1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 35 /* Might need a hrtimer here? */ 36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 37 38 void vmw_du_cleanup(struct vmw_display_unit *du) 39 { 40 drm_plane_cleanup(&du->primary); 41 drm_plane_cleanup(&du->cursor); 42 43 drm_connector_unregister(&du->connector); 44 drm_crtc_cleanup(&du->crtc); 45 drm_encoder_cleanup(&du->encoder); 46 drm_connector_cleanup(&du->connector); 47 } 48 49 /* 50 * Display Unit Cursor functions 51 */ 52 53 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 54 u32 *image, u32 width, u32 height, 55 u32 hotspotX, u32 hotspotY) 56 { 57 struct { 58 u32 cmd; 59 SVGAFifoCmdDefineAlphaCursor cursor; 60 } *cmd; 61 u32 image_size = width * height * 4; 62 u32 cmd_size = sizeof(*cmd) + image_size; 63 64 if (!image) 65 return -EINVAL; 66 67 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 68 if (unlikely(cmd == NULL)) { 69 DRM_ERROR("Fifo reserve failed.\n"); 70 return -ENOMEM; 71 } 72 73 memset(cmd, 0, sizeof(*cmd)); 74 75 memcpy(&cmd[1], image, image_size); 76 77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 78 cmd->cursor.id = 0; 79 cmd->cursor.width = width; 80 cmd->cursor.height = height; 81 cmd->cursor.hotspotX = hotspotX; 82 cmd->cursor.hotspotY = hotspotY; 83 84 vmw_fifo_commit_flush(dev_priv, cmd_size); 85 86 return 0; 87 } 88 89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv, 90 struct vmw_dma_buffer *dmabuf, 91 u32 width, u32 height, 92 u32 hotspotX, u32 hotspotY) 93 { 94 struct ttm_bo_kmap_obj map; 95 unsigned long kmap_offset; 96 unsigned long kmap_num; 97 void *virtual; 98 bool dummy; 99 int ret; 100 101 kmap_offset = 0; 102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 103 104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL); 105 if (unlikely(ret != 0)) { 106 DRM_ERROR("reserve failed\n"); 107 return -EINVAL; 108 } 109 110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map); 111 if (unlikely(ret != 0)) 112 goto err_unreserve; 113 114 virtual = ttm_kmap_obj_virtual(&map, &dummy); 115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 116 hotspotX, hotspotY); 117 118 ttm_bo_kunmap(&map); 119 err_unreserve: 120 ttm_bo_unreserve(&dmabuf->base); 121 122 return ret; 123 } 124 125 126 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 127 bool show, int x, int y) 128 { 129 u32 *fifo_mem = dev_priv->mmio_virt; 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 138 spin_unlock(&dev_priv->cursor_lock); 139 } 140 141 142 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 143 struct ttm_object_file *tfile, 144 struct ttm_buffer_object *bo, 145 SVGA3dCmdHeader *header) 146 { 147 struct ttm_bo_kmap_obj map; 148 unsigned long kmap_offset; 149 unsigned long kmap_num; 150 SVGA3dCopyBox *box; 151 unsigned box_count; 152 void *virtual; 153 bool dummy; 154 struct vmw_dma_cmd { 155 SVGA3dCmdHeader header; 156 SVGA3dCmdSurfaceDMA dma; 157 } *cmd; 158 int i, ret; 159 160 cmd = container_of(header, struct vmw_dma_cmd, header); 161 162 /* No snooper installed */ 163 if (!srf->snooper.image) 164 return; 165 166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 167 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 168 return; 169 } 170 171 if (cmd->header.size < 64) { 172 DRM_ERROR("at least one full copy box must be given\n"); 173 return; 174 } 175 176 box = (SVGA3dCopyBox *)&cmd[1]; 177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 178 sizeof(SVGA3dCopyBox); 179 180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 181 box->x != 0 || box->y != 0 || box->z != 0 || 182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 183 box->d != 1 || box_count != 1) { 184 /* TODO handle none page aligned offsets */ 185 /* TODO handle more dst & src != 0 */ 186 /* TODO handle more then one copy */ 187 DRM_ERROR("Cant snoop dma request for cursor!\n"); 188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 189 box->srcx, box->srcy, box->srcz, 190 box->x, box->y, box->z, 191 box->w, box->h, box->d, box_count, 192 cmd->dma.guest.ptr.offset); 193 return; 194 } 195 196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 197 kmap_num = (64*64*4) >> PAGE_SHIFT; 198 199 ret = ttm_bo_reserve(bo, true, false, NULL); 200 if (unlikely(ret != 0)) { 201 DRM_ERROR("reserve failed\n"); 202 return; 203 } 204 205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 206 if (unlikely(ret != 0)) 207 goto err_unreserve; 208 209 virtual = ttm_kmap_obj_virtual(&map, &dummy); 210 211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 212 memcpy(srf->snooper.image, virtual, 64*64*4); 213 } else { 214 /* Image is unsigned pointer. */ 215 for (i = 0; i < box->h; i++) 216 memcpy(srf->snooper.image + i * 64, 217 virtual + i * cmd->dma.guest.pitch, 218 box->w * 4); 219 } 220 221 srf->snooper.age++; 222 223 ttm_bo_kunmap(&map); 224 err_unreserve: 225 ttm_bo_unreserve(bo); 226 } 227 228 /** 229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 230 * 231 * @dev_priv: Pointer to the device private struct. 232 * 233 * Clears all legacy hotspots. 234 */ 235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 236 { 237 struct drm_device *dev = dev_priv->dev; 238 struct vmw_display_unit *du; 239 struct drm_crtc *crtc; 240 241 drm_modeset_lock_all(dev); 242 drm_for_each_crtc(crtc, dev) { 243 du = vmw_crtc_to_du(crtc); 244 245 du->hotspot_x = 0; 246 du->hotspot_y = 0; 247 } 248 drm_modeset_unlock_all(dev); 249 } 250 251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 252 { 253 struct drm_device *dev = dev_priv->dev; 254 struct vmw_display_unit *du; 255 struct drm_crtc *crtc; 256 257 mutex_lock(&dev->mode_config.mutex); 258 259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 260 du = vmw_crtc_to_du(crtc); 261 if (!du->cursor_surface || 262 du->cursor_age == du->cursor_surface->snooper.age) 263 continue; 264 265 du->cursor_age = du->cursor_surface->snooper.age; 266 vmw_cursor_update_image(dev_priv, 267 du->cursor_surface->snooper.image, 268 64, 64, 269 du->hotspot_x + du->core_hotspot_x, 270 du->hotspot_y + du->core_hotspot_y); 271 } 272 273 mutex_unlock(&dev->mode_config.mutex); 274 } 275 276 277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 278 { 279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 280 281 drm_plane_cleanup(plane); 282 } 283 284 285 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 286 { 287 drm_plane_cleanup(plane); 288 289 /* Planes are static in our case so we don't free it */ 290 } 291 292 293 /** 294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 295 * 296 * @vps: plane state associated with the display surface 297 * @unreference: true if we also want to unreference the display. 298 */ 299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 300 bool unreference) 301 { 302 if (vps->surf) { 303 if (vps->pinned) { 304 vmw_resource_unpin(&vps->surf->res); 305 vps->pinned--; 306 } 307 308 if (unreference) { 309 if (vps->pinned) 310 DRM_ERROR("Surface still pinned\n"); 311 vmw_surface_unreference(&vps->surf); 312 } 313 } 314 } 315 316 317 /** 318 * vmw_du_plane_cleanup_fb - Unpins the cursor 319 * 320 * @plane: display plane 321 * @old_state: Contains the FB to clean up 322 * 323 * Unpins the framebuffer surface 324 * 325 * Returns 0 on success 326 */ 327 void 328 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 329 struct drm_plane_state *old_state) 330 { 331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 332 333 vmw_du_plane_unpin_surf(vps, false); 334 } 335 336 337 /** 338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 339 * 340 * @plane: display plane 341 * @new_state: info on the new plane state, including the FB 342 * 343 * Returns 0 on success 344 */ 345 int 346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 347 struct drm_plane_state *new_state) 348 { 349 struct drm_framebuffer *fb = new_state->fb; 350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 351 352 353 if (vps->surf) 354 vmw_surface_unreference(&vps->surf); 355 356 if (vps->dmabuf) 357 vmw_dmabuf_unreference(&vps->dmabuf); 358 359 if (fb) { 360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) { 361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer; 362 vmw_dmabuf_reference(vps->dmabuf); 363 } else { 364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 365 vmw_surface_reference(vps->surf); 366 } 367 } 368 369 return 0; 370 } 371 372 373 void 374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 375 struct drm_plane_state *old_state) 376 { 377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 378 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 381 s32 hotspot_x, hotspot_y; 382 int ret = 0; 383 384 385 hotspot_x = du->hotspot_x; 386 hotspot_y = du->hotspot_y; 387 388 if (plane->fb) { 389 hotspot_x += plane->fb->hot_x; 390 hotspot_y += plane->fb->hot_y; 391 } 392 393 du->cursor_surface = vps->surf; 394 du->cursor_dmabuf = vps->dmabuf; 395 396 /* setup new image */ 397 if (vps->surf) { 398 du->cursor_age = du->cursor_surface->snooper.age; 399 400 ret = vmw_cursor_update_image(dev_priv, 401 vps->surf->snooper.image, 402 64, 64, hotspot_x, hotspot_y); 403 } else if (vps->dmabuf) { 404 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf, 405 plane->state->crtc_w, 406 plane->state->crtc_h, 407 hotspot_x, hotspot_y); 408 } else { 409 vmw_cursor_update_position(dev_priv, false, 0, 0); 410 return; 411 } 412 413 if (!ret) { 414 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 415 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 416 417 vmw_cursor_update_position(dev_priv, true, 418 du->cursor_x + hotspot_x, 419 du->cursor_y + hotspot_y); 420 421 du->core_hotspot_x = hotspot_x - du->hotspot_x; 422 du->core_hotspot_y = hotspot_y - du->hotspot_y; 423 } else { 424 DRM_ERROR("Failed to update cursor image\n"); 425 } 426 } 427 428 429 /** 430 * vmw_du_primary_plane_atomic_check - check if the new state is okay 431 * 432 * @plane: display plane 433 * @state: info on the new plane state, including the FB 434 * 435 * Check if the new state is settable given the current state. Other 436 * than what the atomic helper checks, we care about crtc fitting 437 * the FB and maintaining one active framebuffer. 438 * 439 * Returns 0 on success 440 */ 441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 442 struct drm_plane_state *state) 443 { 444 struct drm_crtc_state *crtc_state = NULL; 445 struct drm_framebuffer *new_fb = state->fb; 446 struct drm_rect clip = {}; 447 int ret; 448 449 if (state->crtc) 450 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 451 452 if (crtc_state && crtc_state->enable) { 453 clip.x2 = crtc_state->adjusted_mode.hdisplay; 454 clip.y2 = crtc_state->adjusted_mode.vdisplay; 455 } 456 457 ret = drm_atomic_helper_check_plane_state(state, crtc_state, &clip, 458 DRM_PLANE_HELPER_NO_SCALING, 459 DRM_PLANE_HELPER_NO_SCALING, 460 false, true); 461 462 if (!ret && new_fb) { 463 struct drm_crtc *crtc = state->crtc; 464 struct vmw_connector_state *vcs; 465 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 466 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 467 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 468 469 vcs = vmw_connector_state_to_vcs(du->connector.state); 470 471 /* Only one active implicit framebuffer at a time. */ 472 mutex_lock(&dev_priv->global_kms_state_mutex); 473 if (vcs->is_implicit && dev_priv->implicit_fb && 474 !(dev_priv->num_implicit == 1 && du->active_implicit) 475 && dev_priv->implicit_fb != vfb) { 476 DRM_ERROR("Multiple implicit framebuffers " 477 "not supported.\n"); 478 ret = -EINVAL; 479 } 480 mutex_unlock(&dev_priv->global_kms_state_mutex); 481 } 482 483 484 return ret; 485 } 486 487 488 /** 489 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 490 * 491 * @plane: cursor plane 492 * @state: info on the new plane state 493 * 494 * This is a chance to fail if the new cursor state does not fit 495 * our requirements. 496 * 497 * Returns 0 on success 498 */ 499 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 500 struct drm_plane_state *new_state) 501 { 502 int ret = 0; 503 struct vmw_surface *surface = NULL; 504 struct drm_framebuffer *fb = new_state->fb; 505 506 507 /* Turning off */ 508 if (!fb) 509 return ret; 510 511 /* A lot of the code assumes this */ 512 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 513 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 514 new_state->crtc_w, new_state->crtc_h); 515 ret = -EINVAL; 516 } 517 518 if (!vmw_framebuffer_to_vfb(fb)->dmabuf) 519 surface = vmw_framebuffer_to_vfbs(fb)->surface; 520 521 if (surface && !surface->snooper.image) { 522 DRM_ERROR("surface not suitable for cursor\n"); 523 ret = -EINVAL; 524 } 525 526 return ret; 527 } 528 529 530 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 531 struct drm_crtc_state *new_state) 532 { 533 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 534 int connector_mask = 1 << drm_connector_index(&du->connector); 535 bool has_primary = new_state->plane_mask & 536 BIT(drm_plane_index(crtc->primary)); 537 538 /* We always want to have an active plane with an active CRTC */ 539 if (has_primary != new_state->enable) 540 return -EINVAL; 541 542 543 if (new_state->connector_mask != connector_mask && 544 new_state->connector_mask != 0) { 545 DRM_ERROR("Invalid connectors configuration\n"); 546 return -EINVAL; 547 } 548 549 /* 550 * Our virtual device does not have a dot clock, so use the logical 551 * clock value as the dot clock. 552 */ 553 if (new_state->mode.crtc_clock == 0) 554 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 555 556 return 0; 557 } 558 559 560 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 561 struct drm_crtc_state *old_crtc_state) 562 { 563 } 564 565 566 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 567 struct drm_crtc_state *old_crtc_state) 568 { 569 struct drm_pending_vblank_event *event = crtc->state->event; 570 571 if (event) { 572 crtc->state->event = NULL; 573 574 spin_lock_irq(&crtc->dev->event_lock); 575 if (drm_crtc_vblank_get(crtc) == 0) 576 drm_crtc_arm_vblank_event(crtc, event); 577 else 578 drm_crtc_send_vblank_event(crtc, event); 579 spin_unlock_irq(&crtc->dev->event_lock); 580 } 581 582 } 583 584 585 /** 586 * vmw_du_crtc_duplicate_state - duplicate crtc state 587 * @crtc: DRM crtc 588 * 589 * Allocates and returns a copy of the crtc state (both common and 590 * vmw-specific) for the specified crtc. 591 * 592 * Returns: The newly allocated crtc state, or NULL on failure. 593 */ 594 struct drm_crtc_state * 595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 596 { 597 struct drm_crtc_state *state; 598 struct vmw_crtc_state *vcs; 599 600 if (WARN_ON(!crtc->state)) 601 return NULL; 602 603 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 604 605 if (!vcs) 606 return NULL; 607 608 state = &vcs->base; 609 610 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 611 612 return state; 613 } 614 615 616 /** 617 * vmw_du_crtc_reset - creates a blank vmw crtc state 618 * @crtc: DRM crtc 619 * 620 * Resets the atomic state for @crtc by freeing the state pointer (which 621 * might be NULL, e.g. at driver load time) and allocating a new empty state 622 * object. 623 */ 624 void vmw_du_crtc_reset(struct drm_crtc *crtc) 625 { 626 struct vmw_crtc_state *vcs; 627 628 629 if (crtc->state) { 630 __drm_atomic_helper_crtc_destroy_state(crtc->state); 631 632 kfree(vmw_crtc_state_to_vcs(crtc->state)); 633 } 634 635 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 636 637 if (!vcs) { 638 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 639 return; 640 } 641 642 crtc->state = &vcs->base; 643 crtc->state->crtc = crtc; 644 } 645 646 647 /** 648 * vmw_du_crtc_destroy_state - destroy crtc state 649 * @crtc: DRM crtc 650 * @state: state object to destroy 651 * 652 * Destroys the crtc state (both common and vmw-specific) for the 653 * specified plane. 654 */ 655 void 656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 657 struct drm_crtc_state *state) 658 { 659 drm_atomic_helper_crtc_destroy_state(crtc, state); 660 } 661 662 663 /** 664 * vmw_du_plane_duplicate_state - duplicate plane state 665 * @plane: drm plane 666 * 667 * Allocates and returns a copy of the plane state (both common and 668 * vmw-specific) for the specified plane. 669 * 670 * Returns: The newly allocated plane state, or NULL on failure. 671 */ 672 struct drm_plane_state * 673 vmw_du_plane_duplicate_state(struct drm_plane *plane) 674 { 675 struct drm_plane_state *state; 676 struct vmw_plane_state *vps; 677 678 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 679 680 if (!vps) 681 return NULL; 682 683 vps->pinned = 0; 684 685 /* Mapping is managed by prepare_fb/cleanup_fb */ 686 memset(&vps->host_map, 0, sizeof(vps->host_map)); 687 vps->cpp = 0; 688 689 /* Each ref counted resource needs to be acquired again */ 690 if (vps->surf) 691 (void) vmw_surface_reference(vps->surf); 692 693 if (vps->dmabuf) 694 (void) vmw_dmabuf_reference(vps->dmabuf); 695 696 state = &vps->base; 697 698 __drm_atomic_helper_plane_duplicate_state(plane, state); 699 700 return state; 701 } 702 703 704 /** 705 * vmw_du_plane_reset - creates a blank vmw plane state 706 * @plane: drm plane 707 * 708 * Resets the atomic state for @plane by freeing the state pointer (which might 709 * be NULL, e.g. at driver load time) and allocating a new empty state object. 710 */ 711 void vmw_du_plane_reset(struct drm_plane *plane) 712 { 713 struct vmw_plane_state *vps; 714 715 716 if (plane->state) 717 vmw_du_plane_destroy_state(plane, plane->state); 718 719 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 720 721 if (!vps) { 722 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 723 return; 724 } 725 726 plane->state = &vps->base; 727 plane->state->plane = plane; 728 plane->state->rotation = DRM_MODE_ROTATE_0; 729 } 730 731 732 /** 733 * vmw_du_plane_destroy_state - destroy plane state 734 * @plane: DRM plane 735 * @state: state object to destroy 736 * 737 * Destroys the plane state (both common and vmw-specific) for the 738 * specified plane. 739 */ 740 void 741 vmw_du_plane_destroy_state(struct drm_plane *plane, 742 struct drm_plane_state *state) 743 { 744 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 745 746 747 /* Should have been freed by cleanup_fb */ 748 if (vps->host_map.virtual) { 749 DRM_ERROR("Host mapping not freed\n"); 750 ttm_bo_kunmap(&vps->host_map); 751 } 752 753 if (vps->surf) 754 vmw_surface_unreference(&vps->surf); 755 756 if (vps->dmabuf) 757 vmw_dmabuf_unreference(&vps->dmabuf); 758 759 drm_atomic_helper_plane_destroy_state(plane, state); 760 } 761 762 763 /** 764 * vmw_du_connector_duplicate_state - duplicate connector state 765 * @connector: DRM connector 766 * 767 * Allocates and returns a copy of the connector state (both common and 768 * vmw-specific) for the specified connector. 769 * 770 * Returns: The newly allocated connector state, or NULL on failure. 771 */ 772 struct drm_connector_state * 773 vmw_du_connector_duplicate_state(struct drm_connector *connector) 774 { 775 struct drm_connector_state *state; 776 struct vmw_connector_state *vcs; 777 778 if (WARN_ON(!connector->state)) 779 return NULL; 780 781 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 782 783 if (!vcs) 784 return NULL; 785 786 state = &vcs->base; 787 788 __drm_atomic_helper_connector_duplicate_state(connector, state); 789 790 return state; 791 } 792 793 794 /** 795 * vmw_du_connector_reset - creates a blank vmw connector state 796 * @connector: DRM connector 797 * 798 * Resets the atomic state for @connector by freeing the state pointer (which 799 * might be NULL, e.g. at driver load time) and allocating a new empty state 800 * object. 801 */ 802 void vmw_du_connector_reset(struct drm_connector *connector) 803 { 804 struct vmw_connector_state *vcs; 805 806 807 if (connector->state) { 808 __drm_atomic_helper_connector_destroy_state(connector->state); 809 810 kfree(vmw_connector_state_to_vcs(connector->state)); 811 } 812 813 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 814 815 if (!vcs) { 816 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 817 return; 818 } 819 820 __drm_atomic_helper_connector_reset(connector, &vcs->base); 821 } 822 823 824 /** 825 * vmw_du_connector_destroy_state - destroy connector state 826 * @connector: DRM connector 827 * @state: state object to destroy 828 * 829 * Destroys the connector state (both common and vmw-specific) for the 830 * specified plane. 831 */ 832 void 833 vmw_du_connector_destroy_state(struct drm_connector *connector, 834 struct drm_connector_state *state) 835 { 836 drm_atomic_helper_connector_destroy_state(connector, state); 837 } 838 /* 839 * Generic framebuffer code 840 */ 841 842 /* 843 * Surface framebuffer code 844 */ 845 846 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 847 { 848 struct vmw_framebuffer_surface *vfbs = 849 vmw_framebuffer_to_vfbs(framebuffer); 850 851 drm_framebuffer_cleanup(framebuffer); 852 vmw_surface_unreference(&vfbs->surface); 853 if (vfbs->base.user_obj) 854 ttm_base_object_unref(&vfbs->base.user_obj); 855 856 kfree(vfbs); 857 } 858 859 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 860 struct drm_file *file_priv, 861 unsigned flags, unsigned color, 862 struct drm_clip_rect *clips, 863 unsigned num_clips) 864 { 865 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 866 struct vmw_framebuffer_surface *vfbs = 867 vmw_framebuffer_to_vfbs(framebuffer); 868 struct drm_clip_rect norect; 869 int ret, inc = 1; 870 871 /* Legacy Display Unit does not support 3D */ 872 if (dev_priv->active_display_unit == vmw_du_legacy) 873 return -EINVAL; 874 875 drm_modeset_lock_all(dev_priv->dev); 876 877 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 878 if (unlikely(ret != 0)) { 879 drm_modeset_unlock_all(dev_priv->dev); 880 return ret; 881 } 882 883 if (!num_clips) { 884 num_clips = 1; 885 clips = &norect; 886 norect.x1 = norect.y1 = 0; 887 norect.x2 = framebuffer->width; 888 norect.y2 = framebuffer->height; 889 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 890 num_clips /= 2; 891 inc = 2; /* skip source rects */ 892 } 893 894 if (dev_priv->active_display_unit == vmw_du_screen_object) 895 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 896 clips, NULL, NULL, 0, 0, 897 num_clips, inc, NULL); 898 else 899 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 900 clips, NULL, NULL, 0, 0, 901 num_clips, inc, NULL); 902 903 vmw_fifo_flush(dev_priv, false); 904 ttm_read_unlock(&dev_priv->reservation_sem); 905 906 drm_modeset_unlock_all(dev_priv->dev); 907 908 return 0; 909 } 910 911 /** 912 * vmw_kms_readback - Perform a readback from the screen system to 913 * a dma-buffer backed framebuffer. 914 * 915 * @dev_priv: Pointer to the device private structure. 916 * @file_priv: Pointer to a struct drm_file identifying the caller. 917 * Must be set to NULL if @user_fence_rep is NULL. 918 * @vfb: Pointer to the dma-buffer backed framebuffer. 919 * @user_fence_rep: User-space provided structure for fence information. 920 * Must be set to non-NULL if @file_priv is non-NULL. 921 * @vclips: Array of clip rects. 922 * @num_clips: Number of clip rects in @vclips. 923 * 924 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 925 * interrupted. 926 */ 927 int vmw_kms_readback(struct vmw_private *dev_priv, 928 struct drm_file *file_priv, 929 struct vmw_framebuffer *vfb, 930 struct drm_vmw_fence_rep __user *user_fence_rep, 931 struct drm_vmw_rect *vclips, 932 uint32_t num_clips) 933 { 934 switch (dev_priv->active_display_unit) { 935 case vmw_du_screen_object: 936 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 937 user_fence_rep, vclips, num_clips); 938 case vmw_du_screen_target: 939 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 940 user_fence_rep, NULL, vclips, num_clips, 941 1, false, true); 942 default: 943 WARN_ONCE(true, 944 "Readback called with invalid display system.\n"); 945 } 946 947 return -ENOSYS; 948 } 949 950 951 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 952 .destroy = vmw_framebuffer_surface_destroy, 953 .dirty = vmw_framebuffer_surface_dirty, 954 }; 955 956 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 957 struct vmw_surface *surface, 958 struct vmw_framebuffer **out, 959 const struct drm_mode_fb_cmd2 960 *mode_cmd, 961 bool is_dmabuf_proxy) 962 963 { 964 struct drm_device *dev = dev_priv->dev; 965 struct vmw_framebuffer_surface *vfbs; 966 enum SVGA3dSurfaceFormat format; 967 int ret; 968 struct drm_format_name_buf format_name; 969 970 /* 3D is only supported on HWv8 and newer hosts */ 971 if (dev_priv->active_display_unit == vmw_du_legacy) 972 return -ENOSYS; 973 974 /* 975 * Sanity checks. 976 */ 977 978 /* Surface must be marked as a scanout. */ 979 if (unlikely(!surface->scanout)) 980 return -EINVAL; 981 982 if (unlikely(surface->mip_levels[0] != 1 || 983 surface->num_sizes != 1 || 984 surface->base_size.width < mode_cmd->width || 985 surface->base_size.height < mode_cmd->height || 986 surface->base_size.depth != 1)) { 987 DRM_ERROR("Incompatible surface dimensions " 988 "for requested mode.\n"); 989 return -EINVAL; 990 } 991 992 switch (mode_cmd->pixel_format) { 993 case DRM_FORMAT_ARGB8888: 994 format = SVGA3D_A8R8G8B8; 995 break; 996 case DRM_FORMAT_XRGB8888: 997 format = SVGA3D_X8R8G8B8; 998 break; 999 case DRM_FORMAT_RGB565: 1000 format = SVGA3D_R5G6B5; 1001 break; 1002 case DRM_FORMAT_XRGB1555: 1003 format = SVGA3D_A1R5G5B5; 1004 break; 1005 default: 1006 DRM_ERROR("Invalid pixel format: %s\n", 1007 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1008 return -EINVAL; 1009 } 1010 1011 /* 1012 * For DX, surface format validation is done when surface->scanout 1013 * is set. 1014 */ 1015 if (!dev_priv->has_dx && format != surface->format) { 1016 DRM_ERROR("Invalid surface format for requested mode.\n"); 1017 return -EINVAL; 1018 } 1019 1020 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1021 if (!vfbs) { 1022 ret = -ENOMEM; 1023 goto out_err1; 1024 } 1025 1026 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1027 vfbs->surface = vmw_surface_reference(surface); 1028 vfbs->base.user_handle = mode_cmd->handles[0]; 1029 vfbs->is_dmabuf_proxy = is_dmabuf_proxy; 1030 1031 *out = &vfbs->base; 1032 1033 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1034 &vmw_framebuffer_surface_funcs); 1035 if (ret) 1036 goto out_err2; 1037 1038 return 0; 1039 1040 out_err2: 1041 vmw_surface_unreference(&surface); 1042 kfree(vfbs); 1043 out_err1: 1044 return ret; 1045 } 1046 1047 /* 1048 * Dmabuf framebuffer code 1049 */ 1050 1051 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer) 1052 { 1053 struct vmw_framebuffer_dmabuf *vfbd = 1054 vmw_framebuffer_to_vfbd(framebuffer); 1055 1056 drm_framebuffer_cleanup(framebuffer); 1057 vmw_dmabuf_unreference(&vfbd->buffer); 1058 if (vfbd->base.user_obj) 1059 ttm_base_object_unref(&vfbd->base.user_obj); 1060 1061 kfree(vfbd); 1062 } 1063 1064 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer, 1065 struct drm_file *file_priv, 1066 unsigned flags, unsigned color, 1067 struct drm_clip_rect *clips, 1068 unsigned num_clips) 1069 { 1070 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1071 struct vmw_framebuffer_dmabuf *vfbd = 1072 vmw_framebuffer_to_vfbd(framebuffer); 1073 struct drm_clip_rect norect; 1074 int ret, increment = 1; 1075 1076 drm_modeset_lock_all(dev_priv->dev); 1077 1078 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1079 if (unlikely(ret != 0)) { 1080 drm_modeset_unlock_all(dev_priv->dev); 1081 return ret; 1082 } 1083 1084 if (!num_clips) { 1085 num_clips = 1; 1086 clips = &norect; 1087 norect.x1 = norect.y1 = 0; 1088 norect.x2 = framebuffer->width; 1089 norect.y2 = framebuffer->height; 1090 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1091 num_clips /= 2; 1092 increment = 2; 1093 } 1094 1095 switch (dev_priv->active_display_unit) { 1096 case vmw_du_screen_target: 1097 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1098 clips, NULL, num_clips, increment, 1099 true, true); 1100 break; 1101 case vmw_du_screen_object: 1102 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base, 1103 clips, NULL, num_clips, 1104 increment, true, NULL); 1105 break; 1106 case vmw_du_legacy: 1107 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0, 1108 clips, num_clips, increment); 1109 break; 1110 default: 1111 ret = -EINVAL; 1112 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1113 break; 1114 } 1115 1116 vmw_fifo_flush(dev_priv, false); 1117 ttm_read_unlock(&dev_priv->reservation_sem); 1118 1119 drm_modeset_unlock_all(dev_priv->dev); 1120 1121 return ret; 1122 } 1123 1124 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = { 1125 .destroy = vmw_framebuffer_dmabuf_destroy, 1126 .dirty = vmw_framebuffer_dmabuf_dirty, 1127 }; 1128 1129 /** 1130 * Pin the dmabuffer to the start of vram. 1131 */ 1132 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1133 { 1134 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1135 struct vmw_dma_buffer *buf; 1136 int ret; 1137 1138 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1139 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1140 1141 if (!buf) 1142 return 0; 1143 1144 switch (dev_priv->active_display_unit) { 1145 case vmw_du_legacy: 1146 vmw_overlay_pause_all(dev_priv); 1147 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false); 1148 vmw_overlay_resume_all(dev_priv); 1149 break; 1150 case vmw_du_screen_object: 1151 case vmw_du_screen_target: 1152 if (vfb->dmabuf) 1153 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf, 1154 false); 1155 1156 return vmw_dmabuf_pin_in_placement(dev_priv, buf, 1157 &vmw_mob_placement, false); 1158 default: 1159 return -EINVAL; 1160 } 1161 1162 return ret; 1163 } 1164 1165 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1166 { 1167 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1168 struct vmw_dma_buffer *buf; 1169 1170 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1171 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1172 1173 if (WARN_ON(!buf)) 1174 return 0; 1175 1176 return vmw_dmabuf_unpin(dev_priv, buf, false); 1177 } 1178 1179 /** 1180 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf 1181 * 1182 * @dev: DRM device 1183 * @mode_cmd: parameters for the new surface 1184 * @dmabuf_mob: MOB backing the DMA buf 1185 * @srf_out: newly created surface 1186 * 1187 * When the content FB is a DMA buf, we create a surface as a proxy to the 1188 * same buffer. This way we can do a surface copy rather than a surface DMA. 1189 * This is a more efficient approach 1190 * 1191 * RETURNS: 1192 * 0 on success, error code otherwise 1193 */ 1194 static int vmw_create_dmabuf_proxy(struct drm_device *dev, 1195 const struct drm_mode_fb_cmd2 *mode_cmd, 1196 struct vmw_dma_buffer *dmabuf_mob, 1197 struct vmw_surface **srf_out) 1198 { 1199 uint32_t format; 1200 struct drm_vmw_size content_base_size = {0}; 1201 struct vmw_resource *res; 1202 unsigned int bytes_pp; 1203 struct drm_format_name_buf format_name; 1204 int ret; 1205 1206 switch (mode_cmd->pixel_format) { 1207 case DRM_FORMAT_ARGB8888: 1208 case DRM_FORMAT_XRGB8888: 1209 format = SVGA3D_X8R8G8B8; 1210 bytes_pp = 4; 1211 break; 1212 1213 case DRM_FORMAT_RGB565: 1214 case DRM_FORMAT_XRGB1555: 1215 format = SVGA3D_R5G6B5; 1216 bytes_pp = 2; 1217 break; 1218 1219 case 8: 1220 format = SVGA3D_P8; 1221 bytes_pp = 1; 1222 break; 1223 1224 default: 1225 DRM_ERROR("Invalid framebuffer format %s\n", 1226 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1227 return -EINVAL; 1228 } 1229 1230 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1231 content_base_size.height = mode_cmd->height; 1232 content_base_size.depth = 1; 1233 1234 ret = vmw_surface_gb_priv_define(dev, 1235 0, /* kernel visible only */ 1236 0, /* flags */ 1237 format, 1238 true, /* can be a scanout buffer */ 1239 1, /* num of mip levels */ 1240 0, 1241 0, 1242 content_base_size, 1243 srf_out); 1244 if (ret) { 1245 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1246 return ret; 1247 } 1248 1249 res = &(*srf_out)->res; 1250 1251 /* Reserve and switch the backing mob. */ 1252 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1253 (void) vmw_resource_reserve(res, false, true); 1254 vmw_dmabuf_unreference(&res->backup); 1255 res->backup = vmw_dmabuf_reference(dmabuf_mob); 1256 res->backup_offset = 0; 1257 vmw_resource_unreserve(res, false, NULL, 0); 1258 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1259 1260 return 0; 1261 } 1262 1263 1264 1265 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv, 1266 struct vmw_dma_buffer *dmabuf, 1267 struct vmw_framebuffer **out, 1268 const struct drm_mode_fb_cmd2 1269 *mode_cmd) 1270 1271 { 1272 struct drm_device *dev = dev_priv->dev; 1273 struct vmw_framebuffer_dmabuf *vfbd; 1274 unsigned int requested_size; 1275 struct drm_format_name_buf format_name; 1276 int ret; 1277 1278 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1279 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) { 1280 DRM_ERROR("Screen buffer object size is too small " 1281 "for requested mode.\n"); 1282 return -EINVAL; 1283 } 1284 1285 /* Limited framebuffer color depth support for screen objects */ 1286 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1287 switch (mode_cmd->pixel_format) { 1288 case DRM_FORMAT_XRGB8888: 1289 case DRM_FORMAT_ARGB8888: 1290 break; 1291 case DRM_FORMAT_XRGB1555: 1292 case DRM_FORMAT_RGB565: 1293 break; 1294 default: 1295 DRM_ERROR("Invalid pixel format: %s\n", 1296 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1297 return -EINVAL; 1298 } 1299 } 1300 1301 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1302 if (!vfbd) { 1303 ret = -ENOMEM; 1304 goto out_err1; 1305 } 1306 1307 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1308 vfbd->base.dmabuf = true; 1309 vfbd->buffer = vmw_dmabuf_reference(dmabuf); 1310 vfbd->base.user_handle = mode_cmd->handles[0]; 1311 *out = &vfbd->base; 1312 1313 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1314 &vmw_framebuffer_dmabuf_funcs); 1315 if (ret) 1316 goto out_err2; 1317 1318 return 0; 1319 1320 out_err2: 1321 vmw_dmabuf_unreference(&dmabuf); 1322 kfree(vfbd); 1323 out_err1: 1324 return ret; 1325 } 1326 1327 1328 /** 1329 * vmw_kms_srf_ok - check if a surface can be created 1330 * 1331 * @width: requested width 1332 * @height: requested height 1333 * 1334 * Surfaces need to be less than texture size 1335 */ 1336 static bool 1337 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1338 { 1339 if (width > dev_priv->texture_max_width || 1340 height > dev_priv->texture_max_height) 1341 return false; 1342 1343 return true; 1344 } 1345 1346 /** 1347 * vmw_kms_new_framebuffer - Create a new framebuffer. 1348 * 1349 * @dev_priv: Pointer to device private struct. 1350 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around. 1351 * Either @dmabuf or @surface must be NULL. 1352 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1353 * Either @dmabuf or @surface must be NULL. 1354 * @only_2d: No presents will occur to this dma buffer based framebuffer. This 1355 * Helps the code to do some important optimizations. 1356 * @mode_cmd: Frame-buffer metadata. 1357 */ 1358 struct vmw_framebuffer * 1359 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1360 struct vmw_dma_buffer *dmabuf, 1361 struct vmw_surface *surface, 1362 bool only_2d, 1363 const struct drm_mode_fb_cmd2 *mode_cmd) 1364 { 1365 struct vmw_framebuffer *vfb = NULL; 1366 bool is_dmabuf_proxy = false; 1367 int ret; 1368 1369 /* 1370 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1371 * therefore, wrap the DMA buf in a surface so we can use the 1372 * SurfaceCopy command. 1373 */ 1374 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1375 dmabuf && only_2d && 1376 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1377 dev_priv->active_display_unit == vmw_du_screen_target) { 1378 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd, 1379 dmabuf, &surface); 1380 if (ret) 1381 return ERR_PTR(ret); 1382 1383 is_dmabuf_proxy = true; 1384 } 1385 1386 /* Create the new framebuffer depending one what we have */ 1387 if (surface) { 1388 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1389 mode_cmd, 1390 is_dmabuf_proxy); 1391 1392 /* 1393 * vmw_create_dmabuf_proxy() adds a reference that is no longer 1394 * needed 1395 */ 1396 if (is_dmabuf_proxy) 1397 vmw_surface_unreference(&surface); 1398 } else if (dmabuf) { 1399 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb, 1400 mode_cmd); 1401 } else { 1402 BUG(); 1403 } 1404 1405 if (ret) 1406 return ERR_PTR(ret); 1407 1408 vfb->pin = vmw_framebuffer_pin; 1409 vfb->unpin = vmw_framebuffer_unpin; 1410 1411 return vfb; 1412 } 1413 1414 /* 1415 * Generic Kernel modesetting functions 1416 */ 1417 1418 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1419 struct drm_file *file_priv, 1420 const struct drm_mode_fb_cmd2 *mode_cmd) 1421 { 1422 struct vmw_private *dev_priv = vmw_priv(dev); 1423 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1424 struct vmw_framebuffer *vfb = NULL; 1425 struct vmw_surface *surface = NULL; 1426 struct vmw_dma_buffer *bo = NULL; 1427 struct ttm_base_object *user_obj; 1428 int ret; 1429 1430 /** 1431 * This code should be conditioned on Screen Objects not being used. 1432 * If screen objects are used, we can allocate a GMR to hold the 1433 * requested framebuffer. 1434 */ 1435 1436 if (!vmw_kms_validate_mode_vram(dev_priv, 1437 mode_cmd->pitches[0], 1438 mode_cmd->height)) { 1439 DRM_ERROR("Requested mode exceed bounding box limit.\n"); 1440 return ERR_PTR(-ENOMEM); 1441 } 1442 1443 /* 1444 * Take a reference on the user object of the resource 1445 * backing the kms fb. This ensures that user-space handle 1446 * lookups on that resource will always work as long as 1447 * it's registered with a kms framebuffer. This is important, 1448 * since vmw_execbuf_process identifies resources in the 1449 * command stream using user-space handles. 1450 */ 1451 1452 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1453 if (unlikely(user_obj == NULL)) { 1454 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1455 return ERR_PTR(-ENOENT); 1456 } 1457 1458 /** 1459 * End conditioned code. 1460 */ 1461 1462 /* returns either a dmabuf or surface */ 1463 ret = vmw_user_lookup_handle(dev_priv, tfile, 1464 mode_cmd->handles[0], 1465 &surface, &bo); 1466 if (ret) 1467 goto err_out; 1468 1469 1470 if (!bo && 1471 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1472 DRM_ERROR("Surface size cannot exceed %dx%d", 1473 dev_priv->texture_max_width, 1474 dev_priv->texture_max_height); 1475 goto err_out; 1476 } 1477 1478 1479 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1480 !(dev_priv->capabilities & SVGA_CAP_3D), 1481 mode_cmd); 1482 if (IS_ERR(vfb)) { 1483 ret = PTR_ERR(vfb); 1484 goto err_out; 1485 } 1486 1487 err_out: 1488 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1489 if (bo) 1490 vmw_dmabuf_unreference(&bo); 1491 if (surface) 1492 vmw_surface_unreference(&surface); 1493 1494 if (ret) { 1495 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1496 ttm_base_object_unref(&user_obj); 1497 return ERR_PTR(ret); 1498 } else 1499 vfb->user_obj = user_obj; 1500 1501 return &vfb->base; 1502 } 1503 1504 1505 1506 /** 1507 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1508 * 1509 * @dev: DRM device 1510 * @state: the driver state object 1511 * 1512 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1513 * us to assign a value to mode->crtc_clock so that 1514 * drm_calc_timestamping_constants() won't throw an error message 1515 * 1516 * RETURNS 1517 * Zero for success or -errno 1518 */ 1519 static int 1520 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1521 struct drm_atomic_state *state) 1522 { 1523 struct drm_crtc_state *crtc_state; 1524 struct drm_crtc *crtc; 1525 struct vmw_private *dev_priv = vmw_priv(dev); 1526 int i; 1527 1528 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1529 unsigned long requested_bb_mem = 0; 1530 1531 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1532 if (crtc->primary->fb) { 1533 int cpp = crtc->primary->fb->pitches[0] / 1534 crtc->primary->fb->width; 1535 1536 requested_bb_mem += crtc->mode.hdisplay * cpp * 1537 crtc->mode.vdisplay; 1538 } 1539 1540 if (requested_bb_mem > dev_priv->prim_bb_mem) 1541 return -EINVAL; 1542 } 1543 } 1544 1545 return drm_atomic_helper_check(dev, state); 1546 } 1547 1548 1549 /** 1550 * vmw_kms_atomic_commit - Perform an atomic state commit 1551 * 1552 * @dev: DRM device 1553 * @state: the driver state object 1554 * @nonblock: Whether nonblocking behaviour is requested 1555 * 1556 * This is a simple wrapper around drm_atomic_helper_commit() for 1557 * us to clear the nonblocking value. 1558 * 1559 * Nonblocking commits currently cause synchronization issues 1560 * for vmwgfx. 1561 * 1562 * RETURNS 1563 * Zero for success or negative error code on failure. 1564 */ 1565 int vmw_kms_atomic_commit(struct drm_device *dev, 1566 struct drm_atomic_state *state, 1567 bool nonblock) 1568 { 1569 return drm_atomic_helper_commit(dev, state, false); 1570 } 1571 1572 1573 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1574 .fb_create = vmw_kms_fb_create, 1575 .atomic_check = vmw_kms_atomic_check_modeset, 1576 .atomic_commit = vmw_kms_atomic_commit, 1577 }; 1578 1579 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1580 struct drm_file *file_priv, 1581 struct vmw_framebuffer *vfb, 1582 struct vmw_surface *surface, 1583 uint32_t sid, 1584 int32_t destX, int32_t destY, 1585 struct drm_vmw_rect *clips, 1586 uint32_t num_clips) 1587 { 1588 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1589 &surface->res, destX, destY, 1590 num_clips, 1, NULL); 1591 } 1592 1593 1594 int vmw_kms_present(struct vmw_private *dev_priv, 1595 struct drm_file *file_priv, 1596 struct vmw_framebuffer *vfb, 1597 struct vmw_surface *surface, 1598 uint32_t sid, 1599 int32_t destX, int32_t destY, 1600 struct drm_vmw_rect *clips, 1601 uint32_t num_clips) 1602 { 1603 int ret; 1604 1605 switch (dev_priv->active_display_unit) { 1606 case vmw_du_screen_target: 1607 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1608 &surface->res, destX, destY, 1609 num_clips, 1, NULL); 1610 break; 1611 case vmw_du_screen_object: 1612 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1613 sid, destX, destY, clips, 1614 num_clips); 1615 break; 1616 default: 1617 WARN_ONCE(true, 1618 "Present called with invalid display system.\n"); 1619 ret = -ENOSYS; 1620 break; 1621 } 1622 if (ret) 1623 return ret; 1624 1625 vmw_fifo_flush(dev_priv, false); 1626 1627 return 0; 1628 } 1629 1630 static void 1631 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1632 { 1633 if (dev_priv->hotplug_mode_update_property) 1634 return; 1635 1636 dev_priv->hotplug_mode_update_property = 1637 drm_property_create_range(dev_priv->dev, 1638 DRM_MODE_PROP_IMMUTABLE, 1639 "hotplug_mode_update", 0, 1); 1640 1641 if (!dev_priv->hotplug_mode_update_property) 1642 return; 1643 1644 } 1645 1646 int vmw_kms_init(struct vmw_private *dev_priv) 1647 { 1648 struct drm_device *dev = dev_priv->dev; 1649 int ret; 1650 1651 drm_mode_config_init(dev); 1652 dev->mode_config.funcs = &vmw_kms_funcs; 1653 dev->mode_config.min_width = 1; 1654 dev->mode_config.min_height = 1; 1655 dev->mode_config.max_width = dev_priv->texture_max_width; 1656 dev->mode_config.max_height = dev_priv->texture_max_height; 1657 1658 drm_mode_create_suggested_offset_properties(dev); 1659 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1660 1661 ret = vmw_kms_stdu_init_display(dev_priv); 1662 if (ret) { 1663 ret = vmw_kms_sou_init_display(dev_priv); 1664 if (ret) /* Fallback */ 1665 ret = vmw_kms_ldu_init_display(dev_priv); 1666 } 1667 1668 return ret; 1669 } 1670 1671 int vmw_kms_close(struct vmw_private *dev_priv) 1672 { 1673 int ret = 0; 1674 1675 /* 1676 * Docs says we should take the lock before calling this function 1677 * but since it destroys encoders and our destructor calls 1678 * drm_encoder_cleanup which takes the lock we deadlock. 1679 */ 1680 drm_mode_config_cleanup(dev_priv->dev); 1681 if (dev_priv->active_display_unit == vmw_du_legacy) 1682 ret = vmw_kms_ldu_close_display(dev_priv); 1683 1684 return ret; 1685 } 1686 1687 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1688 struct drm_file *file_priv) 1689 { 1690 struct drm_vmw_cursor_bypass_arg *arg = data; 1691 struct vmw_display_unit *du; 1692 struct drm_crtc *crtc; 1693 int ret = 0; 1694 1695 1696 mutex_lock(&dev->mode_config.mutex); 1697 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1698 1699 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1700 du = vmw_crtc_to_du(crtc); 1701 du->hotspot_x = arg->xhot; 1702 du->hotspot_y = arg->yhot; 1703 } 1704 1705 mutex_unlock(&dev->mode_config.mutex); 1706 return 0; 1707 } 1708 1709 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1710 if (!crtc) { 1711 ret = -ENOENT; 1712 goto out; 1713 } 1714 1715 du = vmw_crtc_to_du(crtc); 1716 1717 du->hotspot_x = arg->xhot; 1718 du->hotspot_y = arg->yhot; 1719 1720 out: 1721 mutex_unlock(&dev->mode_config.mutex); 1722 1723 return ret; 1724 } 1725 1726 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1727 unsigned width, unsigned height, unsigned pitch, 1728 unsigned bpp, unsigned depth) 1729 { 1730 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1731 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1732 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1733 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1734 SVGA_FIFO_PITCHLOCK); 1735 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1736 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1737 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1738 1739 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1740 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1741 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1742 return -EINVAL; 1743 } 1744 1745 return 0; 1746 } 1747 1748 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1749 { 1750 struct vmw_vga_topology_state *save; 1751 uint32_t i; 1752 1753 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1754 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1755 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1756 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1757 vmw_priv->vga_pitchlock = 1758 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1759 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1760 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1761 SVGA_FIFO_PITCHLOCK); 1762 1763 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1764 return 0; 1765 1766 vmw_priv->num_displays = vmw_read(vmw_priv, 1767 SVGA_REG_NUM_GUEST_DISPLAYS); 1768 1769 if (vmw_priv->num_displays == 0) 1770 vmw_priv->num_displays = 1; 1771 1772 for (i = 0; i < vmw_priv->num_displays; ++i) { 1773 save = &vmw_priv->vga_save[i]; 1774 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1775 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1776 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1777 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1778 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1779 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1780 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1781 if (i == 0 && vmw_priv->num_displays == 1 && 1782 save->width == 0 && save->height == 0) { 1783 1784 /* 1785 * It should be fairly safe to assume that these 1786 * values are uninitialized. 1787 */ 1788 1789 save->width = vmw_priv->vga_width - save->pos_x; 1790 save->height = vmw_priv->vga_height - save->pos_y; 1791 } 1792 } 1793 1794 return 0; 1795 } 1796 1797 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1798 { 1799 struct vmw_vga_topology_state *save; 1800 uint32_t i; 1801 1802 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1803 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1804 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1805 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1806 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1807 vmw_priv->vga_pitchlock); 1808 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1809 vmw_mmio_write(vmw_priv->vga_pitchlock, 1810 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1811 1812 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1813 return 0; 1814 1815 for (i = 0; i < vmw_priv->num_displays; ++i) { 1816 save = &vmw_priv->vga_save[i]; 1817 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1818 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1819 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1820 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1821 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1822 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1823 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1824 } 1825 1826 return 0; 1827 } 1828 1829 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1830 uint32_t pitch, 1831 uint32_t height) 1832 { 1833 return ((u64) pitch * (u64) height) < (u64) 1834 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1835 dev_priv->prim_bb_mem : dev_priv->vram_size); 1836 } 1837 1838 1839 /** 1840 * Function called by DRM code called with vbl_lock held. 1841 */ 1842 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1843 { 1844 return 0; 1845 } 1846 1847 /** 1848 * Function called by DRM code called with vbl_lock held. 1849 */ 1850 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1851 { 1852 return -EINVAL; 1853 } 1854 1855 /** 1856 * Function called by DRM code called with vbl_lock held. 1857 */ 1858 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1859 { 1860 } 1861 1862 1863 /* 1864 * Small shared kms functions. 1865 */ 1866 1867 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num, 1868 struct drm_vmw_rect *rects) 1869 { 1870 struct drm_device *dev = dev_priv->dev; 1871 struct vmw_display_unit *du; 1872 struct drm_connector *con; 1873 1874 mutex_lock(&dev->mode_config.mutex); 1875 1876 #if 0 1877 { 1878 unsigned int i; 1879 1880 DRM_INFO("%s: new layout ", __func__); 1881 for (i = 0; i < num; i++) 1882 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y, 1883 rects[i].w, rects[i].h); 1884 DRM_INFO("\n"); 1885 } 1886 #endif 1887 1888 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1889 du = vmw_connector_to_du(con); 1890 if (num > du->unit) { 1891 du->pref_width = rects[du->unit].w; 1892 du->pref_height = rects[du->unit].h; 1893 du->pref_active = true; 1894 du->gui_x = rects[du->unit].x; 1895 du->gui_y = rects[du->unit].y; 1896 drm_object_property_set_value 1897 (&con->base, dev->mode_config.suggested_x_property, 1898 du->gui_x); 1899 drm_object_property_set_value 1900 (&con->base, dev->mode_config.suggested_y_property, 1901 du->gui_y); 1902 } else { 1903 du->pref_width = 800; 1904 du->pref_height = 600; 1905 du->pref_active = false; 1906 drm_object_property_set_value 1907 (&con->base, dev->mode_config.suggested_x_property, 1908 0); 1909 drm_object_property_set_value 1910 (&con->base, dev->mode_config.suggested_y_property, 1911 0); 1912 } 1913 con->status = vmw_du_connector_detect(con, true); 1914 } 1915 1916 mutex_unlock(&dev->mode_config.mutex); 1917 drm_sysfs_hotplug_event(dev); 1918 1919 return 0; 1920 } 1921 1922 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1923 u16 *r, u16 *g, u16 *b, 1924 uint32_t size, 1925 struct drm_modeset_acquire_ctx *ctx) 1926 { 1927 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1928 int i; 1929 1930 for (i = 0; i < size; i++) { 1931 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1932 r[i], g[i], b[i]); 1933 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1934 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1935 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1936 } 1937 1938 return 0; 1939 } 1940 1941 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1942 { 1943 return 0; 1944 } 1945 1946 enum drm_connector_status 1947 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1948 { 1949 uint32_t num_displays; 1950 struct drm_device *dev = connector->dev; 1951 struct vmw_private *dev_priv = vmw_priv(dev); 1952 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1953 1954 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1955 1956 return ((vmw_connector_to_du(connector)->unit < num_displays && 1957 du->pref_active) ? 1958 connector_status_connected : connector_status_disconnected); 1959 } 1960 1961 static struct drm_display_mode vmw_kms_connector_builtin[] = { 1962 /* 640x480@60Hz */ 1963 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 1964 752, 800, 0, 480, 489, 492, 525, 0, 1965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1966 /* 800x600@60Hz */ 1967 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 1968 968, 1056, 0, 600, 601, 605, 628, 0, 1969 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1970 /* 1024x768@60Hz */ 1971 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1972 1184, 1344, 0, 768, 771, 777, 806, 0, 1973 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1974 /* 1152x864@75Hz */ 1975 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1976 1344, 1600, 0, 864, 865, 868, 900, 0, 1977 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1978 /* 1280x768@60Hz */ 1979 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1980 1472, 1664, 0, 768, 771, 778, 798, 0, 1981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1982 /* 1280x800@60Hz */ 1983 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1984 1480, 1680, 0, 800, 803, 809, 831, 0, 1985 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1986 /* 1280x960@60Hz */ 1987 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1988 1488, 1800, 0, 960, 961, 964, 1000, 0, 1989 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1990 /* 1280x1024@60Hz */ 1991 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1992 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 1993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1994 /* 1360x768@60Hz */ 1995 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1996 1536, 1792, 0, 768, 771, 777, 795, 0, 1997 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1998 /* 1440x1050@60Hz */ 1999 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2000 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2001 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2002 /* 1440x900@60Hz */ 2003 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2004 1672, 1904, 0, 900, 903, 909, 934, 0, 2005 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2006 /* 1600x1200@60Hz */ 2007 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2008 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2009 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2010 /* 1680x1050@60Hz */ 2011 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2012 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2013 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2014 /* 1792x1344@60Hz */ 2015 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2016 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2017 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2018 /* 1853x1392@60Hz */ 2019 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2020 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2021 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2022 /* 1920x1200@60Hz */ 2023 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2024 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2026 /* 1920x1440@60Hz */ 2027 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2028 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2029 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2030 /* 2560x1600@60Hz */ 2031 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2032 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2033 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2034 /* Terminate */ 2035 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2036 }; 2037 2038 /** 2039 * vmw_guess_mode_timing - Provide fake timings for a 2040 * 60Hz vrefresh mode. 2041 * 2042 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2043 * members filled in. 2044 */ 2045 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2046 { 2047 mode->hsync_start = mode->hdisplay + 50; 2048 mode->hsync_end = mode->hsync_start + 50; 2049 mode->htotal = mode->hsync_end + 50; 2050 2051 mode->vsync_start = mode->vdisplay + 50; 2052 mode->vsync_end = mode->vsync_start + 50; 2053 mode->vtotal = mode->vsync_end + 50; 2054 2055 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2056 mode->vrefresh = drm_mode_vrefresh(mode); 2057 } 2058 2059 2060 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2061 uint32_t max_width, uint32_t max_height) 2062 { 2063 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2064 struct drm_device *dev = connector->dev; 2065 struct vmw_private *dev_priv = vmw_priv(dev); 2066 struct drm_display_mode *mode = NULL; 2067 struct drm_display_mode *bmode; 2068 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2069 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2070 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2071 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2072 }; 2073 int i; 2074 u32 assumed_bpp = 4; 2075 2076 if (dev_priv->assume_16bpp) 2077 assumed_bpp = 2; 2078 2079 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2080 max_width = min(max_width, dev_priv->stdu_max_width); 2081 max_width = min(max_width, dev_priv->texture_max_width); 2082 2083 max_height = min(max_height, dev_priv->stdu_max_height); 2084 max_height = min(max_height, dev_priv->texture_max_height); 2085 } 2086 2087 /* Add preferred mode */ 2088 mode = drm_mode_duplicate(dev, &prefmode); 2089 if (!mode) 2090 return 0; 2091 mode->hdisplay = du->pref_width; 2092 mode->vdisplay = du->pref_height; 2093 vmw_guess_mode_timing(mode); 2094 2095 if (vmw_kms_validate_mode_vram(dev_priv, 2096 mode->hdisplay * assumed_bpp, 2097 mode->vdisplay)) { 2098 drm_mode_probed_add(connector, mode); 2099 } else { 2100 drm_mode_destroy(dev, mode); 2101 mode = NULL; 2102 } 2103 2104 if (du->pref_mode) { 2105 list_del_init(&du->pref_mode->head); 2106 drm_mode_destroy(dev, du->pref_mode); 2107 } 2108 2109 /* mode might be null here, this is intended */ 2110 du->pref_mode = mode; 2111 2112 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2113 bmode = &vmw_kms_connector_builtin[i]; 2114 if (bmode->hdisplay > max_width || 2115 bmode->vdisplay > max_height) 2116 continue; 2117 2118 if (!vmw_kms_validate_mode_vram(dev_priv, 2119 bmode->hdisplay * assumed_bpp, 2120 bmode->vdisplay)) 2121 continue; 2122 2123 mode = drm_mode_duplicate(dev, bmode); 2124 if (!mode) 2125 return 0; 2126 mode->vrefresh = drm_mode_vrefresh(mode); 2127 2128 drm_mode_probed_add(connector, mode); 2129 } 2130 2131 drm_mode_connector_list_update(connector); 2132 /* Move the prefered mode first, help apps pick the right mode. */ 2133 drm_mode_sort(&connector->modes); 2134 2135 return 1; 2136 } 2137 2138 int vmw_du_connector_set_property(struct drm_connector *connector, 2139 struct drm_property *property, 2140 uint64_t val) 2141 { 2142 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2143 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2144 2145 if (property == dev_priv->implicit_placement_property) 2146 du->is_implicit = val; 2147 2148 return 0; 2149 } 2150 2151 2152 2153 /** 2154 * vmw_du_connector_atomic_set_property - Atomic version of get property 2155 * 2156 * @crtc - crtc the property is associated with 2157 * 2158 * Returns: 2159 * Zero on success, negative errno on failure. 2160 */ 2161 int 2162 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2163 struct drm_connector_state *state, 2164 struct drm_property *property, 2165 uint64_t val) 2166 { 2167 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2168 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2169 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2170 2171 2172 if (property == dev_priv->implicit_placement_property) { 2173 vcs->is_implicit = val; 2174 2175 /* 2176 * We should really be doing a drm_atomic_commit() to 2177 * commit the new state, but since this doesn't cause 2178 * an immedate state change, this is probably ok 2179 */ 2180 du->is_implicit = vcs->is_implicit; 2181 } else { 2182 return -EINVAL; 2183 } 2184 2185 return 0; 2186 } 2187 2188 2189 /** 2190 * vmw_du_connector_atomic_get_property - Atomic version of get property 2191 * 2192 * @connector - connector the property is associated with 2193 * 2194 * Returns: 2195 * Zero on success, negative errno on failure. 2196 */ 2197 int 2198 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2199 const struct drm_connector_state *state, 2200 struct drm_property *property, 2201 uint64_t *val) 2202 { 2203 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2204 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2205 2206 if (property == dev_priv->implicit_placement_property) 2207 *val = vcs->is_implicit; 2208 else { 2209 DRM_ERROR("Invalid Property %s\n", property->name); 2210 return -EINVAL; 2211 } 2212 2213 return 0; 2214 } 2215 2216 2217 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2218 struct drm_file *file_priv) 2219 { 2220 struct vmw_private *dev_priv = vmw_priv(dev); 2221 struct drm_vmw_update_layout_arg *arg = 2222 (struct drm_vmw_update_layout_arg *)data; 2223 void __user *user_rects; 2224 struct drm_vmw_rect *rects; 2225 unsigned rects_size; 2226 int ret; 2227 int i; 2228 u64 total_pixels = 0; 2229 struct drm_mode_config *mode_config = &dev->mode_config; 2230 struct drm_vmw_rect bounding_box = {0}; 2231 2232 if (!arg->num_outputs) { 2233 struct drm_vmw_rect def_rect = {0, 0, 800, 600}; 2234 vmw_du_update_layout(dev_priv, 1, &def_rect); 2235 return 0; 2236 } 2237 2238 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2239 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2240 GFP_KERNEL); 2241 if (unlikely(!rects)) 2242 return -ENOMEM; 2243 2244 user_rects = (void __user *)(unsigned long)arg->rects; 2245 ret = copy_from_user(rects, user_rects, rects_size); 2246 if (unlikely(ret != 0)) { 2247 DRM_ERROR("Failed to get rects.\n"); 2248 ret = -EFAULT; 2249 goto out_free; 2250 } 2251 2252 for (i = 0; i < arg->num_outputs; ++i) { 2253 if (rects[i].x < 0 || 2254 rects[i].y < 0 || 2255 rects[i].x + rects[i].w > mode_config->max_width || 2256 rects[i].y + rects[i].h > mode_config->max_height) { 2257 DRM_ERROR("Invalid GUI layout.\n"); 2258 ret = -EINVAL; 2259 goto out_free; 2260 } 2261 2262 /* 2263 * bounding_box.w and bunding_box.h are used as 2264 * lower-right coordinates 2265 */ 2266 if (rects[i].x + rects[i].w > bounding_box.w) 2267 bounding_box.w = rects[i].x + rects[i].w; 2268 2269 if (rects[i].y + rects[i].h > bounding_box.h) 2270 bounding_box.h = rects[i].y + rects[i].h; 2271 2272 total_pixels += (u64) rects[i].w * (u64) rects[i].h; 2273 } 2274 2275 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2276 /* 2277 * For Screen Targets, the limits for a toplogy are: 2278 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem 2279 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem 2280 */ 2281 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4; 2282 u64 pixel_mem = total_pixels * 4; 2283 2284 if (bb_mem > dev_priv->prim_bb_mem) { 2285 DRM_ERROR("Topology is beyond supported limits.\n"); 2286 ret = -EINVAL; 2287 goto out_free; 2288 } 2289 2290 if (pixel_mem > dev_priv->prim_bb_mem) { 2291 DRM_ERROR("Combined output size too large\n"); 2292 ret = -EINVAL; 2293 goto out_free; 2294 } 2295 } 2296 2297 vmw_du_update_layout(dev_priv, arg->num_outputs, rects); 2298 2299 out_free: 2300 kfree(rects); 2301 return ret; 2302 } 2303 2304 /** 2305 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2306 * on a set of cliprects and a set of display units. 2307 * 2308 * @dev_priv: Pointer to a device private structure. 2309 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2310 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2311 * Cliprects are given in framebuffer coordinates. 2312 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2313 * be NULL. Cliprects are given in source coordinates. 2314 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2315 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2316 * @num_clips: Number of cliprects in the @clips or @vclips array. 2317 * @increment: Integer with which to increment the clip counter when looping. 2318 * Used to skip a predetermined number of clip rects. 2319 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2320 */ 2321 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2322 struct vmw_framebuffer *framebuffer, 2323 const struct drm_clip_rect *clips, 2324 const struct drm_vmw_rect *vclips, 2325 s32 dest_x, s32 dest_y, 2326 int num_clips, 2327 int increment, 2328 struct vmw_kms_dirty *dirty) 2329 { 2330 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2331 struct drm_crtc *crtc; 2332 u32 num_units = 0; 2333 u32 i, k; 2334 2335 dirty->dev_priv = dev_priv; 2336 2337 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) { 2338 if (crtc->primary->fb != &framebuffer->base) 2339 continue; 2340 units[num_units++] = vmw_crtc_to_du(crtc); 2341 } 2342 2343 for (k = 0; k < num_units; k++) { 2344 struct vmw_display_unit *unit = units[k]; 2345 s32 crtc_x = unit->crtc.x; 2346 s32 crtc_y = unit->crtc.y; 2347 s32 crtc_width = unit->crtc.mode.hdisplay; 2348 s32 crtc_height = unit->crtc.mode.vdisplay; 2349 const struct drm_clip_rect *clips_ptr = clips; 2350 const struct drm_vmw_rect *vclips_ptr = vclips; 2351 2352 dirty->unit = unit; 2353 if (dirty->fifo_reserve_size > 0) { 2354 dirty->cmd = vmw_fifo_reserve(dev_priv, 2355 dirty->fifo_reserve_size); 2356 if (!dirty->cmd) { 2357 DRM_ERROR("Couldn't reserve fifo space " 2358 "for dirty blits.\n"); 2359 return -ENOMEM; 2360 } 2361 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2362 } 2363 dirty->num_hits = 0; 2364 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2365 vclips_ptr += increment) { 2366 s32 clip_left; 2367 s32 clip_top; 2368 2369 /* 2370 * Select clip array type. Note that integer type 2371 * in @clips is unsigned short, whereas in @vclips 2372 * it's 32-bit. 2373 */ 2374 if (clips) { 2375 dirty->fb_x = (s32) clips_ptr->x1; 2376 dirty->fb_y = (s32) clips_ptr->y1; 2377 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2378 crtc_x; 2379 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2380 crtc_y; 2381 } else { 2382 dirty->fb_x = vclips_ptr->x; 2383 dirty->fb_y = vclips_ptr->y; 2384 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2385 dest_x - crtc_x; 2386 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2387 dest_y - crtc_y; 2388 } 2389 2390 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2391 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2392 2393 /* Skip this clip if it's outside the crtc region */ 2394 if (dirty->unit_x1 >= crtc_width || 2395 dirty->unit_y1 >= crtc_height || 2396 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2397 continue; 2398 2399 /* Clip right and bottom to crtc limits */ 2400 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2401 crtc_width); 2402 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2403 crtc_height); 2404 2405 /* Clip left and top to crtc limits */ 2406 clip_left = min_t(s32, dirty->unit_x1, 0); 2407 clip_top = min_t(s32, dirty->unit_y1, 0); 2408 dirty->unit_x1 -= clip_left; 2409 dirty->unit_y1 -= clip_top; 2410 dirty->fb_x -= clip_left; 2411 dirty->fb_y -= clip_top; 2412 2413 dirty->clip(dirty); 2414 } 2415 2416 dirty->fifo_commit(dirty); 2417 } 2418 2419 return 0; 2420 } 2421 2422 /** 2423 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2424 * command submission. 2425 * 2426 * @dev_priv. Pointer to a device private structure. 2427 * @buf: The buffer object 2428 * @interruptible: Whether to perform waits as interruptible. 2429 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2430 * The buffer will be validated as a GMR. Already pinned buffers will not be 2431 * validated. 2432 * 2433 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2434 * interrupted by a signal. 2435 */ 2436 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2437 struct vmw_dma_buffer *buf, 2438 bool interruptible, 2439 bool validate_as_mob) 2440 { 2441 struct ttm_buffer_object *bo = &buf->base; 2442 int ret; 2443 2444 ttm_bo_reserve(bo, false, false, NULL); 2445 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2446 validate_as_mob); 2447 if (ret) 2448 ttm_bo_unreserve(bo); 2449 2450 return ret; 2451 } 2452 2453 /** 2454 * vmw_kms_helper_buffer_revert - Undo the actions of 2455 * vmw_kms_helper_buffer_prepare. 2456 * 2457 * @res: Pointer to the buffer object. 2458 * 2459 * Helper to be used if an error forces the caller to undo the actions of 2460 * vmw_kms_helper_buffer_prepare. 2461 */ 2462 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf) 2463 { 2464 if (buf) 2465 ttm_bo_unreserve(&buf->base); 2466 } 2467 2468 /** 2469 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2470 * kms command submission. 2471 * 2472 * @dev_priv: Pointer to a device private structure. 2473 * @file_priv: Pointer to a struct drm_file representing the caller's 2474 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2475 * if non-NULL, @user_fence_rep must be non-NULL. 2476 * @buf: The buffer object. 2477 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2478 * ref-counted fence pointer is returned here. 2479 * @user_fence_rep: Optional pointer to a user-space provided struct 2480 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2481 * function copies fence data to user-space in a fail-safe manner. 2482 */ 2483 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2484 struct drm_file *file_priv, 2485 struct vmw_dma_buffer *buf, 2486 struct vmw_fence_obj **out_fence, 2487 struct drm_vmw_fence_rep __user * 2488 user_fence_rep) 2489 { 2490 struct vmw_fence_obj *fence; 2491 uint32_t handle; 2492 int ret; 2493 2494 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2495 file_priv ? &handle : NULL); 2496 if (buf) 2497 vmw_fence_single_bo(&buf->base, fence); 2498 if (file_priv) 2499 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2500 ret, user_fence_rep, fence, 2501 handle, -1, NULL); 2502 if (out_fence) 2503 *out_fence = fence; 2504 else 2505 vmw_fence_obj_unreference(&fence); 2506 2507 vmw_kms_helper_buffer_revert(buf); 2508 } 2509 2510 2511 /** 2512 * vmw_kms_helper_resource_revert - Undo the actions of 2513 * vmw_kms_helper_resource_prepare. 2514 * 2515 * @res: Pointer to the resource. Typically a surface. 2516 * 2517 * Helper to be used if an error forces the caller to undo the actions of 2518 * vmw_kms_helper_resource_prepare. 2519 */ 2520 void vmw_kms_helper_resource_revert(struct vmw_resource *res) 2521 { 2522 vmw_kms_helper_buffer_revert(res->backup); 2523 vmw_resource_unreserve(res, false, NULL, 0); 2524 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2525 } 2526 2527 /** 2528 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2529 * command submission. 2530 * 2531 * @res: Pointer to the resource. Typically a surface. 2532 * @interruptible: Whether to perform waits as interruptible. 2533 * 2534 * Reserves and validates also the backup buffer if a guest-backed resource. 2535 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2536 * interrupted by a signal. 2537 */ 2538 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2539 bool interruptible) 2540 { 2541 int ret = 0; 2542 2543 if (interruptible) 2544 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2545 else 2546 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2547 2548 if (unlikely(ret != 0)) 2549 return -ERESTARTSYS; 2550 2551 ret = vmw_resource_reserve(res, interruptible, false); 2552 if (ret) 2553 goto out_unlock; 2554 2555 if (res->backup) { 2556 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2557 interruptible, 2558 res->dev_priv->has_mob); 2559 if (ret) 2560 goto out_unreserve; 2561 } 2562 ret = vmw_resource_validate(res); 2563 if (ret) 2564 goto out_revert; 2565 return 0; 2566 2567 out_revert: 2568 vmw_kms_helper_buffer_revert(res->backup); 2569 out_unreserve: 2570 vmw_resource_unreserve(res, false, NULL, 0); 2571 out_unlock: 2572 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2573 return ret; 2574 } 2575 2576 /** 2577 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2578 * kms command submission. 2579 * 2580 * @res: Pointer to the resource. Typically a surface. 2581 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2582 * ref-counted fence pointer is returned here. 2583 */ 2584 void vmw_kms_helper_resource_finish(struct vmw_resource *res, 2585 struct vmw_fence_obj **out_fence) 2586 { 2587 if (res->backup || out_fence) 2588 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup, 2589 out_fence, NULL); 2590 2591 vmw_resource_unreserve(res, false, NULL, 0); 2592 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2593 } 2594 2595 /** 2596 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2597 * its backing MOB. 2598 * 2599 * @res: Pointer to the surface resource 2600 * @clips: Clip rects in framebuffer (surface) space. 2601 * @num_clips: Number of clips in @clips. 2602 * @increment: Integer with which to increment the clip counter when looping. 2603 * Used to skip a predetermined number of clip rects. 2604 * 2605 * This function makes sure the proxy surface is updated from its backing MOB 2606 * using the region given by @clips. The surface resource @res and its backing 2607 * MOB needs to be reserved and validated on call. 2608 */ 2609 int vmw_kms_update_proxy(struct vmw_resource *res, 2610 const struct drm_clip_rect *clips, 2611 unsigned num_clips, 2612 int increment) 2613 { 2614 struct vmw_private *dev_priv = res->dev_priv; 2615 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2616 struct { 2617 SVGA3dCmdHeader header; 2618 SVGA3dCmdUpdateGBImage body; 2619 } *cmd; 2620 SVGA3dBox *box; 2621 size_t copy_size = 0; 2622 int i; 2623 2624 if (!clips) 2625 return 0; 2626 2627 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2628 if (!cmd) { 2629 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2630 "update.\n"); 2631 return -ENOMEM; 2632 } 2633 2634 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2635 box = &cmd->body.box; 2636 2637 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2638 cmd->header.size = sizeof(cmd->body); 2639 cmd->body.image.sid = res->id; 2640 cmd->body.image.face = 0; 2641 cmd->body.image.mipmap = 0; 2642 2643 if (clips->x1 > size->width || clips->x2 > size->width || 2644 clips->y1 > size->height || clips->y2 > size->height) { 2645 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2646 return -EINVAL; 2647 } 2648 2649 box->x = clips->x1; 2650 box->y = clips->y1; 2651 box->z = 0; 2652 box->w = clips->x2 - clips->x1; 2653 box->h = clips->y2 - clips->y1; 2654 box->d = 1; 2655 2656 copy_size += sizeof(*cmd); 2657 } 2658 2659 vmw_fifo_commit(dev_priv, copy_size); 2660 2661 return 0; 2662 } 2663 2664 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2665 unsigned unit, 2666 u32 max_width, 2667 u32 max_height, 2668 struct drm_connector **p_con, 2669 struct drm_crtc **p_crtc, 2670 struct drm_display_mode **p_mode) 2671 { 2672 struct drm_connector *con; 2673 struct vmw_display_unit *du; 2674 struct drm_display_mode *mode; 2675 int i = 0; 2676 2677 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2678 head) { 2679 if (i == unit) 2680 break; 2681 2682 ++i; 2683 } 2684 2685 if (i != unit) { 2686 DRM_ERROR("Could not find initial display unit.\n"); 2687 return -EINVAL; 2688 } 2689 2690 if (list_empty(&con->modes)) 2691 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2692 2693 if (list_empty(&con->modes)) { 2694 DRM_ERROR("Could not find initial display mode.\n"); 2695 return -EINVAL; 2696 } 2697 2698 du = vmw_connector_to_du(con); 2699 *p_con = con; 2700 *p_crtc = &du->crtc; 2701 2702 list_for_each_entry(mode, &con->modes, head) { 2703 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2704 break; 2705 } 2706 2707 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2708 *p_mode = mode; 2709 else { 2710 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2711 *p_mode = list_first_entry(&con->modes, 2712 struct drm_display_mode, 2713 head); 2714 } 2715 2716 return 0; 2717 } 2718 2719 /** 2720 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2721 * 2722 * @dev_priv: Pointer to a device private struct. 2723 * @du: The display unit of the crtc. 2724 */ 2725 void vmw_kms_del_active(struct vmw_private *dev_priv, 2726 struct vmw_display_unit *du) 2727 { 2728 mutex_lock(&dev_priv->global_kms_state_mutex); 2729 if (du->active_implicit) { 2730 if (--(dev_priv->num_implicit) == 0) 2731 dev_priv->implicit_fb = NULL; 2732 du->active_implicit = false; 2733 } 2734 mutex_unlock(&dev_priv->global_kms_state_mutex); 2735 } 2736 2737 /** 2738 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2739 * 2740 * @vmw_priv: Pointer to a device private struct. 2741 * @du: The display unit of the crtc. 2742 * @vfb: The implicit framebuffer 2743 * 2744 * Registers a binding to an implicit framebuffer. 2745 */ 2746 void vmw_kms_add_active(struct vmw_private *dev_priv, 2747 struct vmw_display_unit *du, 2748 struct vmw_framebuffer *vfb) 2749 { 2750 mutex_lock(&dev_priv->global_kms_state_mutex); 2751 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2752 2753 if (!du->active_implicit && du->is_implicit) { 2754 dev_priv->implicit_fb = vfb; 2755 du->active_implicit = true; 2756 dev_priv->num_implicit++; 2757 } 2758 mutex_unlock(&dev_priv->global_kms_state_mutex); 2759 } 2760 2761 /** 2762 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2763 * 2764 * @dev_priv: Pointer to device-private struct. 2765 * @crtc: The crtc we want to flip. 2766 * 2767 * Returns true or false depending whether it's OK to flip this crtc 2768 * based on the criterion that we must not have more than one implicit 2769 * frame-buffer at any one time. 2770 */ 2771 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2772 struct drm_crtc *crtc) 2773 { 2774 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2775 bool ret; 2776 2777 mutex_lock(&dev_priv->global_kms_state_mutex); 2778 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2779 mutex_unlock(&dev_priv->global_kms_state_mutex); 2780 2781 return ret; 2782 } 2783 2784 /** 2785 * vmw_kms_update_implicit_fb - Update the implicit fb. 2786 * 2787 * @dev_priv: Pointer to device-private struct. 2788 * @crtc: The crtc the new implicit frame-buffer is bound to. 2789 */ 2790 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2791 struct drm_crtc *crtc) 2792 { 2793 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2794 struct vmw_framebuffer *vfb; 2795 2796 mutex_lock(&dev_priv->global_kms_state_mutex); 2797 2798 if (!du->is_implicit) 2799 goto out_unlock; 2800 2801 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb); 2802 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2803 dev_priv->implicit_fb != vfb); 2804 2805 dev_priv->implicit_fb = vfb; 2806 out_unlock: 2807 mutex_unlock(&dev_priv->global_kms_state_mutex); 2808 } 2809 2810 /** 2811 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2812 * property. 2813 * 2814 * @dev_priv: Pointer to a device private struct. 2815 * @immutable: Whether the property is immutable. 2816 * 2817 * Sets up the implicit placement property unless it's already set up. 2818 */ 2819 void 2820 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2821 bool immutable) 2822 { 2823 if (dev_priv->implicit_placement_property) 2824 return; 2825 2826 dev_priv->implicit_placement_property = 2827 drm_property_create_range(dev_priv->dev, 2828 immutable ? 2829 DRM_MODE_PROP_IMMUTABLE : 0, 2830 "implicit_placement", 0, 1); 2831 2832 } 2833 2834 2835 /** 2836 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 2837 * 2838 * @set: The configuration to set. 2839 * 2840 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 2841 * when drm_mode_set_crtcinfo is called as part of the configuration setting 2842 * causes it to return incorrect crtc dimensions causing severe problems in 2843 * the vmwgfx modesetting. So explicitly clear that member before calling 2844 * into drm_atomic_helper_set_config. 2845 */ 2846 int vmw_kms_set_config(struct drm_mode_set *set, 2847 struct drm_modeset_acquire_ctx *ctx) 2848 { 2849 if (set && set->mode) 2850 set->mode->type = 0; 2851 2852 return drm_atomic_helper_set_config(set, ctx); 2853 } 2854