xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_resource.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35 
36 #define VMW_RES_EVICT_ERR_COUNT 10
37 
38 struct vmw_user_dma_buffer {
39 	struct ttm_prime_object prime;
40 	struct vmw_dma_buffer dma;
41 };
42 
43 struct vmw_bo_user_rep {
44 	uint32_t handle;
45 	uint64_t map_handle;
46 };
47 
48 struct vmw_stream {
49 	struct vmw_resource res;
50 	uint32_t stream_id;
51 };
52 
53 struct vmw_user_stream {
54 	struct ttm_base_object base;
55 	struct vmw_stream stream;
56 };
57 
58 
59 static uint64_t vmw_user_stream_size;
60 
61 static const struct vmw_res_func vmw_stream_func = {
62 	.res_type = vmw_res_stream,
63 	.needs_backup = false,
64 	.may_evict = false,
65 	.type_name = "video streams",
66 	.backup_placement = NULL,
67 	.create = NULL,
68 	.destroy = NULL,
69 	.bind = NULL,
70 	.unbind = NULL
71 };
72 
73 static inline struct vmw_dma_buffer *
74 vmw_dma_buffer(struct ttm_buffer_object *bo)
75 {
76 	return container_of(bo, struct vmw_dma_buffer, base);
77 }
78 
79 static inline struct vmw_user_dma_buffer *
80 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81 {
82 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83 	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84 }
85 
86 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87 {
88 	kref_get(&res->kref);
89 	return res;
90 }
91 
92 struct vmw_resource *
93 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94 {
95 	return kref_get_unless_zero(&res->kref) ? res : NULL;
96 }
97 
98 /**
99  * vmw_resource_release_id - release a resource id to the id manager.
100  *
101  * @res: Pointer to the resource.
102  *
103  * Release the resource id to the resource id manager and set it to -1
104  */
105 void vmw_resource_release_id(struct vmw_resource *res)
106 {
107 	struct vmw_private *dev_priv = res->dev_priv;
108 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109 
110 	write_lock(&dev_priv->resource_lock);
111 	if (res->id != -1)
112 		idr_remove(idr, res->id);
113 	res->id = -1;
114 	write_unlock(&dev_priv->resource_lock);
115 }
116 
117 static void vmw_resource_release(struct kref *kref)
118 {
119 	struct vmw_resource *res =
120 	    container_of(kref, struct vmw_resource, kref);
121 	struct vmw_private *dev_priv = res->dev_priv;
122 	int id;
123 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124 
125 	write_lock(&dev_priv->resource_lock);
126 	res->avail = false;
127 	list_del_init(&res->lru_head);
128 	write_unlock(&dev_priv->resource_lock);
129 	if (res->backup) {
130 		struct ttm_buffer_object *bo = &res->backup->base;
131 
132 		ttm_bo_reserve(bo, false, false, NULL);
133 		if (!list_empty(&res->mob_head) &&
134 		    res->func->unbind != NULL) {
135 			struct ttm_validate_buffer val_buf;
136 
137 			val_buf.bo = bo;
138 			val_buf.shared = false;
139 			res->func->unbind(res, false, &val_buf);
140 		}
141 		res->backup_dirty = false;
142 		list_del_init(&res->mob_head);
143 		ttm_bo_unreserve(bo);
144 		vmw_dmabuf_unreference(&res->backup);
145 	}
146 
147 	if (likely(res->hw_destroy != NULL)) {
148 		mutex_lock(&dev_priv->binding_mutex);
149 		vmw_binding_res_list_kill(&res->binding_head);
150 		mutex_unlock(&dev_priv->binding_mutex);
151 		res->hw_destroy(res);
152 	}
153 
154 	id = res->id;
155 	if (res->res_free != NULL)
156 		res->res_free(res);
157 	else
158 		kfree(res);
159 
160 	write_lock(&dev_priv->resource_lock);
161 	if (id != -1)
162 		idr_remove(idr, id);
163 	write_unlock(&dev_priv->resource_lock);
164 }
165 
166 void vmw_resource_unreference(struct vmw_resource **p_res)
167 {
168 	struct vmw_resource *res = *p_res;
169 
170 	*p_res = NULL;
171 	kref_put(&res->kref, vmw_resource_release);
172 }
173 
174 
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185 	struct vmw_private *dev_priv = res->dev_priv;
186 	int ret;
187 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188 
189 	BUG_ON(res->id != -1);
190 
191 	idr_preload(GFP_KERNEL);
192 	write_lock(&dev_priv->resource_lock);
193 
194 	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195 	if (ret >= 0)
196 		res->id = ret;
197 
198 	write_unlock(&dev_priv->resource_lock);
199 	idr_preload_end();
200 	return ret < 0 ? ret : 0;
201 }
202 
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215 		      bool delay_id,
216 		      void (*res_free) (struct vmw_resource *res),
217 		      const struct vmw_res_func *func)
218 {
219 	kref_init(&res->kref);
220 	res->hw_destroy = NULL;
221 	res->res_free = res_free;
222 	res->avail = false;
223 	res->dev_priv = dev_priv;
224 	res->func = func;
225 	INIT_LIST_HEAD(&res->lru_head);
226 	INIT_LIST_HEAD(&res->mob_head);
227 	INIT_LIST_HEAD(&res->binding_head);
228 	res->id = -1;
229 	res->backup = NULL;
230 	res->backup_offset = 0;
231 	res->backup_dirty = false;
232 	res->res_dirty = false;
233 	if (delay_id)
234 		return 0;
235 	else
236 		return vmw_resource_alloc_id(res);
237 }
238 
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252 			   void (*hw_destroy) (struct vmw_resource *))
253 {
254 	struct vmw_private *dev_priv = res->dev_priv;
255 
256 	write_lock(&dev_priv->resource_lock);
257 	res->avail = true;
258 	res->hw_destroy = hw_destroy;
259 	write_unlock(&dev_priv->resource_lock);
260 }
261 
262 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263 						struct idr *idr, int id)
264 {
265 	struct vmw_resource *res;
266 
267 	read_lock(&dev_priv->resource_lock);
268 	res = idr_find(idr, id);
269 	if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
270 		res = NULL;
271 
272 	read_unlock(&dev_priv->resource_lock);
273 
274 	if (unlikely(res == NULL))
275 		return NULL;
276 
277 	return res;
278 }
279 
280 /**
281  * vmw_user_resource_lookup_handle - lookup a struct resource from a
282  * TTM user-space handle and perform basic type checks
283  *
284  * @dev_priv:     Pointer to a device private struct
285  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
286  * @handle:       The TTM user-space handle
287  * @converter:    Pointer to an object describing the resource type
288  * @p_res:        On successful return the location pointed to will contain
289  *                a pointer to a refcounted struct vmw_resource.
290  *
291  * If the handle can't be found or is associated with an incorrect resource
292  * type, -EINVAL will be returned.
293  */
294 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295 				    struct ttm_object_file *tfile,
296 				    uint32_t handle,
297 				    const struct vmw_user_resource_conv
298 				    *converter,
299 				    struct vmw_resource **p_res)
300 {
301 	struct ttm_base_object *base;
302 	struct vmw_resource *res;
303 	int ret = -EINVAL;
304 
305 	base = ttm_base_object_lookup(tfile, handle);
306 	if (unlikely(base == NULL))
307 		return -EINVAL;
308 
309 	if (unlikely(ttm_base_object_type(base) != converter->object_type))
310 		goto out_bad_resource;
311 
312 	res = converter->base_obj_to_res(base);
313 
314 	read_lock(&dev_priv->resource_lock);
315 	if (!res->avail || res->res_free != converter->res_free) {
316 		read_unlock(&dev_priv->resource_lock);
317 		goto out_bad_resource;
318 	}
319 
320 	kref_get(&res->kref);
321 	read_unlock(&dev_priv->resource_lock);
322 
323 	*p_res = res;
324 	ret = 0;
325 
326 out_bad_resource:
327 	ttm_base_object_unref(&base);
328 
329 	return ret;
330 }
331 
332 /**
333  * Helper function that looks either a surface or dmabuf.
334  *
335  * The pointer this pointed at by out_surf and out_buf needs to be null.
336  */
337 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338 			   struct ttm_object_file *tfile,
339 			   uint32_t handle,
340 			   struct vmw_surface **out_surf,
341 			   struct vmw_dma_buffer **out_buf)
342 {
343 	struct vmw_resource *res;
344 	int ret;
345 
346 	BUG_ON(*out_surf || *out_buf);
347 
348 	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349 					      user_surface_converter,
350 					      &res);
351 	if (!ret) {
352 		*out_surf = vmw_res_to_srf(res);
353 		return 0;
354 	}
355 
356 	*out_surf = NULL;
357 	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
358 	return ret;
359 }
360 
361 /**
362  * Buffer management.
363  */
364 
365 /**
366  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367  *
368  * @dev_priv: Pointer to a struct vmw_private identifying the device.
369  * @size: The requested buffer size.
370  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371  */
372 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373 				  bool user)
374 {
375 	static size_t struct_size, user_struct_size;
376 	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377 	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378 
379 	if (unlikely(struct_size == 0)) {
380 		size_t backend_size = ttm_round_pot(vmw_tt_size);
381 
382 		struct_size = backend_size +
383 			ttm_round_pot(sizeof(struct vmw_dma_buffer));
384 		user_struct_size = backend_size +
385 			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386 	}
387 
388 	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389 		page_array_size +=
390 			ttm_round_pot(num_pages * sizeof(dma_addr_t));
391 
392 	return ((user) ? user_struct_size : struct_size) +
393 		page_array_size;
394 }
395 
396 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397 {
398 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399 
400 	kfree(vmw_bo);
401 }
402 
403 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404 {
405 	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406 
407 	ttm_prime_object_kfree(vmw_user_bo, prime);
408 }
409 
410 int vmw_dmabuf_init(struct vmw_private *dev_priv,
411 		    struct vmw_dma_buffer *vmw_bo,
412 		    size_t size, struct ttm_placement *placement,
413 		    bool interruptible,
414 		    void (*bo_free) (struct ttm_buffer_object *bo))
415 {
416 	struct ttm_bo_device *bdev = &dev_priv->bdev;
417 	size_t acc_size;
418 	int ret;
419 	bool user = (bo_free == &vmw_user_dmabuf_destroy);
420 
421 	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
422 
423 	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
424 	memset(vmw_bo, 0, sizeof(*vmw_bo));
425 
426 	INIT_LIST_HEAD(&vmw_bo->res_list);
427 
428 	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
429 			  ttm_bo_type_device, placement,
430 			  0, interruptible,
431 			  NULL, acc_size, NULL, NULL, bo_free);
432 	return ret;
433 }
434 
435 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436 {
437 	struct vmw_user_dma_buffer *vmw_user_bo;
438 	struct ttm_base_object *base = *p_base;
439 	struct ttm_buffer_object *bo;
440 
441 	*p_base = NULL;
442 
443 	if (unlikely(base == NULL))
444 		return;
445 
446 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447 				   prime.base);
448 	bo = &vmw_user_bo->dma.base;
449 	ttm_bo_unref(&bo);
450 }
451 
452 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453 					    enum ttm_ref_type ref_type)
454 {
455 	struct vmw_user_dma_buffer *user_bo;
456 	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457 
458 	switch (ref_type) {
459 	case TTM_REF_SYNCCPU_WRITE:
460 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
461 		break;
462 	default:
463 		BUG();
464 	}
465 }
466 
467 /**
468  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469  *
470  * @dev_priv: Pointer to a struct device private.
471  * @tfile: Pointer to a struct ttm_object_file on which to register the user
472  * object.
473  * @size: Size of the dma buffer.
474  * @shareable: Boolean whether the buffer is shareable with other open files.
475  * @handle: Pointer to where the handle value should be assigned.
476  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477  * should be assigned.
478  */
479 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480 			  struct ttm_object_file *tfile,
481 			  uint32_t size,
482 			  bool shareable,
483 			  uint32_t *handle,
484 			  struct vmw_dma_buffer **p_dma_buf,
485 			  struct ttm_base_object **p_base)
486 {
487 	struct vmw_user_dma_buffer *user_bo;
488 	struct ttm_buffer_object *tmp;
489 	int ret;
490 
491 	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492 	if (unlikely(user_bo == NULL)) {
493 		DRM_ERROR("Failed to allocate a buffer.\n");
494 		return -ENOMEM;
495 	}
496 
497 	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498 			      (dev_priv->has_mob) ?
499 			      &vmw_sys_placement :
500 			      &vmw_vram_sys_placement, true,
501 			      &vmw_user_dmabuf_destroy);
502 	if (unlikely(ret != 0))
503 		return ret;
504 
505 	tmp = ttm_bo_reference(&user_bo->dma.base);
506 	ret = ttm_prime_object_init(tfile,
507 				    size,
508 				    &user_bo->prime,
509 				    shareable,
510 				    ttm_buffer_type,
511 				    &vmw_user_dmabuf_release,
512 				    &vmw_user_dmabuf_ref_obj_release);
513 	if (unlikely(ret != 0)) {
514 		ttm_bo_unref(&tmp);
515 		goto out_no_base_object;
516 	}
517 
518 	*p_dma_buf = &user_bo->dma;
519 	if (p_base) {
520 		*p_base = &user_bo->prime.base;
521 		kref_get(&(*p_base)->refcount);
522 	}
523 	*handle = user_bo->prime.base.hash.key;
524 
525 out_no_base_object:
526 	return ret;
527 }
528 
529 /**
530  * vmw_user_dmabuf_verify_access - verify access permissions on this
531  * buffer object.
532  *
533  * @bo: Pointer to the buffer object being accessed
534  * @tfile: Identifying the caller.
535  */
536 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
537 				  struct ttm_object_file *tfile)
538 {
539 	struct vmw_user_dma_buffer *vmw_user_bo;
540 
541 	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
542 		return -EPERM;
543 
544 	vmw_user_bo = vmw_user_dma_buffer(bo);
545 
546 	/* Check that the caller has opened the object. */
547 	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
548 		return 0;
549 
550 	DRM_ERROR("Could not grant buffer access.\n");
551 	return -EPERM;
552 }
553 
554 /**
555  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
556  * access, idling previous GPU operations on the buffer and optionally
557  * blocking it for further command submissions.
558  *
559  * @user_bo: Pointer to the buffer object being grabbed for CPU access
560  * @tfile: Identifying the caller.
561  * @flags: Flags indicating how the grab should be performed.
562  *
563  * A blocking grab will be automatically released when @tfile is closed.
564  */
565 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
566 					struct ttm_object_file *tfile,
567 					uint32_t flags)
568 {
569 	struct ttm_buffer_object *bo = &user_bo->dma.base;
570 	bool existed;
571 	int ret;
572 
573 	if (flags & drm_vmw_synccpu_allow_cs) {
574 		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
575 		long lret;
576 
577 		if (nonblock)
578 			return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
579 
580 		lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, MAX_SCHEDULE_TIMEOUT);
581 		if (!lret)
582 			return -EBUSY;
583 		else if (lret < 0)
584 			return lret;
585 		return 0;
586 	}
587 
588 	ret = ttm_bo_synccpu_write_grab
589 		(bo, !!(flags & drm_vmw_synccpu_dontblock));
590 	if (unlikely(ret != 0))
591 		return ret;
592 
593 	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
594 				 TTM_REF_SYNCCPU_WRITE, &existed);
595 	if (ret != 0 || existed)
596 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
597 
598 	return ret;
599 }
600 
601 /**
602  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
603  * and unblock command submission on the buffer if blocked.
604  *
605  * @handle: Handle identifying the buffer object.
606  * @tfile: Identifying the caller.
607  * @flags: Flags indicating the type of release.
608  */
609 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
610 					   struct ttm_object_file *tfile,
611 					   uint32_t flags)
612 {
613 	if (!(flags & drm_vmw_synccpu_allow_cs))
614 		return ttm_ref_object_base_unref(tfile, handle,
615 						 TTM_REF_SYNCCPU_WRITE);
616 
617 	return 0;
618 }
619 
620 /**
621  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
622  * functionality.
623  *
624  * @dev: Identifies the drm device.
625  * @data: Pointer to the ioctl argument.
626  * @file_priv: Identifies the caller.
627  *
628  * This function checks the ioctl arguments for validity and calls the
629  * relevant synccpu functions.
630  */
631 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
632 				  struct drm_file *file_priv)
633 {
634 	struct drm_vmw_synccpu_arg *arg =
635 		(struct drm_vmw_synccpu_arg *) data;
636 	struct vmw_dma_buffer *dma_buf;
637 	struct vmw_user_dma_buffer *user_bo;
638 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
639 	struct ttm_base_object *buffer_base;
640 	int ret;
641 
642 	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
643 	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
644 			       drm_vmw_synccpu_dontblock |
645 			       drm_vmw_synccpu_allow_cs)) != 0) {
646 		DRM_ERROR("Illegal synccpu flags.\n");
647 		return -EINVAL;
648 	}
649 
650 	switch (arg->op) {
651 	case drm_vmw_synccpu_grab:
652 		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
653 					     &buffer_base);
654 		if (unlikely(ret != 0))
655 			return ret;
656 
657 		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
658 				       dma);
659 		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
660 		vmw_dmabuf_unreference(&dma_buf);
661 		ttm_base_object_unref(&buffer_base);
662 		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
663 			     ret != -EBUSY)) {
664 			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
665 				  (unsigned int) arg->handle);
666 			return ret;
667 		}
668 		break;
669 	case drm_vmw_synccpu_release:
670 		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
671 						      arg->flags);
672 		if (unlikely(ret != 0)) {
673 			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
674 				  (unsigned int) arg->handle);
675 			return ret;
676 		}
677 		break;
678 	default:
679 		DRM_ERROR("Invalid synccpu operation.\n");
680 		return -EINVAL;
681 	}
682 
683 	return 0;
684 }
685 
686 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
687 			   struct drm_file *file_priv)
688 {
689 	struct vmw_private *dev_priv = vmw_priv(dev);
690 	union drm_vmw_alloc_dmabuf_arg *arg =
691 	    (union drm_vmw_alloc_dmabuf_arg *)data;
692 	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
693 	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
694 	struct vmw_dma_buffer *dma_buf;
695 	uint32_t handle;
696 	int ret;
697 
698 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
699 	if (unlikely(ret != 0))
700 		return ret;
701 
702 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
703 				    req->size, false, &handle, &dma_buf,
704 				    NULL);
705 	if (unlikely(ret != 0))
706 		goto out_no_dmabuf;
707 
708 	rep->handle = handle;
709 	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
710 	rep->cur_gmr_id = handle;
711 	rep->cur_gmr_offset = 0;
712 
713 	vmw_dmabuf_unreference(&dma_buf);
714 
715 out_no_dmabuf:
716 	ttm_read_unlock(&dev_priv->reservation_sem);
717 
718 	return ret;
719 }
720 
721 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
722 			   struct drm_file *file_priv)
723 {
724 	struct drm_vmw_unref_dmabuf_arg *arg =
725 	    (struct drm_vmw_unref_dmabuf_arg *)data;
726 
727 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
728 					 arg->handle,
729 					 TTM_REF_USAGE);
730 }
731 
732 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
733 			   uint32_t handle, struct vmw_dma_buffer **out,
734 			   struct ttm_base_object **p_base)
735 {
736 	struct vmw_user_dma_buffer *vmw_user_bo;
737 	struct ttm_base_object *base;
738 
739 	base = ttm_base_object_lookup(tfile, handle);
740 	if (unlikely(base == NULL)) {
741 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
742 		       (unsigned long)handle);
743 		return -ESRCH;
744 	}
745 
746 	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
747 		ttm_base_object_unref(&base);
748 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
749 		       (unsigned long)handle);
750 		return -EINVAL;
751 	}
752 
753 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
754 				   prime.base);
755 	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
756 	if (p_base)
757 		*p_base = base;
758 	else
759 		ttm_base_object_unref(&base);
760 	*out = &vmw_user_bo->dma;
761 
762 	return 0;
763 }
764 
765 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
766 			      struct vmw_dma_buffer *dma_buf,
767 			      uint32_t *handle)
768 {
769 	struct vmw_user_dma_buffer *user_bo;
770 
771 	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
772 		return -EINVAL;
773 
774 	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
775 
776 	*handle = user_bo->prime.base.hash.key;
777 	return ttm_ref_object_add(tfile, &user_bo->prime.base,
778 				  TTM_REF_USAGE, NULL);
779 }
780 
781 /*
782  * Stream management
783  */
784 
785 static void vmw_stream_destroy(struct vmw_resource *res)
786 {
787 	struct vmw_private *dev_priv = res->dev_priv;
788 	struct vmw_stream *stream;
789 	int ret;
790 
791 	DRM_INFO("%s: unref\n", __func__);
792 	stream = container_of(res, struct vmw_stream, res);
793 
794 	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
795 	WARN_ON(ret != 0);
796 }
797 
798 static int vmw_stream_init(struct vmw_private *dev_priv,
799 			   struct vmw_stream *stream,
800 			   void (*res_free) (struct vmw_resource *res))
801 {
802 	struct vmw_resource *res = &stream->res;
803 	int ret;
804 
805 	ret = vmw_resource_init(dev_priv, res, false, res_free,
806 				&vmw_stream_func);
807 
808 	if (unlikely(ret != 0)) {
809 		if (res_free == NULL)
810 			kfree(stream);
811 		else
812 			res_free(&stream->res);
813 		return ret;
814 	}
815 
816 	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
817 	if (ret) {
818 		vmw_resource_unreference(&res);
819 		return ret;
820 	}
821 
822 	DRM_INFO("%s: claimed\n", __func__);
823 
824 	vmw_resource_activate(&stream->res, vmw_stream_destroy);
825 	return 0;
826 }
827 
828 static void vmw_user_stream_free(struct vmw_resource *res)
829 {
830 	struct vmw_user_stream *stream =
831 	    container_of(res, struct vmw_user_stream, stream.res);
832 	struct vmw_private *dev_priv = res->dev_priv;
833 
834 	ttm_base_object_kfree(stream, base);
835 	ttm_mem_global_free(vmw_mem_glob(dev_priv),
836 			    vmw_user_stream_size);
837 }
838 
839 /**
840  * This function is called when user space has no more references on the
841  * base object. It releases the base-object's reference on the resource object.
842  */
843 
844 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
845 {
846 	struct ttm_base_object *base = *p_base;
847 	struct vmw_user_stream *stream =
848 	    container_of(base, struct vmw_user_stream, base);
849 	struct vmw_resource *res = &stream->stream.res;
850 
851 	*p_base = NULL;
852 	vmw_resource_unreference(&res);
853 }
854 
855 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
856 			   struct drm_file *file_priv)
857 {
858 	struct vmw_private *dev_priv = vmw_priv(dev);
859 	struct vmw_resource *res;
860 	struct vmw_user_stream *stream;
861 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
862 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
863 	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
864 	int ret = 0;
865 
866 
867 	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
868 	if (unlikely(res == NULL))
869 		return -EINVAL;
870 
871 	if (res->res_free != &vmw_user_stream_free) {
872 		ret = -EINVAL;
873 		goto out;
874 	}
875 
876 	stream = container_of(res, struct vmw_user_stream, stream.res);
877 	if (stream->base.tfile != tfile) {
878 		ret = -EINVAL;
879 		goto out;
880 	}
881 
882 	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
883 out:
884 	vmw_resource_unreference(&res);
885 	return ret;
886 }
887 
888 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
889 			   struct drm_file *file_priv)
890 {
891 	struct vmw_private *dev_priv = vmw_priv(dev);
892 	struct vmw_user_stream *stream;
893 	struct vmw_resource *res;
894 	struct vmw_resource *tmp;
895 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
896 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
897 	int ret;
898 
899 	/*
900 	 * Approximate idr memory usage with 128 bytes. It will be limited
901 	 * by maximum number_of streams anyway?
902 	 */
903 
904 	if (unlikely(vmw_user_stream_size == 0))
905 		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
906 
907 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
908 	if (unlikely(ret != 0))
909 		return ret;
910 
911 	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
912 				   vmw_user_stream_size,
913 				   false, true);
914 	ttm_read_unlock(&dev_priv->reservation_sem);
915 	if (unlikely(ret != 0)) {
916 		if (ret != -ERESTARTSYS)
917 			DRM_ERROR("Out of graphics memory for stream"
918 				  " creation.\n");
919 
920 		goto out_ret;
921 	}
922 
923 	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
924 	if (unlikely(stream == NULL)) {
925 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
926 				    vmw_user_stream_size);
927 		ret = -ENOMEM;
928 		goto out_ret;
929 	}
930 
931 	res = &stream->stream.res;
932 	stream->base.shareable = false;
933 	stream->base.tfile = NULL;
934 
935 	/*
936 	 * From here on, the destructor takes over resource freeing.
937 	 */
938 
939 	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
940 	if (unlikely(ret != 0))
941 		goto out_ret;
942 
943 	tmp = vmw_resource_reference(res);
944 	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
945 				   &vmw_user_stream_base_release, NULL);
946 
947 	if (unlikely(ret != 0)) {
948 		vmw_resource_unreference(&tmp);
949 		goto out_err;
950 	}
951 
952 	arg->stream_id = res->id;
953 out_err:
954 	vmw_resource_unreference(&res);
955 out_ret:
956 	return ret;
957 }
958 
959 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
960 			   struct ttm_object_file *tfile,
961 			   uint32_t *inout_id, struct vmw_resource **out)
962 {
963 	struct vmw_user_stream *stream;
964 	struct vmw_resource *res;
965 	int ret;
966 
967 	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
968 				  *inout_id);
969 	if (unlikely(res == NULL))
970 		return -EINVAL;
971 
972 	if (res->res_free != &vmw_user_stream_free) {
973 		ret = -EINVAL;
974 		goto err_ref;
975 	}
976 
977 	stream = container_of(res, struct vmw_user_stream, stream.res);
978 	if (stream->base.tfile != tfile) {
979 		ret = -EPERM;
980 		goto err_ref;
981 	}
982 
983 	*inout_id = stream->stream.stream_id;
984 	*out = res;
985 	return 0;
986 err_ref:
987 	vmw_resource_unreference(&res);
988 	return ret;
989 }
990 
991 
992 /**
993  * vmw_dumb_create - Create a dumb kms buffer
994  *
995  * @file_priv: Pointer to a struct drm_file identifying the caller.
996  * @dev: Pointer to the drm device.
997  * @args: Pointer to a struct drm_mode_create_dumb structure
998  *
999  * This is a driver callback for the core drm create_dumb functionality.
1000  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
1001  * that the arguments have a different format.
1002  */
1003 int vmw_dumb_create(struct drm_file *file_priv,
1004 		    struct drm_device *dev,
1005 		    struct drm_mode_create_dumb *args)
1006 {
1007 	struct vmw_private *dev_priv = vmw_priv(dev);
1008 	struct vmw_dma_buffer *dma_buf;
1009 	int ret;
1010 
1011 	args->pitch = args->width * ((args->bpp + 7) / 8);
1012 	args->size = args->pitch * args->height;
1013 
1014 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1015 	if (unlikely(ret != 0))
1016 		return ret;
1017 
1018 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1019 				    args->size, false, &args->handle,
1020 				    &dma_buf, NULL);
1021 	if (unlikely(ret != 0))
1022 		goto out_no_dmabuf;
1023 
1024 	vmw_dmabuf_unreference(&dma_buf);
1025 out_no_dmabuf:
1026 	ttm_read_unlock(&dev_priv->reservation_sem);
1027 	return ret;
1028 }
1029 
1030 /**
1031  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1032  *
1033  * @file_priv: Pointer to a struct drm_file identifying the caller.
1034  * @dev: Pointer to the drm device.
1035  * @handle: Handle identifying the dumb buffer.
1036  * @offset: The address space offset returned.
1037  *
1038  * This is a driver callback for the core drm dumb_map_offset functionality.
1039  */
1040 int vmw_dumb_map_offset(struct drm_file *file_priv,
1041 			struct drm_device *dev, uint32_t handle,
1042 			uint64_t *offset)
1043 {
1044 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1045 	struct vmw_dma_buffer *out_buf;
1046 	int ret;
1047 
1048 	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1049 	if (ret != 0)
1050 		return -EINVAL;
1051 
1052 	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1053 	vmw_dmabuf_unreference(&out_buf);
1054 	return 0;
1055 }
1056 
1057 /**
1058  * vmw_dumb_destroy - Destroy a dumb boffer
1059  *
1060  * @file_priv: Pointer to a struct drm_file identifying the caller.
1061  * @dev: Pointer to the drm device.
1062  * @handle: Handle identifying the dumb buffer.
1063  *
1064  * This is a driver callback for the core drm dumb_destroy functionality.
1065  */
1066 int vmw_dumb_destroy(struct drm_file *file_priv,
1067 		     struct drm_device *dev,
1068 		     uint32_t handle)
1069 {
1070 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1071 					 handle, TTM_REF_USAGE);
1072 }
1073 
1074 /**
1075  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1076  *
1077  * @res:            The resource for which to allocate a backup buffer.
1078  * @interruptible:  Whether any sleeps during allocation should be
1079  *                  performed while interruptible.
1080  */
1081 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1082 				  bool interruptible)
1083 {
1084 	unsigned long size =
1085 		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1086 	struct vmw_dma_buffer *backup;
1087 	int ret;
1088 
1089 	if (likely(res->backup)) {
1090 		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1091 		return 0;
1092 	}
1093 
1094 	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1095 	if (unlikely(backup == NULL))
1096 		return -ENOMEM;
1097 
1098 	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1099 			      res->func->backup_placement,
1100 			      interruptible,
1101 			      &vmw_dmabuf_bo_free);
1102 	if (unlikely(ret != 0))
1103 		goto out_no_dmabuf;
1104 
1105 	res->backup = backup;
1106 
1107 out_no_dmabuf:
1108 	return ret;
1109 }
1110 
1111 /**
1112  * vmw_resource_do_validate - Make a resource up-to-date and visible
1113  *                            to the device.
1114  *
1115  * @res:            The resource to make visible to the device.
1116  * @val_buf:        Information about a buffer possibly
1117  *                  containing backup data if a bind operation is needed.
1118  *
1119  * On hardware resource shortage, this function returns -EBUSY and
1120  * should be retried once resources have been freed up.
1121  */
1122 static int vmw_resource_do_validate(struct vmw_resource *res,
1123 				    struct ttm_validate_buffer *val_buf)
1124 {
1125 	int ret = 0;
1126 	const struct vmw_res_func *func = res->func;
1127 
1128 	if (unlikely(res->id == -1)) {
1129 		ret = func->create(res);
1130 		if (unlikely(ret != 0))
1131 			return ret;
1132 	}
1133 
1134 	if (func->bind &&
1135 	    ((func->needs_backup && list_empty(&res->mob_head) &&
1136 	      val_buf->bo != NULL) ||
1137 	     (!func->needs_backup && val_buf->bo != NULL))) {
1138 		ret = func->bind(res, val_buf);
1139 		if (unlikely(ret != 0))
1140 			goto out_bind_failed;
1141 		if (func->needs_backup)
1142 			list_add_tail(&res->mob_head, &res->backup->res_list);
1143 	}
1144 
1145 	/*
1146 	 * Only do this on write operations, and move to
1147 	 * vmw_resource_unreserve if it can be called after
1148 	 * backup buffers have been unreserved. Otherwise
1149 	 * sort out locking.
1150 	 */
1151 	res->res_dirty = true;
1152 
1153 	return 0;
1154 
1155 out_bind_failed:
1156 	func->destroy(res);
1157 
1158 	return ret;
1159 }
1160 
1161 /**
1162  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1163  * command submission.
1164  *
1165  * @res:               Pointer to the struct vmw_resource to unreserve.
1166  * @switch_backup:     Backup buffer has been switched.
1167  * @new_backup:        Pointer to new backup buffer if command submission
1168  *                     switched. May be NULL.
1169  * @new_backup_offset: New backup offset if @switch_backup is true.
1170  *
1171  * Currently unreserving a resource means putting it back on the device's
1172  * resource lru list, so that it can be evicted if necessary.
1173  */
1174 void vmw_resource_unreserve(struct vmw_resource *res,
1175 			    bool switch_backup,
1176 			    struct vmw_dma_buffer *new_backup,
1177 			    unsigned long new_backup_offset)
1178 {
1179 	struct vmw_private *dev_priv = res->dev_priv;
1180 
1181 	if (!list_empty(&res->lru_head))
1182 		return;
1183 
1184 	if (switch_backup && new_backup != res->backup) {
1185 		if (res->backup) {
1186 			lockdep_assert_held(&res->backup->base.resv->lock.base);
1187 			list_del_init(&res->mob_head);
1188 			vmw_dmabuf_unreference(&res->backup);
1189 		}
1190 
1191 		if (new_backup) {
1192 			res->backup = vmw_dmabuf_reference(new_backup);
1193 			lockdep_assert_held(&new_backup->base.resv->lock.base);
1194 			list_add_tail(&res->mob_head, &new_backup->res_list);
1195 		} else {
1196 			res->backup = NULL;
1197 		}
1198 	}
1199 	if (switch_backup)
1200 		res->backup_offset = new_backup_offset;
1201 
1202 	if (!res->func->may_evict || res->id == -1 || res->pin_count)
1203 		return;
1204 
1205 	write_lock(&dev_priv->resource_lock);
1206 	list_add_tail(&res->lru_head,
1207 		      &res->dev_priv->res_lru[res->func->res_type]);
1208 	write_unlock(&dev_priv->resource_lock);
1209 }
1210 
1211 /**
1212  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1213  *                             for a resource and in that case, allocate
1214  *                             one, reserve and validate it.
1215  *
1216  * @res:            The resource for which to allocate a backup buffer.
1217  * @interruptible:  Whether any sleeps during allocation should be
1218  *                  performed while interruptible.
1219  * @val_buf:        On successful return contains data about the
1220  *                  reserved and validated backup buffer.
1221  */
1222 static int
1223 vmw_resource_check_buffer(struct vmw_resource *res,
1224 			  bool interruptible,
1225 			  struct ttm_validate_buffer *val_buf)
1226 {
1227 	struct list_head val_list;
1228 	bool backup_dirty = false;
1229 	int ret;
1230 
1231 	if (unlikely(res->backup == NULL)) {
1232 		ret = vmw_resource_buf_alloc(res, interruptible);
1233 		if (unlikely(ret != 0))
1234 			return ret;
1235 	}
1236 
1237 	INIT_LIST_HEAD(&val_list);
1238 	val_buf->bo = ttm_bo_reference(&res->backup->base);
1239 	val_buf->shared = false;
1240 	list_add_tail(&val_buf->head, &val_list);
1241 	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1242 	if (unlikely(ret != 0))
1243 		goto out_no_reserve;
1244 
1245 	if (res->func->needs_backup && list_empty(&res->mob_head))
1246 		return 0;
1247 
1248 	backup_dirty = res->backup_dirty;
1249 	ret = ttm_bo_validate(&res->backup->base,
1250 			      res->func->backup_placement,
1251 			      true, false);
1252 
1253 	if (unlikely(ret != 0))
1254 		goto out_no_validate;
1255 
1256 	return 0;
1257 
1258 out_no_validate:
1259 	ttm_eu_backoff_reservation(NULL, &val_list);
1260 out_no_reserve:
1261 	ttm_bo_unref(&val_buf->bo);
1262 	if (backup_dirty)
1263 		vmw_dmabuf_unreference(&res->backup);
1264 
1265 	return ret;
1266 }
1267 
1268 /**
1269  * vmw_resource_reserve - Reserve a resource for command submission
1270  *
1271  * @res:            The resource to reserve.
1272  *
1273  * This function takes the resource off the LRU list and make sure
1274  * a backup buffer is present for guest-backed resources. However,
1275  * the buffer may not be bound to the resource at this point.
1276  *
1277  */
1278 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1279 			 bool no_backup)
1280 {
1281 	struct vmw_private *dev_priv = res->dev_priv;
1282 	int ret;
1283 
1284 	write_lock(&dev_priv->resource_lock);
1285 	list_del_init(&res->lru_head);
1286 	write_unlock(&dev_priv->resource_lock);
1287 
1288 	if (res->func->needs_backup && res->backup == NULL &&
1289 	    !no_backup) {
1290 		ret = vmw_resource_buf_alloc(res, interruptible);
1291 		if (unlikely(ret != 0)) {
1292 			DRM_ERROR("Failed to allocate a backup buffer "
1293 				  "of size %lu. bytes\n",
1294 				  (unsigned long) res->backup_size);
1295 			return ret;
1296 		}
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * vmw_resource_backoff_reservation - Unreserve and unreference a
1304  *                                    backup buffer
1305  *.
1306  * @val_buf:        Backup buffer information.
1307  */
1308 static void
1309 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1310 {
1311 	struct list_head val_list;
1312 
1313 	if (likely(val_buf->bo == NULL))
1314 		return;
1315 
1316 	INIT_LIST_HEAD(&val_list);
1317 	list_add_tail(&val_buf->head, &val_list);
1318 	ttm_eu_backoff_reservation(NULL, &val_list);
1319 	ttm_bo_unref(&val_buf->bo);
1320 }
1321 
1322 /**
1323  * vmw_resource_do_evict - Evict a resource, and transfer its data
1324  *                         to a backup buffer.
1325  *
1326  * @res:            The resource to evict.
1327  * @interruptible:  Whether to wait interruptible.
1328  */
1329 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1330 {
1331 	struct ttm_validate_buffer val_buf;
1332 	const struct vmw_res_func *func = res->func;
1333 	int ret;
1334 
1335 	BUG_ON(!func->may_evict);
1336 
1337 	val_buf.bo = NULL;
1338 	val_buf.shared = false;
1339 	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1340 	if (unlikely(ret != 0))
1341 		return ret;
1342 
1343 	if (unlikely(func->unbind != NULL &&
1344 		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1345 		ret = func->unbind(res, res->res_dirty, &val_buf);
1346 		if (unlikely(ret != 0))
1347 			goto out_no_unbind;
1348 		list_del_init(&res->mob_head);
1349 	}
1350 	ret = func->destroy(res);
1351 	res->backup_dirty = true;
1352 	res->res_dirty = false;
1353 out_no_unbind:
1354 	vmw_resource_backoff_reservation(&val_buf);
1355 
1356 	return ret;
1357 }
1358 
1359 
1360 /**
1361  * vmw_resource_validate - Make a resource up-to-date and visible
1362  *                         to the device.
1363  *
1364  * @res:            The resource to make visible to the device.
1365  *
1366  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1367  * be reserved and validated.
1368  * On hardware resource shortage, this function will repeatedly evict
1369  * resources of the same type until the validation succeeds.
1370  */
1371 int vmw_resource_validate(struct vmw_resource *res)
1372 {
1373 	int ret;
1374 	struct vmw_resource *evict_res;
1375 	struct vmw_private *dev_priv = res->dev_priv;
1376 	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1377 	struct ttm_validate_buffer val_buf;
1378 	unsigned err_count = 0;
1379 
1380 	if (!res->func->create)
1381 		return 0;
1382 
1383 	val_buf.bo = NULL;
1384 	val_buf.shared = false;
1385 	if (res->backup)
1386 		val_buf.bo = &res->backup->base;
1387 	do {
1388 		ret = vmw_resource_do_validate(res, &val_buf);
1389 		if (likely(ret != -EBUSY))
1390 			break;
1391 
1392 		write_lock(&dev_priv->resource_lock);
1393 		if (list_empty(lru_list) || !res->func->may_evict) {
1394 			DRM_ERROR("Out of device device resources "
1395 				  "for %s.\n", res->func->type_name);
1396 			ret = -EBUSY;
1397 			write_unlock(&dev_priv->resource_lock);
1398 			break;
1399 		}
1400 
1401 		evict_res = vmw_resource_reference
1402 			(list_first_entry(lru_list, struct vmw_resource,
1403 					  lru_head));
1404 		list_del_init(&evict_res->lru_head);
1405 
1406 		write_unlock(&dev_priv->resource_lock);
1407 
1408 		ret = vmw_resource_do_evict(evict_res, true);
1409 		if (unlikely(ret != 0)) {
1410 			write_lock(&dev_priv->resource_lock);
1411 			list_add_tail(&evict_res->lru_head, lru_list);
1412 			write_unlock(&dev_priv->resource_lock);
1413 			if (ret == -ERESTARTSYS ||
1414 			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1415 				vmw_resource_unreference(&evict_res);
1416 				goto out_no_validate;
1417 			}
1418 		}
1419 
1420 		vmw_resource_unreference(&evict_res);
1421 	} while (1);
1422 
1423 	if (unlikely(ret != 0))
1424 		goto out_no_validate;
1425 	else if (!res->func->needs_backup && res->backup) {
1426 		list_del_init(&res->mob_head);
1427 		vmw_dmabuf_unreference(&res->backup);
1428 	}
1429 
1430 	return 0;
1431 
1432 out_no_validate:
1433 	return ret;
1434 }
1435 
1436 /**
1437  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1438  *                       object without unreserving it.
1439  *
1440  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1441  * @fence:          Pointer to the fence. If NULL, this function will
1442  *                  insert a fence into the command stream..
1443  *
1444  * Contrary to the ttm_eu version of this function, it takes only
1445  * a single buffer object instead of a list, and it also doesn't
1446  * unreserve the buffer object, which needs to be done separately.
1447  */
1448 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1449 			 struct vmw_fence_obj *fence)
1450 {
1451 	struct ttm_bo_device *bdev = bo->bdev;
1452 
1453 	struct vmw_private *dev_priv =
1454 		container_of(bdev, struct vmw_private, bdev);
1455 
1456 	if (fence == NULL) {
1457 		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1458 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1459 		fence_put(&fence->base);
1460 	} else
1461 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1462 }
1463 
1464 /**
1465  * vmw_resource_move_notify - TTM move_notify_callback
1466  *
1467  * @bo: The TTM buffer object about to move.
1468  * @mem: The struct ttm_mem_reg indicating to what memory
1469  *       region the move is taking place.
1470  *
1471  * Evicts the Guest Backed hardware resource if the backup
1472  * buffer is being moved out of MOB memory.
1473  * Note that this function should not race with the resource
1474  * validation code as long as it accesses only members of struct
1475  * resource that remain static while bo::res is !NULL and
1476  * while we have @bo reserved. struct resource::backup is *not* a
1477  * static member. The resource validation code will take care
1478  * to set @bo::res to NULL, while having @bo reserved when the
1479  * buffer is no longer bound to the resource, so @bo:res can be
1480  * used to determine whether there is a need to unbind and whether
1481  * it is safe to unbind.
1482  */
1483 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1484 			      struct ttm_mem_reg *mem)
1485 {
1486 	struct vmw_dma_buffer *dma_buf;
1487 
1488 	if (mem == NULL)
1489 		return;
1490 
1491 	if (bo->destroy != vmw_dmabuf_bo_free &&
1492 	    bo->destroy != vmw_user_dmabuf_destroy)
1493 		return;
1494 
1495 	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1496 
1497 	if (mem->mem_type != VMW_PL_MOB) {
1498 		struct vmw_resource *res, *n;
1499 		struct ttm_validate_buffer val_buf;
1500 
1501 		val_buf.bo = bo;
1502 		val_buf.shared = false;
1503 
1504 		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1505 
1506 			if (unlikely(res->func->unbind == NULL))
1507 				continue;
1508 
1509 			(void) res->func->unbind(res, true, &val_buf);
1510 			res->backup_dirty = true;
1511 			res->res_dirty = false;
1512 			list_del_init(&res->mob_head);
1513 		}
1514 
1515 		(void) ttm_bo_wait(bo, false, false);
1516 	}
1517 }
1518 
1519 
1520 
1521 /**
1522  * vmw_query_readback_all - Read back cached query states
1523  *
1524  * @dx_query_mob: Buffer containing the DX query MOB
1525  *
1526  * Read back cached states from the device if they exist.  This function
1527  * assumings binding_mutex is held.
1528  */
1529 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1530 {
1531 	struct vmw_resource *dx_query_ctx;
1532 	struct vmw_private *dev_priv;
1533 	struct {
1534 		SVGA3dCmdHeader header;
1535 		SVGA3dCmdDXReadbackAllQuery body;
1536 	} *cmd;
1537 
1538 
1539 	/* No query bound, so do nothing */
1540 	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1541 		return 0;
1542 
1543 	dx_query_ctx = dx_query_mob->dx_query_ctx;
1544 	dev_priv     = dx_query_ctx->dev_priv;
1545 
1546 	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1547 	if (unlikely(cmd == NULL)) {
1548 		DRM_ERROR("Failed reserving FIFO space for "
1549 			  "query MOB read back.\n");
1550 		return -ENOMEM;
1551 	}
1552 
1553 	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1554 	cmd->header.size = sizeof(cmd->body);
1555 	cmd->body.cid    = dx_query_ctx->id;
1556 
1557 	vmw_fifo_commit(dev_priv, sizeof(*cmd));
1558 
1559 	/* Triggers a rebind the next time affected context is bound */
1560 	dx_query_mob->dx_query_ctx = NULL;
1561 
1562 	return 0;
1563 }
1564 
1565 
1566 
1567 /**
1568  * vmw_query_move_notify - Read back cached query states
1569  *
1570  * @bo: The TTM buffer object about to move.
1571  * @mem: The memory region @bo is moving to.
1572  *
1573  * Called before the query MOB is swapped out to read back cached query
1574  * states from the device.
1575  */
1576 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1577 			   struct ttm_mem_reg *mem)
1578 {
1579 	struct vmw_dma_buffer *dx_query_mob;
1580 	struct ttm_bo_device *bdev = bo->bdev;
1581 	struct vmw_private *dev_priv;
1582 
1583 
1584 	dev_priv = container_of(bdev, struct vmw_private, bdev);
1585 
1586 	mutex_lock(&dev_priv->binding_mutex);
1587 
1588 	dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1589 	if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1590 		mutex_unlock(&dev_priv->binding_mutex);
1591 		return;
1592 	}
1593 
1594 	/* If BO is being moved from MOB to system memory */
1595 	if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1596 		struct vmw_fence_obj *fence;
1597 
1598 		(void) vmw_query_readback_all(dx_query_mob);
1599 		mutex_unlock(&dev_priv->binding_mutex);
1600 
1601 		/* Create a fence and attach the BO to it */
1602 		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1603 		vmw_fence_single_bo(bo, fence);
1604 
1605 		if (fence != NULL)
1606 			vmw_fence_obj_unreference(&fence);
1607 
1608 		(void) ttm_bo_wait(bo, false, false);
1609 	} else
1610 		mutex_unlock(&dev_priv->binding_mutex);
1611 
1612 }
1613 
1614 /**
1615  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1616  *
1617  * @res:            The resource being queried.
1618  */
1619 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1620 {
1621 	return res->func->needs_backup;
1622 }
1623 
1624 /**
1625  * vmw_resource_evict_type - Evict all resources of a specific type
1626  *
1627  * @dev_priv:       Pointer to a device private struct
1628  * @type:           The resource type to evict
1629  *
1630  * To avoid thrashing starvation or as part of the hibernation sequence,
1631  * try to evict all evictable resources of a specific type.
1632  */
1633 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1634 				    enum vmw_res_type type)
1635 {
1636 	struct list_head *lru_list = &dev_priv->res_lru[type];
1637 	struct vmw_resource *evict_res;
1638 	unsigned err_count = 0;
1639 	int ret;
1640 
1641 	do {
1642 		write_lock(&dev_priv->resource_lock);
1643 
1644 		if (list_empty(lru_list))
1645 			goto out_unlock;
1646 
1647 		evict_res = vmw_resource_reference(
1648 			list_first_entry(lru_list, struct vmw_resource,
1649 					 lru_head));
1650 		list_del_init(&evict_res->lru_head);
1651 		write_unlock(&dev_priv->resource_lock);
1652 
1653 		ret = vmw_resource_do_evict(evict_res, false);
1654 		if (unlikely(ret != 0)) {
1655 			write_lock(&dev_priv->resource_lock);
1656 			list_add_tail(&evict_res->lru_head, lru_list);
1657 			write_unlock(&dev_priv->resource_lock);
1658 			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1659 				vmw_resource_unreference(&evict_res);
1660 				return;
1661 			}
1662 		}
1663 
1664 		vmw_resource_unreference(&evict_res);
1665 	} while (1);
1666 
1667 out_unlock:
1668 	write_unlock(&dev_priv->resource_lock);
1669 }
1670 
1671 /**
1672  * vmw_resource_evict_all - Evict all evictable resources
1673  *
1674  * @dev_priv:       Pointer to a device private struct
1675  *
1676  * To avoid thrashing starvation or as part of the hibernation sequence,
1677  * evict all evictable resources. In particular this means that all
1678  * guest-backed resources that are registered with the device are
1679  * evicted and the OTable becomes clean.
1680  */
1681 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1682 {
1683 	enum vmw_res_type type;
1684 
1685 	mutex_lock(&dev_priv->cmdbuf_mutex);
1686 
1687 	for (type = 0; type < vmw_res_max; ++type)
1688 		vmw_resource_evict_type(dev_priv, type);
1689 
1690 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1691 }
1692 
1693 /**
1694  * vmw_resource_pin - Add a pin reference on a resource
1695  *
1696  * @res: The resource to add a pin reference on
1697  *
1698  * This function adds a pin reference, and if needed validates the resource.
1699  * Having a pin reference means that the resource can never be evicted, and
1700  * its id will never change as long as there is a pin reference.
1701  * This function returns 0 on success and a negative error code on failure.
1702  */
1703 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1704 {
1705 	struct vmw_private *dev_priv = res->dev_priv;
1706 	int ret;
1707 
1708 	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1709 	mutex_lock(&dev_priv->cmdbuf_mutex);
1710 	ret = vmw_resource_reserve(res, interruptible, false);
1711 	if (ret)
1712 		goto out_no_reserve;
1713 
1714 	if (res->pin_count == 0) {
1715 		struct vmw_dma_buffer *vbo = NULL;
1716 
1717 		if (res->backup) {
1718 			vbo = res->backup;
1719 
1720 			ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1721 			if (!vbo->pin_count) {
1722 				ret = ttm_bo_validate
1723 					(&vbo->base,
1724 					 res->func->backup_placement,
1725 					 interruptible, false);
1726 				if (ret) {
1727 					ttm_bo_unreserve(&vbo->base);
1728 					goto out_no_validate;
1729 				}
1730 			}
1731 
1732 			/* Do we really need to pin the MOB as well? */
1733 			vmw_bo_pin_reserved(vbo, true);
1734 		}
1735 		ret = vmw_resource_validate(res);
1736 		if (vbo)
1737 			ttm_bo_unreserve(&vbo->base);
1738 		if (ret)
1739 			goto out_no_validate;
1740 	}
1741 	res->pin_count++;
1742 
1743 out_no_validate:
1744 	vmw_resource_unreserve(res, false, NULL, 0UL);
1745 out_no_reserve:
1746 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1747 	ttm_write_unlock(&dev_priv->reservation_sem);
1748 
1749 	return ret;
1750 }
1751 
1752 /**
1753  * vmw_resource_unpin - Remove a pin reference from a resource
1754  *
1755  * @res: The resource to remove a pin reference from
1756  *
1757  * Having a pin reference means that the resource can never be evicted, and
1758  * its id will never change as long as there is a pin reference.
1759  */
1760 void vmw_resource_unpin(struct vmw_resource *res)
1761 {
1762 	struct vmw_private *dev_priv = res->dev_priv;
1763 	int ret;
1764 
1765 	ttm_read_lock(&dev_priv->reservation_sem, false);
1766 	mutex_lock(&dev_priv->cmdbuf_mutex);
1767 
1768 	ret = vmw_resource_reserve(res, false, true);
1769 	WARN_ON(ret);
1770 
1771 	WARN_ON(res->pin_count == 0);
1772 	if (--res->pin_count == 0 && res->backup) {
1773 		struct vmw_dma_buffer *vbo = res->backup;
1774 
1775 		ttm_bo_reserve(&vbo->base, false, false, NULL);
1776 		vmw_bo_pin_reserved(vbo, false);
1777 		ttm_bo_unreserve(&vbo->base);
1778 	}
1779 
1780 	vmw_resource_unreserve(res, false, NULL, 0UL);
1781 
1782 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1783 	ttm_read_unlock(&dev_priv->reservation_sem);
1784 }
1785 
1786 /**
1787  * vmw_res_type - Return the resource type
1788  *
1789  * @res: Pointer to the resource
1790  */
1791 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1792 {
1793 	return res->func->res_type;
1794 }
1795