1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 35 /* Might need a hrtimer here? */ 36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 37 38 void vmw_du_cleanup(struct vmw_display_unit *du) 39 { 40 drm_plane_cleanup(&du->primary); 41 drm_plane_cleanup(&du->cursor); 42 43 drm_connector_unregister(&du->connector); 44 drm_crtc_cleanup(&du->crtc); 45 drm_encoder_cleanup(&du->encoder); 46 drm_connector_cleanup(&du->connector); 47 } 48 49 /* 50 * Display Unit Cursor functions 51 */ 52 53 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 54 u32 *image, u32 width, u32 height, 55 u32 hotspotX, u32 hotspotY) 56 { 57 struct { 58 u32 cmd; 59 SVGAFifoCmdDefineAlphaCursor cursor; 60 } *cmd; 61 u32 image_size = width * height * 4; 62 u32 cmd_size = sizeof(*cmd) + image_size; 63 64 if (!image) 65 return -EINVAL; 66 67 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 68 if (unlikely(cmd == NULL)) { 69 DRM_ERROR("Fifo reserve failed.\n"); 70 return -ENOMEM; 71 } 72 73 memset(cmd, 0, sizeof(*cmd)); 74 75 memcpy(&cmd[1], image, image_size); 76 77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 78 cmd->cursor.id = 0; 79 cmd->cursor.width = width; 80 cmd->cursor.height = height; 81 cmd->cursor.hotspotX = hotspotX; 82 cmd->cursor.hotspotY = hotspotY; 83 84 vmw_fifo_commit_flush(dev_priv, cmd_size); 85 86 return 0; 87 } 88 89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv, 90 struct vmw_dma_buffer *dmabuf, 91 u32 width, u32 height, 92 u32 hotspotX, u32 hotspotY) 93 { 94 struct ttm_bo_kmap_obj map; 95 unsigned long kmap_offset; 96 unsigned long kmap_num; 97 void *virtual; 98 bool dummy; 99 int ret; 100 101 kmap_offset = 0; 102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 103 104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL); 105 if (unlikely(ret != 0)) { 106 DRM_ERROR("reserve failed\n"); 107 return -EINVAL; 108 } 109 110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map); 111 if (unlikely(ret != 0)) 112 goto err_unreserve; 113 114 virtual = ttm_kmap_obj_virtual(&map, &dummy); 115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 116 hotspotX, hotspotY); 117 118 ttm_bo_kunmap(&map); 119 err_unreserve: 120 ttm_bo_unreserve(&dmabuf->base); 121 122 return ret; 123 } 124 125 126 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 127 bool show, int x, int y) 128 { 129 u32 *fifo_mem = dev_priv->mmio_virt; 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 138 spin_unlock(&dev_priv->cursor_lock); 139 } 140 141 142 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 143 struct ttm_object_file *tfile, 144 struct ttm_buffer_object *bo, 145 SVGA3dCmdHeader *header) 146 { 147 struct ttm_bo_kmap_obj map; 148 unsigned long kmap_offset; 149 unsigned long kmap_num; 150 SVGA3dCopyBox *box; 151 unsigned box_count; 152 void *virtual; 153 bool dummy; 154 struct vmw_dma_cmd { 155 SVGA3dCmdHeader header; 156 SVGA3dCmdSurfaceDMA dma; 157 } *cmd; 158 int i, ret; 159 160 cmd = container_of(header, struct vmw_dma_cmd, header); 161 162 /* No snooper installed */ 163 if (!srf->snooper.image) 164 return; 165 166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 167 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 168 return; 169 } 170 171 if (cmd->header.size < 64) { 172 DRM_ERROR("at least one full copy box must be given\n"); 173 return; 174 } 175 176 box = (SVGA3dCopyBox *)&cmd[1]; 177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 178 sizeof(SVGA3dCopyBox); 179 180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 181 box->x != 0 || box->y != 0 || box->z != 0 || 182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 183 box->d != 1 || box_count != 1) { 184 /* TODO handle none page aligned offsets */ 185 /* TODO handle more dst & src != 0 */ 186 /* TODO handle more then one copy */ 187 DRM_ERROR("Cant snoop dma request for cursor!\n"); 188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 189 box->srcx, box->srcy, box->srcz, 190 box->x, box->y, box->z, 191 box->w, box->h, box->d, box_count, 192 cmd->dma.guest.ptr.offset); 193 return; 194 } 195 196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 197 kmap_num = (64*64*4) >> PAGE_SHIFT; 198 199 ret = ttm_bo_reserve(bo, true, false, NULL); 200 if (unlikely(ret != 0)) { 201 DRM_ERROR("reserve failed\n"); 202 return; 203 } 204 205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 206 if (unlikely(ret != 0)) 207 goto err_unreserve; 208 209 virtual = ttm_kmap_obj_virtual(&map, &dummy); 210 211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 212 memcpy(srf->snooper.image, virtual, 64*64*4); 213 } else { 214 /* Image is unsigned pointer. */ 215 for (i = 0; i < box->h; i++) 216 memcpy(srf->snooper.image + i * 64, 217 virtual + i * cmd->dma.guest.pitch, 218 box->w * 4); 219 } 220 221 srf->snooper.age++; 222 223 ttm_bo_kunmap(&map); 224 err_unreserve: 225 ttm_bo_unreserve(bo); 226 } 227 228 /** 229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 230 * 231 * @dev_priv: Pointer to the device private struct. 232 * 233 * Clears all legacy hotspots. 234 */ 235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 236 { 237 struct drm_device *dev = dev_priv->dev; 238 struct vmw_display_unit *du; 239 struct drm_crtc *crtc; 240 241 drm_modeset_lock_all(dev); 242 drm_for_each_crtc(crtc, dev) { 243 du = vmw_crtc_to_du(crtc); 244 245 du->hotspot_x = 0; 246 du->hotspot_y = 0; 247 } 248 drm_modeset_unlock_all(dev); 249 } 250 251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 252 { 253 struct drm_device *dev = dev_priv->dev; 254 struct vmw_display_unit *du; 255 struct drm_crtc *crtc; 256 257 mutex_lock(&dev->mode_config.mutex); 258 259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 260 du = vmw_crtc_to_du(crtc); 261 if (!du->cursor_surface || 262 du->cursor_age == du->cursor_surface->snooper.age) 263 continue; 264 265 du->cursor_age = du->cursor_surface->snooper.age; 266 vmw_cursor_update_image(dev_priv, 267 du->cursor_surface->snooper.image, 268 64, 64, 269 du->hotspot_x + du->core_hotspot_x, 270 du->hotspot_y + du->core_hotspot_y); 271 } 272 273 mutex_unlock(&dev->mode_config.mutex); 274 } 275 276 277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 278 { 279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 280 281 drm_plane_cleanup(plane); 282 } 283 284 285 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 286 { 287 drm_plane_cleanup(plane); 288 289 /* Planes are static in our case so we don't free it */ 290 } 291 292 293 /** 294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 295 * 296 * @vps: plane state associated with the display surface 297 * @unreference: true if we also want to unreference the display. 298 */ 299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 300 bool unreference) 301 { 302 if (vps->surf) { 303 if (vps->pinned) { 304 vmw_resource_unpin(&vps->surf->res); 305 vps->pinned--; 306 } 307 308 if (unreference) { 309 if (vps->pinned) 310 DRM_ERROR("Surface still pinned\n"); 311 vmw_surface_unreference(&vps->surf); 312 } 313 } 314 } 315 316 317 /** 318 * vmw_du_plane_cleanup_fb - Unpins the cursor 319 * 320 * @plane: display plane 321 * @old_state: Contains the FB to clean up 322 * 323 * Unpins the framebuffer surface 324 * 325 * Returns 0 on success 326 */ 327 void 328 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 329 struct drm_plane_state *old_state) 330 { 331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 332 333 vmw_du_plane_unpin_surf(vps, false); 334 } 335 336 337 /** 338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 339 * 340 * @plane: display plane 341 * @new_state: info on the new plane state, including the FB 342 * 343 * Returns 0 on success 344 */ 345 int 346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 347 struct drm_plane_state *new_state) 348 { 349 struct drm_framebuffer *fb = new_state->fb; 350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 351 352 353 if (vps->surf) 354 vmw_surface_unreference(&vps->surf); 355 356 if (vps->dmabuf) 357 vmw_dmabuf_unreference(&vps->dmabuf); 358 359 if (fb) { 360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) { 361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer; 362 vmw_dmabuf_reference(vps->dmabuf); 363 } else { 364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 365 vmw_surface_reference(vps->surf); 366 } 367 } 368 369 return 0; 370 } 371 372 373 void 374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 375 struct drm_plane_state *old_state) 376 { 377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 378 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 381 s32 hotspot_x, hotspot_y; 382 int ret = 0; 383 384 385 hotspot_x = du->hotspot_x; 386 hotspot_y = du->hotspot_y; 387 388 if (plane->fb) { 389 hotspot_x += plane->fb->hot_x; 390 hotspot_y += plane->fb->hot_y; 391 } 392 393 du->cursor_surface = vps->surf; 394 du->cursor_dmabuf = vps->dmabuf; 395 396 /* setup new image */ 397 if (vps->surf) { 398 du->cursor_age = du->cursor_surface->snooper.age; 399 400 ret = vmw_cursor_update_image(dev_priv, 401 vps->surf->snooper.image, 402 64, 64, hotspot_x, hotspot_y); 403 } else if (vps->dmabuf) { 404 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf, 405 plane->state->crtc_w, 406 plane->state->crtc_h, 407 hotspot_x, hotspot_y); 408 } else { 409 vmw_cursor_update_position(dev_priv, false, 0, 0); 410 return; 411 } 412 413 if (!ret) { 414 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 415 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 416 417 vmw_cursor_update_position(dev_priv, true, 418 du->cursor_x + hotspot_x, 419 du->cursor_y + hotspot_y); 420 421 du->core_hotspot_x = hotspot_x - du->hotspot_x; 422 du->core_hotspot_y = hotspot_y - du->hotspot_y; 423 } else { 424 DRM_ERROR("Failed to update cursor image\n"); 425 } 426 } 427 428 429 /** 430 * vmw_du_primary_plane_atomic_check - check if the new state is okay 431 * 432 * @plane: display plane 433 * @state: info on the new plane state, including the FB 434 * 435 * Check if the new state is settable given the current state. Other 436 * than what the atomic helper checks, we care about crtc fitting 437 * the FB and maintaining one active framebuffer. 438 * 439 * Returns 0 on success 440 */ 441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 442 struct drm_plane_state *state) 443 { 444 struct drm_framebuffer *new_fb = state->fb; 445 bool visible; 446 447 struct drm_rect src = { 448 .x1 = state->src_x, 449 .y1 = state->src_y, 450 .x2 = state->src_x + state->src_w, 451 .y2 = state->src_y + state->src_h, 452 }; 453 struct drm_rect dest = { 454 .x1 = state->crtc_x, 455 .y1 = state->crtc_y, 456 .x2 = state->crtc_x + state->crtc_w, 457 .y2 = state->crtc_y + state->crtc_h, 458 }; 459 struct drm_rect clip = dest; 460 int ret; 461 462 ret = drm_plane_helper_check_update(plane, state->crtc, new_fb, 463 &src, &dest, &clip, 464 DRM_MODE_ROTATE_0, 465 DRM_PLANE_HELPER_NO_SCALING, 466 DRM_PLANE_HELPER_NO_SCALING, 467 false, true, &visible); 468 469 470 if (!ret && new_fb) { 471 struct drm_crtc *crtc = state->crtc; 472 struct vmw_connector_state *vcs; 473 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 474 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 475 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 476 477 vcs = vmw_connector_state_to_vcs(du->connector.state); 478 479 if ((dest.x2 > new_fb->width || 480 dest.y2 > new_fb->height)) { 481 DRM_ERROR("CRTC area outside of framebuffer\n"); 482 return -EINVAL; 483 } 484 485 /* Only one active implicit framebuffer at a time. */ 486 mutex_lock(&dev_priv->global_kms_state_mutex); 487 if (vcs->is_implicit && dev_priv->implicit_fb && 488 !(dev_priv->num_implicit == 1 && du->active_implicit) 489 && dev_priv->implicit_fb != vfb) { 490 DRM_ERROR("Multiple implicit framebuffers " 491 "not supported.\n"); 492 ret = -EINVAL; 493 } 494 mutex_unlock(&dev_priv->global_kms_state_mutex); 495 } 496 497 498 return ret; 499 } 500 501 502 /** 503 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 504 * 505 * @plane: cursor plane 506 * @state: info on the new plane state 507 * 508 * This is a chance to fail if the new cursor state does not fit 509 * our requirements. 510 * 511 * Returns 0 on success 512 */ 513 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 514 struct drm_plane_state *new_state) 515 { 516 int ret = 0; 517 struct vmw_surface *surface = NULL; 518 struct drm_framebuffer *fb = new_state->fb; 519 520 521 /* Turning off */ 522 if (!fb) 523 return ret; 524 525 /* A lot of the code assumes this */ 526 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 527 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 528 new_state->crtc_w, new_state->crtc_h); 529 ret = -EINVAL; 530 } 531 532 if (!vmw_framebuffer_to_vfb(fb)->dmabuf) 533 surface = vmw_framebuffer_to_vfbs(fb)->surface; 534 535 if (surface && !surface->snooper.image) { 536 DRM_ERROR("surface not suitable for cursor\n"); 537 ret = -EINVAL; 538 } 539 540 return ret; 541 } 542 543 544 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 545 struct drm_crtc_state *new_state) 546 { 547 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 548 int connector_mask = 1 << drm_connector_index(&du->connector); 549 bool has_primary = new_state->plane_mask & 550 BIT(drm_plane_index(crtc->primary)); 551 552 /* We always want to have an active plane with an active CRTC */ 553 if (has_primary != new_state->enable) 554 return -EINVAL; 555 556 557 if (new_state->connector_mask != connector_mask && 558 new_state->connector_mask != 0) { 559 DRM_ERROR("Invalid connectors configuration\n"); 560 return -EINVAL; 561 } 562 563 /* 564 * Our virtual device does not have a dot clock, so use the logical 565 * clock value as the dot clock. 566 */ 567 if (new_state->mode.crtc_clock == 0) 568 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 569 570 return 0; 571 } 572 573 574 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 575 struct drm_crtc_state *old_crtc_state) 576 { 577 } 578 579 580 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 581 struct drm_crtc_state *old_crtc_state) 582 { 583 struct drm_pending_vblank_event *event = crtc->state->event; 584 585 if (event) { 586 crtc->state->event = NULL; 587 588 spin_lock_irq(&crtc->dev->event_lock); 589 if (drm_crtc_vblank_get(crtc) == 0) 590 drm_crtc_arm_vblank_event(crtc, event); 591 else 592 drm_crtc_send_vblank_event(crtc, event); 593 spin_unlock_irq(&crtc->dev->event_lock); 594 } 595 596 } 597 598 599 /** 600 * vmw_du_crtc_duplicate_state - duplicate crtc state 601 * @crtc: DRM crtc 602 * 603 * Allocates and returns a copy of the crtc state (both common and 604 * vmw-specific) for the specified crtc. 605 * 606 * Returns: The newly allocated crtc state, or NULL on failure. 607 */ 608 struct drm_crtc_state * 609 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 610 { 611 struct drm_crtc_state *state; 612 struct vmw_crtc_state *vcs; 613 614 if (WARN_ON(!crtc->state)) 615 return NULL; 616 617 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 618 619 if (!vcs) 620 return NULL; 621 622 state = &vcs->base; 623 624 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 625 626 return state; 627 } 628 629 630 /** 631 * vmw_du_crtc_reset - creates a blank vmw crtc state 632 * @crtc: DRM crtc 633 * 634 * Resets the atomic state for @crtc by freeing the state pointer (which 635 * might be NULL, e.g. at driver load time) and allocating a new empty state 636 * object. 637 */ 638 void vmw_du_crtc_reset(struct drm_crtc *crtc) 639 { 640 struct vmw_crtc_state *vcs; 641 642 643 if (crtc->state) { 644 __drm_atomic_helper_crtc_destroy_state(crtc->state); 645 646 kfree(vmw_crtc_state_to_vcs(crtc->state)); 647 } 648 649 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 650 651 if (!vcs) { 652 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 653 return; 654 } 655 656 crtc->state = &vcs->base; 657 crtc->state->crtc = crtc; 658 } 659 660 661 /** 662 * vmw_du_crtc_destroy_state - destroy crtc state 663 * @crtc: DRM crtc 664 * @state: state object to destroy 665 * 666 * Destroys the crtc state (both common and vmw-specific) for the 667 * specified plane. 668 */ 669 void 670 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 671 struct drm_crtc_state *state) 672 { 673 drm_atomic_helper_crtc_destroy_state(crtc, state); 674 } 675 676 677 /** 678 * vmw_du_plane_duplicate_state - duplicate plane state 679 * @plane: drm plane 680 * 681 * Allocates and returns a copy of the plane state (both common and 682 * vmw-specific) for the specified plane. 683 * 684 * Returns: The newly allocated plane state, or NULL on failure. 685 */ 686 struct drm_plane_state * 687 vmw_du_plane_duplicate_state(struct drm_plane *plane) 688 { 689 struct drm_plane_state *state; 690 struct vmw_plane_state *vps; 691 692 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 693 694 if (!vps) 695 return NULL; 696 697 vps->pinned = 0; 698 699 /* Mapping is managed by prepare_fb/cleanup_fb */ 700 memset(&vps->guest_map, 0, sizeof(vps->guest_map)); 701 memset(&vps->host_map, 0, sizeof(vps->host_map)); 702 vps->cpp = 0; 703 704 /* Each ref counted resource needs to be acquired again */ 705 if (vps->surf) 706 (void) vmw_surface_reference(vps->surf); 707 708 if (vps->dmabuf) 709 (void) vmw_dmabuf_reference(vps->dmabuf); 710 711 state = &vps->base; 712 713 __drm_atomic_helper_plane_duplicate_state(plane, state); 714 715 return state; 716 } 717 718 719 /** 720 * vmw_du_plane_reset - creates a blank vmw plane state 721 * @plane: drm plane 722 * 723 * Resets the atomic state for @plane by freeing the state pointer (which might 724 * be NULL, e.g. at driver load time) and allocating a new empty state object. 725 */ 726 void vmw_du_plane_reset(struct drm_plane *plane) 727 { 728 struct vmw_plane_state *vps; 729 730 731 if (plane->state) 732 vmw_du_plane_destroy_state(plane, plane->state); 733 734 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 735 736 if (!vps) { 737 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 738 return; 739 } 740 741 plane->state = &vps->base; 742 plane->state->plane = plane; 743 plane->state->rotation = DRM_MODE_ROTATE_0; 744 } 745 746 747 /** 748 * vmw_du_plane_destroy_state - destroy plane state 749 * @plane: DRM plane 750 * @state: state object to destroy 751 * 752 * Destroys the plane state (both common and vmw-specific) for the 753 * specified plane. 754 */ 755 void 756 vmw_du_plane_destroy_state(struct drm_plane *plane, 757 struct drm_plane_state *state) 758 { 759 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 760 761 762 /* Should have been freed by cleanup_fb */ 763 if (vps->guest_map.virtual) { 764 DRM_ERROR("Guest mapping not freed\n"); 765 ttm_bo_kunmap(&vps->guest_map); 766 } 767 768 if (vps->host_map.virtual) { 769 DRM_ERROR("Host mapping not freed\n"); 770 ttm_bo_kunmap(&vps->host_map); 771 } 772 773 if (vps->surf) 774 vmw_surface_unreference(&vps->surf); 775 776 if (vps->dmabuf) 777 vmw_dmabuf_unreference(&vps->dmabuf); 778 779 drm_atomic_helper_plane_destroy_state(plane, state); 780 } 781 782 783 /** 784 * vmw_du_connector_duplicate_state - duplicate connector state 785 * @connector: DRM connector 786 * 787 * Allocates and returns a copy of the connector state (both common and 788 * vmw-specific) for the specified connector. 789 * 790 * Returns: The newly allocated connector state, or NULL on failure. 791 */ 792 struct drm_connector_state * 793 vmw_du_connector_duplicate_state(struct drm_connector *connector) 794 { 795 struct drm_connector_state *state; 796 struct vmw_connector_state *vcs; 797 798 if (WARN_ON(!connector->state)) 799 return NULL; 800 801 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 802 803 if (!vcs) 804 return NULL; 805 806 state = &vcs->base; 807 808 __drm_atomic_helper_connector_duplicate_state(connector, state); 809 810 return state; 811 } 812 813 814 /** 815 * vmw_du_connector_reset - creates a blank vmw connector state 816 * @connector: DRM connector 817 * 818 * Resets the atomic state for @connector by freeing the state pointer (which 819 * might be NULL, e.g. at driver load time) and allocating a new empty state 820 * object. 821 */ 822 void vmw_du_connector_reset(struct drm_connector *connector) 823 { 824 struct vmw_connector_state *vcs; 825 826 827 if (connector->state) { 828 __drm_atomic_helper_connector_destroy_state(connector->state); 829 830 kfree(vmw_connector_state_to_vcs(connector->state)); 831 } 832 833 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 834 835 if (!vcs) { 836 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 837 return; 838 } 839 840 __drm_atomic_helper_connector_reset(connector, &vcs->base); 841 } 842 843 844 /** 845 * vmw_du_connector_destroy_state - destroy connector state 846 * @connector: DRM connector 847 * @state: state object to destroy 848 * 849 * Destroys the connector state (both common and vmw-specific) for the 850 * specified plane. 851 */ 852 void 853 vmw_du_connector_destroy_state(struct drm_connector *connector, 854 struct drm_connector_state *state) 855 { 856 drm_atomic_helper_connector_destroy_state(connector, state); 857 } 858 /* 859 * Generic framebuffer code 860 */ 861 862 /* 863 * Surface framebuffer code 864 */ 865 866 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 867 { 868 struct vmw_framebuffer_surface *vfbs = 869 vmw_framebuffer_to_vfbs(framebuffer); 870 871 drm_framebuffer_cleanup(framebuffer); 872 vmw_surface_unreference(&vfbs->surface); 873 if (vfbs->base.user_obj) 874 ttm_base_object_unref(&vfbs->base.user_obj); 875 876 kfree(vfbs); 877 } 878 879 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 880 struct drm_file *file_priv, 881 unsigned flags, unsigned color, 882 struct drm_clip_rect *clips, 883 unsigned num_clips) 884 { 885 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 886 struct vmw_framebuffer_surface *vfbs = 887 vmw_framebuffer_to_vfbs(framebuffer); 888 struct drm_clip_rect norect; 889 int ret, inc = 1; 890 891 /* Legacy Display Unit does not support 3D */ 892 if (dev_priv->active_display_unit == vmw_du_legacy) 893 return -EINVAL; 894 895 drm_modeset_lock_all(dev_priv->dev); 896 897 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 898 if (unlikely(ret != 0)) { 899 drm_modeset_unlock_all(dev_priv->dev); 900 return ret; 901 } 902 903 if (!num_clips) { 904 num_clips = 1; 905 clips = &norect; 906 norect.x1 = norect.y1 = 0; 907 norect.x2 = framebuffer->width; 908 norect.y2 = framebuffer->height; 909 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 910 num_clips /= 2; 911 inc = 2; /* skip source rects */ 912 } 913 914 if (dev_priv->active_display_unit == vmw_du_screen_object) 915 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 916 clips, NULL, NULL, 0, 0, 917 num_clips, inc, NULL); 918 else 919 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 920 clips, NULL, NULL, 0, 0, 921 num_clips, inc, NULL); 922 923 vmw_fifo_flush(dev_priv, false); 924 ttm_read_unlock(&dev_priv->reservation_sem); 925 926 drm_modeset_unlock_all(dev_priv->dev); 927 928 return 0; 929 } 930 931 /** 932 * vmw_kms_readback - Perform a readback from the screen system to 933 * a dma-buffer backed framebuffer. 934 * 935 * @dev_priv: Pointer to the device private structure. 936 * @file_priv: Pointer to a struct drm_file identifying the caller. 937 * Must be set to NULL if @user_fence_rep is NULL. 938 * @vfb: Pointer to the dma-buffer backed framebuffer. 939 * @user_fence_rep: User-space provided structure for fence information. 940 * Must be set to non-NULL if @file_priv is non-NULL. 941 * @vclips: Array of clip rects. 942 * @num_clips: Number of clip rects in @vclips. 943 * 944 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 945 * interrupted. 946 */ 947 int vmw_kms_readback(struct vmw_private *dev_priv, 948 struct drm_file *file_priv, 949 struct vmw_framebuffer *vfb, 950 struct drm_vmw_fence_rep __user *user_fence_rep, 951 struct drm_vmw_rect *vclips, 952 uint32_t num_clips) 953 { 954 switch (dev_priv->active_display_unit) { 955 case vmw_du_screen_object: 956 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 957 user_fence_rep, vclips, num_clips); 958 case vmw_du_screen_target: 959 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 960 user_fence_rep, NULL, vclips, num_clips, 961 1, false, true); 962 default: 963 WARN_ONCE(true, 964 "Readback called with invalid display system.\n"); 965 } 966 967 return -ENOSYS; 968 } 969 970 971 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 972 .destroy = vmw_framebuffer_surface_destroy, 973 .dirty = vmw_framebuffer_surface_dirty, 974 }; 975 976 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 977 struct vmw_surface *surface, 978 struct vmw_framebuffer **out, 979 const struct drm_mode_fb_cmd2 980 *mode_cmd, 981 bool is_dmabuf_proxy) 982 983 { 984 struct drm_device *dev = dev_priv->dev; 985 struct vmw_framebuffer_surface *vfbs; 986 enum SVGA3dSurfaceFormat format; 987 int ret; 988 struct drm_format_name_buf format_name; 989 990 /* 3D is only supported on HWv8 and newer hosts */ 991 if (dev_priv->active_display_unit == vmw_du_legacy) 992 return -ENOSYS; 993 994 /* 995 * Sanity checks. 996 */ 997 998 /* Surface must be marked as a scanout. */ 999 if (unlikely(!surface->scanout)) 1000 return -EINVAL; 1001 1002 if (unlikely(surface->mip_levels[0] != 1 || 1003 surface->num_sizes != 1 || 1004 surface->base_size.width < mode_cmd->width || 1005 surface->base_size.height < mode_cmd->height || 1006 surface->base_size.depth != 1)) { 1007 DRM_ERROR("Incompatible surface dimensions " 1008 "for requested mode.\n"); 1009 return -EINVAL; 1010 } 1011 1012 switch (mode_cmd->pixel_format) { 1013 case DRM_FORMAT_ARGB8888: 1014 format = SVGA3D_A8R8G8B8; 1015 break; 1016 case DRM_FORMAT_XRGB8888: 1017 format = SVGA3D_X8R8G8B8; 1018 break; 1019 case DRM_FORMAT_RGB565: 1020 format = SVGA3D_R5G6B5; 1021 break; 1022 case DRM_FORMAT_XRGB1555: 1023 format = SVGA3D_A1R5G5B5; 1024 break; 1025 default: 1026 DRM_ERROR("Invalid pixel format: %s\n", 1027 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1028 return -EINVAL; 1029 } 1030 1031 /* 1032 * For DX, surface format validation is done when surface->scanout 1033 * is set. 1034 */ 1035 if (!dev_priv->has_dx && format != surface->format) { 1036 DRM_ERROR("Invalid surface format for requested mode.\n"); 1037 return -EINVAL; 1038 } 1039 1040 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1041 if (!vfbs) { 1042 ret = -ENOMEM; 1043 goto out_err1; 1044 } 1045 1046 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1047 vfbs->surface = vmw_surface_reference(surface); 1048 vfbs->base.user_handle = mode_cmd->handles[0]; 1049 vfbs->is_dmabuf_proxy = is_dmabuf_proxy; 1050 1051 *out = &vfbs->base; 1052 1053 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1054 &vmw_framebuffer_surface_funcs); 1055 if (ret) 1056 goto out_err2; 1057 1058 return 0; 1059 1060 out_err2: 1061 vmw_surface_unreference(&surface); 1062 kfree(vfbs); 1063 out_err1: 1064 return ret; 1065 } 1066 1067 /* 1068 * Dmabuf framebuffer code 1069 */ 1070 1071 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer) 1072 { 1073 struct vmw_framebuffer_dmabuf *vfbd = 1074 vmw_framebuffer_to_vfbd(framebuffer); 1075 1076 drm_framebuffer_cleanup(framebuffer); 1077 vmw_dmabuf_unreference(&vfbd->buffer); 1078 if (vfbd->base.user_obj) 1079 ttm_base_object_unref(&vfbd->base.user_obj); 1080 1081 kfree(vfbd); 1082 } 1083 1084 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer, 1085 struct drm_file *file_priv, 1086 unsigned flags, unsigned color, 1087 struct drm_clip_rect *clips, 1088 unsigned num_clips) 1089 { 1090 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1091 struct vmw_framebuffer_dmabuf *vfbd = 1092 vmw_framebuffer_to_vfbd(framebuffer); 1093 struct drm_clip_rect norect; 1094 int ret, increment = 1; 1095 1096 drm_modeset_lock_all(dev_priv->dev); 1097 1098 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1099 if (unlikely(ret != 0)) { 1100 drm_modeset_unlock_all(dev_priv->dev); 1101 return ret; 1102 } 1103 1104 if (!num_clips) { 1105 num_clips = 1; 1106 clips = &norect; 1107 norect.x1 = norect.y1 = 0; 1108 norect.x2 = framebuffer->width; 1109 norect.y2 = framebuffer->height; 1110 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1111 num_clips /= 2; 1112 increment = 2; 1113 } 1114 1115 switch (dev_priv->active_display_unit) { 1116 case vmw_du_screen_target: 1117 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1118 clips, NULL, num_clips, increment, 1119 true, true); 1120 break; 1121 case vmw_du_screen_object: 1122 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base, 1123 clips, NULL, num_clips, 1124 increment, true, NULL); 1125 break; 1126 case vmw_du_legacy: 1127 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0, 1128 clips, num_clips, increment); 1129 break; 1130 default: 1131 ret = -EINVAL; 1132 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1133 break; 1134 } 1135 1136 vmw_fifo_flush(dev_priv, false); 1137 ttm_read_unlock(&dev_priv->reservation_sem); 1138 1139 drm_modeset_unlock_all(dev_priv->dev); 1140 1141 return ret; 1142 } 1143 1144 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = { 1145 .destroy = vmw_framebuffer_dmabuf_destroy, 1146 .dirty = vmw_framebuffer_dmabuf_dirty, 1147 }; 1148 1149 /** 1150 * Pin the dmabuffer to the start of vram. 1151 */ 1152 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1153 { 1154 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1155 struct vmw_dma_buffer *buf; 1156 int ret; 1157 1158 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1159 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1160 1161 if (!buf) 1162 return 0; 1163 1164 switch (dev_priv->active_display_unit) { 1165 case vmw_du_legacy: 1166 vmw_overlay_pause_all(dev_priv); 1167 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false); 1168 vmw_overlay_resume_all(dev_priv); 1169 break; 1170 case vmw_du_screen_object: 1171 case vmw_du_screen_target: 1172 if (vfb->dmabuf) 1173 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf, 1174 false); 1175 1176 return vmw_dmabuf_pin_in_placement(dev_priv, buf, 1177 &vmw_mob_placement, false); 1178 default: 1179 return -EINVAL; 1180 } 1181 1182 return ret; 1183 } 1184 1185 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1186 { 1187 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1188 struct vmw_dma_buffer *buf; 1189 1190 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1191 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1192 1193 if (WARN_ON(!buf)) 1194 return 0; 1195 1196 return vmw_dmabuf_unpin(dev_priv, buf, false); 1197 } 1198 1199 /** 1200 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf 1201 * 1202 * @dev: DRM device 1203 * @mode_cmd: parameters for the new surface 1204 * @dmabuf_mob: MOB backing the DMA buf 1205 * @srf_out: newly created surface 1206 * 1207 * When the content FB is a DMA buf, we create a surface as a proxy to the 1208 * same buffer. This way we can do a surface copy rather than a surface DMA. 1209 * This is a more efficient approach 1210 * 1211 * RETURNS: 1212 * 0 on success, error code otherwise 1213 */ 1214 static int vmw_create_dmabuf_proxy(struct drm_device *dev, 1215 const struct drm_mode_fb_cmd2 *mode_cmd, 1216 struct vmw_dma_buffer *dmabuf_mob, 1217 struct vmw_surface **srf_out) 1218 { 1219 uint32_t format; 1220 struct drm_vmw_size content_base_size = {0}; 1221 struct vmw_resource *res; 1222 unsigned int bytes_pp; 1223 struct drm_format_name_buf format_name; 1224 int ret; 1225 1226 switch (mode_cmd->pixel_format) { 1227 case DRM_FORMAT_ARGB8888: 1228 case DRM_FORMAT_XRGB8888: 1229 format = SVGA3D_X8R8G8B8; 1230 bytes_pp = 4; 1231 break; 1232 1233 case DRM_FORMAT_RGB565: 1234 case DRM_FORMAT_XRGB1555: 1235 format = SVGA3D_R5G6B5; 1236 bytes_pp = 2; 1237 break; 1238 1239 case 8: 1240 format = SVGA3D_P8; 1241 bytes_pp = 1; 1242 break; 1243 1244 default: 1245 DRM_ERROR("Invalid framebuffer format %s\n", 1246 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1247 return -EINVAL; 1248 } 1249 1250 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1251 content_base_size.height = mode_cmd->height; 1252 content_base_size.depth = 1; 1253 1254 ret = vmw_surface_gb_priv_define(dev, 1255 0, /* kernel visible only */ 1256 0, /* flags */ 1257 format, 1258 true, /* can be a scanout buffer */ 1259 1, /* num of mip levels */ 1260 0, 1261 0, 1262 content_base_size, 1263 srf_out); 1264 if (ret) { 1265 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1266 return ret; 1267 } 1268 1269 res = &(*srf_out)->res; 1270 1271 /* Reserve and switch the backing mob. */ 1272 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1273 (void) vmw_resource_reserve(res, false, true); 1274 vmw_dmabuf_unreference(&res->backup); 1275 res->backup = vmw_dmabuf_reference(dmabuf_mob); 1276 res->backup_offset = 0; 1277 vmw_resource_unreserve(res, false, NULL, 0); 1278 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1279 1280 return 0; 1281 } 1282 1283 1284 1285 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv, 1286 struct vmw_dma_buffer *dmabuf, 1287 struct vmw_framebuffer **out, 1288 const struct drm_mode_fb_cmd2 1289 *mode_cmd) 1290 1291 { 1292 struct drm_device *dev = dev_priv->dev; 1293 struct vmw_framebuffer_dmabuf *vfbd; 1294 unsigned int requested_size; 1295 struct drm_format_name_buf format_name; 1296 int ret; 1297 1298 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1299 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) { 1300 DRM_ERROR("Screen buffer object size is too small " 1301 "for requested mode.\n"); 1302 return -EINVAL; 1303 } 1304 1305 /* Limited framebuffer color depth support for screen objects */ 1306 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1307 switch (mode_cmd->pixel_format) { 1308 case DRM_FORMAT_XRGB8888: 1309 case DRM_FORMAT_ARGB8888: 1310 break; 1311 case DRM_FORMAT_XRGB1555: 1312 case DRM_FORMAT_RGB565: 1313 break; 1314 default: 1315 DRM_ERROR("Invalid pixel format: %s\n", 1316 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1317 return -EINVAL; 1318 } 1319 } 1320 1321 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1322 if (!vfbd) { 1323 ret = -ENOMEM; 1324 goto out_err1; 1325 } 1326 1327 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1328 vfbd->base.dmabuf = true; 1329 vfbd->buffer = vmw_dmabuf_reference(dmabuf); 1330 vfbd->base.user_handle = mode_cmd->handles[0]; 1331 *out = &vfbd->base; 1332 1333 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1334 &vmw_framebuffer_dmabuf_funcs); 1335 if (ret) 1336 goto out_err2; 1337 1338 return 0; 1339 1340 out_err2: 1341 vmw_dmabuf_unreference(&dmabuf); 1342 kfree(vfbd); 1343 out_err1: 1344 return ret; 1345 } 1346 1347 1348 /** 1349 * vmw_kms_srf_ok - check if a surface can be created 1350 * 1351 * @width: requested width 1352 * @height: requested height 1353 * 1354 * Surfaces need to be less than texture size 1355 */ 1356 static bool 1357 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1358 { 1359 if (width > dev_priv->texture_max_width || 1360 height > dev_priv->texture_max_height) 1361 return false; 1362 1363 return true; 1364 } 1365 1366 /** 1367 * vmw_kms_new_framebuffer - Create a new framebuffer. 1368 * 1369 * @dev_priv: Pointer to device private struct. 1370 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around. 1371 * Either @dmabuf or @surface must be NULL. 1372 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1373 * Either @dmabuf or @surface must be NULL. 1374 * @only_2d: No presents will occur to this dma buffer based framebuffer. This 1375 * Helps the code to do some important optimizations. 1376 * @mode_cmd: Frame-buffer metadata. 1377 */ 1378 struct vmw_framebuffer * 1379 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1380 struct vmw_dma_buffer *dmabuf, 1381 struct vmw_surface *surface, 1382 bool only_2d, 1383 const struct drm_mode_fb_cmd2 *mode_cmd) 1384 { 1385 struct vmw_framebuffer *vfb = NULL; 1386 bool is_dmabuf_proxy = false; 1387 int ret; 1388 1389 /* 1390 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1391 * therefore, wrap the DMA buf in a surface so we can use the 1392 * SurfaceCopy command. 1393 */ 1394 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1395 dmabuf && only_2d && 1396 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1397 dev_priv->active_display_unit == vmw_du_screen_target) { 1398 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd, 1399 dmabuf, &surface); 1400 if (ret) 1401 return ERR_PTR(ret); 1402 1403 is_dmabuf_proxy = true; 1404 } 1405 1406 /* Create the new framebuffer depending one what we have */ 1407 if (surface) { 1408 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1409 mode_cmd, 1410 is_dmabuf_proxy); 1411 1412 /* 1413 * vmw_create_dmabuf_proxy() adds a reference that is no longer 1414 * needed 1415 */ 1416 if (is_dmabuf_proxy) 1417 vmw_surface_unreference(&surface); 1418 } else if (dmabuf) { 1419 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb, 1420 mode_cmd); 1421 } else { 1422 BUG(); 1423 } 1424 1425 if (ret) 1426 return ERR_PTR(ret); 1427 1428 vfb->pin = vmw_framebuffer_pin; 1429 vfb->unpin = vmw_framebuffer_unpin; 1430 1431 return vfb; 1432 } 1433 1434 /* 1435 * Generic Kernel modesetting functions 1436 */ 1437 1438 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1439 struct drm_file *file_priv, 1440 const struct drm_mode_fb_cmd2 *mode_cmd) 1441 { 1442 struct vmw_private *dev_priv = vmw_priv(dev); 1443 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1444 struct vmw_framebuffer *vfb = NULL; 1445 struct vmw_surface *surface = NULL; 1446 struct vmw_dma_buffer *bo = NULL; 1447 struct ttm_base_object *user_obj; 1448 int ret; 1449 1450 /** 1451 * This code should be conditioned on Screen Objects not being used. 1452 * If screen objects are used, we can allocate a GMR to hold the 1453 * requested framebuffer. 1454 */ 1455 1456 if (!vmw_kms_validate_mode_vram(dev_priv, 1457 mode_cmd->pitches[0], 1458 mode_cmd->height)) { 1459 DRM_ERROR("Requested mode exceed bounding box limit.\n"); 1460 return ERR_PTR(-ENOMEM); 1461 } 1462 1463 /* 1464 * Take a reference on the user object of the resource 1465 * backing the kms fb. This ensures that user-space handle 1466 * lookups on that resource will always work as long as 1467 * it's registered with a kms framebuffer. This is important, 1468 * since vmw_execbuf_process identifies resources in the 1469 * command stream using user-space handles. 1470 */ 1471 1472 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1473 if (unlikely(user_obj == NULL)) { 1474 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1475 return ERR_PTR(-ENOENT); 1476 } 1477 1478 /** 1479 * End conditioned code. 1480 */ 1481 1482 /* returns either a dmabuf or surface */ 1483 ret = vmw_user_lookup_handle(dev_priv, tfile, 1484 mode_cmd->handles[0], 1485 &surface, &bo); 1486 if (ret) 1487 goto err_out; 1488 1489 1490 if (!bo && 1491 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1492 DRM_ERROR("Surface size cannot exceed %dx%d", 1493 dev_priv->texture_max_width, 1494 dev_priv->texture_max_height); 1495 goto err_out; 1496 } 1497 1498 1499 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1500 !(dev_priv->capabilities & SVGA_CAP_3D), 1501 mode_cmd); 1502 if (IS_ERR(vfb)) { 1503 ret = PTR_ERR(vfb); 1504 goto err_out; 1505 } 1506 1507 err_out: 1508 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1509 if (bo) 1510 vmw_dmabuf_unreference(&bo); 1511 if (surface) 1512 vmw_surface_unreference(&surface); 1513 1514 if (ret) { 1515 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1516 ttm_base_object_unref(&user_obj); 1517 return ERR_PTR(ret); 1518 } else 1519 vfb->user_obj = user_obj; 1520 1521 return &vfb->base; 1522 } 1523 1524 1525 1526 /** 1527 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1528 * 1529 * @dev: DRM device 1530 * @state: the driver state object 1531 * 1532 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1533 * us to assign a value to mode->crtc_clock so that 1534 * drm_calc_timestamping_constants() won't throw an error message 1535 * 1536 * RETURNS 1537 * Zero for success or -errno 1538 */ 1539 int 1540 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1541 struct drm_atomic_state *state) 1542 { 1543 struct drm_crtc_state *crtc_state; 1544 struct drm_crtc *crtc; 1545 struct vmw_private *dev_priv = vmw_priv(dev); 1546 int i; 1547 1548 1549 for_each_crtc_in_state(state, crtc, crtc_state, i) { 1550 unsigned long requested_bb_mem = 0; 1551 1552 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1553 if (crtc->primary->fb) { 1554 int cpp = crtc->primary->fb->pitches[0] / 1555 crtc->primary->fb->width; 1556 1557 requested_bb_mem += crtc->mode.hdisplay * cpp * 1558 crtc->mode.vdisplay; 1559 } 1560 1561 if (requested_bb_mem > dev_priv->prim_bb_mem) 1562 return -EINVAL; 1563 } 1564 } 1565 1566 return drm_atomic_helper_check(dev, state); 1567 } 1568 1569 1570 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1571 .fb_create = vmw_kms_fb_create, 1572 .atomic_check = vmw_kms_atomic_check_modeset, 1573 .atomic_commit = drm_atomic_helper_commit, 1574 }; 1575 1576 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1577 struct drm_file *file_priv, 1578 struct vmw_framebuffer *vfb, 1579 struct vmw_surface *surface, 1580 uint32_t sid, 1581 int32_t destX, int32_t destY, 1582 struct drm_vmw_rect *clips, 1583 uint32_t num_clips) 1584 { 1585 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1586 &surface->res, destX, destY, 1587 num_clips, 1, NULL); 1588 } 1589 1590 1591 int vmw_kms_present(struct vmw_private *dev_priv, 1592 struct drm_file *file_priv, 1593 struct vmw_framebuffer *vfb, 1594 struct vmw_surface *surface, 1595 uint32_t sid, 1596 int32_t destX, int32_t destY, 1597 struct drm_vmw_rect *clips, 1598 uint32_t num_clips) 1599 { 1600 int ret; 1601 1602 switch (dev_priv->active_display_unit) { 1603 case vmw_du_screen_target: 1604 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1605 &surface->res, destX, destY, 1606 num_clips, 1, NULL); 1607 break; 1608 case vmw_du_screen_object: 1609 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1610 sid, destX, destY, clips, 1611 num_clips); 1612 break; 1613 default: 1614 WARN_ONCE(true, 1615 "Present called with invalid display system.\n"); 1616 ret = -ENOSYS; 1617 break; 1618 } 1619 if (ret) 1620 return ret; 1621 1622 vmw_fifo_flush(dev_priv, false); 1623 1624 return 0; 1625 } 1626 1627 static void 1628 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1629 { 1630 if (dev_priv->hotplug_mode_update_property) 1631 return; 1632 1633 dev_priv->hotplug_mode_update_property = 1634 drm_property_create_range(dev_priv->dev, 1635 DRM_MODE_PROP_IMMUTABLE, 1636 "hotplug_mode_update", 0, 1); 1637 1638 if (!dev_priv->hotplug_mode_update_property) 1639 return; 1640 1641 } 1642 1643 int vmw_kms_init(struct vmw_private *dev_priv) 1644 { 1645 struct drm_device *dev = dev_priv->dev; 1646 int ret; 1647 1648 drm_mode_config_init(dev); 1649 dev->mode_config.funcs = &vmw_kms_funcs; 1650 dev->mode_config.min_width = 1; 1651 dev->mode_config.min_height = 1; 1652 dev->mode_config.max_width = dev_priv->texture_max_width; 1653 dev->mode_config.max_height = dev_priv->texture_max_height; 1654 1655 drm_mode_create_suggested_offset_properties(dev); 1656 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1657 1658 ret = vmw_kms_stdu_init_display(dev_priv); 1659 if (ret) { 1660 ret = vmw_kms_sou_init_display(dev_priv); 1661 if (ret) /* Fallback */ 1662 ret = vmw_kms_ldu_init_display(dev_priv); 1663 } 1664 1665 return ret; 1666 } 1667 1668 int vmw_kms_close(struct vmw_private *dev_priv) 1669 { 1670 int ret; 1671 1672 /* 1673 * Docs says we should take the lock before calling this function 1674 * but since it destroys encoders and our destructor calls 1675 * drm_encoder_cleanup which takes the lock we deadlock. 1676 */ 1677 drm_mode_config_cleanup(dev_priv->dev); 1678 if (dev_priv->active_display_unit == vmw_du_screen_object) 1679 ret = vmw_kms_sou_close_display(dev_priv); 1680 else if (dev_priv->active_display_unit == vmw_du_screen_target) 1681 ret = vmw_kms_stdu_close_display(dev_priv); 1682 else 1683 ret = vmw_kms_ldu_close_display(dev_priv); 1684 1685 return ret; 1686 } 1687 1688 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1689 struct drm_file *file_priv) 1690 { 1691 struct drm_vmw_cursor_bypass_arg *arg = data; 1692 struct vmw_display_unit *du; 1693 struct drm_crtc *crtc; 1694 int ret = 0; 1695 1696 1697 mutex_lock(&dev->mode_config.mutex); 1698 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1699 1700 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1701 du = vmw_crtc_to_du(crtc); 1702 du->hotspot_x = arg->xhot; 1703 du->hotspot_y = arg->yhot; 1704 } 1705 1706 mutex_unlock(&dev->mode_config.mutex); 1707 return 0; 1708 } 1709 1710 crtc = drm_crtc_find(dev, arg->crtc_id); 1711 if (!crtc) { 1712 ret = -ENOENT; 1713 goto out; 1714 } 1715 1716 du = vmw_crtc_to_du(crtc); 1717 1718 du->hotspot_x = arg->xhot; 1719 du->hotspot_y = arg->yhot; 1720 1721 out: 1722 mutex_unlock(&dev->mode_config.mutex); 1723 1724 return ret; 1725 } 1726 1727 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1728 unsigned width, unsigned height, unsigned pitch, 1729 unsigned bpp, unsigned depth) 1730 { 1731 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1732 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1733 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1734 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1735 SVGA_FIFO_PITCHLOCK); 1736 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1737 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1738 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1739 1740 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1741 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1742 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1743 return -EINVAL; 1744 } 1745 1746 return 0; 1747 } 1748 1749 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1750 { 1751 struct vmw_vga_topology_state *save; 1752 uint32_t i; 1753 1754 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1755 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1756 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1757 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1758 vmw_priv->vga_pitchlock = 1759 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1760 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1761 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1762 SVGA_FIFO_PITCHLOCK); 1763 1764 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1765 return 0; 1766 1767 vmw_priv->num_displays = vmw_read(vmw_priv, 1768 SVGA_REG_NUM_GUEST_DISPLAYS); 1769 1770 if (vmw_priv->num_displays == 0) 1771 vmw_priv->num_displays = 1; 1772 1773 for (i = 0; i < vmw_priv->num_displays; ++i) { 1774 save = &vmw_priv->vga_save[i]; 1775 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1776 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1777 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1778 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1779 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1780 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1781 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1782 if (i == 0 && vmw_priv->num_displays == 1 && 1783 save->width == 0 && save->height == 0) { 1784 1785 /* 1786 * It should be fairly safe to assume that these 1787 * values are uninitialized. 1788 */ 1789 1790 save->width = vmw_priv->vga_width - save->pos_x; 1791 save->height = vmw_priv->vga_height - save->pos_y; 1792 } 1793 } 1794 1795 return 0; 1796 } 1797 1798 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1799 { 1800 struct vmw_vga_topology_state *save; 1801 uint32_t i; 1802 1803 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1804 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1805 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1806 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1807 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1808 vmw_priv->vga_pitchlock); 1809 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1810 vmw_mmio_write(vmw_priv->vga_pitchlock, 1811 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1812 1813 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1814 return 0; 1815 1816 for (i = 0; i < vmw_priv->num_displays; ++i) { 1817 save = &vmw_priv->vga_save[i]; 1818 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1819 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1820 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1821 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1822 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1823 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1824 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1825 } 1826 1827 return 0; 1828 } 1829 1830 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1831 uint32_t pitch, 1832 uint32_t height) 1833 { 1834 return ((u64) pitch * (u64) height) < (u64) 1835 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1836 dev_priv->prim_bb_mem : dev_priv->vram_size); 1837 } 1838 1839 1840 /** 1841 * Function called by DRM code called with vbl_lock held. 1842 */ 1843 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1844 { 1845 return 0; 1846 } 1847 1848 /** 1849 * Function called by DRM code called with vbl_lock held. 1850 */ 1851 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1852 { 1853 return -ENOSYS; 1854 } 1855 1856 /** 1857 * Function called by DRM code called with vbl_lock held. 1858 */ 1859 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1860 { 1861 } 1862 1863 1864 /* 1865 * Small shared kms functions. 1866 */ 1867 1868 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num, 1869 struct drm_vmw_rect *rects) 1870 { 1871 struct drm_device *dev = dev_priv->dev; 1872 struct vmw_display_unit *du; 1873 struct drm_connector *con; 1874 1875 mutex_lock(&dev->mode_config.mutex); 1876 1877 #if 0 1878 { 1879 unsigned int i; 1880 1881 DRM_INFO("%s: new layout ", __func__); 1882 for (i = 0; i < num; i++) 1883 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y, 1884 rects[i].w, rects[i].h); 1885 DRM_INFO("\n"); 1886 } 1887 #endif 1888 1889 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1890 du = vmw_connector_to_du(con); 1891 if (num > du->unit) { 1892 du->pref_width = rects[du->unit].w; 1893 du->pref_height = rects[du->unit].h; 1894 du->pref_active = true; 1895 du->gui_x = rects[du->unit].x; 1896 du->gui_y = rects[du->unit].y; 1897 drm_object_property_set_value 1898 (&con->base, dev->mode_config.suggested_x_property, 1899 du->gui_x); 1900 drm_object_property_set_value 1901 (&con->base, dev->mode_config.suggested_y_property, 1902 du->gui_y); 1903 } else { 1904 du->pref_width = 800; 1905 du->pref_height = 600; 1906 du->pref_active = false; 1907 drm_object_property_set_value 1908 (&con->base, dev->mode_config.suggested_x_property, 1909 0); 1910 drm_object_property_set_value 1911 (&con->base, dev->mode_config.suggested_y_property, 1912 0); 1913 } 1914 con->status = vmw_du_connector_detect(con, true); 1915 } 1916 1917 mutex_unlock(&dev->mode_config.mutex); 1918 drm_sysfs_hotplug_event(dev); 1919 1920 return 0; 1921 } 1922 1923 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1924 u16 *r, u16 *g, u16 *b, 1925 uint32_t size, 1926 struct drm_modeset_acquire_ctx *ctx) 1927 { 1928 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1929 int i; 1930 1931 for (i = 0; i < size; i++) { 1932 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1933 r[i], g[i], b[i]); 1934 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1935 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1936 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1937 } 1938 1939 return 0; 1940 } 1941 1942 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1943 { 1944 return 0; 1945 } 1946 1947 enum drm_connector_status 1948 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1949 { 1950 uint32_t num_displays; 1951 struct drm_device *dev = connector->dev; 1952 struct vmw_private *dev_priv = vmw_priv(dev); 1953 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1954 1955 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1956 1957 return ((vmw_connector_to_du(connector)->unit < num_displays && 1958 du->pref_active) ? 1959 connector_status_connected : connector_status_disconnected); 1960 } 1961 1962 static struct drm_display_mode vmw_kms_connector_builtin[] = { 1963 /* 640x480@60Hz */ 1964 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 1965 752, 800, 0, 480, 489, 492, 525, 0, 1966 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1967 /* 800x600@60Hz */ 1968 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 1969 968, 1056, 0, 600, 601, 605, 628, 0, 1970 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1971 /* 1024x768@60Hz */ 1972 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1973 1184, 1344, 0, 768, 771, 777, 806, 0, 1974 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1975 /* 1152x864@75Hz */ 1976 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1977 1344, 1600, 0, 864, 865, 868, 900, 0, 1978 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1979 /* 1280x768@60Hz */ 1980 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1981 1472, 1664, 0, 768, 771, 778, 798, 0, 1982 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1983 /* 1280x800@60Hz */ 1984 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1985 1480, 1680, 0, 800, 803, 809, 831, 0, 1986 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1987 /* 1280x960@60Hz */ 1988 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1989 1488, 1800, 0, 960, 961, 964, 1000, 0, 1990 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1991 /* 1280x1024@60Hz */ 1992 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1993 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 1994 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1995 /* 1360x768@60Hz */ 1996 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1997 1536, 1792, 0, 768, 771, 777, 795, 0, 1998 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1999 /* 1440x1050@60Hz */ 2000 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2001 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2002 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2003 /* 1440x900@60Hz */ 2004 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2005 1672, 1904, 0, 900, 903, 909, 934, 0, 2006 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2007 /* 1600x1200@60Hz */ 2008 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2009 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2010 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2011 /* 1680x1050@60Hz */ 2012 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2013 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2015 /* 1792x1344@60Hz */ 2016 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2017 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2018 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2019 /* 1853x1392@60Hz */ 2020 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2021 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2022 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2023 /* 1920x1200@60Hz */ 2024 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2025 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2026 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2027 /* 1920x1440@60Hz */ 2028 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2029 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2031 /* 2560x1600@60Hz */ 2032 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2033 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2034 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2035 /* Terminate */ 2036 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2037 }; 2038 2039 /** 2040 * vmw_guess_mode_timing - Provide fake timings for a 2041 * 60Hz vrefresh mode. 2042 * 2043 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2044 * members filled in. 2045 */ 2046 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2047 { 2048 mode->hsync_start = mode->hdisplay + 50; 2049 mode->hsync_end = mode->hsync_start + 50; 2050 mode->htotal = mode->hsync_end + 50; 2051 2052 mode->vsync_start = mode->vdisplay + 50; 2053 mode->vsync_end = mode->vsync_start + 50; 2054 mode->vtotal = mode->vsync_end + 50; 2055 2056 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2057 mode->vrefresh = drm_mode_vrefresh(mode); 2058 } 2059 2060 2061 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2062 uint32_t max_width, uint32_t max_height) 2063 { 2064 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2065 struct drm_device *dev = connector->dev; 2066 struct vmw_private *dev_priv = vmw_priv(dev); 2067 struct drm_display_mode *mode = NULL; 2068 struct drm_display_mode *bmode; 2069 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2070 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2071 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2072 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2073 }; 2074 int i; 2075 u32 assumed_bpp = 4; 2076 2077 if (dev_priv->assume_16bpp) 2078 assumed_bpp = 2; 2079 2080 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2081 max_width = min(max_width, dev_priv->stdu_max_width); 2082 max_width = min(max_width, dev_priv->texture_max_width); 2083 2084 max_height = min(max_height, dev_priv->stdu_max_height); 2085 max_height = min(max_height, dev_priv->texture_max_height); 2086 } 2087 2088 /* Add preferred mode */ 2089 mode = drm_mode_duplicate(dev, &prefmode); 2090 if (!mode) 2091 return 0; 2092 mode->hdisplay = du->pref_width; 2093 mode->vdisplay = du->pref_height; 2094 vmw_guess_mode_timing(mode); 2095 2096 if (vmw_kms_validate_mode_vram(dev_priv, 2097 mode->hdisplay * assumed_bpp, 2098 mode->vdisplay)) { 2099 drm_mode_probed_add(connector, mode); 2100 } else { 2101 drm_mode_destroy(dev, mode); 2102 mode = NULL; 2103 } 2104 2105 if (du->pref_mode) { 2106 list_del_init(&du->pref_mode->head); 2107 drm_mode_destroy(dev, du->pref_mode); 2108 } 2109 2110 /* mode might be null here, this is intended */ 2111 du->pref_mode = mode; 2112 2113 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2114 bmode = &vmw_kms_connector_builtin[i]; 2115 if (bmode->hdisplay > max_width || 2116 bmode->vdisplay > max_height) 2117 continue; 2118 2119 if (!vmw_kms_validate_mode_vram(dev_priv, 2120 bmode->hdisplay * assumed_bpp, 2121 bmode->vdisplay)) 2122 continue; 2123 2124 mode = drm_mode_duplicate(dev, bmode); 2125 if (!mode) 2126 return 0; 2127 mode->vrefresh = drm_mode_vrefresh(mode); 2128 2129 drm_mode_probed_add(connector, mode); 2130 } 2131 2132 drm_mode_connector_list_update(connector); 2133 /* Move the prefered mode first, help apps pick the right mode. */ 2134 drm_mode_sort(&connector->modes); 2135 2136 return 1; 2137 } 2138 2139 int vmw_du_connector_set_property(struct drm_connector *connector, 2140 struct drm_property *property, 2141 uint64_t val) 2142 { 2143 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2144 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2145 2146 if (property == dev_priv->implicit_placement_property) 2147 du->is_implicit = val; 2148 2149 return 0; 2150 } 2151 2152 2153 2154 /** 2155 * vmw_du_connector_atomic_set_property - Atomic version of get property 2156 * 2157 * @crtc - crtc the property is associated with 2158 * 2159 * Returns: 2160 * Zero on success, negative errno on failure. 2161 */ 2162 int 2163 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2164 struct drm_connector_state *state, 2165 struct drm_property *property, 2166 uint64_t val) 2167 { 2168 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2169 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2170 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2171 2172 2173 if (property == dev_priv->implicit_placement_property) { 2174 vcs->is_implicit = val; 2175 2176 /* 2177 * We should really be doing a drm_atomic_commit() to 2178 * commit the new state, but since this doesn't cause 2179 * an immedate state change, this is probably ok 2180 */ 2181 du->is_implicit = vcs->is_implicit; 2182 } else { 2183 return -EINVAL; 2184 } 2185 2186 return 0; 2187 } 2188 2189 2190 /** 2191 * vmw_du_connector_atomic_get_property - Atomic version of get property 2192 * 2193 * @connector - connector the property is associated with 2194 * 2195 * Returns: 2196 * Zero on success, negative errno on failure. 2197 */ 2198 int 2199 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2200 const struct drm_connector_state *state, 2201 struct drm_property *property, 2202 uint64_t *val) 2203 { 2204 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2205 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2206 2207 if (property == dev_priv->implicit_placement_property) 2208 *val = vcs->is_implicit; 2209 else { 2210 DRM_ERROR("Invalid Property %s\n", property->name); 2211 return -EINVAL; 2212 } 2213 2214 return 0; 2215 } 2216 2217 2218 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2219 struct drm_file *file_priv) 2220 { 2221 struct vmw_private *dev_priv = vmw_priv(dev); 2222 struct drm_vmw_update_layout_arg *arg = 2223 (struct drm_vmw_update_layout_arg *)data; 2224 void __user *user_rects; 2225 struct drm_vmw_rect *rects; 2226 unsigned rects_size; 2227 int ret; 2228 int i; 2229 u64 total_pixels = 0; 2230 struct drm_mode_config *mode_config = &dev->mode_config; 2231 struct drm_vmw_rect bounding_box = {0}; 2232 2233 if (!arg->num_outputs) { 2234 struct drm_vmw_rect def_rect = {0, 0, 800, 600}; 2235 vmw_du_update_layout(dev_priv, 1, &def_rect); 2236 return 0; 2237 } 2238 2239 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2240 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2241 GFP_KERNEL); 2242 if (unlikely(!rects)) 2243 return -ENOMEM; 2244 2245 user_rects = (void __user *)(unsigned long)arg->rects; 2246 ret = copy_from_user(rects, user_rects, rects_size); 2247 if (unlikely(ret != 0)) { 2248 DRM_ERROR("Failed to get rects.\n"); 2249 ret = -EFAULT; 2250 goto out_free; 2251 } 2252 2253 for (i = 0; i < arg->num_outputs; ++i) { 2254 if (rects[i].x < 0 || 2255 rects[i].y < 0 || 2256 rects[i].x + rects[i].w > mode_config->max_width || 2257 rects[i].y + rects[i].h > mode_config->max_height) { 2258 DRM_ERROR("Invalid GUI layout.\n"); 2259 ret = -EINVAL; 2260 goto out_free; 2261 } 2262 2263 /* 2264 * bounding_box.w and bunding_box.h are used as 2265 * lower-right coordinates 2266 */ 2267 if (rects[i].x + rects[i].w > bounding_box.w) 2268 bounding_box.w = rects[i].x + rects[i].w; 2269 2270 if (rects[i].y + rects[i].h > bounding_box.h) 2271 bounding_box.h = rects[i].y + rects[i].h; 2272 2273 total_pixels += (u64) rects[i].w * (u64) rects[i].h; 2274 } 2275 2276 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2277 /* 2278 * For Screen Targets, the limits for a toplogy are: 2279 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem 2280 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem 2281 */ 2282 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4; 2283 u64 pixel_mem = total_pixels * 4; 2284 2285 if (bb_mem > dev_priv->prim_bb_mem) { 2286 DRM_ERROR("Topology is beyond supported limits.\n"); 2287 ret = -EINVAL; 2288 goto out_free; 2289 } 2290 2291 if (pixel_mem > dev_priv->prim_bb_mem) { 2292 DRM_ERROR("Combined output size too large\n"); 2293 ret = -EINVAL; 2294 goto out_free; 2295 } 2296 } 2297 2298 vmw_du_update_layout(dev_priv, arg->num_outputs, rects); 2299 2300 out_free: 2301 kfree(rects); 2302 return ret; 2303 } 2304 2305 /** 2306 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2307 * on a set of cliprects and a set of display units. 2308 * 2309 * @dev_priv: Pointer to a device private structure. 2310 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2311 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2312 * Cliprects are given in framebuffer coordinates. 2313 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2314 * be NULL. Cliprects are given in source coordinates. 2315 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2316 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2317 * @num_clips: Number of cliprects in the @clips or @vclips array. 2318 * @increment: Integer with which to increment the clip counter when looping. 2319 * Used to skip a predetermined number of clip rects. 2320 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2321 */ 2322 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2323 struct vmw_framebuffer *framebuffer, 2324 const struct drm_clip_rect *clips, 2325 const struct drm_vmw_rect *vclips, 2326 s32 dest_x, s32 dest_y, 2327 int num_clips, 2328 int increment, 2329 struct vmw_kms_dirty *dirty) 2330 { 2331 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2332 struct drm_crtc *crtc; 2333 u32 num_units = 0; 2334 u32 i, k; 2335 2336 dirty->dev_priv = dev_priv; 2337 2338 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) { 2339 if (crtc->primary->fb != &framebuffer->base) 2340 continue; 2341 units[num_units++] = vmw_crtc_to_du(crtc); 2342 } 2343 2344 for (k = 0; k < num_units; k++) { 2345 struct vmw_display_unit *unit = units[k]; 2346 s32 crtc_x = unit->crtc.x; 2347 s32 crtc_y = unit->crtc.y; 2348 s32 crtc_width = unit->crtc.mode.hdisplay; 2349 s32 crtc_height = unit->crtc.mode.vdisplay; 2350 const struct drm_clip_rect *clips_ptr = clips; 2351 const struct drm_vmw_rect *vclips_ptr = vclips; 2352 2353 dirty->unit = unit; 2354 if (dirty->fifo_reserve_size > 0) { 2355 dirty->cmd = vmw_fifo_reserve(dev_priv, 2356 dirty->fifo_reserve_size); 2357 if (!dirty->cmd) { 2358 DRM_ERROR("Couldn't reserve fifo space " 2359 "for dirty blits.\n"); 2360 return -ENOMEM; 2361 } 2362 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2363 } 2364 dirty->num_hits = 0; 2365 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2366 vclips_ptr += increment) { 2367 s32 clip_left; 2368 s32 clip_top; 2369 2370 /* 2371 * Select clip array type. Note that integer type 2372 * in @clips is unsigned short, whereas in @vclips 2373 * it's 32-bit. 2374 */ 2375 if (clips) { 2376 dirty->fb_x = (s32) clips_ptr->x1; 2377 dirty->fb_y = (s32) clips_ptr->y1; 2378 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2379 crtc_x; 2380 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2381 crtc_y; 2382 } else { 2383 dirty->fb_x = vclips_ptr->x; 2384 dirty->fb_y = vclips_ptr->y; 2385 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2386 dest_x - crtc_x; 2387 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2388 dest_y - crtc_y; 2389 } 2390 2391 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2392 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2393 2394 /* Skip this clip if it's outside the crtc region */ 2395 if (dirty->unit_x1 >= crtc_width || 2396 dirty->unit_y1 >= crtc_height || 2397 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2398 continue; 2399 2400 /* Clip right and bottom to crtc limits */ 2401 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2402 crtc_width); 2403 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2404 crtc_height); 2405 2406 /* Clip left and top to crtc limits */ 2407 clip_left = min_t(s32, dirty->unit_x1, 0); 2408 clip_top = min_t(s32, dirty->unit_y1, 0); 2409 dirty->unit_x1 -= clip_left; 2410 dirty->unit_y1 -= clip_top; 2411 dirty->fb_x -= clip_left; 2412 dirty->fb_y -= clip_top; 2413 2414 dirty->clip(dirty); 2415 } 2416 2417 dirty->fifo_commit(dirty); 2418 } 2419 2420 return 0; 2421 } 2422 2423 /** 2424 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2425 * command submission. 2426 * 2427 * @dev_priv. Pointer to a device private structure. 2428 * @buf: The buffer object 2429 * @interruptible: Whether to perform waits as interruptible. 2430 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2431 * The buffer will be validated as a GMR. Already pinned buffers will not be 2432 * validated. 2433 * 2434 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2435 * interrupted by a signal. 2436 */ 2437 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2438 struct vmw_dma_buffer *buf, 2439 bool interruptible, 2440 bool validate_as_mob) 2441 { 2442 struct ttm_buffer_object *bo = &buf->base; 2443 int ret; 2444 2445 ttm_bo_reserve(bo, false, false, NULL); 2446 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2447 validate_as_mob); 2448 if (ret) 2449 ttm_bo_unreserve(bo); 2450 2451 return ret; 2452 } 2453 2454 /** 2455 * vmw_kms_helper_buffer_revert - Undo the actions of 2456 * vmw_kms_helper_buffer_prepare. 2457 * 2458 * @res: Pointer to the buffer object. 2459 * 2460 * Helper to be used if an error forces the caller to undo the actions of 2461 * vmw_kms_helper_buffer_prepare. 2462 */ 2463 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf) 2464 { 2465 if (buf) 2466 ttm_bo_unreserve(&buf->base); 2467 } 2468 2469 /** 2470 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2471 * kms command submission. 2472 * 2473 * @dev_priv: Pointer to a device private structure. 2474 * @file_priv: Pointer to a struct drm_file representing the caller's 2475 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2476 * if non-NULL, @user_fence_rep must be non-NULL. 2477 * @buf: The buffer object. 2478 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2479 * ref-counted fence pointer is returned here. 2480 * @user_fence_rep: Optional pointer to a user-space provided struct 2481 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2482 * function copies fence data to user-space in a fail-safe manner. 2483 */ 2484 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2485 struct drm_file *file_priv, 2486 struct vmw_dma_buffer *buf, 2487 struct vmw_fence_obj **out_fence, 2488 struct drm_vmw_fence_rep __user * 2489 user_fence_rep) 2490 { 2491 struct vmw_fence_obj *fence; 2492 uint32_t handle; 2493 int ret; 2494 2495 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2496 file_priv ? &handle : NULL); 2497 if (buf) 2498 vmw_fence_single_bo(&buf->base, fence); 2499 if (file_priv) 2500 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2501 ret, user_fence_rep, fence, 2502 handle); 2503 if (out_fence) 2504 *out_fence = fence; 2505 else 2506 vmw_fence_obj_unreference(&fence); 2507 2508 vmw_kms_helper_buffer_revert(buf); 2509 } 2510 2511 2512 /** 2513 * vmw_kms_helper_resource_revert - Undo the actions of 2514 * vmw_kms_helper_resource_prepare. 2515 * 2516 * @res: Pointer to the resource. Typically a surface. 2517 * 2518 * Helper to be used if an error forces the caller to undo the actions of 2519 * vmw_kms_helper_resource_prepare. 2520 */ 2521 void vmw_kms_helper_resource_revert(struct vmw_resource *res) 2522 { 2523 vmw_kms_helper_buffer_revert(res->backup); 2524 vmw_resource_unreserve(res, false, NULL, 0); 2525 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2526 } 2527 2528 /** 2529 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2530 * command submission. 2531 * 2532 * @res: Pointer to the resource. Typically a surface. 2533 * @interruptible: Whether to perform waits as interruptible. 2534 * 2535 * Reserves and validates also the backup buffer if a guest-backed resource. 2536 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2537 * interrupted by a signal. 2538 */ 2539 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2540 bool interruptible) 2541 { 2542 int ret = 0; 2543 2544 if (interruptible) 2545 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2546 else 2547 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2548 2549 if (unlikely(ret != 0)) 2550 return -ERESTARTSYS; 2551 2552 ret = vmw_resource_reserve(res, interruptible, false); 2553 if (ret) 2554 goto out_unlock; 2555 2556 if (res->backup) { 2557 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2558 interruptible, 2559 res->dev_priv->has_mob); 2560 if (ret) 2561 goto out_unreserve; 2562 } 2563 ret = vmw_resource_validate(res); 2564 if (ret) 2565 goto out_revert; 2566 return 0; 2567 2568 out_revert: 2569 vmw_kms_helper_buffer_revert(res->backup); 2570 out_unreserve: 2571 vmw_resource_unreserve(res, false, NULL, 0); 2572 out_unlock: 2573 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2574 return ret; 2575 } 2576 2577 /** 2578 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2579 * kms command submission. 2580 * 2581 * @res: Pointer to the resource. Typically a surface. 2582 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2583 * ref-counted fence pointer is returned here. 2584 */ 2585 void vmw_kms_helper_resource_finish(struct vmw_resource *res, 2586 struct vmw_fence_obj **out_fence) 2587 { 2588 if (res->backup || out_fence) 2589 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup, 2590 out_fence, NULL); 2591 2592 vmw_resource_unreserve(res, false, NULL, 0); 2593 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2594 } 2595 2596 /** 2597 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2598 * its backing MOB. 2599 * 2600 * @res: Pointer to the surface resource 2601 * @clips: Clip rects in framebuffer (surface) space. 2602 * @num_clips: Number of clips in @clips. 2603 * @increment: Integer with which to increment the clip counter when looping. 2604 * Used to skip a predetermined number of clip rects. 2605 * 2606 * This function makes sure the proxy surface is updated from its backing MOB 2607 * using the region given by @clips. The surface resource @res and its backing 2608 * MOB needs to be reserved and validated on call. 2609 */ 2610 int vmw_kms_update_proxy(struct vmw_resource *res, 2611 const struct drm_clip_rect *clips, 2612 unsigned num_clips, 2613 int increment) 2614 { 2615 struct vmw_private *dev_priv = res->dev_priv; 2616 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2617 struct { 2618 SVGA3dCmdHeader header; 2619 SVGA3dCmdUpdateGBImage body; 2620 } *cmd; 2621 SVGA3dBox *box; 2622 size_t copy_size = 0; 2623 int i; 2624 2625 if (!clips) 2626 return 0; 2627 2628 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2629 if (!cmd) { 2630 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2631 "update.\n"); 2632 return -ENOMEM; 2633 } 2634 2635 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2636 box = &cmd->body.box; 2637 2638 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2639 cmd->header.size = sizeof(cmd->body); 2640 cmd->body.image.sid = res->id; 2641 cmd->body.image.face = 0; 2642 cmd->body.image.mipmap = 0; 2643 2644 if (clips->x1 > size->width || clips->x2 > size->width || 2645 clips->y1 > size->height || clips->y2 > size->height) { 2646 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2647 return -EINVAL; 2648 } 2649 2650 box->x = clips->x1; 2651 box->y = clips->y1; 2652 box->z = 0; 2653 box->w = clips->x2 - clips->x1; 2654 box->h = clips->y2 - clips->y1; 2655 box->d = 1; 2656 2657 copy_size += sizeof(*cmd); 2658 } 2659 2660 vmw_fifo_commit(dev_priv, copy_size); 2661 2662 return 0; 2663 } 2664 2665 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2666 unsigned unit, 2667 u32 max_width, 2668 u32 max_height, 2669 struct drm_connector **p_con, 2670 struct drm_crtc **p_crtc, 2671 struct drm_display_mode **p_mode) 2672 { 2673 struct drm_connector *con; 2674 struct vmw_display_unit *du; 2675 struct drm_display_mode *mode; 2676 int i = 0; 2677 2678 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2679 head) { 2680 if (i == unit) 2681 break; 2682 2683 ++i; 2684 } 2685 2686 if (i != unit) { 2687 DRM_ERROR("Could not find initial display unit.\n"); 2688 return -EINVAL; 2689 } 2690 2691 if (list_empty(&con->modes)) 2692 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2693 2694 if (list_empty(&con->modes)) { 2695 DRM_ERROR("Could not find initial display mode.\n"); 2696 return -EINVAL; 2697 } 2698 2699 du = vmw_connector_to_du(con); 2700 *p_con = con; 2701 *p_crtc = &du->crtc; 2702 2703 list_for_each_entry(mode, &con->modes, head) { 2704 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2705 break; 2706 } 2707 2708 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2709 *p_mode = mode; 2710 else { 2711 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2712 *p_mode = list_first_entry(&con->modes, 2713 struct drm_display_mode, 2714 head); 2715 } 2716 2717 return 0; 2718 } 2719 2720 /** 2721 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2722 * 2723 * @dev_priv: Pointer to a device private struct. 2724 * @du: The display unit of the crtc. 2725 */ 2726 void vmw_kms_del_active(struct vmw_private *dev_priv, 2727 struct vmw_display_unit *du) 2728 { 2729 mutex_lock(&dev_priv->global_kms_state_mutex); 2730 if (du->active_implicit) { 2731 if (--(dev_priv->num_implicit) == 0) 2732 dev_priv->implicit_fb = NULL; 2733 du->active_implicit = false; 2734 } 2735 mutex_unlock(&dev_priv->global_kms_state_mutex); 2736 } 2737 2738 /** 2739 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2740 * 2741 * @vmw_priv: Pointer to a device private struct. 2742 * @du: The display unit of the crtc. 2743 * @vfb: The implicit framebuffer 2744 * 2745 * Registers a binding to an implicit framebuffer. 2746 */ 2747 void vmw_kms_add_active(struct vmw_private *dev_priv, 2748 struct vmw_display_unit *du, 2749 struct vmw_framebuffer *vfb) 2750 { 2751 mutex_lock(&dev_priv->global_kms_state_mutex); 2752 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2753 2754 if (!du->active_implicit && du->is_implicit) { 2755 dev_priv->implicit_fb = vfb; 2756 du->active_implicit = true; 2757 dev_priv->num_implicit++; 2758 } 2759 mutex_unlock(&dev_priv->global_kms_state_mutex); 2760 } 2761 2762 /** 2763 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2764 * 2765 * @dev_priv: Pointer to device-private struct. 2766 * @crtc: The crtc we want to flip. 2767 * 2768 * Returns true or false depending whether it's OK to flip this crtc 2769 * based on the criterion that we must not have more than one implicit 2770 * frame-buffer at any one time. 2771 */ 2772 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2773 struct drm_crtc *crtc) 2774 { 2775 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2776 bool ret; 2777 2778 mutex_lock(&dev_priv->global_kms_state_mutex); 2779 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2780 mutex_unlock(&dev_priv->global_kms_state_mutex); 2781 2782 return ret; 2783 } 2784 2785 /** 2786 * vmw_kms_update_implicit_fb - Update the implicit fb. 2787 * 2788 * @dev_priv: Pointer to device-private struct. 2789 * @crtc: The crtc the new implicit frame-buffer is bound to. 2790 */ 2791 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2792 struct drm_crtc *crtc) 2793 { 2794 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2795 struct vmw_framebuffer *vfb; 2796 2797 mutex_lock(&dev_priv->global_kms_state_mutex); 2798 2799 if (!du->is_implicit) 2800 goto out_unlock; 2801 2802 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb); 2803 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2804 dev_priv->implicit_fb != vfb); 2805 2806 dev_priv->implicit_fb = vfb; 2807 out_unlock: 2808 mutex_unlock(&dev_priv->global_kms_state_mutex); 2809 } 2810 2811 /** 2812 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2813 * property. 2814 * 2815 * @dev_priv: Pointer to a device private struct. 2816 * @immutable: Whether the property is immutable. 2817 * 2818 * Sets up the implicit placement property unless it's already set up. 2819 */ 2820 void 2821 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2822 bool immutable) 2823 { 2824 if (dev_priv->implicit_placement_property) 2825 return; 2826 2827 dev_priv->implicit_placement_property = 2828 drm_property_create_range(dev_priv->dev, 2829 immutable ? 2830 DRM_MODE_PROP_IMMUTABLE : 0, 2831 "implicit_placement", 0, 1); 2832 2833 } 2834 2835 2836 /** 2837 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 2838 * 2839 * @set: The configuration to set. 2840 * 2841 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 2842 * when drm_mode_set_crtcinfo is called as part of the configuration setting 2843 * causes it to return incorrect crtc dimensions causing severe problems in 2844 * the vmwgfx modesetting. So explicitly clear that member before calling 2845 * into drm_atomic_helper_set_config. 2846 */ 2847 int vmw_kms_set_config(struct drm_mode_set *set, 2848 struct drm_modeset_acquire_ctx *ctx) 2849 { 2850 if (set && set->mode) 2851 set->mode->type = 0; 2852 2853 return drm_atomic_helper_set_config(set, ctx); 2854 } 2855