, &gbo->res_tree); 61 62 vmw_bo_prio_add(gbo, res->used_prio); 63 } 64 65 /** 66 * vmw_resource_mob_detach - Mark a resource as detached from its backing mob 67 * @res: The resource 68 */ 69 void vmw_resource_mob_detach(struct vmw_resource *res) 70 { 71 struct vmw_bo *gbo = res->guest_memory_bo; 72 73 dma_resv_assert_held(gbo->tbo.base.resv); 74 if (vmw_resource_mob_attached(res)) { 75 rb_erase(&res->mob_node, &gbo->res_tree); 76 RB_CLEAR_NODE(&res->mob_node); 77 vmw_bo_prio_del(gbo, res->used_prio); 78 } 79 } 80 81 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res) 82 { 83 kref_get(&res->kref); 84 return res; 85 } 86 87 struct vmw_resource * 88 vmw_resource_reference_unless_doomed(struct vmw_resource *res) 89 { 90 return kref_get_unless_zero(&res->kref) ? res : NULL; 91 } 92 93 /** 94 * vmw_resource_release_id - release a resource id to the id manager. 95 * 96 * @res: Pointer to the resource. 97 * 98 * Release the resource id to the resource id manager and set it to -1 99 */ 100 void vmw_resource_release_id(struct vmw_resource *res) 101 { 102 struct vmw_private *dev_priv = res->dev_priv; 103 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 104 105 spin_lock(&dev_priv->resource_lock); 106 if (res->id != -1) 107 idr_remove(idr, res->id); 108 res->id = -1; 109 spin_unlock(&dev_priv->resource_lock); 110 } 111 112 static void vmw_resource_release(struct kref *kref) 113 { 114 struct vmw_resource *res = 115 container_of(kref, struct vmw_resource, kref); 116 struct vmw_private *dev_priv = res->dev_priv; 117 int id; 118 int ret; 119 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 120 121 spin_lock(&dev_priv->resource_lock); 122 list_del_init(&res->lru_head); 123 spin_unlock(&dev_priv->resource_lock); 124 if (res->guest_memory_bo) { 125 struct ttm_buffer_object *bo = &res->guest_memory_bo->tbo; 126 127 ret = ttm_bo_reserve(bo, false, false, NULL); 128 BUG_ON(ret); 129 if (vmw_resource_mob_attached(res) && 130 res->func->unbind != NULL) { 131 struct ttm_validate_buffer val_buf; 132 133 val_buf.bo = bo; 134 val_buf.num_shared = 0; 135 res->func->unbind(res, false, &val_buf); 136 } 137 res->guest_memory_size = false; 138 vmw_resource_mob_detach(res); 139 if (res->dirty) 140 res->func->dirty_free(res); 141 if (res->coherent) 142 vmw_bo_dirty_release(res->guest_memory_bo); 143 ttm_bo_unreserve(bo); 144 vmw_user_bo_unref(&res->guest_memory_bo); 145 } 146 147 if (likely(res->hw_destroy != NULL)) { 148 mutex_lock(&dev_priv->binding_mutex); 149 vmw_binding_res_list_kill(&res->binding_head); 150 mutex_unlock(&dev_priv->binding_mutex); 151 res->hw_destroy(res); 152 } 153 154 id = res->id; 155 if (res->res_free != NULL) 156 res->res_free(res); 157 else 158 kfree(res); 159 160 spin_lock(&dev_priv->resource_lock); 161 if (id != -1) 162 idr_remove(idr, id); 163 spin_unlock(&dev_priv->resource_lock); 164 } 165 166 void vmw_resource_unreference(struct vmw_resource **p_res) 167 { 168 struct vmw_resource *res = *p_res; 169 170 *p_res = NULL; 171 kref_put(&res->kref, vmw_resource_release); 172 } 173 174 175 /** 176 * vmw_resource_alloc_id - release a resource id to the id manager. 177 * 178 * @res: Pointer to the resource. 179 * 180 * Allocate the lowest free resource from the resource manager, and set 181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure. 182 */ 183 int vmw_resource_alloc_id(struct vmw_resource *res) 184 { 185 struct vmw_private *dev_priv = res->dev_priv; 186 int ret; 187 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 188 189 BUG_ON(res->id != -1); 190 191 idr_preload(GFP_KERNEL); 192 spin_lock(&dev_priv->resource_lock); 193 194 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT); 195 if (ret >= 0) 196 res->id = ret; 197 198 spin_unlock(&dev_priv->resource_lock); 199 idr_preload_end(); 200 return ret < 0 ? ret : 0; 201 } 202 203 /** 204 * vmw_resource_init - initialize a struct vmw_resource 205 * 206 * @dev_priv: Pointer to a device private struct. 207 * @res: The struct vmw_resource to initialize. 208 * @delay_id: Boolean whether to defer device id allocation until 209 * the first validation. 210 * @res_free: Resource destructor. 211 * @func: Resource function table. 212 */ 213 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res, 214 bool delay_id, 215 void (*res_free) (struct vmw_resource *res), 216 const struct vmw_res_func *func) 217 { 218 kref_init(&res->kref); 219 res->hw_destroy = NULL; 220 res->res_free = res_free; 221 res->dev_priv = dev_priv; 222 res->func = func; 223 RB_CLEAR_NODE(&res->mob_node); 224 INIT_LIST_HEAD(&res->lru_head); 225 INIT_LIST_HEAD(&res->binding_head); 226 res->id = -1; 227 res->guest_memory_bo = NULL; 228 res->guest_memory_offset = 0; 229 res->guest_memory_dirty = false; 230 res->res_dirty = false; 231 res->coherent = false; 232 res->used_prio = 3; 233 res->dirty = NULL; 234 if (delay_id) 235 return 0; 236 else 237 return vmw_resource_alloc_id(res); 238 } 239 240 241 /** 242 * vmw_user_resource_lookup_handle - lookup a struct resource from a 243 * TTM user-space handle and perform basic type checks 244 * 245 * @dev_priv: Pointer to a device private struct 246 * @tfile: Pointer to a struct ttm_object_file identifying the caller 247 * @handle: The TTM user-space handle 248 * @converter: Pointer to an object describing the resource type 249 * @p_res: On successful return the location pointed to will contain 250 * a pointer to a refcounted struct vmw_resource. 251 * 252 * If the handle can't be found or is associated with an incorrect resource 253 * type, -EINVAL will be returned. 254 */ 255 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv, 256 struct ttm_object_file *tfile, 257 uint32_t handle, 258 const struct vmw_user_resource_conv 259 *converter, 260 struct vmw_resource **p_res) 261 { 262 struct ttm_base_object *base; 263 struct vmw_resource *res; 264 int ret = -EINVAL; 265 266 base = ttm_base_object_lookup(tfile, handle); 267 if (unlikely(!base)) 268 return -EINVAL; 269 270 if (unlikely(ttm_base_object_type(base) != converter->object_type)) 271 goto out_bad_resource; 272 273 res = converter->base_obj_to_res(base); 274 kref_get(&res->kref); 275 276 *p_res = res; 277 ret = 0; 278 279 out_bad_resource: 280 ttm_base_object_unref(&base); 281 282 return ret; 283 } 284 285 /* 286 * Helper function that looks either a surface or bo. 287 * 288 * The pointer this pointed at by out_surf and out_buf needs to be null. 289 */ 290 int vmw_user_lookup_handle(struct vmw_private *dev_priv, 291 struct drm_file *filp, 292 uint32_t handle, 293 struct vmw_surface **out_surf, 294 struct vmw_bo **out_buf) 295 { 296 struct ttm_object_file *tfile = vmw_fpriv(filp)->tfile; 297 struct vmw_resource *res; 298 int ret; 299 300 BUG_ON(*out_surf || *out_buf); 301 302 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle, 303 user_surface_converter, 304 &res); 305 if (!ret) { 306 *out_surf = vmw_res_to_srf(res); 307 return 0; 308 } 309 310 *out_surf = NULL; 311 ret = vmw_user_bo_lookup(filp, handle, out_buf); 312 return ret; 313 } 314 315 /** 316 * vmw_resource_buf_alloc - Allocate a guest memory buffer for a resource. 317 * 318 * @res: The resource for which to allocate a gbo buffer. 319 * @interruptible: Whether any sleeps during allocation should be 320 * performed while interruptible. 321 */ 322 static int vmw_resource_buf_alloc(struct vmw_resource *res, 323 bool interruptible) 324 { 325 unsigned long size = PFN_ALIGN(res->guest_memory_size); 326 struct vmw_bo *gbo; 327 struct vmw_bo_params bo_params = { 328 .domain = res->func->domain, 329 .busy_domain = res->func->busy_domain, 330 .bo_type = ttm_bo_type_device, 331 .size = res->guest_memory_size, 332 .pin = false 333 }; 334 int ret; 335 336 if (likely(res->guest_memory_bo)) { 337 BUG_ON(res->guest_memory_bo->tbo.base.size < size); 338 return 0; 339 } 340 341 ret = vmw_gem_object_create(res->dev_priv, &bo_params, &gbo); 342 if (unlikely(ret != 0)) 343 goto out_no_bo; 344 345 res->guest_memory_bo = gbo; 346 347 out_no_bo: 348 return ret; 349 } 350 351 /** 352 * vmw_resource_do_validate - Make a resource up-to-date and visible 353 * to the device. 354 * 355 * @res: The resource to make visible to the device. 356 * @val_buf: Information about a buffer possibly 357 * containing backup data if a bind operation is needed. 358 * @dirtying: Transfer dirty regions. 359 * 360 * On hardware resource shortage, this function returns -EBUSY and 361 * should be retried once resources have been freed up. 362 */ 363 static int vmw_resource_do_validate(struct vmw_resource *res, 364 struct ttm_validate_buffer *val_buf, 365 bool dirtying) 366 { 367 int ret = 0; 368 const struct vmw_res_func *func = res->func; 369 370 if (unlikely(res->id == -1)) { 371 ret = func->create(res); 372 if (unlikely(ret != 0)) 373 return ret; 374 } 375 376 if (func->bind && 377 ((func->needs_guest_memory && !vmw_resource_mob_attached(res) && 378 val_buf->bo) || 379 (!func->needs_guest_memory && val_buf->bo))) { 380 ret = func->bind(res, val_buf); 381 if (unlikely(ret != 0)) 382 goto out_bind_failed; 383 if (func->needs_guest_memory) 384 vmw_resource_mob_attach(res); 385 } 386 387 /* 388 * Handle the case where the backup mob is marked coherent but 389 * the resource isn't. 390 */ 391 if (func->dirty_alloc && vmw_resource_mob_attached(res) && 392 !res->coherent) { 393 if (res->guest_memory_bo->dirty && !res->dirty) { 394 ret = func->dirty_alloc(res); 395 if (ret) 396 return ret; 397 } else if (!res->guest_memory_bo->dirty && res->dirty) { 398 func->dirty_free(res); 399 } 400 } 401 402 /* 403 * Transfer the dirty regions to the resource and update 404 * the resource. 405 */ 406 if (res->dirty) { 407 if (dirtying && !res->res_dirty) { 408 pgoff_t start = res->guest_memory_offset >> PAGE_SHIFT; 409 pgoff_t end = __KERNEL_DIV_ROUND_UP 410 (res->guest_memory_offset + res->guest_memory_size, 411 PAGE_SIZE); 412 413 vmw_bo_dirty_unmap(res->guest_memory_bo, start, end); 414 } 415 416 vmw_bo_dirty_transfer_to_res(res); 417 return func->dirty_sync(res); 418 } 419 420 return 0; 421 422 out_bind_failed: 423 func->destroy(res); 424 425 return ret; 426 } 427 428 /** 429 * vmw_resource_unreserve - Unreserve a resource previously reserved for 430 * command submission. 431 * 432 * @res: Pointer to the struct vmw_resource to unreserve. 433 * @dirty_set: Change dirty status of the resource. 434 * @dirty: When changing dirty status indicates the new status. 435 * @switch_guest_memory: Guest memory buffer has been switched. 436 * @new_guest_memory_bo: Pointer to new guest memory buffer if command submission 437 * switched. May be NULL. 438 * @new_guest_memory_offset: New gbo offset if @switch_guest_memory is true. 439 * 440 * Currently unreserving a resource means putting it back on the device's 441 * resource lru list, so that it can be evicted if necessary. 442 */ 443 void vmw_resource_unreserve(struct vmw_resource *res, 444 bool dirty_set, 445 bool dirty, 446 bool switch_guest_memory, 447 struct vmw_bo *new_guest_memory_bo, 448 unsigned long new_guest_memory_offset) 449 { 450 struct vmw_private *dev_priv = res->dev_priv; 451 452 if (!list_empty(&res->lru_head)) 453 return; 454 455 if (switch_guest_memory && new_guest_memory_bo != res->guest_memory_bo) { 456 if (res->guest_memory_bo) { 457 vmw_resource_mob_detach(res); 458 if (res->coherent) 459 vmw_bo_dirty_release(res->guest_memory_bo); 460 vmw_user_bo_unref(&res->guest_memory_bo); 461 } 462 463 if (new_guest_memory_bo) { 464 res->guest_memory_bo = vmw_user_bo_ref(new_guest_memory_bo); 465 466 /* 467 * The validation code should already have added a 468 * dirty tracker here. 469 */ 470 WARN_ON(res->coherent && !new_guest_memory_bo->dirty); 471 472 vmw_resource_mob_attach(res); 473 } else { 474 res->guest_memory_bo = NULL; 475 } 476 } else if (switch_guest_memory && res->coherent) { 477 vmw_bo_dirty_release(res->guest_memory_bo); 478 } 479 480 if (switch_guest_memory) 481 res->guest_memory_offset = new_guest_memory_offset; 482 483 if (dirty_set) 484 res->res_dirty = dirty; 485 486 if (!res->func->may_evict || res->id == -1 || res->pin_count) 487 return; 488 489 spin_lock(&dev_priv->resource_lock); 490 list_add_tail(&res->lru_head, 491 &res->dev_priv->res_lru[res->func->res_type]); 492 spin_unlock(&dev_priv->resource_lock); 493 } 494 495 /** 496 * vmw_resource_check_buffer - Check whether a backup buffer is needed 497 * for a resource and in that case, allocate 498 * one, reserve and validate it. 499 * 500 * @ticket: The ww acquire context to use, or NULL if trylocking. 501 * @res: The resource for which to allocate a backup buffer. 502 * @interruptible: Whether any sleeps during allocation should be 503 * performed while interruptible. 504 * @val_buf: On successful return contains data about the 505 * reserved and validated backup buffer. 506 */ 507 static int 508 vmw_resource_check_buffer(struct ww_acquire_ctx *ticket, 509 struct vmw_resource *res, 510 bool interruptible, 511 struct ttm_validate_buffer *val_buf) 512 { 513 struct ttm_operation_ctx ctx = { true, false }; 514 struct list_head val_list; 515 bool guest_memory_dirty = false; 516 int ret; 517 518 if (unlikely(!res->guest_memory_bo)) { 519 ret = vmw_resource_buf_alloc(res, interruptible); 520 if (unlikely(ret != 0)) 521 return ret; 522 } 523 524 INIT_LIST_HEAD(&val_list); 525 ttm_bo_get(&res->guest_memory_bo->tbo); 526 val_buf->bo = &res->guest_memory_bo->tbo; 527 val_buf->num_shared = 0; 528 list_add_tail(&val_buf->head, &val_list); 529 ret = ttm_eu_reserve_buffers(ticket, &val_list, interruptible, NULL); 530 if (unlikely(ret != 0)) 531 goto out_no_reserve; 532 533 if (res->func->needs_guest_memory && !vmw_resource_mob_attached(res)) 534 return 0; 535 536 guest_memory_dirty = res->guest_memory_dirty; 537 vmw_bo_placement_set(res->guest_memory_bo, res->func->domain, 538 res->func->busy_domain); 539 ret = ttm_bo_validate(&res->guest_memory_bo->tbo, 540 &res->guest_memory_bo->placement, 541 &ctx); 542 543 if (unlikely(ret != 0)) 544 goto out_no_validate; 545 546 return 0; 547 548 out_no_validate: 549 ttm_eu_backoff_reservation(ticket, &val_list); 550 out_no_reserve: 551 ttm_bo_put(val_buf->bo); 552 val_buf->bo = NULL; 553 if (guest_memory_dirty) 554 vmw_user_bo_unref(&res->guest_memory_bo); 555 556 return ret; 557 } 558 559 /* 560 * vmw_resource_reserve - Reserve a resource for command submission 561 * 562 * @res: The resource to reserve. 563 * 564 * This function takes the resource off the LRU list and make sure 565 * a guest memory buffer is present for guest-backed resources. 566 * However, the buffer may not be bound to the resource at this 567 * point. 568 * 569 */ 570 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible, 571 bool no_guest_memory) 572 { 573 struct vmw_private *dev_priv = res->dev_priv; 574 int ret; 575 576 spin_lock(&dev_priv->resource_lock); 577 list_del_init(&res->lru_head); 578 spin_unlock(&dev_priv->resource_lock); 579 580 if (res->func->needs_guest_memory && !res->guest_memory_bo && 581 !no_guest_memory) { 582 ret = vmw_resource_buf_alloc(res, interruptible); 583 if (unlikely(ret != 0)) { 584 DRM_ERROR("Failed to allocate a guest memory buffer " 585 "of size %lu. bytes\n", 586 (unsigned long) res->guest_memory_size); 587 return ret; 588 } 589 } 590 591 return 0; 592 } 593 594 /** 595 * vmw_resource_backoff_reservation - Unreserve and unreference a 596 * guest memory buffer 597 *. 598 * @ticket: The ww acquire ctx used for reservation. 599 * @val_buf: Guest memory buffer information. 600 */ 601 static void 602 vmw_resource_backoff_reservation(struct ww_acquire_ctx *ticket, 603 struct ttm_validate_buffer *val_buf) 604 { 605 struct list_head val_list; 606 607 if (likely(val_buf->bo == NULL)) 608 return; 609 610 INIT_LIST_HEAD(&val_list); 611 list_add_tail(&val_buf->head, &val_list); 612 ttm_eu_backoff_reservation(ticket, &val_list); 613 ttm_bo_put(val_buf->bo); 614 val_buf->bo = NULL; 615 } 616 617 /** 618 * vmw_resource_do_evict - Evict a resource, and transfer its data 619 * to a backup buffer. 620 * 621 * @ticket: The ww acquire ticket to use, or NULL if trylocking. 622 * @res: The resource to evict. 623 * @interruptible: Whether to wait interruptible. 624 */ 625 static int vmw_resource_do_evict(struct ww_acquire_ctx *ticket, 626 struct vmw_resource *res, bool interruptible) 627 { 628 struct ttm_validate_buffer val_buf; 629 const struct vmw_res_func *func = res->func; 630 int ret; 631 632 BUG_ON(!func->may_evict); 633 634 val_buf.bo = NULL; 635 val_buf.num_shared = 0; 636 ret = vmw_resource_check_buffer(ticket, res, interruptible, &val_buf); 637 if (unlikely(ret != 0)) 638 return ret; 639 640 if (unlikely(func->unbind != NULL && 641 (!func->needs_guest_memory || vmw_resource_mob_attached(res)))) { 642 ret = func->unbind(res, res->res_dirty, &val_buf); 643 if (unlikely(ret != 0)) 644 goto out_no_unbind; 645 vmw_resource_mob_detach(res); 646 } 647 ret = func->destroy(res); 648 res->guest_memory_dirty = true; 649 res->res_dirty = false; 650 out_no_unbind: 651 vmw_resource_backoff_reservation(ticket, &val_buf); 652 653 return ret; 654 } 655 656 657 /** 658 * vmw_resource_validate - Make a resource up-to-date and visible 659 * to the device. 660 * @res: The resource to make visible to the device. 661 * @intr: Perform waits interruptible if possible. 662 * @dirtying: Pending GPU operation will dirty the resource 663 * 664 * On successful return, any backup DMA buffer pointed to by @res->backup will 665 * be reserved and validated. 666 * On hardware resource shortage, this function will repeatedly evict 667 * resources of the same type until the validation succeeds. 668 * 669 * Return: Zero on success, -ERESTARTSYS if interrupted, negative error code 670 * on failure. 671 */ 672 int vmw_resource_validate(struct vmw_resource *res, bool intr, 673 bool dirtying) 674 { 675 int ret; 676 struct vmw_resource *evict_res; 677 struct vmw_private *dev_priv = res->dev_priv; 678 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type]; 679 struct ttm_validate_buffer val_buf; 680 unsigned err_count = 0; 681 682 if (!res->func->create) 683 return 0; 684 685 val_buf.bo = NULL; 686 val_buf.num_shared = 0; 687 if (res->guest_memory_bo) 688 val_buf.bo = &res->guest_memory_bo->tbo; 689 do { 690 ret = vmw_resource_do_validate(res, &val_buf, dirtying); 691 if (likely(ret != -EBUSY)) 692 break; 693 694 spin_lock(&dev_priv->resource_lock); 695 if (list_empty(lru_list) || !res->func->may_evict) { 696 DRM_ERROR("Out of device device resources " 697 "for %s.\n", res->func->type_name); 698 ret = -EBUSY; 699 spin_unlock(&dev_priv->resource_lock); 700 break; 701 } 702 703 evict_res = vmw_resource_reference 704 (list_first_entry(lru_list, struct vmw_resource, 705 lru_head)); 706 list_del_init(&evict_res->lru_head); 707 708 spin_unlock(&dev_priv->resource_lock); 709 710 /* Trylock backup buffers with a NULL ticket. */ 711 ret = vmw_resource_do_evict(NULL, evict_res, intr); 712 if (unlikely(ret != 0)) { 713 spin_lock(&dev_priv->resource_lock); 714 list_add_tail(&evict_res->lru_head, lru_list); 715 spin_unlock(&dev_priv->resource_lock); 716 if (ret == -ERESTARTSYS || 717 ++err_count > VMW_RES_EVICT_ERR_COUNT) { 718 vmw_resource_unreference(&evict_res); 719 goto out_no_validate; 720 } 721 } 722 723 vmw_resource_unreference(&evict_res); 724 } while (1); 725 726 if (unlikely(ret != 0)) 727 goto out_no_validate; 728 else if (!res->func->needs_guest_memory && res->guest_memory_bo) { 729 WARN_ON_ONCE(vmw_resource_mob_attached(res)); 730 vmw_user_bo_unref(&res->guest_memory_bo); 731 } 732 733 return 0; 734 735 out_no_validate: 736 return ret; 737 } 738 739 740 /** 741 * vmw_resource_unbind_list 742 * 743 * @vbo: Pointer to the current backing MOB. 744 * 745 * Evicts the Guest Backed hardware resource if the backup 746 * buffer is being moved out of MOB memory. 747 * Note that this function will not race with the resource 748 * validation code, since resource validation and eviction 749 * both require the backup buffer to be reserved. 750 */ 751 void vmw_resource_unbind_list(struct vmw_bo *vbo) 752 { 753 struct ttm_validate_buffer val_buf = { 754 .bo = &vbo->tbo, 755 .num_shared = 0 756 }; 757 758 dma_resv_assert_held(vbo->tbo.base.resv); 759 while (!RB_EMPTY_ROOT(&vbo->res_tree)) { 760 struct rb_node *node = vbo->res_tree.rb_node; 761 struct vmw_resource *res = 762 container_of(node, struct vmw_resource, mob_node); 763 764 if (!WARN_ON_ONCE(!res->func->unbind)) 765 (void) res->func->unbind(res, res->res_dirty, &val_buf); 766 767 res->guest_memory_size = true; 768 res->res_dirty = false; 769 vmw_resource_mob_detach(res); 770 } 771 772 (void) ttm_bo_wait(&vbo->tbo, false, false); 773 } 774 775 776 /** 777 * vmw_query_readback_all - Read back cached query states 778 * 779 * @dx_query_mob: Buffer containing the DX query MOB 780 * 781 * Read back cached states from the device if they exist. This function 782 * assumes binding_mutex is held. 783 */ 784 int vmw_query_readback_all(struct vmw_bo *dx_query_mob) 785 { 786 struct vmw_resource *dx_query_ctx; 787 struct vmw_private *dev_priv; 788 struct { 789 SVGA3dCmdHeader header; 790 SVGA3dCmdDXReadbackAllQuery body; 791 } *cmd; 792 793 794 /* No query bound, so do nothing */ 795 if (!dx_query_mob || !dx_query_mob->dx_query_ctx) 796 return 0; 797 798 dx_query_ctx = dx_query_mob->dx_query_ctx; 799 dev_priv = dx_query_ctx->dev_priv; 800 801 cmd = VMW_CMD_CTX_RESERVE(dev_priv, sizeof(*cmd), dx_query_ctx->id); 802 if (unlikely(cmd == NULL)) 803 return -ENOMEM; 804 805 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY; 806 cmd->header.size = sizeof(cmd->body); 807 cmd->body.cid = dx_query_ctx->id; 808 809 vmw_cmd_commit(dev_priv, sizeof(*cmd)); 810 811 /* Triggers a rebind the next time affected context is bound */ 812 dx_query_mob->dx_query_ctx = NULL; 813 814 return 0; 815 } 816 817 818 819 /** 820 * vmw_query_move_notify - Read back cached query states 821 * 822 * @bo: The TTM buffer object about to move. 823 * @old_mem: The memory region @bo is moving from. 824 * @new_mem: The memory region @bo is moving to. 825 * 826 * Called before the query MOB is swapped out to read back cached query 827 * states from the device. 828 */ 829 void vmw_query_move_notify(struct ttm_buffer_object *bo, 830 struct ttm_resource *old_mem, 831 struct ttm_resource *new_mem) 832 { 833 struct vmw_bo *dx_query_mob; 834 struct ttm_device *bdev = bo->bdev; 835 struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev); 836 837 mutex_lock(&dev_priv->binding_mutex); 838 839 /* If BO is being moved from MOB to system memory */ 840 if (old_mem && 841 new_mem->mem_type == TTM_PL_SYSTEM && 842 old_mem->mem_type == VMW_PL_MOB) { 843 struct vmw_fence_obj *fence; 844 845 dx_query_mob = to_vmw_bo(&bo->base); 846 if (!dx_query_mob || !dx_query_mob->dx_query_ctx) { 847 mutex_unlock(&dev_priv->binding_mutex); 848 return; 849 } 850 851 (void) vmw_query_readback_all(dx_query_mob); 852 mutex_unlock(&dev_priv->binding_mutex); 853 854 /* Create a fence and attach the BO to it */ 855 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 856 vmw_bo_fence_single(bo, fence); 857 858 if (fence != NULL) 859 vmw_fence_obj_unreference(&fence); 860 861 (void) ttm_bo_wait(bo, false, false); 862 } else 863 mutex_unlock(&dev_priv->binding_mutex); 864 } 865 866 /** 867 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer. 868 * 869 * @res: The resource being queried. 870 */ 871 bool vmw_resource_needs_backup(const struct vmw_resource *res) 872 { 873 return res->func->needs_guest_memory; 874 } 875 876 /** 877 * vmw_resource_evict_type - Evict all resources of a specific type 878 * 879 * @dev_priv: Pointer to a device private struct 880 * @type: The resource type to evict 881 * 882 * To avoid thrashing starvation or as part of the hibernation sequence, 883 * try to evict all evictable resources of a specific type. 884 */ 885 static void vmw_resource_evict_type(struct vmw_private *dev_priv, 886 enum vmw_res_type type) 887 { 888 struct list_head *lru_list = &dev_priv->res_lru[type]; 889 struct vmw_resource *evict_res; 890 unsigned err_count = 0; 891 int ret; 892 struct ww_acquire_ctx ticket; 893 894 do { 895 spin_lock(&dev_priv->resource_lock); 896 897 if (list_empty(lru_list)) 898 goto out_unlock; 899 900 evict_res = vmw_resource_reference( 901 list_first_entry(lru_list, struct vmw_resource, 902 lru_head)); 903 list_del_init(&evict_res->lru_head); 904 spin_unlock(&dev_priv->resource_lock); 905 906 /* Wait lock backup buffers with a ticket. */ 907 ret = vmw_resource_do_evict(&ticket, evict_res, false); 908 if (unlikely(ret != 0)) { 909 spin_lock(&dev_priv->resource_lock); 910 list_add_tail(&evict_res->lru_head, lru_list); 911 spin_unlock(&dev_priv->resource_lock); 912 if (++err_count > VMW_RES_EVICT_ERR_COUNT) { 913 vmw_resource_unreference(&evict_res); 914 return; 915 } 916 } 917 918 vmw_resource_unreference(&evict_res); 919 } while (1); 920 921 out_unlock: 922 spin_unlock(&dev_priv->resource_lock); 923 } 924 925 /** 926 * vmw_resource_evict_all - Evict all evictable resources 927 * 928 * @dev_priv: Pointer to a device private struct 929 * 930 * To avoid thrashing starvation or as part of the hibernation sequence, 931 * evict all evictable resources. In particular this means that all 932 * guest-backed resources that are registered with the device are 933 * evicted and the OTable becomes clean. 934 */ 935 void vmw_resource_evict_all(struct vmw_private *dev_priv) 936 { 937 enum vmw_res_type type; 938 939 mutex_lock(&dev_priv->cmdbuf_mutex); 940 941 for (type = 0; type < vmw_res_max; ++type) 942 vmw_resource_evict_type(dev_priv, type); 943 944 mutex_unlock(&dev_priv->cmdbuf_mutex); 945 } 946 947 /* 948 * vmw_resource_pin - Add a pin reference on a resource 949 * 950 * @res: The resource to add a pin reference on 951 * 952 * This function adds a pin reference, and if needed validates the resource. 953 * Having a pin reference means that the resource can never be evicted, and 954 * its id will never change as long as there is a pin reference. 955 * This function returns 0 on success and a negative error code on failure. 956 */ 957 int vmw_resource_pin(struct vmw_resource *res, bool interruptible) 958 { 959 struct ttm_operation_ctx ctx = { interruptible, false }; 960 struct vmw_private *dev_priv = res->dev_priv; 961 int ret; 962 963 mutex_lock(&dev_priv->cmdbuf_mutex); 964 ret = vmw_resource_reserve(res, interruptible, false); 965 if (ret) 966 goto out_no_reserve; 967 968 if (res->pin_count == 0) { 969 struct vmw_bo *vbo = NULL; 970 971 if (res->guest_memory_bo) { 972 vbo = res->guest_memory_bo; 973 974 ret = ttm_bo_reserve(&vbo->tbo, interruptible, false, NULL); 975 if (ret) 976 goto out_no_validate; 977 if (!vbo->tbo.pin_count) { 978 vmw_bo_placement_set(vbo, 979 res->func->domain, 980 res->func->busy_domain); 981 ret = ttm_bo_validate 982 (&vbo->tbo, 983 &vbo->placement, 984 &ctx); 985 if (ret) { 986 ttm_bo_unreserve(&vbo->tbo); 987 goto out_no_validate; 988 } 989 } 990 991 /* Do we really need to pin the MOB as well? */ 992 vmw_bo_pin_reserved(vbo, true); 993 } 994 ret = vmw_resource_validate(res, interruptible, true); 995 if (vbo) 996 ttm_bo_unreserve(&vbo->tbo); 997 if (ret) 998 goto out_no_validate; 999 } 1000 res->pin_count++; 1001 1002 out_no_validate: 1003 vmw_resource_unreserve(res, false, false, false, NULL, 0UL); 1004 out_no_reserve: 1005 mutex_unlock(&dev_priv->cmdbuf_mutex); 1006 1007 return ret; 1008 } 1009 1010 /** 1011 * vmw_resource_unpin - Remove a pin reference from a resource 1012 * 1013 * @res: The resource to remove a pin reference from 1014 * 1015 * Having a pin reference means that the resource can never be evicted, and 1016 * its id will never change as long as there is a pin reference. 1017 */ 1018 void vmw_resource_unpin(struct vmw_resource *res) 1019 { 1020 struct vmw_private *dev_priv = res->dev_priv; 1021 int ret; 1022 1023 mutex_lock(&dev_priv->cmdbuf_mutex); 1024 1025 ret = vmw_resource_reserve(res, false, true); 1026 WARN_ON(ret); 1027 1028 WARN_ON(res->pin_count == 0); 1029 if (--res->pin_count == 0 && res->guest_memory_bo) { 1030 struct vmw_bo *vbo = res->guest_memory_bo; 1031 1032 (void) ttm_bo_reserve(&vbo->tbo, false, false, NULL); 1033 vmw_bo_pin_reserved(vbo, false); 1034 ttm_bo_unreserve(&vbo->tbo); 1035 } 1036 1037 vmw_resource_unreserve(res, false, false, false, NULL, 0UL); 1038 1039 mutex_unlock(&dev_priv->cmdbuf_mutex); 1040 } 1041 1042 /** 1043 * vmw_res_type - Return the resource type 1044 * 1045 * @res: Pointer to the resource 1046 */ 1047 enum vmw_res_type vmw_res_type(const struct vmw_resource *res) 1048 { 1049 return res->func->res_type; 1050 } 1051 1052 /** 1053 * vmw_resource_dirty_update - Update a resource's dirty tracker with a 1054 * sequential range of touched backing store memory. 1055 * @res: The resource. 1056 * @start: The first page touched. 1057 * @end: The last page touched + 1. 1058 */ 1059 void vmw_resource_dirty_update(struct vmw_resource *res, pgoff_t start, 1060 pgoff_t end) 1061 { 1062 if (res->dirty) 1063 res->func->dirty_range_add(res, start << PAGE_SHIFT, 1064 end << PAGE_SHIFT); 1065 } 1066 1067 int vmw_resource_clean(struct vmw_resource *res) 1068 { 1069 int ret = 0; 1070 1071 if (res->res_dirty) { 1072 if (!res->func->clean) 1073 return -EINVAL; 1074 1075 ret = res->func->clean(res); 1076 if (ret) 1077 return ret; 1078 res->res_dirty = false; 1079 } 1080 return ret; 1081 } 1082 1083 /** 1084 * vmw_resources_clean - Clean resources intersecting a mob range 1085 * @vbo: The mob buffer object 1086 * @start: The mob page offset starting the range 1087 * @end: The mob page offset ending the range 1088 * @num_prefault: Returns how many pages including the first have been 1089 * cleaned and are ok to prefault 1090 */ 1091 int vmw_resources_clean(struct vmw_bo *vbo, pgoff_t start, 1092 pgoff_t end, pgoff_t *num_prefault) 1093 { 1094 struct rb_node *cur = vbo->res_tree.rb_node; 1095 struct vmw_resource *found = NULL; 1096 unsigned long res_start = start << PAGE_SHIFT; 1097 unsigned long res_end = end << PAGE_SHIFT; 1098 unsigned long last_cleaned = 0; 1099 int ret; 1100 1101 /* 1102 * Find the resource with lowest backup_offset that intersects the 1103 * range. 1104 */ 1105 while (cur) { 1106 struct vmw_resource *cur_res = 1107 container_of(cur, struct vmw_resource, mob_node); 1108 1109 if (cur_res->guest_memory_offset >= res_end) { 1110 cur = cur->rb_left; 1111 } else if (cur_res->guest_memory_offset + cur_res->guest_memory_size <= 1112 res_start) { 1113 cur = cur->rb_right; 1114 } else { 1115 found = cur_res; 1116 cur = cur->rb_left; 1117 /* Continue to look for resources with lower offsets */ 1118 } 1119 } 1120 1121 /* 1122 * In order of increasing guest_memory_offset, clean dirty resources 1123 * intersecting the range. 1124 */ 1125 while (found) { 1126 ret = vmw_resource_clean(found); 1127 if (ret) 1128 return ret; 1129 last_cleaned = found->guest_memory_offset + found->guest_memory_size; 1130 cur = rb_next(&found->mob_node); 1131 if (!cur) 1132 break; 1133 1134 found = container_of(cur, struct vmw_resource, mob_node); 1135 if (found->guest_memory_offset >= res_end) 1136 break; 1137 } 1138 1139 /* 1140 * Set number of pages allowed prefaulting and fence the buffer object 1141 */ 1142 *num_prefault = 1; 1143 if (last_cleaned > res_start) { 1144 struct ttm_buffer_object *bo = &vbo->tbo; 1145 1146 *num_prefault = __KERNEL_DIV_ROUND_UP(last_cleaned - res_start, 1147 PAGE_SIZE); 1148 vmw_bo_fence_single(bo, NULL); 1149 } 1150 1151 return 0; 1152 } 1153