1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright (c) 2009-2025 Broadcom. All Rights Reserved. The term 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. 6 * 7 **************************************************************************/ 8 9 #include "vmwgfx_kms.h" 10 11 #include "vmwgfx_bo.h" 12 #include "vmwgfx_resource_priv.h" 13 #include "vmwgfx_vkms.h" 14 #include "vmw_surface_cache.h" 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_damage_helper.h> 19 #include <drm/drm_fourcc.h> 20 #include <drm/drm_rect.h> 21 #include <drm/drm_sysfs.h> 22 #include <drm/drm_edid.h> 23 24 void vmw_du_init(struct vmw_display_unit *du) 25 { 26 vmw_vkms_crtc_init(&du->crtc); 27 } 28 29 void vmw_du_cleanup(struct vmw_display_unit *du) 30 { 31 struct vmw_private *dev_priv = vmw_priv(du->primary.dev); 32 33 vmw_vkms_crtc_cleanup(&du->crtc); 34 drm_plane_cleanup(&du->primary); 35 if (vmw_cmd_supported(dev_priv)) 36 drm_plane_cleanup(&du->cursor.base); 37 38 drm_connector_unregister(&du->connector); 39 drm_crtc_cleanup(&du->crtc); 40 drm_encoder_cleanup(&du->encoder); 41 drm_connector_cleanup(&du->connector); 42 } 43 44 45 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 46 { 47 drm_plane_cleanup(plane); 48 49 /* Planes are static in our case so we don't free it */ 50 } 51 52 53 /** 54 * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface 55 * 56 * @vps: plane state associated with the display surface 57 */ 58 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps) 59 { 60 struct vmw_surface *surf = vmw_user_object_surface(&vps->uo); 61 62 if (surf) { 63 if (vps->pinned) { 64 vmw_resource_unpin(&surf->res); 65 vps->pinned--; 66 } 67 } 68 } 69 70 71 /** 72 * vmw_du_plane_cleanup_fb - Unpins the plane surface 73 * 74 * @plane: display plane 75 * @old_state: Contains the FB to clean up 76 * 77 * Unpins the framebuffer surface 78 * 79 * Returns 0 on success 80 */ 81 void 82 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 83 struct drm_plane_state *old_state) 84 { 85 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 86 87 vmw_du_plane_unpin_surf(vps); 88 } 89 90 91 /** 92 * vmw_du_primary_plane_atomic_check - check if the new state is okay 93 * 94 * @plane: display plane 95 * @state: info on the new plane state, including the FB 96 * 97 * Check if the new state is settable given the current state. Other 98 * than what the atomic helper checks, we care about crtc fitting 99 * the FB and maintaining one active framebuffer. 100 * 101 * Returns 0 on success 102 */ 103 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 104 struct drm_atomic_state *state) 105 { 106 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 107 plane); 108 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 109 plane); 110 struct drm_crtc_state *crtc_state = NULL; 111 struct drm_framebuffer *new_fb = new_state->fb; 112 struct drm_framebuffer *old_fb = old_state->fb; 113 int ret; 114 115 /* 116 * Ignore damage clips if the framebuffer attached to the plane's state 117 * has changed since the last plane update (page-flip). In this case, a 118 * full plane update should happen because uploads are done per-buffer. 119 */ 120 if (old_fb != new_fb) 121 new_state->ignore_damage_clips = true; 122 123 if (new_state->crtc) 124 crtc_state = drm_atomic_get_new_crtc_state(state, 125 new_state->crtc); 126 127 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 128 DRM_PLANE_NO_SCALING, 129 DRM_PLANE_NO_SCALING, 130 false, true); 131 return ret; 132 } 133 134 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 135 struct drm_atomic_state *state) 136 { 137 struct vmw_private *vmw = vmw_priv(crtc->dev); 138 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 139 crtc); 140 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 141 int connector_mask = drm_connector_mask(&du->connector); 142 bool has_primary = new_state->plane_mask & 143 drm_plane_mask(crtc->primary); 144 145 /* 146 * This is fine in general, but broken userspace might expect 147 * some actual rendering so give a clue as why it's blank. 148 */ 149 if (new_state->enable && !has_primary) 150 drm_dbg_driver(&vmw->drm, 151 "CRTC without a primary plane will be blank.\n"); 152 153 154 if (new_state->connector_mask != connector_mask && 155 new_state->connector_mask != 0) { 156 DRM_ERROR("Invalid connectors configuration\n"); 157 return -EINVAL; 158 } 159 160 /* 161 * Our virtual device does not have a dot clock, so use the logical 162 * clock value as the dot clock. 163 */ 164 if (new_state->mode.crtc_clock == 0) 165 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 166 167 return 0; 168 } 169 170 171 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 172 struct drm_atomic_state *state) 173 { 174 vmw_vkms_crtc_atomic_begin(crtc, state); 175 } 176 177 /** 178 * vmw_du_crtc_duplicate_state - duplicate crtc state 179 * @crtc: DRM crtc 180 * 181 * Allocates and returns a copy of the crtc state (both common and 182 * vmw-specific) for the specified crtc. 183 * 184 * Returns: The newly allocated crtc state, or NULL on failure. 185 */ 186 struct drm_crtc_state * 187 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 188 { 189 struct drm_crtc_state *state; 190 struct vmw_crtc_state *vcs; 191 192 if (WARN_ON(!crtc->state)) 193 return NULL; 194 195 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 196 197 if (!vcs) 198 return NULL; 199 200 state = &vcs->base; 201 202 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 203 204 return state; 205 } 206 207 208 /** 209 * vmw_du_crtc_reset - creates a blank vmw crtc state 210 * @crtc: DRM crtc 211 * 212 * Resets the atomic state for @crtc by freeing the state pointer (which 213 * might be NULL, e.g. at driver load time) and allocating a new empty state 214 * object. 215 */ 216 void vmw_du_crtc_reset(struct drm_crtc *crtc) 217 { 218 struct vmw_crtc_state *vcs; 219 220 221 if (crtc->state) { 222 __drm_atomic_helper_crtc_destroy_state(crtc->state); 223 224 kfree(vmw_crtc_state_to_vcs(crtc->state)); 225 } 226 227 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 228 229 if (!vcs) { 230 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 231 return; 232 } 233 234 __drm_atomic_helper_crtc_reset(crtc, &vcs->base); 235 } 236 237 238 /** 239 * vmw_du_crtc_destroy_state - destroy crtc state 240 * @crtc: DRM crtc 241 * @state: state object to destroy 242 * 243 * Destroys the crtc state (both common and vmw-specific) for the 244 * specified plane. 245 */ 246 void 247 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 248 struct drm_crtc_state *state) 249 { 250 drm_atomic_helper_crtc_destroy_state(crtc, state); 251 } 252 253 254 /** 255 * vmw_du_plane_duplicate_state - duplicate plane state 256 * @plane: drm plane 257 * 258 * Allocates and returns a copy of the plane state (both common and 259 * vmw-specific) for the specified plane. 260 * 261 * Returns: The newly allocated plane state, or NULL on failure. 262 */ 263 struct drm_plane_state * 264 vmw_du_plane_duplicate_state(struct drm_plane *plane) 265 { 266 struct drm_plane_state *state; 267 struct vmw_plane_state *vps; 268 269 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 270 271 if (!vps) 272 return NULL; 273 274 vps->pinned = 0; 275 vps->cpp = 0; 276 277 vps->cursor.mob = NULL; 278 279 /* Each ref counted resource needs to be acquired again */ 280 vmw_user_object_ref(&vps->uo); 281 state = &vps->base; 282 283 __drm_atomic_helper_plane_duplicate_state(plane, state); 284 285 return state; 286 } 287 288 289 /** 290 * vmw_du_plane_reset - creates a blank vmw plane state 291 * @plane: drm plane 292 * 293 * Resets the atomic state for @plane by freeing the state pointer (which might 294 * be NULL, e.g. at driver load time) and allocating a new empty state object. 295 */ 296 void vmw_du_plane_reset(struct drm_plane *plane) 297 { 298 struct vmw_plane_state *vps; 299 300 if (plane->state) 301 vmw_du_plane_destroy_state(plane, plane->state); 302 303 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 304 305 if (!vps) { 306 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 307 return; 308 } 309 310 __drm_atomic_helper_plane_reset(plane, &vps->base); 311 } 312 313 314 /** 315 * vmw_du_plane_destroy_state - destroy plane state 316 * @plane: DRM plane 317 * @state: state object to destroy 318 * 319 * Destroys the plane state (both common and vmw-specific) for the 320 * specified plane. 321 */ 322 void 323 vmw_du_plane_destroy_state(struct drm_plane *plane, 324 struct drm_plane_state *state) 325 { 326 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 327 328 /* Should have been freed by cleanup_fb */ 329 vmw_user_object_unref(&vps->uo); 330 331 drm_atomic_helper_plane_destroy_state(plane, state); 332 } 333 334 335 /** 336 * vmw_du_connector_duplicate_state - duplicate connector state 337 * @connector: DRM connector 338 * 339 * Allocates and returns a copy of the connector state (both common and 340 * vmw-specific) for the specified connector. 341 * 342 * Returns: The newly allocated connector state, or NULL on failure. 343 */ 344 struct drm_connector_state * 345 vmw_du_connector_duplicate_state(struct drm_connector *connector) 346 { 347 struct drm_connector_state *state; 348 struct vmw_connector_state *vcs; 349 350 if (WARN_ON(!connector->state)) 351 return NULL; 352 353 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 354 355 if (!vcs) 356 return NULL; 357 358 state = &vcs->base; 359 360 __drm_atomic_helper_connector_duplicate_state(connector, state); 361 362 return state; 363 } 364 365 366 /** 367 * vmw_du_connector_reset - creates a blank vmw connector state 368 * @connector: DRM connector 369 * 370 * Resets the atomic state for @connector by freeing the state pointer (which 371 * might be NULL, e.g. at driver load time) and allocating a new empty state 372 * object. 373 */ 374 void vmw_du_connector_reset(struct drm_connector *connector) 375 { 376 struct vmw_connector_state *vcs; 377 378 379 if (connector->state) { 380 __drm_atomic_helper_connector_destroy_state(connector->state); 381 382 kfree(vmw_connector_state_to_vcs(connector->state)); 383 } 384 385 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 386 387 if (!vcs) { 388 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 389 return; 390 } 391 392 __drm_atomic_helper_connector_reset(connector, &vcs->base); 393 } 394 395 396 /** 397 * vmw_du_connector_destroy_state - destroy connector state 398 * @connector: DRM connector 399 * @state: state object to destroy 400 * 401 * Destroys the connector state (both common and vmw-specific) for the 402 * specified plane. 403 */ 404 void 405 vmw_du_connector_destroy_state(struct drm_connector *connector, 406 struct drm_connector_state *state) 407 { 408 drm_atomic_helper_connector_destroy_state(connector, state); 409 } 410 /* 411 * Generic framebuffer code 412 */ 413 414 /* 415 * Surface framebuffer code 416 */ 417 418 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 419 { 420 struct vmw_framebuffer_surface *vfbs = 421 vmw_framebuffer_to_vfbs(framebuffer); 422 struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo); 423 struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo); 424 425 if (bo) { 426 vmw_bo_dirty_release(bo); 427 /* 428 * bo->dirty is reference counted so it being NULL 429 * means that the surface wasn't coherent to begin 430 * with and so we have to free the dirty tracker 431 * in the vmw_resource 432 */ 433 if (!bo->dirty && surf && surf->res.dirty) 434 surf->res.func->dirty_free(&surf->res); 435 } 436 drm_framebuffer_cleanup(framebuffer); 437 vmw_user_object_unref(&vfbs->uo); 438 439 kfree(vfbs); 440 } 441 442 /** 443 * vmw_kms_readback - Perform a readback from the screen system to 444 * a buffer-object backed framebuffer. 445 * 446 * @dev_priv: Pointer to the device private structure. 447 * @file_priv: Pointer to a struct drm_file identifying the caller. 448 * Must be set to NULL if @user_fence_rep is NULL. 449 * @vfb: Pointer to the buffer-object backed framebuffer. 450 * @user_fence_rep: User-space provided structure for fence information. 451 * Must be set to non-NULL if @file_priv is non-NULL. 452 * @vclips: Array of clip rects. 453 * @num_clips: Number of clip rects in @vclips. 454 * 455 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 456 * interrupted. 457 */ 458 int vmw_kms_readback(struct vmw_private *dev_priv, 459 struct drm_file *file_priv, 460 struct vmw_framebuffer *vfb, 461 struct drm_vmw_fence_rep __user *user_fence_rep, 462 struct drm_vmw_rect *vclips, 463 uint32_t num_clips) 464 { 465 switch (dev_priv->active_display_unit) { 466 case vmw_du_screen_object: 467 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 468 user_fence_rep, vclips, num_clips, 469 NULL); 470 case vmw_du_screen_target: 471 return vmw_kms_stdu_readback(dev_priv, file_priv, vfb, 472 user_fence_rep, NULL, vclips, num_clips, 473 1, NULL); 474 default: 475 WARN_ONCE(true, 476 "Readback called with invalid display system.\n"); 477 } 478 479 return -ENOSYS; 480 } 481 482 static int vmw_framebuffer_surface_create_handle(struct drm_framebuffer *fb, 483 struct drm_file *file_priv, 484 unsigned int *handle) 485 { 486 struct vmw_framebuffer_surface *vfbs = vmw_framebuffer_to_vfbs(fb); 487 struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo); 488 489 if (WARN_ON(!bo)) 490 return -EINVAL; 491 return drm_gem_handle_create(file_priv, &bo->tbo.base, handle); 492 } 493 494 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 495 .create_handle = vmw_framebuffer_surface_create_handle, 496 .destroy = vmw_framebuffer_surface_destroy, 497 .dirty = drm_atomic_helper_dirtyfb, 498 }; 499 500 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 501 struct vmw_user_object *uo, 502 struct vmw_framebuffer **out, 503 const struct drm_format_info *info, 504 const struct drm_mode_fb_cmd2 505 *mode_cmd) 506 507 { 508 struct drm_device *dev = &dev_priv->drm; 509 struct vmw_framebuffer_surface *vfbs; 510 struct vmw_surface *surface; 511 int ret; 512 513 /* 3D is only supported on HWv8 and newer hosts */ 514 if (dev_priv->active_display_unit == vmw_du_legacy) 515 return -ENOSYS; 516 517 surface = vmw_user_object_surface(uo); 518 519 /* 520 * Sanity checks. 521 */ 522 523 if (!drm_any_plane_has_format(&dev_priv->drm, 524 mode_cmd->pixel_format, 525 mode_cmd->modifier[0])) { 526 drm_dbg(&dev_priv->drm, 527 "unsupported pixel format %p4cc / modifier 0x%llx\n", 528 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 529 return -EINVAL; 530 } 531 532 /* Surface must be marked as a scanout. */ 533 if (unlikely(!surface->metadata.scanout)) 534 return -EINVAL; 535 536 if (unlikely(surface->metadata.mip_levels[0] != 1 || 537 surface->metadata.num_sizes != 1 || 538 surface->metadata.base_size.width < mode_cmd->width || 539 surface->metadata.base_size.height < mode_cmd->height || 540 surface->metadata.base_size.depth != 1)) { 541 DRM_ERROR("Incompatible surface dimensions " 542 "for requested mode.\n"); 543 return -EINVAL; 544 } 545 546 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 547 if (!vfbs) { 548 ret = -ENOMEM; 549 goto out_err1; 550 } 551 552 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, info, mode_cmd); 553 memcpy(&vfbs->uo, uo, sizeof(vfbs->uo)); 554 vmw_user_object_ref(&vfbs->uo); 555 556 *out = &vfbs->base; 557 558 ret = drm_framebuffer_init(dev, &vfbs->base.base, 559 &vmw_framebuffer_surface_funcs); 560 if (ret) 561 goto out_err2; 562 563 return 0; 564 565 out_err2: 566 vmw_user_object_unref(&vfbs->uo); 567 kfree(vfbs); 568 out_err1: 569 return ret; 570 } 571 572 /* 573 * Buffer-object framebuffer code 574 */ 575 576 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb, 577 struct drm_file *file_priv, 578 unsigned int *handle) 579 { 580 struct vmw_framebuffer_bo *vfbd = 581 vmw_framebuffer_to_vfbd(fb); 582 return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle); 583 } 584 585 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 586 { 587 struct vmw_framebuffer_bo *vfbd = 588 vmw_framebuffer_to_vfbd(framebuffer); 589 590 vmw_bo_dirty_release(vfbd->buffer); 591 drm_framebuffer_cleanup(framebuffer); 592 vmw_bo_unreference(&vfbd->buffer); 593 594 kfree(vfbd); 595 } 596 597 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 598 .create_handle = vmw_framebuffer_bo_create_handle, 599 .destroy = vmw_framebuffer_bo_destroy, 600 .dirty = drm_atomic_helper_dirtyfb, 601 }; 602 603 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 604 struct vmw_bo *bo, 605 struct vmw_framebuffer **out, 606 const struct drm_format_info *info, 607 const struct drm_mode_fb_cmd2 608 *mode_cmd) 609 610 { 611 struct drm_device *dev = &dev_priv->drm; 612 struct vmw_framebuffer_bo *vfbd; 613 unsigned int requested_size; 614 int ret; 615 616 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 617 if (unlikely(requested_size > bo->tbo.base.size)) { 618 DRM_ERROR("Screen buffer object size is too small " 619 "for requested mode.\n"); 620 return -EINVAL; 621 } 622 623 if (!drm_any_plane_has_format(&dev_priv->drm, 624 mode_cmd->pixel_format, 625 mode_cmd->modifier[0])) { 626 drm_dbg(&dev_priv->drm, 627 "unsupported pixel format %p4cc / modifier 0x%llx\n", 628 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 629 return -EINVAL; 630 } 631 632 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 633 if (!vfbd) { 634 ret = -ENOMEM; 635 goto out_err1; 636 } 637 638 vfbd->base.base.obj[0] = &bo->tbo.base; 639 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, info, mode_cmd); 640 vfbd->base.bo = true; 641 vfbd->buffer = vmw_bo_reference(bo); 642 *out = &vfbd->base; 643 644 ret = drm_framebuffer_init(dev, &vfbd->base.base, 645 &vmw_framebuffer_bo_funcs); 646 if (ret) 647 goto out_err2; 648 649 return 0; 650 651 out_err2: 652 vmw_bo_unreference(&bo); 653 kfree(vfbd); 654 out_err1: 655 return ret; 656 } 657 658 659 /** 660 * vmw_kms_srf_ok - check if a surface can be created 661 * 662 * @dev_priv: Pointer to device private struct. 663 * @width: requested width 664 * @height: requested height 665 * 666 * Surfaces need to be less than texture size 667 */ 668 static bool 669 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 670 { 671 if (width > dev_priv->texture_max_width || 672 height > dev_priv->texture_max_height) 673 return false; 674 675 return true; 676 } 677 678 /** 679 * vmw_kms_new_framebuffer - Create a new framebuffer. 680 * 681 * @dev_priv: Pointer to device private struct. 682 * @uo: Pointer to user object to wrap the kms framebuffer around. 683 * Either the buffer or surface inside the user object must be NULL. 684 * @info: pixel format information. 685 * @mode_cmd: Frame-buffer metadata. 686 */ 687 struct vmw_framebuffer * 688 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 689 struct vmw_user_object *uo, 690 const struct drm_format_info *info, 691 const struct drm_mode_fb_cmd2 *mode_cmd) 692 { 693 struct vmw_framebuffer *vfb = NULL; 694 int ret; 695 696 /* Create the new framebuffer depending one what we have */ 697 if (vmw_user_object_surface(uo)) { 698 ret = vmw_kms_new_framebuffer_surface(dev_priv, uo, &vfb, 699 info, mode_cmd); 700 } else if (uo->buffer) { 701 ret = vmw_kms_new_framebuffer_bo(dev_priv, uo->buffer, &vfb, 702 info, mode_cmd); 703 } else { 704 BUG(); 705 } 706 707 if (ret) 708 return ERR_PTR(ret); 709 710 return vfb; 711 } 712 713 /* 714 * Generic Kernel modesetting functions 715 */ 716 717 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 718 struct drm_file *file_priv, 719 const struct drm_format_info *info, 720 const struct drm_mode_fb_cmd2 *mode_cmd) 721 { 722 struct vmw_private *dev_priv = vmw_priv(dev); 723 struct vmw_framebuffer *vfb = NULL; 724 struct vmw_user_object uo = {0}; 725 struct vmw_bo *bo; 726 struct vmw_surface *surface; 727 int ret; 728 729 /* returns either a bo or surface */ 730 ret = vmw_user_object_lookup(dev_priv, file_priv, mode_cmd->handles[0], 731 &uo); 732 if (ret) { 733 DRM_ERROR("Invalid buffer object handle %u (0x%x).\n", 734 mode_cmd->handles[0], mode_cmd->handles[0]); 735 goto err_out; 736 } 737 738 739 if (vmw_user_object_surface(&uo) && 740 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 741 DRM_ERROR("Surface size cannot exceed %dx%d\n", 742 dev_priv->texture_max_width, 743 dev_priv->texture_max_height); 744 ret = -EINVAL; 745 goto err_out; 746 } 747 748 749 vfb = vmw_kms_new_framebuffer(dev_priv, &uo, info, mode_cmd); 750 if (IS_ERR(vfb)) { 751 ret = PTR_ERR(vfb); 752 goto err_out; 753 } 754 755 err_out: 756 bo = vmw_user_object_buffer(&uo); 757 surface = vmw_user_object_surface(&uo); 758 /* vmw_user_object_lookup takes one ref so does new_fb */ 759 vmw_user_object_unref(&uo); 760 761 if (ret) { 762 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 763 return ERR_PTR(ret); 764 } 765 766 ttm_bo_reserve(&bo->tbo, false, false, NULL); 767 ret = vmw_bo_dirty_add(bo); 768 if (!ret && surface && surface->res.func->dirty_alloc) { 769 surface->res.coherent = true; 770 ret = surface->res.func->dirty_alloc(&surface->res); 771 } 772 ttm_bo_unreserve(&bo->tbo); 773 774 return &vfb->base; 775 } 776 777 /** 778 * vmw_kms_check_display_memory - Validates display memory required for a 779 * topology 780 * @dev: DRM device 781 * @num_rects: number of drm_rect in rects 782 * @rects: array of drm_rect representing the topology to validate indexed by 783 * crtc index. 784 * 785 * Returns: 786 * 0 on success otherwise negative error code 787 */ 788 static int vmw_kms_check_display_memory(struct drm_device *dev, 789 uint32_t num_rects, 790 struct drm_rect *rects) 791 { 792 struct vmw_private *dev_priv = vmw_priv(dev); 793 struct drm_rect bounding_box = {0}; 794 u64 total_pixels = 0, pixel_mem, bb_mem; 795 int i; 796 797 for (i = 0; i < num_rects; i++) { 798 /* 799 * For STDU only individual screen (screen target) is limited by 800 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 801 */ 802 if (dev_priv->active_display_unit == vmw_du_screen_target && 803 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 804 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 805 VMW_DEBUG_KMS("Screen size not supported.\n"); 806 return -EINVAL; 807 } 808 809 /* Bounding box upper left is at (0,0). */ 810 if (rects[i].x2 > bounding_box.x2) 811 bounding_box.x2 = rects[i].x2; 812 813 if (rects[i].y2 > bounding_box.y2) 814 bounding_box.y2 = rects[i].y2; 815 816 total_pixels += (u64) drm_rect_width(&rects[i]) * 817 (u64) drm_rect_height(&rects[i]); 818 } 819 820 /* Virtual svga device primary limits are always in 32-bpp. */ 821 pixel_mem = total_pixels * 4; 822 823 /* 824 * For HV10 and below prim_bb_mem is vram size. When 825 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 826 * limit on primary bounding box 827 */ 828 if (pixel_mem > dev_priv->max_primary_mem) { 829 VMW_DEBUG_KMS("Combined output size too large.\n"); 830 return -EINVAL; 831 } 832 833 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 834 if (dev_priv->active_display_unit != vmw_du_screen_target || 835 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 836 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 837 838 if (bb_mem > dev_priv->max_primary_mem) { 839 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 840 return -EINVAL; 841 } 842 } 843 844 return 0; 845 } 846 847 /** 848 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 849 * crtc mutex 850 * @state: The atomic state pointer containing the new atomic state 851 * @crtc: The crtc 852 * 853 * This function returns the new crtc state if it's part of the state update. 854 * Otherwise returns the current crtc state. It also makes sure that the 855 * crtc mutex is locked. 856 * 857 * Returns: A valid crtc state pointer or NULL. It may also return a 858 * pointer error, in particular -EDEADLK if locking needs to be rerun. 859 */ 860 static struct drm_crtc_state * 861 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 862 { 863 struct drm_crtc_state *crtc_state; 864 865 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 866 if (crtc_state) { 867 lockdep_assert_held(&crtc->mutex.mutex.base); 868 } else { 869 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 870 871 if (ret != 0 && ret != -EALREADY) 872 return ERR_PTR(ret); 873 874 crtc_state = crtc->state; 875 } 876 877 return crtc_state; 878 } 879 880 /** 881 * vmw_kms_check_implicit - Verify that all implicit display units scan out 882 * from the same fb after the new state is committed. 883 * @dev: The drm_device. 884 * @state: The new state to be checked. 885 * 886 * Returns: 887 * Zero on success, 888 * -EINVAL on invalid state, 889 * -EDEADLK if modeset locking needs to be rerun. 890 */ 891 static int vmw_kms_check_implicit(struct drm_device *dev, 892 struct drm_atomic_state *state) 893 { 894 struct drm_framebuffer *implicit_fb = NULL; 895 struct drm_crtc *crtc; 896 struct drm_crtc_state *crtc_state; 897 struct drm_plane_state *plane_state; 898 899 drm_for_each_crtc(crtc, dev) { 900 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 901 902 if (!du->is_implicit) 903 continue; 904 905 crtc_state = vmw_crtc_state_and_lock(state, crtc); 906 if (IS_ERR(crtc_state)) 907 return PTR_ERR(crtc_state); 908 909 if (!crtc_state || !crtc_state->enable) 910 continue; 911 912 /* 913 * Can't move primary planes across crtcs, so this is OK. 914 * It also means we don't need to take the plane mutex. 915 */ 916 plane_state = du->primary.state; 917 if (plane_state->crtc != crtc) 918 continue; 919 920 if (!implicit_fb) 921 implicit_fb = plane_state->fb; 922 else if (implicit_fb != plane_state->fb) 923 return -EINVAL; 924 } 925 926 return 0; 927 } 928 929 /** 930 * vmw_kms_check_topology - Validates topology in drm_atomic_state 931 * @dev: DRM device 932 * @state: the driver state object 933 * 934 * Returns: 935 * 0 on success otherwise negative error code 936 */ 937 static int vmw_kms_check_topology(struct drm_device *dev, 938 struct drm_atomic_state *state) 939 { 940 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 941 struct drm_rect *rects; 942 struct drm_crtc *crtc; 943 uint32_t i; 944 int ret = 0; 945 946 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 947 GFP_KERNEL); 948 if (!rects) 949 return -ENOMEM; 950 951 drm_for_each_crtc(crtc, dev) { 952 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 953 struct drm_crtc_state *crtc_state; 954 955 i = drm_crtc_index(crtc); 956 957 crtc_state = vmw_crtc_state_and_lock(state, crtc); 958 if (IS_ERR(crtc_state)) { 959 ret = PTR_ERR(crtc_state); 960 goto clean; 961 } 962 963 if (!crtc_state) 964 continue; 965 966 if (crtc_state->enable) { 967 rects[i].x1 = du->gui_x; 968 rects[i].y1 = du->gui_y; 969 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 970 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 971 } else { 972 rects[i].x1 = 0; 973 rects[i].y1 = 0; 974 rects[i].x2 = 0; 975 rects[i].y2 = 0; 976 } 977 } 978 979 /* Determine change to topology due to new atomic state */ 980 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 981 new_crtc_state, i) { 982 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 983 struct drm_connector *connector; 984 struct drm_connector_state *conn_state; 985 struct vmw_connector_state *vmw_conn_state; 986 987 if (!du->pref_active && new_crtc_state->enable) { 988 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 989 ret = -EINVAL; 990 goto clean; 991 } 992 993 /* 994 * For vmwgfx each crtc has only one connector attached and it 995 * is not changed so don't really need to check the 996 * crtc->connector_mask and iterate over it. 997 */ 998 connector = &du->connector; 999 conn_state = drm_atomic_get_connector_state(state, connector); 1000 if (IS_ERR(conn_state)) { 1001 ret = PTR_ERR(conn_state); 1002 goto clean; 1003 } 1004 1005 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1006 vmw_conn_state->gui_x = du->gui_x; 1007 vmw_conn_state->gui_y = du->gui_y; 1008 } 1009 1010 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1011 rects); 1012 1013 clean: 1014 kfree(rects); 1015 return ret; 1016 } 1017 1018 /** 1019 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1020 * 1021 * @dev: DRM device 1022 * @state: the driver state object 1023 * 1024 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1025 * us to assign a value to mode->crtc_clock so that 1026 * drm_calc_timestamping_constants() won't throw an error message 1027 * 1028 * Returns: 1029 * Zero for success or -errno 1030 */ 1031 static int 1032 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1033 struct drm_atomic_state *state) 1034 { 1035 struct drm_crtc *crtc; 1036 struct drm_crtc_state *crtc_state; 1037 bool need_modeset = false; 1038 int i, ret; 1039 1040 ret = drm_atomic_helper_check(dev, state); 1041 if (ret) 1042 return ret; 1043 1044 ret = vmw_kms_check_implicit(dev, state); 1045 if (ret) { 1046 VMW_DEBUG_KMS("Invalid implicit state\n"); 1047 return ret; 1048 } 1049 1050 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1051 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1052 need_modeset = true; 1053 } 1054 1055 if (need_modeset) 1056 return vmw_kms_check_topology(dev, state); 1057 1058 return ret; 1059 } 1060 1061 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1062 .fb_create = vmw_kms_fb_create, 1063 .atomic_check = vmw_kms_atomic_check_modeset, 1064 .atomic_commit = drm_atomic_helper_commit, 1065 }; 1066 1067 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1068 struct drm_file *file_priv, 1069 struct vmw_framebuffer *vfb, 1070 struct vmw_surface *surface, 1071 uint32_t sid, 1072 int32_t destX, int32_t destY, 1073 struct drm_vmw_rect *clips, 1074 uint32_t num_clips) 1075 { 1076 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1077 &surface->res, destX, destY, 1078 num_clips, 1, NULL, NULL); 1079 } 1080 1081 1082 int vmw_kms_present(struct vmw_private *dev_priv, 1083 struct drm_file *file_priv, 1084 struct vmw_framebuffer *vfb, 1085 struct vmw_surface *surface, 1086 uint32_t sid, 1087 int32_t destX, int32_t destY, 1088 struct drm_vmw_rect *clips, 1089 uint32_t num_clips) 1090 { 1091 int ret; 1092 1093 switch (dev_priv->active_display_unit) { 1094 case vmw_du_screen_target: 1095 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1096 &surface->res, destX, destY, 1097 num_clips, 1, NULL, NULL); 1098 break; 1099 case vmw_du_screen_object: 1100 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1101 sid, destX, destY, clips, 1102 num_clips); 1103 break; 1104 default: 1105 WARN_ONCE(true, 1106 "Present called with invalid display system.\n"); 1107 ret = -ENOSYS; 1108 break; 1109 } 1110 if (ret) 1111 return ret; 1112 1113 vmw_cmd_flush(dev_priv, false); 1114 1115 return 0; 1116 } 1117 1118 static void 1119 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1120 { 1121 if (dev_priv->hotplug_mode_update_property) 1122 return; 1123 1124 dev_priv->hotplug_mode_update_property = 1125 drm_property_create_range(&dev_priv->drm, 1126 DRM_MODE_PROP_IMMUTABLE, 1127 "hotplug_mode_update", 0, 1); 1128 } 1129 1130 static void 1131 vmw_atomic_commit_tail(struct drm_atomic_state *old_state) 1132 { 1133 struct vmw_private *vmw = vmw_priv(old_state->dev); 1134 struct drm_crtc *crtc; 1135 struct drm_crtc_state *old_crtc_state; 1136 int i; 1137 1138 drm_atomic_helper_commit_tail(old_state); 1139 1140 if (vmw->vkms_enabled) { 1141 for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) { 1142 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1143 (void)old_crtc_state; 1144 flush_work(&du->vkms.crc_generator_work); 1145 } 1146 } 1147 } 1148 1149 static const struct drm_mode_config_helper_funcs vmw_mode_config_helpers = { 1150 .atomic_commit_tail = vmw_atomic_commit_tail, 1151 }; 1152 1153 int vmw_kms_init(struct vmw_private *dev_priv) 1154 { 1155 struct drm_device *dev = &dev_priv->drm; 1156 int ret; 1157 static const char *display_unit_names[] = { 1158 "Invalid", 1159 "Legacy", 1160 "Screen Object", 1161 "Screen Target", 1162 "Invalid (max)" 1163 }; 1164 1165 drm_mode_config_init(dev); 1166 dev->mode_config.funcs = &vmw_kms_funcs; 1167 dev->mode_config.min_width = 1; 1168 dev->mode_config.min_height = 1; 1169 dev->mode_config.max_width = dev_priv->texture_max_width; 1170 dev->mode_config.max_height = dev_priv->texture_max_height; 1171 dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32; 1172 dev->mode_config.helper_private = &vmw_mode_config_helpers; 1173 1174 drm_mode_create_suggested_offset_properties(dev); 1175 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1176 1177 ret = vmw_kms_stdu_init_display(dev_priv); 1178 if (ret) { 1179 ret = vmw_kms_sou_init_display(dev_priv); 1180 if (ret) /* Fallback */ 1181 ret = vmw_kms_ldu_init_display(dev_priv); 1182 } 1183 BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1)); 1184 drm_info(&dev_priv->drm, "%s display unit initialized\n", 1185 display_unit_names[dev_priv->active_display_unit]); 1186 1187 return ret; 1188 } 1189 1190 int vmw_kms_close(struct vmw_private *dev_priv) 1191 { 1192 int ret = 0; 1193 1194 /* 1195 * Docs says we should take the lock before calling this function 1196 * but since it destroys encoders and our destructor calls 1197 * drm_encoder_cleanup which takes the lock we deadlock. 1198 */ 1199 drm_mode_config_cleanup(&dev_priv->drm); 1200 if (dev_priv->active_display_unit == vmw_du_legacy) 1201 ret = vmw_kms_ldu_close_display(dev_priv); 1202 1203 return ret; 1204 } 1205 1206 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1207 unsigned width, unsigned height, unsigned pitch, 1208 unsigned bpp, unsigned depth) 1209 { 1210 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1211 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1212 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1213 vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); 1214 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1215 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1216 if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) 1217 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1218 1219 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1220 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1221 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1222 return -EINVAL; 1223 } 1224 1225 return 0; 1226 } 1227 1228 static 1229 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1230 u64 pitch, 1231 u64 height) 1232 { 1233 return (pitch * height) < (u64)dev_priv->vram_size; 1234 } 1235 1236 /** 1237 * vmw_du_update_layout - Update the display unit with topology from resolution 1238 * plugin and generate DRM uevent 1239 * @dev_priv: device private 1240 * @num_rects: number of drm_rect in rects 1241 * @rects: toplogy to update 1242 */ 1243 static int vmw_du_update_layout(struct vmw_private *dev_priv, 1244 unsigned int num_rects, struct drm_rect *rects) 1245 { 1246 struct drm_device *dev = &dev_priv->drm; 1247 struct vmw_display_unit *du; 1248 struct drm_connector *con; 1249 struct drm_connector_list_iter conn_iter; 1250 struct drm_modeset_acquire_ctx ctx; 1251 struct drm_crtc *crtc; 1252 int ret; 1253 1254 /* Currently gui_x/y is protected with the crtc mutex */ 1255 mutex_lock(&dev->mode_config.mutex); 1256 drm_modeset_acquire_init(&ctx, 0); 1257 retry: 1258 drm_for_each_crtc(crtc, dev) { 1259 ret = drm_modeset_lock(&crtc->mutex, &ctx); 1260 if (ret < 0) { 1261 if (ret == -EDEADLK) { 1262 drm_modeset_backoff(&ctx); 1263 goto retry; 1264 } 1265 goto out_fini; 1266 } 1267 } 1268 1269 drm_connector_list_iter_begin(dev, &conn_iter); 1270 drm_for_each_connector_iter(con, &conn_iter) { 1271 du = vmw_connector_to_du(con); 1272 if (num_rects > du->unit) { 1273 du->pref_width = drm_rect_width(&rects[du->unit]); 1274 du->pref_height = drm_rect_height(&rects[du->unit]); 1275 du->pref_active = true; 1276 du->gui_x = rects[du->unit].x1; 1277 du->gui_y = rects[du->unit].y1; 1278 } else { 1279 du->pref_width = VMWGFX_MIN_INITIAL_WIDTH; 1280 du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT; 1281 du->pref_active = false; 1282 du->gui_x = 0; 1283 du->gui_y = 0; 1284 } 1285 } 1286 drm_connector_list_iter_end(&conn_iter); 1287 1288 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1289 du = vmw_connector_to_du(con); 1290 if (num_rects > du->unit) { 1291 drm_object_property_set_value 1292 (&con->base, dev->mode_config.suggested_x_property, 1293 du->gui_x); 1294 drm_object_property_set_value 1295 (&con->base, dev->mode_config.suggested_y_property, 1296 du->gui_y); 1297 } else { 1298 drm_object_property_set_value 1299 (&con->base, dev->mode_config.suggested_x_property, 1300 0); 1301 drm_object_property_set_value 1302 (&con->base, dev->mode_config.suggested_y_property, 1303 0); 1304 } 1305 con->status = vmw_du_connector_detect(con, true); 1306 } 1307 out_fini: 1308 drm_modeset_drop_locks(&ctx); 1309 drm_modeset_acquire_fini(&ctx); 1310 mutex_unlock(&dev->mode_config.mutex); 1311 1312 drm_sysfs_hotplug_event(dev); 1313 1314 return 0; 1315 } 1316 1317 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1318 u16 *r, u16 *g, u16 *b, 1319 uint32_t size, 1320 struct drm_modeset_acquire_ctx *ctx) 1321 { 1322 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1323 int i; 1324 1325 for (i = 0; i < size; i++) { 1326 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1327 r[i], g[i], b[i]); 1328 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1329 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1330 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1331 } 1332 1333 return 0; 1334 } 1335 1336 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1337 { 1338 return 0; 1339 } 1340 1341 enum drm_connector_status 1342 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1343 { 1344 uint32_t num_displays; 1345 struct drm_device *dev = connector->dev; 1346 struct vmw_private *dev_priv = vmw_priv(dev); 1347 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1348 1349 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1350 1351 return ((vmw_connector_to_du(connector)->unit < num_displays && 1352 du->pref_active) ? 1353 connector_status_connected : connector_status_disconnected); 1354 } 1355 1356 /** 1357 * vmw_guess_mode_timing - Provide fake timings for a 1358 * 60Hz vrefresh mode. 1359 * 1360 * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay 1361 * members filled in. 1362 */ 1363 void vmw_guess_mode_timing(struct drm_display_mode *mode) 1364 { 1365 mode->hsync_start = mode->hdisplay + 50; 1366 mode->hsync_end = mode->hsync_start + 50; 1367 mode->htotal = mode->hsync_end + 50; 1368 1369 mode->vsync_start = mode->vdisplay + 50; 1370 mode->vsync_end = mode->vsync_start + 50; 1371 mode->vtotal = mode->vsync_end + 50; 1372 1373 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 1374 } 1375 1376 1377 /** 1378 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 1379 * @dev: drm device for the ioctl 1380 * @data: data pointer for the ioctl 1381 * @file_priv: drm file for the ioctl call 1382 * 1383 * Update preferred topology of display unit as per ioctl request. The topology 1384 * is expressed as array of drm_vmw_rect. 1385 * e.g. 1386 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 1387 * 1388 * NOTE: 1389 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 1390 * device limit on topology, x + w and y + h (lower right) cannot be greater 1391 * than INT_MAX. So topology beyond these limits will return with error. 1392 * 1393 * Returns: 1394 * Zero on success, negative errno on failure. 1395 */ 1396 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 1397 struct drm_file *file_priv) 1398 { 1399 struct vmw_private *dev_priv = vmw_priv(dev); 1400 struct drm_mode_config *mode_config = &dev->mode_config; 1401 struct drm_vmw_update_layout_arg *arg = 1402 (struct drm_vmw_update_layout_arg *)data; 1403 const void __user *user_rects; 1404 struct drm_vmw_rect *rects; 1405 struct drm_rect *drm_rects; 1406 unsigned rects_size; 1407 int ret, i; 1408 1409 if (!arg->num_outputs) { 1410 struct drm_rect def_rect = {0, 0, 1411 VMWGFX_MIN_INITIAL_WIDTH, 1412 VMWGFX_MIN_INITIAL_HEIGHT}; 1413 vmw_du_update_layout(dev_priv, 1, &def_rect); 1414 return 0; 1415 } else if (arg->num_outputs > VMWGFX_NUM_DISPLAY_UNITS) { 1416 return -E2BIG; 1417 } 1418 1419 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 1420 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 1421 GFP_KERNEL); 1422 if (unlikely(!rects)) 1423 return -ENOMEM; 1424 1425 user_rects = (void __user *)(unsigned long)arg->rects; 1426 ret = copy_from_user(rects, user_rects, rects_size); 1427 if (unlikely(ret != 0)) { 1428 DRM_ERROR("Failed to get rects.\n"); 1429 ret = -EFAULT; 1430 goto out_free; 1431 } 1432 1433 drm_rects = (struct drm_rect *)rects; 1434 1435 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 1436 for (i = 0; i < arg->num_outputs; i++) { 1437 struct drm_vmw_rect curr_rect; 1438 1439 /* Verify user-space for overflow as kernel use drm_rect */ 1440 if ((rects[i].x + rects[i].w > INT_MAX) || 1441 (rects[i].y + rects[i].h > INT_MAX)) { 1442 ret = -ERANGE; 1443 goto out_free; 1444 } 1445 1446 curr_rect = rects[i]; 1447 drm_rects[i].x1 = curr_rect.x; 1448 drm_rects[i].y1 = curr_rect.y; 1449 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 1450 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 1451 1452 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 1453 drm_rects[i].x1, drm_rects[i].y1, 1454 drm_rects[i].x2, drm_rects[i].y2); 1455 1456 /* 1457 * Currently this check is limiting the topology within 1458 * mode_config->max (which actually is max texture size 1459 * supported by virtual device). This limit is here to address 1460 * window managers that create a big framebuffer for whole 1461 * topology. 1462 */ 1463 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 1464 drm_rects[i].x2 > mode_config->max_width || 1465 drm_rects[i].y2 > mode_config->max_height) { 1466 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 1467 drm_rects[i].x1, drm_rects[i].y1, 1468 drm_rects[i].x2, drm_rects[i].y2); 1469 ret = -EINVAL; 1470 goto out_free; 1471 } 1472 } 1473 1474 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 1475 1476 if (ret == 0) 1477 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 1478 1479 out_free: 1480 kfree(rects); 1481 return ret; 1482 } 1483 1484 /** 1485 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 1486 * on a set of cliprects and a set of display units. 1487 * 1488 * @dev_priv: Pointer to a device private structure. 1489 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 1490 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 1491 * Cliprects are given in framebuffer coordinates. 1492 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 1493 * be NULL. Cliprects are given in source coordinates. 1494 * @dest_x: X coordinate offset for the crtc / destination clip rects. 1495 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 1496 * @num_clips: Number of cliprects in the @clips or @vclips array. 1497 * @increment: Integer with which to increment the clip counter when looping. 1498 * Used to skip a predetermined number of clip rects. 1499 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 1500 */ 1501 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 1502 struct vmw_framebuffer *framebuffer, 1503 const struct drm_clip_rect *clips, 1504 const struct drm_vmw_rect *vclips, 1505 s32 dest_x, s32 dest_y, 1506 int num_clips, 1507 int increment, 1508 struct vmw_kms_dirty *dirty) 1509 { 1510 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 1511 struct drm_crtc *crtc; 1512 u32 num_units = 0; 1513 u32 i, k; 1514 1515 dirty->dev_priv = dev_priv; 1516 1517 /* If crtc is passed, no need to iterate over other display units */ 1518 if (dirty->crtc) { 1519 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 1520 } else { 1521 list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, 1522 head) { 1523 struct drm_plane *plane = crtc->primary; 1524 1525 if (plane->state->fb == &framebuffer->base) 1526 units[num_units++] = vmw_crtc_to_du(crtc); 1527 } 1528 } 1529 1530 for (k = 0; k < num_units; k++) { 1531 struct vmw_display_unit *unit = units[k]; 1532 s32 crtc_x = unit->crtc.x; 1533 s32 crtc_y = unit->crtc.y; 1534 s32 crtc_width = unit->crtc.mode.hdisplay; 1535 s32 crtc_height = unit->crtc.mode.vdisplay; 1536 const struct drm_clip_rect *clips_ptr = clips; 1537 const struct drm_vmw_rect *vclips_ptr = vclips; 1538 1539 dirty->unit = unit; 1540 if (dirty->fifo_reserve_size > 0) { 1541 dirty->cmd = VMW_CMD_RESERVE(dev_priv, 1542 dirty->fifo_reserve_size); 1543 if (!dirty->cmd) 1544 return -ENOMEM; 1545 1546 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 1547 } 1548 dirty->num_hits = 0; 1549 for (i = 0; i < num_clips; i++, clips_ptr += increment, 1550 vclips_ptr += increment) { 1551 s32 clip_left; 1552 s32 clip_top; 1553 1554 /* 1555 * Select clip array type. Note that integer type 1556 * in @clips is unsigned short, whereas in @vclips 1557 * it's 32-bit. 1558 */ 1559 if (clips) { 1560 dirty->fb_x = (s32) clips_ptr->x1; 1561 dirty->fb_y = (s32) clips_ptr->y1; 1562 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 1563 crtc_x; 1564 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 1565 crtc_y; 1566 } else { 1567 dirty->fb_x = vclips_ptr->x; 1568 dirty->fb_y = vclips_ptr->y; 1569 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 1570 dest_x - crtc_x; 1571 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 1572 dest_y - crtc_y; 1573 } 1574 1575 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 1576 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 1577 1578 /* Skip this clip if it's outside the crtc region */ 1579 if (dirty->unit_x1 >= crtc_width || 1580 dirty->unit_y1 >= crtc_height || 1581 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 1582 continue; 1583 1584 /* Clip right and bottom to crtc limits */ 1585 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 1586 crtc_width); 1587 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 1588 crtc_height); 1589 1590 /* Clip left and top to crtc limits */ 1591 clip_left = min_t(s32, dirty->unit_x1, 0); 1592 clip_top = min_t(s32, dirty->unit_y1, 0); 1593 dirty->unit_x1 -= clip_left; 1594 dirty->unit_y1 -= clip_top; 1595 dirty->fb_x -= clip_left; 1596 dirty->fb_y -= clip_top; 1597 1598 dirty->clip(dirty); 1599 } 1600 1601 dirty->fifo_commit(dirty); 1602 } 1603 1604 return 0; 1605 } 1606 1607 /** 1608 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 1609 * cleanup and fencing 1610 * @dev_priv: Pointer to the device-private struct 1611 * @file_priv: Pointer identifying the client when user-space fencing is used 1612 * @ctx: Pointer to the validation context 1613 * @out_fence: If non-NULL, returned refcounted fence-pointer 1614 * @user_fence_rep: If non-NULL, pointer to user-space address area 1615 * in which to copy user-space fence info 1616 */ 1617 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 1618 struct drm_file *file_priv, 1619 struct vmw_validation_context *ctx, 1620 struct vmw_fence_obj **out_fence, 1621 struct drm_vmw_fence_rep __user * 1622 user_fence_rep) 1623 { 1624 struct vmw_fence_obj *fence = NULL; 1625 uint32_t handle = 0; 1626 int ret = 0; 1627 1628 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 1629 out_fence) 1630 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 1631 file_priv ? &handle : NULL); 1632 vmw_validation_done(ctx, fence); 1633 if (file_priv) 1634 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 1635 ret, user_fence_rep, fence, 1636 handle, -1); 1637 if (out_fence) 1638 *out_fence = fence; 1639 else 1640 vmw_fence_obj_unreference(&fence); 1641 } 1642 1643 /** 1644 * vmw_kms_create_implicit_placement_property - Set up the implicit placement 1645 * property. 1646 * 1647 * @dev_priv: Pointer to a device private struct. 1648 * 1649 * Sets up the implicit placement property unless it's already set up. 1650 */ 1651 void 1652 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 1653 { 1654 if (dev_priv->implicit_placement_property) 1655 return; 1656 1657 dev_priv->implicit_placement_property = 1658 drm_property_create_range(&dev_priv->drm, 1659 DRM_MODE_PROP_IMMUTABLE, 1660 "implicit_placement", 0, 1); 1661 } 1662 1663 /** 1664 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 1665 * 1666 * @dev: Pointer to the drm device 1667 * Return: 0 on success. Negative error code on failure. 1668 */ 1669 int vmw_kms_suspend(struct drm_device *dev) 1670 { 1671 struct vmw_private *dev_priv = vmw_priv(dev); 1672 1673 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 1674 if (IS_ERR(dev_priv->suspend_state)) { 1675 int ret = PTR_ERR(dev_priv->suspend_state); 1676 1677 DRM_ERROR("Failed kms suspend: %d\n", ret); 1678 dev_priv->suspend_state = NULL; 1679 1680 return ret; 1681 } 1682 1683 return 0; 1684 } 1685 1686 1687 /** 1688 * vmw_kms_resume - Re-enable modesetting and restore state 1689 * 1690 * @dev: Pointer to the drm device 1691 * Return: 0 on success. Negative error code on failure. 1692 * 1693 * State is resumed from a previous vmw_kms_suspend(). It's illegal 1694 * to call this function without a previous vmw_kms_suspend(). 1695 */ 1696 int vmw_kms_resume(struct drm_device *dev) 1697 { 1698 struct vmw_private *dev_priv = vmw_priv(dev); 1699 int ret; 1700 1701 if (WARN_ON(!dev_priv->suspend_state)) 1702 return 0; 1703 1704 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 1705 dev_priv->suspend_state = NULL; 1706 1707 return ret; 1708 } 1709 1710 /** 1711 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 1712 * 1713 * @dev: Pointer to the drm device 1714 */ 1715 void vmw_kms_lost_device(struct drm_device *dev) 1716 { 1717 drm_atomic_helper_shutdown(dev); 1718 } 1719 1720 /** 1721 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 1722 * @update: The closure structure. 1723 * 1724 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 1725 * update on display unit. 1726 * 1727 * Return: 0 on success or a negative error code on failure. 1728 */ 1729 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 1730 { 1731 struct drm_plane_state *state = update->plane->state; 1732 struct drm_plane_state *old_state = update->old_state; 1733 struct drm_atomic_helper_damage_iter iter; 1734 struct drm_rect clip; 1735 struct drm_rect bb; 1736 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 1737 uint32_t reserved_size = 0; 1738 uint32_t submit_size = 0; 1739 uint32_t curr_size = 0; 1740 uint32_t num_hits = 0; 1741 void *cmd_start; 1742 char *cmd_next; 1743 int ret; 1744 1745 /* 1746 * Iterate in advance to check if really need plane update and find the 1747 * number of clips that actually are in plane src for fifo allocation. 1748 */ 1749 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 1750 drm_atomic_for_each_plane_damage(&iter, &clip) 1751 num_hits++; 1752 1753 if (num_hits == 0) 1754 return 0; 1755 1756 if (update->vfb->bo) { 1757 struct vmw_framebuffer_bo *vfbbo = 1758 container_of(update->vfb, typeof(*vfbbo), base); 1759 1760 /* 1761 * For screen targets we want a mappable bo, for everything else we want 1762 * accelerated i.e. host backed (vram or gmr) bo. If the display unit 1763 * is not screen target then mob's shouldn't be available. 1764 */ 1765 if (update->dev_priv->active_display_unit == vmw_du_screen_target) { 1766 vmw_bo_placement_set(vfbbo->buffer, 1767 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR, 1768 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR); 1769 } else { 1770 WARN_ON(update->dev_priv->has_mob); 1771 vmw_bo_placement_set_default_accelerated(vfbbo->buffer); 1772 } 1773 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer); 1774 } else { 1775 struct vmw_framebuffer_surface *vfbs = 1776 container_of(update->vfb, typeof(*vfbs), base); 1777 struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo); 1778 1779 ret = vmw_validation_add_resource(&val_ctx, &surf->res, 1780 0, VMW_RES_DIRTY_NONE, NULL, 1781 NULL); 1782 } 1783 1784 if (ret) 1785 return ret; 1786 1787 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 1788 if (ret) 1789 goto out_unref; 1790 1791 reserved_size = update->calc_fifo_size(update, num_hits); 1792 cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); 1793 if (!cmd_start) { 1794 ret = -ENOMEM; 1795 goto out_revert; 1796 } 1797 1798 cmd_next = cmd_start; 1799 1800 if (update->post_prepare) { 1801 curr_size = update->post_prepare(update, cmd_next); 1802 cmd_next += curr_size; 1803 submit_size += curr_size; 1804 } 1805 1806 if (update->pre_clip) { 1807 curr_size = update->pre_clip(update, cmd_next, num_hits); 1808 cmd_next += curr_size; 1809 submit_size += curr_size; 1810 } 1811 1812 bb.x1 = INT_MAX; 1813 bb.y1 = INT_MAX; 1814 bb.x2 = INT_MIN; 1815 bb.y2 = INT_MIN; 1816 1817 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 1818 drm_atomic_for_each_plane_damage(&iter, &clip) { 1819 uint32_t fb_x = clip.x1; 1820 uint32_t fb_y = clip.y1; 1821 1822 vmw_du_translate_to_crtc(state, &clip); 1823 if (update->clip) { 1824 curr_size = update->clip(update, cmd_next, &clip, fb_x, 1825 fb_y); 1826 cmd_next += curr_size; 1827 submit_size += curr_size; 1828 } 1829 bb.x1 = min_t(int, bb.x1, clip.x1); 1830 bb.y1 = min_t(int, bb.y1, clip.y1); 1831 bb.x2 = max_t(int, bb.x2, clip.x2); 1832 bb.y2 = max_t(int, bb.y2, clip.y2); 1833 } 1834 1835 curr_size = update->post_clip(update, cmd_next, &bb); 1836 submit_size += curr_size; 1837 1838 if (reserved_size < submit_size) 1839 submit_size = 0; 1840 1841 vmw_cmd_commit(update->dev_priv, submit_size); 1842 1843 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 1844 update->out_fence, NULL); 1845 return ret; 1846 1847 out_revert: 1848 vmw_validation_revert(&val_ctx); 1849 1850 out_unref: 1851 vmw_validation_unref_lists(&val_ctx); 1852 return ret; 1853 } 1854 1855 /** 1856 * vmw_connector_mode_valid - implements drm_connector_helper_funcs.mode_valid callback 1857 * 1858 * @connector: the drm connector, part of a DU container 1859 * @mode: drm mode to check 1860 * 1861 * Returns MODE_OK on success, or a drm_mode_status error code. 1862 */ 1863 enum drm_mode_status vmw_connector_mode_valid(struct drm_connector *connector, 1864 const struct drm_display_mode *mode) 1865 { 1866 enum drm_mode_status ret; 1867 struct drm_device *dev = connector->dev; 1868 struct vmw_private *dev_priv = vmw_priv(dev); 1869 u32 assumed_cpp = 4; 1870 1871 if (dev_priv->assume_16bpp) 1872 assumed_cpp = 2; 1873 1874 ret = drm_mode_validate_size(mode, dev_priv->texture_max_width, 1875 dev_priv->texture_max_height); 1876 if (ret != MODE_OK) 1877 return ret; 1878 1879 if (!vmw_kms_validate_mode_vram(dev_priv, 1880 mode->hdisplay * assumed_cpp, 1881 mode->vdisplay)) 1882 return MODE_MEM; 1883 1884 return MODE_OK; 1885 } 1886 1887 /** 1888 * vmw_connector_get_modes - implements drm_connector_helper_funcs.get_modes callback 1889 * 1890 * @connector: the drm connector, part of a DU container 1891 * 1892 * Returns the number of added modes. 1893 */ 1894 int vmw_connector_get_modes(struct drm_connector *connector) 1895 { 1896 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1897 struct drm_device *dev = connector->dev; 1898 struct vmw_private *dev_priv = vmw_priv(dev); 1899 struct drm_display_mode *mode = NULL; 1900 struct drm_display_mode prefmode = { DRM_MODE("preferred", 1901 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 1902 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 1904 }; 1905 u32 max_width; 1906 u32 max_height; 1907 u32 num_modes; 1908 1909 /* Add preferred mode */ 1910 mode = drm_mode_duplicate(dev, &prefmode); 1911 if (!mode) 1912 return 0; 1913 1914 mode->hdisplay = du->pref_width; 1915 mode->vdisplay = du->pref_height; 1916 vmw_guess_mode_timing(mode); 1917 drm_mode_set_name(mode); 1918 1919 drm_mode_probed_add(connector, mode); 1920 drm_dbg_kms(dev, "preferred mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); 1921 1922 /* Probe connector for all modes not exceeding our geom limits */ 1923 max_width = dev_priv->texture_max_width; 1924 max_height = dev_priv->texture_max_height; 1925 1926 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1927 max_width = min(dev_priv->stdu_max_width, max_width); 1928 max_height = min(dev_priv->stdu_max_height, max_height); 1929 } 1930 1931 num_modes = 1 + drm_add_modes_noedid(connector, max_width, max_height); 1932 1933 return num_modes; 1934 } 1935 1936 struct vmw_user_object *vmw_user_object_ref(struct vmw_user_object *uo) 1937 { 1938 if (uo->buffer) 1939 vmw_user_bo_ref(uo->buffer); 1940 else if (uo->surface) 1941 vmw_surface_reference(uo->surface); 1942 return uo; 1943 } 1944 1945 void vmw_user_object_unref(struct vmw_user_object *uo) 1946 { 1947 if (uo->buffer) 1948 vmw_user_bo_unref(&uo->buffer); 1949 else if (uo->surface) 1950 vmw_surface_unreference(&uo->surface); 1951 } 1952 1953 struct vmw_bo * 1954 vmw_user_object_buffer(struct vmw_user_object *uo) 1955 { 1956 if (uo->buffer) 1957 return uo->buffer; 1958 else if (uo->surface) 1959 return uo->surface->res.guest_memory_bo; 1960 return NULL; 1961 } 1962 1963 struct vmw_surface * 1964 vmw_user_object_surface(struct vmw_user_object *uo) 1965 { 1966 if (uo->buffer) 1967 return uo->buffer->dumb_surface; 1968 return uo->surface; 1969 } 1970 1971 void *vmw_user_object_map(struct vmw_user_object *uo) 1972 { 1973 struct vmw_bo *bo = vmw_user_object_buffer(uo); 1974 1975 WARN_ON(!bo); 1976 return vmw_bo_map_and_cache(bo); 1977 } 1978 1979 void *vmw_user_object_map_size(struct vmw_user_object *uo, size_t size) 1980 { 1981 struct vmw_bo *bo = vmw_user_object_buffer(uo); 1982 1983 WARN_ON(!bo); 1984 return vmw_bo_map_and_cache_size(bo, size); 1985 } 1986 1987 void vmw_user_object_unmap(struct vmw_user_object *uo) 1988 { 1989 struct vmw_bo *bo = vmw_user_object_buffer(uo); 1990 int ret; 1991 1992 WARN_ON(!bo); 1993 1994 /* Fence the mob creation so we are guarateed to have the mob */ 1995 ret = ttm_bo_reserve(&bo->tbo, false, false, NULL); 1996 if (ret != 0) 1997 return; 1998 1999 vmw_bo_unmap(bo); 2000 vmw_bo_pin_reserved(bo, false); 2001 2002 ttm_bo_unreserve(&bo->tbo); 2003 } 2004 2005 bool vmw_user_object_is_mapped(struct vmw_user_object *uo) 2006 { 2007 struct vmw_bo *bo; 2008 2009 if (!uo || vmw_user_object_is_null(uo)) 2010 return false; 2011 2012 bo = vmw_user_object_buffer(uo); 2013 2014 if (WARN_ON(!bo)) 2015 return false; 2016 2017 WARN_ON(bo->map.bo && !bo->map.virtual); 2018 return bo->map.virtual; 2019 } 2020 2021 bool vmw_user_object_is_null(struct vmw_user_object *uo) 2022 { 2023 return !uo->buffer && !uo->surface; 2024 } 2025