xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 99a97a8ba9881fc47901ff36b057e5cd0bf06af0)
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37 
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 	drm_plane_cleanup(&du->primary);
41 	drm_plane_cleanup(&du->cursor);
42 
43 	drm_connector_unregister(&du->connector);
44 	drm_crtc_cleanup(&du->crtc);
45 	drm_encoder_cleanup(&du->encoder);
46 	drm_connector_cleanup(&du->connector);
47 }
48 
49 /*
50  * Display Unit Cursor functions
51  */
52 
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 				   u32 *image, u32 width, u32 height,
55 				   u32 hotspotX, u32 hotspotY)
56 {
57 	struct {
58 		u32 cmd;
59 		SVGAFifoCmdDefineAlphaCursor cursor;
60 	} *cmd;
61 	u32 image_size = width * height * 4;
62 	u32 cmd_size = sizeof(*cmd) + image_size;
63 
64 	if (!image)
65 		return -EINVAL;
66 
67 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 	if (unlikely(cmd == NULL)) {
69 		DRM_ERROR("Fifo reserve failed.\n");
70 		return -ENOMEM;
71 	}
72 
73 	memset(cmd, 0, sizeof(*cmd));
74 
75 	memcpy(&cmd[1], image, image_size);
76 
77 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 	cmd->cursor.id = 0;
79 	cmd->cursor.width = width;
80 	cmd->cursor.height = height;
81 	cmd->cursor.hotspotX = hotspotX;
82 	cmd->cursor.hotspotY = hotspotY;
83 
84 	vmw_fifo_commit_flush(dev_priv, cmd_size);
85 
86 	return 0;
87 }
88 
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 				    struct vmw_dma_buffer *dmabuf,
91 				    u32 width, u32 height,
92 				    u32 hotspotX, u32 hotspotY)
93 {
94 	struct ttm_bo_kmap_obj map;
95 	unsigned long kmap_offset;
96 	unsigned long kmap_num;
97 	void *virtual;
98 	bool dummy;
99 	int ret;
100 
101 	kmap_offset = 0;
102 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103 
104 	ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 	if (unlikely(ret != 0)) {
106 		DRM_ERROR("reserve failed\n");
107 		return -EINVAL;
108 	}
109 
110 	ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 	if (unlikely(ret != 0))
112 		goto err_unreserve;
113 
114 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 				      hotspotX, hotspotY);
117 
118 	ttm_bo_kunmap(&map);
119 err_unreserve:
120 	ttm_bo_unreserve(&dmabuf->base);
121 
122 	return ret;
123 }
124 
125 
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 				       bool show, int x, int y)
128 {
129 	u32 *fifo_mem = dev_priv->mmio_virt;
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 	spin_unlock(&dev_priv->cursor_lock);
139 }
140 
141 
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 			  struct ttm_object_file *tfile,
144 			  struct ttm_buffer_object *bo,
145 			  SVGA3dCmdHeader *header)
146 {
147 	struct ttm_bo_kmap_obj map;
148 	unsigned long kmap_offset;
149 	unsigned long kmap_num;
150 	SVGA3dCopyBox *box;
151 	unsigned box_count;
152 	void *virtual;
153 	bool dummy;
154 	struct vmw_dma_cmd {
155 		SVGA3dCmdHeader header;
156 		SVGA3dCmdSurfaceDMA dma;
157 	} *cmd;
158 	int i, ret;
159 
160 	cmd = container_of(header, struct vmw_dma_cmd, header);
161 
162 	/* No snooper installed */
163 	if (!srf->snooper.image)
164 		return;
165 
166 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 		return;
169 	}
170 
171 	if (cmd->header.size < 64) {
172 		DRM_ERROR("at least one full copy box must be given\n");
173 		return;
174 	}
175 
176 	box = (SVGA3dCopyBox *)&cmd[1];
177 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 			sizeof(SVGA3dCopyBox);
179 
180 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 	    box->x != 0    || box->y != 0    || box->z != 0    ||
182 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 	    box->d != 1    || box_count != 1) {
184 		/* TODO handle none page aligned offsets */
185 		/* TODO handle more dst & src != 0 */
186 		/* TODO handle more then one copy */
187 		DRM_ERROR("Cant snoop dma request for cursor!\n");
188 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 			  box->srcx, box->srcy, box->srcz,
190 			  box->x, box->y, box->z,
191 			  box->w, box->h, box->d, box_count,
192 			  cmd->dma.guest.ptr.offset);
193 		return;
194 	}
195 
196 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 	kmap_num = (64*64*4) >> PAGE_SHIFT;
198 
199 	ret = ttm_bo_reserve(bo, true, false, NULL);
200 	if (unlikely(ret != 0)) {
201 		DRM_ERROR("reserve failed\n");
202 		return;
203 	}
204 
205 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 	if (unlikely(ret != 0))
207 		goto err_unreserve;
208 
209 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
210 
211 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 		memcpy(srf->snooper.image, virtual, 64*64*4);
213 	} else {
214 		/* Image is unsigned pointer. */
215 		for (i = 0; i < box->h; i++)
216 			memcpy(srf->snooper.image + i * 64,
217 			       virtual + i * cmd->dma.guest.pitch,
218 			       box->w * 4);
219 	}
220 
221 	srf->snooper.age++;
222 
223 	ttm_bo_kunmap(&map);
224 err_unreserve:
225 	ttm_bo_unreserve(bo);
226 }
227 
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 	struct drm_device *dev = dev_priv->dev;
238 	struct vmw_display_unit *du;
239 	struct drm_crtc *crtc;
240 
241 	drm_modeset_lock_all(dev);
242 	drm_for_each_crtc(crtc, dev) {
243 		du = vmw_crtc_to_du(crtc);
244 
245 		du->hotspot_x = 0;
246 		du->hotspot_y = 0;
247 	}
248 	drm_modeset_unlock_all(dev);
249 }
250 
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 	struct drm_device *dev = dev_priv->dev;
254 	struct vmw_display_unit *du;
255 	struct drm_crtc *crtc;
256 
257 	mutex_lock(&dev->mode_config.mutex);
258 
259 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 		du = vmw_crtc_to_du(crtc);
261 		if (!du->cursor_surface ||
262 		    du->cursor_age == du->cursor_surface->snooper.age)
263 			continue;
264 
265 		du->cursor_age = du->cursor_surface->snooper.age;
266 		vmw_cursor_update_image(dev_priv,
267 					du->cursor_surface->snooper.image,
268 					64, 64,
269 					du->hotspot_x + du->core_hotspot_x,
270 					du->hotspot_y + du->core_hotspot_y);
271 	}
272 
273 	mutex_unlock(&dev->mode_config.mutex);
274 }
275 
276 
277 
278 /**
279  * vmw_du_cursor_plane_update() - Update cursor image and location
280  *
281  * @plane: plane object to update
282  * @crtc: owning CRTC of @plane
283  * @fb: framebuffer to flip onto plane
284  * @crtc_x: x offset of plane on crtc
285  * @crtc_y: y offset of plane on crtc
286  * @crtc_w: width of plane rectangle on crtc
287  * @crtc_h: height of plane rectangle on crtc
288  * @src_x: Not used
289  * @src_y: Not used
290  * @src_w: Not used
291  * @src_h: Not used
292  *
293  *
294  * RETURNS:
295  * Zero on success, error code on failure
296  */
297 int vmw_du_cursor_plane_update(struct drm_plane *plane,
298 			       struct drm_crtc *crtc,
299 			       struct drm_framebuffer *fb,
300 			       int crtc_x, int crtc_y,
301 			       unsigned int crtc_w,
302 			       unsigned int crtc_h,
303 			       uint32_t src_x, uint32_t src_y,
304 			       uint32_t src_w, uint32_t src_h)
305 {
306 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
307 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
308 	struct vmw_surface *surface = NULL;
309 	struct vmw_dma_buffer *dmabuf = NULL;
310 	s32 hotspot_x, hotspot_y;
311 	int ret;
312 
313 	hotspot_x = du->hotspot_x + fb->hot_x;
314 	hotspot_y = du->hotspot_y + fb->hot_y;
315 
316 	/* A lot of the code assumes this */
317 	if (crtc_w != 64 || crtc_h != 64) {
318 		ret = -EINVAL;
319 		goto out;
320 	}
321 
322 	if (vmw_framebuffer_to_vfb(fb)->dmabuf)
323 		dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
324 	else
325 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
326 
327 	if (surface && !surface->snooper.image) {
328 		DRM_ERROR("surface not suitable for cursor\n");
329 		ret = -EINVAL;
330 		goto out;
331 	}
332 
333 	/* setup new image */
334 	ret = 0;
335 	if (surface) {
336 		/* vmw_user_surface_lookup takes one reference */
337 		du->cursor_surface = surface;
338 
339 		du->cursor_age = du->cursor_surface->snooper.age;
340 
341 		ret = vmw_cursor_update_image(dev_priv, surface->snooper.image,
342 					      64, 64, hotspot_x, hotspot_y);
343 	} else if (dmabuf) {
344 		/* vmw_user_surface_lookup takes one reference */
345 		du->cursor_dmabuf = dmabuf;
346 
347 		ret = vmw_cursor_update_dmabuf(dev_priv, dmabuf, crtc_w, crtc_h,
348 					       hotspot_x, hotspot_y);
349 	} else {
350 		vmw_cursor_update_position(dev_priv, false, 0, 0);
351 		goto out;
352 	}
353 
354 	if (!ret) {
355 		du->cursor_x = crtc_x + du->set_gui_x;
356 		du->cursor_y = crtc_y + du->set_gui_y;
357 
358 		vmw_cursor_update_position(dev_priv, true,
359 					   du->cursor_x + hotspot_x,
360 					   du->cursor_y + hotspot_y);
361 	}
362 
363 out:
364 	return ret;
365 }
366 
367 
368 int vmw_du_cursor_plane_disable(struct drm_plane *plane)
369 {
370 	if (plane->fb) {
371 		drm_framebuffer_unreference(plane->fb);
372 		plane->fb = NULL;
373 	}
374 
375 	return -EINVAL;
376 }
377 
378 
379 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
380 {
381 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
382 
383 	drm_plane_cleanup(plane);
384 }
385 
386 
387 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
388 {
389 	drm_plane_cleanup(plane);
390 
391 	/* Planes are static in our case so we don't free it */
392 }
393 
394 
395 /**
396  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
397  *
398  * @vps: plane state associated with the display surface
399  * @unreference: true if we also want to unreference the display.
400  */
401 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
402 			     bool unreference)
403 {
404 	if (vps->surf) {
405 		if (vps->pinned) {
406 			vmw_resource_unpin(&vps->surf->res);
407 			vps->pinned--;
408 		}
409 
410 		if (unreference) {
411 			if (vps->pinned)
412 				DRM_ERROR("Surface still pinned\n");
413 			vmw_surface_unreference(&vps->surf);
414 		}
415 	}
416 }
417 
418 
419 /**
420  * vmw_du_plane_cleanup_fb - Unpins the cursor
421  *
422  * @plane:  display plane
423  * @old_state: Contains the FB to clean up
424  *
425  * Unpins the framebuffer surface
426  *
427  * Returns 0 on success
428  */
429 void
430 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
431 			struct drm_plane_state *old_state)
432 {
433 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
434 
435 	vmw_du_plane_unpin_surf(vps, false);
436 }
437 
438 
439 /**
440  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
441  *
442  * @plane:  display plane
443  * @new_state: info on the new plane state, including the FB
444  *
445  * Returns 0 on success
446  */
447 int
448 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
449 			       struct drm_plane_state *new_state)
450 {
451 	struct drm_framebuffer *fb = new_state->fb;
452 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
453 
454 
455 	if (vps->surf)
456 		vmw_surface_unreference(&vps->surf);
457 
458 	if (vps->dmabuf)
459 		vmw_dmabuf_unreference(&vps->dmabuf);
460 
461 	if (fb) {
462 		if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
463 			vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
464 			vmw_dmabuf_reference(vps->dmabuf);
465 		} else {
466 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
467 			vmw_surface_reference(vps->surf);
468 		}
469 	}
470 
471 	return 0;
472 }
473 
474 
475 void
476 vmw_du_cursor_plane_atomic_disable(struct drm_plane *plane,
477 				   struct drm_plane_state *old_state)
478 {
479 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
480 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
481 
482 	drm_atomic_set_fb_for_plane(plane->state, NULL);
483 	vmw_cursor_update_position(dev_priv, false, 0, 0);
484 }
485 
486 
487 void
488 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
489 				  struct drm_plane_state *old_state)
490 {
491 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
492 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
493 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
494 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
495 	s32 hotspot_x, hotspot_y;
496 	int ret = 0;
497 
498 
499 	hotspot_x = du->hotspot_x;
500 	hotspot_y = du->hotspot_y;
501 	du->cursor_surface = vps->surf;
502 	du->cursor_dmabuf = vps->dmabuf;
503 
504 	/* setup new image */
505 	if (vps->surf) {
506 		du->cursor_age = du->cursor_surface->snooper.age;
507 
508 		ret = vmw_cursor_update_image(dev_priv,
509 					      vps->surf->snooper.image,
510 					      64, 64, hotspot_x, hotspot_y);
511 	} else if (vps->dmabuf) {
512 		ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
513 					       plane->state->crtc_w,
514 					       plane->state->crtc_h,
515 					       hotspot_x, hotspot_y);
516 	} else {
517 		vmw_cursor_update_position(dev_priv, false, 0, 0);
518 		return;
519 	}
520 
521 	if (!ret) {
522 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
523 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
524 
525 		vmw_cursor_update_position(dev_priv, true,
526 					   du->cursor_x + hotspot_x,
527 					   du->cursor_y + hotspot_y);
528 	} else {
529 		DRM_ERROR("Failed to update cursor image\n");
530 	}
531 }
532 
533 
534 /**
535  * vmw_du_primary_plane_atomic_check - check if the new state is okay
536  *
537  * @plane: display plane
538  * @state: info on the new plane state, including the FB
539  *
540  * Check if the new state is settable given the current state.  Other
541  * than what the atomic helper checks, we care about crtc fitting
542  * the FB and maintaining one active framebuffer.
543  *
544  * Returns 0 on success
545  */
546 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
547 				      struct drm_plane_state *state)
548 {
549 	struct drm_framebuffer *new_fb = state->fb;
550 	bool visible;
551 
552 	struct drm_rect src = {
553 		.x1 = state->src_x,
554 		.y1 = state->src_y,
555 		.x2 = state->src_x + state->src_w,
556 		.y2 = state->src_y + state->src_h,
557 	};
558 	struct drm_rect dest = {
559 		.x1 = state->crtc_x,
560 		.y1 = state->crtc_y,
561 		.x2 = state->crtc_x + state->crtc_w,
562 		.y2 = state->crtc_y + state->crtc_h,
563 	};
564 	struct drm_rect clip = dest;
565 	int ret;
566 
567 	ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
568 					    &src, &dest, &clip,
569 					    DRM_ROTATE_0,
570 					    DRM_PLANE_HELPER_NO_SCALING,
571 					    DRM_PLANE_HELPER_NO_SCALING,
572 					    false, true, &visible);
573 
574 
575 	if (!ret && new_fb) {
576 		struct drm_crtc *crtc = state->crtc;
577 		struct vmw_connector_state *vcs;
578 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
579 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
580 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
581 
582 		vcs = vmw_connector_state_to_vcs(du->connector.state);
583 
584 		if ((dest.x2 > new_fb->width ||
585 		     dest.y2 > new_fb->height)) {
586 			DRM_ERROR("CRTC area outside of framebuffer\n");
587 			return -EINVAL;
588 		}
589 
590 		/* Only one active implicit framebuffer at a time. */
591 		mutex_lock(&dev_priv->global_kms_state_mutex);
592 		if (vcs->is_implicit && dev_priv->implicit_fb &&
593 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
594 		    && dev_priv->implicit_fb != vfb) {
595 			DRM_ERROR("Multiple implicit framebuffers "
596 				  "not supported.\n");
597 			ret = -EINVAL;
598 		}
599 		mutex_unlock(&dev_priv->global_kms_state_mutex);
600 	}
601 
602 
603 	return ret;
604 }
605 
606 
607 /**
608  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
609  *
610  * @plane: cursor plane
611  * @state: info on the new plane state
612  *
613  * This is a chance to fail if the new cursor state does not fit
614  * our requirements.
615  *
616  * Returns 0 on success
617  */
618 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
619 				     struct drm_plane_state *new_state)
620 {
621 	int ret = 0;
622 	struct vmw_surface *surface = NULL;
623 	struct drm_framebuffer *fb = new_state->fb;
624 
625 
626 	/* Turning off */
627 	if (!fb)
628 		return ret;
629 
630 	/* A lot of the code assumes this */
631 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
632 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
633 			  new_state->crtc_w, new_state->crtc_h);
634 		ret = -EINVAL;
635 	}
636 
637 	if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
638 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
639 
640 	if (surface && !surface->snooper.image) {
641 		DRM_ERROR("surface not suitable for cursor\n");
642 		ret = -EINVAL;
643 	}
644 
645 	return ret;
646 }
647 
648 
649 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
650 			     struct drm_crtc_state *new_state)
651 {
652 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
653 	int connector_mask = 1 << drm_connector_index(&du->connector);
654 	bool has_primary = new_state->plane_mask &
655 			   BIT(drm_plane_index(crtc->primary));
656 
657 	/* We always want to have an active plane with an active CRTC */
658 	if (has_primary != new_state->enable)
659 		return -EINVAL;
660 
661 
662 	if (new_state->connector_mask != connector_mask &&
663 	    new_state->connector_mask != 0) {
664 		DRM_ERROR("Invalid connectors configuration\n");
665 		return -EINVAL;
666 	}
667 
668 	/*
669 	 * Our virtual device does not have a dot clock, so use the logical
670 	 * clock value as the dot clock.
671 	 */
672 	if (new_state->mode.crtc_clock == 0)
673 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
674 
675 	return 0;
676 }
677 
678 
679 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
680 			      struct drm_crtc_state *old_crtc_state)
681 {
682 }
683 
684 
685 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
686 			      struct drm_crtc_state *old_crtc_state)
687 {
688 	struct drm_pending_vblank_event *event = crtc->state->event;
689 
690 	if (event) {
691 		crtc->state->event = NULL;
692 
693 		spin_lock_irq(&crtc->dev->event_lock);
694 		if (drm_crtc_vblank_get(crtc) == 0)
695 			drm_crtc_arm_vblank_event(crtc, event);
696 		else
697 			drm_crtc_send_vblank_event(crtc, event);
698 		spin_unlock_irq(&crtc->dev->event_lock);
699 	}
700 
701 }
702 
703 
704 /**
705  * vmw_du_crtc_duplicate_state - duplicate crtc state
706  * @crtc: DRM crtc
707  *
708  * Allocates and returns a copy of the crtc state (both common and
709  * vmw-specific) for the specified crtc.
710  *
711  * Returns: The newly allocated crtc state, or NULL on failure.
712  */
713 struct drm_crtc_state *
714 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
715 {
716 	struct drm_crtc_state *state;
717 	struct vmw_crtc_state *vcs;
718 
719 	if (WARN_ON(!crtc->state))
720 		return NULL;
721 
722 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
723 
724 	if (!vcs)
725 		return NULL;
726 
727 	state = &vcs->base;
728 
729 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
730 
731 	return state;
732 }
733 
734 
735 /**
736  * vmw_du_crtc_reset - creates a blank vmw crtc state
737  * @crtc: DRM crtc
738  *
739  * Resets the atomic state for @crtc by freeing the state pointer (which
740  * might be NULL, e.g. at driver load time) and allocating a new empty state
741  * object.
742  */
743 void vmw_du_crtc_reset(struct drm_crtc *crtc)
744 {
745 	struct vmw_crtc_state *vcs;
746 
747 
748 	if (crtc->state) {
749 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
750 
751 		kfree(vmw_crtc_state_to_vcs(crtc->state));
752 	}
753 
754 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
755 
756 	if (!vcs) {
757 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
758 		return;
759 	}
760 
761 	crtc->state = &vcs->base;
762 	crtc->state->crtc = crtc;
763 }
764 
765 
766 /**
767  * vmw_du_crtc_destroy_state - destroy crtc state
768  * @crtc: DRM crtc
769  * @state: state object to destroy
770  *
771  * Destroys the crtc state (both common and vmw-specific) for the
772  * specified plane.
773  */
774 void
775 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
776 			  struct drm_crtc_state *state)
777 {
778 	drm_atomic_helper_crtc_destroy_state(crtc, state);
779 }
780 
781 
782 /**
783  * vmw_du_plane_duplicate_state - duplicate plane state
784  * @plane: drm plane
785  *
786  * Allocates and returns a copy of the plane state (both common and
787  * vmw-specific) for the specified plane.
788  *
789  * Returns: The newly allocated plane state, or NULL on failure.
790  */
791 struct drm_plane_state *
792 vmw_du_plane_duplicate_state(struct drm_plane *plane)
793 {
794 	struct drm_plane_state *state;
795 	struct vmw_plane_state *vps;
796 
797 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
798 
799 	if (!vps)
800 		return NULL;
801 
802 	vps->pinned = 0;
803 
804 	/* Mapping is managed by prepare_fb/cleanup_fb */
805 	memset(&vps->guest_map, 0, sizeof(vps->guest_map));
806 	memset(&vps->host_map, 0, sizeof(vps->host_map));
807 	vps->cpp = 0;
808 
809 	/* Each ref counted resource needs to be acquired again */
810 	if (vps->surf)
811 		(void) vmw_surface_reference(vps->surf);
812 
813 	if (vps->dmabuf)
814 		(void) vmw_dmabuf_reference(vps->dmabuf);
815 
816 	state = &vps->base;
817 
818 	__drm_atomic_helper_plane_duplicate_state(plane, state);
819 
820 	return state;
821 }
822 
823 
824 /**
825  * vmw_du_plane_reset - creates a blank vmw plane state
826  * @plane: drm plane
827  *
828  * Resets the atomic state for @plane by freeing the state pointer (which might
829  * be NULL, e.g. at driver load time) and allocating a new empty state object.
830  */
831 void vmw_du_plane_reset(struct drm_plane *plane)
832 {
833 	struct vmw_plane_state *vps;
834 
835 
836 	if (plane->state)
837 		vmw_du_plane_destroy_state(plane, plane->state);
838 
839 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
840 
841 	if (!vps) {
842 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
843 		return;
844 	}
845 
846 	plane->state = &vps->base;
847 	plane->state->plane = plane;
848 	plane->state->rotation = DRM_ROTATE_0;
849 }
850 
851 
852 /**
853  * vmw_du_plane_destroy_state - destroy plane state
854  * @plane: DRM plane
855  * @state: state object to destroy
856  *
857  * Destroys the plane state (both common and vmw-specific) for the
858  * specified plane.
859  */
860 void
861 vmw_du_plane_destroy_state(struct drm_plane *plane,
862 			   struct drm_plane_state *state)
863 {
864 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
865 
866 
867 	/* Should have been freed by cleanup_fb */
868 	if (vps->guest_map.virtual) {
869 		DRM_ERROR("Guest mapping not freed\n");
870 		ttm_bo_kunmap(&vps->guest_map);
871 	}
872 
873 	if (vps->host_map.virtual) {
874 		DRM_ERROR("Host mapping not freed\n");
875 		ttm_bo_kunmap(&vps->host_map);
876 	}
877 
878 	if (vps->surf)
879 		vmw_surface_unreference(&vps->surf);
880 
881 	if (vps->dmabuf)
882 		vmw_dmabuf_unreference(&vps->dmabuf);
883 
884 	drm_atomic_helper_plane_destroy_state(plane, state);
885 }
886 
887 
888 /**
889  * vmw_du_connector_duplicate_state - duplicate connector state
890  * @connector: DRM connector
891  *
892  * Allocates and returns a copy of the connector state (both common and
893  * vmw-specific) for the specified connector.
894  *
895  * Returns: The newly allocated connector state, or NULL on failure.
896  */
897 struct drm_connector_state *
898 vmw_du_connector_duplicate_state(struct drm_connector *connector)
899 {
900 	struct drm_connector_state *state;
901 	struct vmw_connector_state *vcs;
902 
903 	if (WARN_ON(!connector->state))
904 		return NULL;
905 
906 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
907 
908 	if (!vcs)
909 		return NULL;
910 
911 	state = &vcs->base;
912 
913 	__drm_atomic_helper_connector_duplicate_state(connector, state);
914 
915 	return state;
916 }
917 
918 
919 /**
920  * vmw_du_connector_reset - creates a blank vmw connector state
921  * @connector: DRM connector
922  *
923  * Resets the atomic state for @connector by freeing the state pointer (which
924  * might be NULL, e.g. at driver load time) and allocating a new empty state
925  * object.
926  */
927 void vmw_du_connector_reset(struct drm_connector *connector)
928 {
929 	struct vmw_connector_state *vcs;
930 
931 
932 	if (connector->state) {
933 		__drm_atomic_helper_connector_destroy_state(connector->state);
934 
935 		kfree(vmw_connector_state_to_vcs(connector->state));
936 	}
937 
938 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
939 
940 	if (!vcs) {
941 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
942 		return;
943 	}
944 
945 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
946 }
947 
948 
949 /**
950  * vmw_du_connector_destroy_state - destroy connector state
951  * @connector: DRM connector
952  * @state: state object to destroy
953  *
954  * Destroys the connector state (both common and vmw-specific) for the
955  * specified plane.
956  */
957 void
958 vmw_du_connector_destroy_state(struct drm_connector *connector,
959 			  struct drm_connector_state *state)
960 {
961 	drm_atomic_helper_connector_destroy_state(connector, state);
962 }
963 /*
964  * Generic framebuffer code
965  */
966 
967 /*
968  * Surface framebuffer code
969  */
970 
971 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
972 {
973 	struct vmw_framebuffer_surface *vfbs =
974 		vmw_framebuffer_to_vfbs(framebuffer);
975 
976 	drm_framebuffer_cleanup(framebuffer);
977 	vmw_surface_unreference(&vfbs->surface);
978 	if (vfbs->base.user_obj)
979 		ttm_base_object_unref(&vfbs->base.user_obj);
980 
981 	kfree(vfbs);
982 }
983 
984 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
985 				  struct drm_file *file_priv,
986 				  unsigned flags, unsigned color,
987 				  struct drm_clip_rect *clips,
988 				  unsigned num_clips)
989 {
990 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
991 	struct vmw_framebuffer_surface *vfbs =
992 		vmw_framebuffer_to_vfbs(framebuffer);
993 	struct drm_clip_rect norect;
994 	int ret, inc = 1;
995 
996 	/* Legacy Display Unit does not support 3D */
997 	if (dev_priv->active_display_unit == vmw_du_legacy)
998 		return -EINVAL;
999 
1000 	drm_modeset_lock_all(dev_priv->dev);
1001 
1002 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1003 	if (unlikely(ret != 0)) {
1004 		drm_modeset_unlock_all(dev_priv->dev);
1005 		return ret;
1006 	}
1007 
1008 	if (!num_clips) {
1009 		num_clips = 1;
1010 		clips = &norect;
1011 		norect.x1 = norect.y1 = 0;
1012 		norect.x2 = framebuffer->width;
1013 		norect.y2 = framebuffer->height;
1014 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1015 		num_clips /= 2;
1016 		inc = 2; /* skip source rects */
1017 	}
1018 
1019 	if (dev_priv->active_display_unit == vmw_du_screen_object)
1020 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
1021 						   clips, NULL, NULL, 0, 0,
1022 						   num_clips, inc, NULL);
1023 	else
1024 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
1025 						 clips, NULL, NULL, 0, 0,
1026 						 num_clips, inc, NULL);
1027 
1028 	vmw_fifo_flush(dev_priv, false);
1029 	ttm_read_unlock(&dev_priv->reservation_sem);
1030 
1031 	drm_modeset_unlock_all(dev_priv->dev);
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * vmw_kms_readback - Perform a readback from the screen system to
1038  * a dma-buffer backed framebuffer.
1039  *
1040  * @dev_priv: Pointer to the device private structure.
1041  * @file_priv: Pointer to a struct drm_file identifying the caller.
1042  * Must be set to NULL if @user_fence_rep is NULL.
1043  * @vfb: Pointer to the dma-buffer backed framebuffer.
1044  * @user_fence_rep: User-space provided structure for fence information.
1045  * Must be set to non-NULL if @file_priv is non-NULL.
1046  * @vclips: Array of clip rects.
1047  * @num_clips: Number of clip rects in @vclips.
1048  *
1049  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
1050  * interrupted.
1051  */
1052 int vmw_kms_readback(struct vmw_private *dev_priv,
1053 		     struct drm_file *file_priv,
1054 		     struct vmw_framebuffer *vfb,
1055 		     struct drm_vmw_fence_rep __user *user_fence_rep,
1056 		     struct drm_vmw_rect *vclips,
1057 		     uint32_t num_clips)
1058 {
1059 	switch (dev_priv->active_display_unit) {
1060 	case vmw_du_screen_object:
1061 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
1062 					    user_fence_rep, vclips, num_clips);
1063 	case vmw_du_screen_target:
1064 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
1065 					user_fence_rep, NULL, vclips, num_clips,
1066 					1, false, true);
1067 	default:
1068 		WARN_ONCE(true,
1069 			  "Readback called with invalid display system.\n");
1070 }
1071 
1072 	return -ENOSYS;
1073 }
1074 
1075 
1076 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
1077 	.destroy = vmw_framebuffer_surface_destroy,
1078 	.dirty = vmw_framebuffer_surface_dirty,
1079 };
1080 
1081 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
1082 					   struct vmw_surface *surface,
1083 					   struct vmw_framebuffer **out,
1084 					   const struct drm_mode_fb_cmd2
1085 					   *mode_cmd,
1086 					   bool is_dmabuf_proxy)
1087 
1088 {
1089 	struct drm_device *dev = dev_priv->dev;
1090 	struct vmw_framebuffer_surface *vfbs;
1091 	enum SVGA3dSurfaceFormat format;
1092 	int ret;
1093 	struct drm_format_name_buf format_name;
1094 
1095 	/* 3D is only supported on HWv8 and newer hosts */
1096 	if (dev_priv->active_display_unit == vmw_du_legacy)
1097 		return -ENOSYS;
1098 
1099 	/*
1100 	 * Sanity checks.
1101 	 */
1102 
1103 	/* Surface must be marked as a scanout. */
1104 	if (unlikely(!surface->scanout))
1105 		return -EINVAL;
1106 
1107 	if (unlikely(surface->mip_levels[0] != 1 ||
1108 		     surface->num_sizes != 1 ||
1109 		     surface->base_size.width < mode_cmd->width ||
1110 		     surface->base_size.height < mode_cmd->height ||
1111 		     surface->base_size.depth != 1)) {
1112 		DRM_ERROR("Incompatible surface dimensions "
1113 			  "for requested mode.\n");
1114 		return -EINVAL;
1115 	}
1116 
1117 	switch (mode_cmd->pixel_format) {
1118 	case DRM_FORMAT_ARGB8888:
1119 		format = SVGA3D_A8R8G8B8;
1120 		break;
1121 	case DRM_FORMAT_XRGB8888:
1122 		format = SVGA3D_X8R8G8B8;
1123 		break;
1124 	case DRM_FORMAT_RGB565:
1125 		format = SVGA3D_R5G6B5;
1126 		break;
1127 	case DRM_FORMAT_XRGB1555:
1128 		format = SVGA3D_A1R5G5B5;
1129 		break;
1130 	default:
1131 		DRM_ERROR("Invalid pixel format: %s\n",
1132 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1133 		return -EINVAL;
1134 	}
1135 
1136 	/*
1137 	 * For DX, surface format validation is done when surface->scanout
1138 	 * is set.
1139 	 */
1140 	if (!dev_priv->has_dx && format != surface->format) {
1141 		DRM_ERROR("Invalid surface format for requested mode.\n");
1142 		return -EINVAL;
1143 	}
1144 
1145 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1146 	if (!vfbs) {
1147 		ret = -ENOMEM;
1148 		goto out_err1;
1149 	}
1150 
1151 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1152 	vfbs->surface = vmw_surface_reference(surface);
1153 	vfbs->base.user_handle = mode_cmd->handles[0];
1154 	vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1155 
1156 	*out = &vfbs->base;
1157 
1158 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1159 				   &vmw_framebuffer_surface_funcs);
1160 	if (ret)
1161 		goto out_err2;
1162 
1163 	return 0;
1164 
1165 out_err2:
1166 	vmw_surface_unreference(&surface);
1167 	kfree(vfbs);
1168 out_err1:
1169 	return ret;
1170 }
1171 
1172 /*
1173  * Dmabuf framebuffer code
1174  */
1175 
1176 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1177 {
1178 	struct vmw_framebuffer_dmabuf *vfbd =
1179 		vmw_framebuffer_to_vfbd(framebuffer);
1180 
1181 	drm_framebuffer_cleanup(framebuffer);
1182 	vmw_dmabuf_unreference(&vfbd->buffer);
1183 	if (vfbd->base.user_obj)
1184 		ttm_base_object_unref(&vfbd->base.user_obj);
1185 
1186 	kfree(vfbd);
1187 }
1188 
1189 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1190 				 struct drm_file *file_priv,
1191 				 unsigned flags, unsigned color,
1192 				 struct drm_clip_rect *clips,
1193 				 unsigned num_clips)
1194 {
1195 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1196 	struct vmw_framebuffer_dmabuf *vfbd =
1197 		vmw_framebuffer_to_vfbd(framebuffer);
1198 	struct drm_clip_rect norect;
1199 	int ret, increment = 1;
1200 
1201 	drm_modeset_lock_all(dev_priv->dev);
1202 
1203 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1204 	if (unlikely(ret != 0)) {
1205 		drm_modeset_unlock_all(dev_priv->dev);
1206 		return ret;
1207 	}
1208 
1209 	if (!num_clips) {
1210 		num_clips = 1;
1211 		clips = &norect;
1212 		norect.x1 = norect.y1 = 0;
1213 		norect.x2 = framebuffer->width;
1214 		norect.y2 = framebuffer->height;
1215 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1216 		num_clips /= 2;
1217 		increment = 2;
1218 	}
1219 
1220 	switch (dev_priv->active_display_unit) {
1221 	case vmw_du_screen_target:
1222 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1223 				       clips, NULL, num_clips, increment,
1224 				       true, true);
1225 		break;
1226 	case vmw_du_screen_object:
1227 		ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1228 						  clips, NULL, num_clips,
1229 						  increment, true, NULL);
1230 		break;
1231 	case vmw_du_legacy:
1232 		ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1233 						  clips, num_clips, increment);
1234 		break;
1235 	default:
1236 		ret = -EINVAL;
1237 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1238 		break;
1239 	}
1240 
1241 	vmw_fifo_flush(dev_priv, false);
1242 	ttm_read_unlock(&dev_priv->reservation_sem);
1243 
1244 	drm_modeset_unlock_all(dev_priv->dev);
1245 
1246 	return ret;
1247 }
1248 
1249 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1250 	.destroy = vmw_framebuffer_dmabuf_destroy,
1251 	.dirty = vmw_framebuffer_dmabuf_dirty,
1252 };
1253 
1254 /**
1255  * Pin the dmabuffer to the start of vram.
1256  */
1257 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1258 {
1259 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1260 	struct vmw_dma_buffer *buf;
1261 	int ret;
1262 
1263 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1264 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1265 
1266 	if (!buf)
1267 		return 0;
1268 
1269 	switch (dev_priv->active_display_unit) {
1270 	case vmw_du_legacy:
1271 		vmw_overlay_pause_all(dev_priv);
1272 		ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1273 		vmw_overlay_resume_all(dev_priv);
1274 		break;
1275 	case vmw_du_screen_object:
1276 	case vmw_du_screen_target:
1277 		if (vfb->dmabuf)
1278 			return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1279 							     false);
1280 
1281 		return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1282 						   &vmw_mob_placement, false);
1283 	default:
1284 		return -EINVAL;
1285 	}
1286 
1287 	return ret;
1288 }
1289 
1290 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1291 {
1292 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1293 	struct vmw_dma_buffer *buf;
1294 
1295 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1296 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1297 
1298 	if (WARN_ON(!buf))
1299 		return 0;
1300 
1301 	return vmw_dmabuf_unpin(dev_priv, buf, false);
1302 }
1303 
1304 /**
1305  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1306  *
1307  * @dev: DRM device
1308  * @mode_cmd: parameters for the new surface
1309  * @dmabuf_mob: MOB backing the DMA buf
1310  * @srf_out: newly created surface
1311  *
1312  * When the content FB is a DMA buf, we create a surface as a proxy to the
1313  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1314  * This is a more efficient approach
1315  *
1316  * RETURNS:
1317  * 0 on success, error code otherwise
1318  */
1319 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1320 				   const struct drm_mode_fb_cmd2 *mode_cmd,
1321 				   struct vmw_dma_buffer *dmabuf_mob,
1322 				   struct vmw_surface **srf_out)
1323 {
1324 	uint32_t format;
1325 	struct drm_vmw_size content_base_size = {0};
1326 	struct vmw_resource *res;
1327 	unsigned int bytes_pp;
1328 	struct drm_format_name_buf format_name;
1329 	int ret;
1330 
1331 	switch (mode_cmd->pixel_format) {
1332 	case DRM_FORMAT_ARGB8888:
1333 	case DRM_FORMAT_XRGB8888:
1334 		format = SVGA3D_X8R8G8B8;
1335 		bytes_pp = 4;
1336 		break;
1337 
1338 	case DRM_FORMAT_RGB565:
1339 	case DRM_FORMAT_XRGB1555:
1340 		format = SVGA3D_R5G6B5;
1341 		bytes_pp = 2;
1342 		break;
1343 
1344 	case 8:
1345 		format = SVGA3D_P8;
1346 		bytes_pp = 1;
1347 		break;
1348 
1349 	default:
1350 		DRM_ERROR("Invalid framebuffer format %s\n",
1351 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1352 		return -EINVAL;
1353 	}
1354 
1355 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1356 	content_base_size.height = mode_cmd->height;
1357 	content_base_size.depth  = 1;
1358 
1359 	ret = vmw_surface_gb_priv_define(dev,
1360 			0, /* kernel visible only */
1361 			0, /* flags */
1362 			format,
1363 			true, /* can be a scanout buffer */
1364 			1, /* num of mip levels */
1365 			0,
1366 			0,
1367 			content_base_size,
1368 			srf_out);
1369 	if (ret) {
1370 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1371 		return ret;
1372 	}
1373 
1374 	res = &(*srf_out)->res;
1375 
1376 	/* Reserve and switch the backing mob. */
1377 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1378 	(void) vmw_resource_reserve(res, false, true);
1379 	vmw_dmabuf_unreference(&res->backup);
1380 	res->backup = vmw_dmabuf_reference(dmabuf_mob);
1381 	res->backup_offset = 0;
1382 	vmw_resource_unreserve(res, false, NULL, 0);
1383 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1384 
1385 	return 0;
1386 }
1387 
1388 
1389 
1390 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1391 					  struct vmw_dma_buffer *dmabuf,
1392 					  struct vmw_framebuffer **out,
1393 					  const struct drm_mode_fb_cmd2
1394 					  *mode_cmd)
1395 
1396 {
1397 	struct drm_device *dev = dev_priv->dev;
1398 	struct vmw_framebuffer_dmabuf *vfbd;
1399 	unsigned int requested_size;
1400 	struct drm_format_name_buf format_name;
1401 	int ret;
1402 
1403 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1404 	if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1405 		DRM_ERROR("Screen buffer object size is too small "
1406 			  "for requested mode.\n");
1407 		return -EINVAL;
1408 	}
1409 
1410 	/* Limited framebuffer color depth support for screen objects */
1411 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1412 		switch (mode_cmd->pixel_format) {
1413 		case DRM_FORMAT_XRGB8888:
1414 		case DRM_FORMAT_ARGB8888:
1415 			break;
1416 		case DRM_FORMAT_XRGB1555:
1417 		case DRM_FORMAT_RGB565:
1418 			break;
1419 		default:
1420 			DRM_ERROR("Invalid pixel format: %s\n",
1421 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1422 			return -EINVAL;
1423 		}
1424 	}
1425 
1426 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1427 	if (!vfbd) {
1428 		ret = -ENOMEM;
1429 		goto out_err1;
1430 	}
1431 
1432 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1433 	vfbd->base.dmabuf = true;
1434 	vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1435 	vfbd->base.user_handle = mode_cmd->handles[0];
1436 	*out = &vfbd->base;
1437 
1438 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1439 				   &vmw_framebuffer_dmabuf_funcs);
1440 	if (ret)
1441 		goto out_err2;
1442 
1443 	return 0;
1444 
1445 out_err2:
1446 	vmw_dmabuf_unreference(&dmabuf);
1447 	kfree(vfbd);
1448 out_err1:
1449 	return ret;
1450 }
1451 
1452 
1453 /**
1454  * vmw_kms_srf_ok - check if a surface can be created
1455  *
1456  * @width: requested width
1457  * @height: requested height
1458  *
1459  * Surfaces need to be less than texture size
1460  */
1461 static bool
1462 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1463 {
1464 	if (width  > dev_priv->texture_max_width ||
1465 	    height > dev_priv->texture_max_height)
1466 		return false;
1467 
1468 	return true;
1469 }
1470 
1471 /**
1472  * vmw_kms_new_framebuffer - Create a new framebuffer.
1473  *
1474  * @dev_priv: Pointer to device private struct.
1475  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1476  * Either @dmabuf or @surface must be NULL.
1477  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1478  * Either @dmabuf or @surface must be NULL.
1479  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1480  * Helps the code to do some important optimizations.
1481  * @mode_cmd: Frame-buffer metadata.
1482  */
1483 struct vmw_framebuffer *
1484 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1485 			struct vmw_dma_buffer *dmabuf,
1486 			struct vmw_surface *surface,
1487 			bool only_2d,
1488 			const struct drm_mode_fb_cmd2 *mode_cmd)
1489 {
1490 	struct vmw_framebuffer *vfb = NULL;
1491 	bool is_dmabuf_proxy = false;
1492 	int ret;
1493 
1494 	/*
1495 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1496 	 * therefore, wrap the DMA buf in a surface so we can use the
1497 	 * SurfaceCopy command.
1498 	 */
1499 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1500 	    dmabuf && only_2d &&
1501 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1502 		ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1503 					      dmabuf, &surface);
1504 		if (ret)
1505 			return ERR_PTR(ret);
1506 
1507 		is_dmabuf_proxy = true;
1508 	}
1509 
1510 	/* Create the new framebuffer depending one what we have */
1511 	if (surface) {
1512 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1513 						      mode_cmd,
1514 						      is_dmabuf_proxy);
1515 
1516 		/*
1517 		 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1518 		 * needed
1519 		 */
1520 		if (is_dmabuf_proxy)
1521 			vmw_surface_unreference(&surface);
1522 	} else if (dmabuf) {
1523 		ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1524 						     mode_cmd);
1525 	} else {
1526 		BUG();
1527 	}
1528 
1529 	if (ret)
1530 		return ERR_PTR(ret);
1531 
1532 	vfb->pin = vmw_framebuffer_pin;
1533 	vfb->unpin = vmw_framebuffer_unpin;
1534 
1535 	return vfb;
1536 }
1537 
1538 /*
1539  * Generic Kernel modesetting functions
1540  */
1541 
1542 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1543 						 struct drm_file *file_priv,
1544 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1545 {
1546 	struct vmw_private *dev_priv = vmw_priv(dev);
1547 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1548 	struct vmw_framebuffer *vfb = NULL;
1549 	struct vmw_surface *surface = NULL;
1550 	struct vmw_dma_buffer *bo = NULL;
1551 	struct ttm_base_object *user_obj;
1552 	int ret;
1553 
1554 	/**
1555 	 * This code should be conditioned on Screen Objects not being used.
1556 	 * If screen objects are used, we can allocate a GMR to hold the
1557 	 * requested framebuffer.
1558 	 */
1559 
1560 	if (!vmw_kms_validate_mode_vram(dev_priv,
1561 					mode_cmd->pitches[0],
1562 					mode_cmd->height)) {
1563 		DRM_ERROR("Requested mode exceed bounding box limit.\n");
1564 		return ERR_PTR(-ENOMEM);
1565 	}
1566 
1567 	/*
1568 	 * Take a reference on the user object of the resource
1569 	 * backing the kms fb. This ensures that user-space handle
1570 	 * lookups on that resource will always work as long as
1571 	 * it's registered with a kms framebuffer. This is important,
1572 	 * since vmw_execbuf_process identifies resources in the
1573 	 * command stream using user-space handles.
1574 	 */
1575 
1576 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1577 	if (unlikely(user_obj == NULL)) {
1578 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1579 		return ERR_PTR(-ENOENT);
1580 	}
1581 
1582 	/**
1583 	 * End conditioned code.
1584 	 */
1585 
1586 	/* returns either a dmabuf or surface */
1587 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1588 				     mode_cmd->handles[0],
1589 				     &surface, &bo);
1590 	if (ret)
1591 		goto err_out;
1592 
1593 
1594 	if (!bo &&
1595 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1596 		DRM_ERROR("Surface size cannot exceed %dx%d",
1597 			dev_priv->texture_max_width,
1598 			dev_priv->texture_max_height);
1599 		goto err_out;
1600 	}
1601 
1602 
1603 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1604 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1605 				      mode_cmd);
1606 	if (IS_ERR(vfb)) {
1607 		ret = PTR_ERR(vfb);
1608 		goto err_out;
1609  	}
1610 
1611 err_out:
1612 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1613 	if (bo)
1614 		vmw_dmabuf_unreference(&bo);
1615 	if (surface)
1616 		vmw_surface_unreference(&surface);
1617 
1618 	if (ret) {
1619 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1620 		ttm_base_object_unref(&user_obj);
1621 		return ERR_PTR(ret);
1622 	} else
1623 		vfb->user_obj = user_obj;
1624 
1625 	return &vfb->base;
1626 }
1627 
1628 
1629 
1630 /**
1631  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1632  *
1633  * @dev: DRM device
1634  * @state: the driver state object
1635  *
1636  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1637  * us to assign a value to mode->crtc_clock so that
1638  * drm_calc_timestamping_constants() won't throw an error message
1639  *
1640  * RETURNS
1641  * Zero for success or -errno
1642  */
1643 int
1644 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1645 			     struct drm_atomic_state *state)
1646 {
1647 	struct drm_crtc_state *crtc_state;
1648 	struct drm_crtc *crtc;
1649 	struct vmw_private *dev_priv = vmw_priv(dev);
1650 	int i;
1651 
1652 
1653 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
1654 		unsigned long requested_bb_mem = 0;
1655 
1656 		if (dev_priv->active_display_unit == vmw_du_screen_target) {
1657 			if (crtc->primary->fb) {
1658 				int cpp = crtc->primary->fb->pitches[0] /
1659 					  crtc->primary->fb->width;
1660 
1661 				requested_bb_mem += crtc->mode.hdisplay * cpp *
1662 						    crtc->mode.vdisplay;
1663 			}
1664 
1665 			if (requested_bb_mem > dev_priv->prim_bb_mem)
1666 				return -EINVAL;
1667 		}
1668 	}
1669 
1670 	return drm_atomic_helper_check(dev, state);
1671 }
1672 
1673 
1674 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1675 	.fb_create = vmw_kms_fb_create,
1676 	.atomic_check = vmw_kms_atomic_check_modeset,
1677 	.atomic_commit = drm_atomic_helper_commit,
1678 };
1679 
1680 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1681 				   struct drm_file *file_priv,
1682 				   struct vmw_framebuffer *vfb,
1683 				   struct vmw_surface *surface,
1684 				   uint32_t sid,
1685 				   int32_t destX, int32_t destY,
1686 				   struct drm_vmw_rect *clips,
1687 				   uint32_t num_clips)
1688 {
1689 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1690 					    &surface->res, destX, destY,
1691 					    num_clips, 1, NULL);
1692 }
1693 
1694 
1695 int vmw_kms_present(struct vmw_private *dev_priv,
1696 		    struct drm_file *file_priv,
1697 		    struct vmw_framebuffer *vfb,
1698 		    struct vmw_surface *surface,
1699 		    uint32_t sid,
1700 		    int32_t destX, int32_t destY,
1701 		    struct drm_vmw_rect *clips,
1702 		    uint32_t num_clips)
1703 {
1704 	int ret;
1705 
1706 	switch (dev_priv->active_display_unit) {
1707 	case vmw_du_screen_target:
1708 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1709 						 &surface->res, destX, destY,
1710 						 num_clips, 1, NULL);
1711 		break;
1712 	case vmw_du_screen_object:
1713 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1714 					      sid, destX, destY, clips,
1715 					      num_clips);
1716 		break;
1717 	default:
1718 		WARN_ONCE(true,
1719 			  "Present called with invalid display system.\n");
1720 		ret = -ENOSYS;
1721 		break;
1722 	}
1723 	if (ret)
1724 		return ret;
1725 
1726 	vmw_fifo_flush(dev_priv, false);
1727 
1728 	return 0;
1729 }
1730 
1731 static void
1732 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1733 {
1734 	if (dev_priv->hotplug_mode_update_property)
1735 		return;
1736 
1737 	dev_priv->hotplug_mode_update_property =
1738 		drm_property_create_range(dev_priv->dev,
1739 					  DRM_MODE_PROP_IMMUTABLE,
1740 					  "hotplug_mode_update", 0, 1);
1741 
1742 	if (!dev_priv->hotplug_mode_update_property)
1743 		return;
1744 
1745 }
1746 
1747 int vmw_kms_init(struct vmw_private *dev_priv)
1748 {
1749 	struct drm_device *dev = dev_priv->dev;
1750 	int ret;
1751 
1752 	drm_mode_config_init(dev);
1753 	dev->mode_config.funcs = &vmw_kms_funcs;
1754 	dev->mode_config.min_width = 1;
1755 	dev->mode_config.min_height = 1;
1756 	dev->mode_config.max_width = dev_priv->texture_max_width;
1757 	dev->mode_config.max_height = dev_priv->texture_max_height;
1758 
1759 	drm_mode_create_suggested_offset_properties(dev);
1760 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1761 
1762 	ret = vmw_kms_stdu_init_display(dev_priv);
1763 	if (ret) {
1764 		ret = vmw_kms_sou_init_display(dev_priv);
1765 		if (ret) /* Fallback */
1766 			ret = vmw_kms_ldu_init_display(dev_priv);
1767 	}
1768 
1769 	return ret;
1770 }
1771 
1772 int vmw_kms_close(struct vmw_private *dev_priv)
1773 {
1774 	int ret;
1775 
1776 	/*
1777 	 * Docs says we should take the lock before calling this function
1778 	 * but since it destroys encoders and our destructor calls
1779 	 * drm_encoder_cleanup which takes the lock we deadlock.
1780 	 */
1781 	drm_mode_config_cleanup(dev_priv->dev);
1782 	if (dev_priv->active_display_unit == vmw_du_screen_object)
1783 		ret = vmw_kms_sou_close_display(dev_priv);
1784 	else if (dev_priv->active_display_unit == vmw_du_screen_target)
1785 		ret = vmw_kms_stdu_close_display(dev_priv);
1786 	else
1787 		ret = vmw_kms_ldu_close_display(dev_priv);
1788 
1789 	return ret;
1790 }
1791 
1792 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1793 				struct drm_file *file_priv)
1794 {
1795 	struct drm_vmw_cursor_bypass_arg *arg = data;
1796 	struct vmw_display_unit *du;
1797 	struct drm_crtc *crtc;
1798 	int ret = 0;
1799 
1800 
1801 	mutex_lock(&dev->mode_config.mutex);
1802 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1803 
1804 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1805 			du = vmw_crtc_to_du(crtc);
1806 			du->hotspot_x = arg->xhot;
1807 			du->hotspot_y = arg->yhot;
1808 		}
1809 
1810 		mutex_unlock(&dev->mode_config.mutex);
1811 		return 0;
1812 	}
1813 
1814 	crtc = drm_crtc_find(dev, arg->crtc_id);
1815 	if (!crtc) {
1816 		ret = -ENOENT;
1817 		goto out;
1818 	}
1819 
1820 	du = vmw_crtc_to_du(crtc);
1821 
1822 	du->hotspot_x = arg->xhot;
1823 	du->hotspot_y = arg->yhot;
1824 
1825 out:
1826 	mutex_unlock(&dev->mode_config.mutex);
1827 
1828 	return ret;
1829 }
1830 
1831 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1832 			unsigned width, unsigned height, unsigned pitch,
1833 			unsigned bpp, unsigned depth)
1834 {
1835 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1836 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1837 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1838 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1839 			       SVGA_FIFO_PITCHLOCK);
1840 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1841 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1842 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1843 
1844 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1845 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1846 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1847 		return -EINVAL;
1848 	}
1849 
1850 	return 0;
1851 }
1852 
1853 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1854 {
1855 	struct vmw_vga_topology_state *save;
1856 	uint32_t i;
1857 
1858 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1859 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1860 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1861 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1862 		vmw_priv->vga_pitchlock =
1863 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1864 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1865 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1866 							SVGA_FIFO_PITCHLOCK);
1867 
1868 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1869 		return 0;
1870 
1871 	vmw_priv->num_displays = vmw_read(vmw_priv,
1872 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1873 
1874 	if (vmw_priv->num_displays == 0)
1875 		vmw_priv->num_displays = 1;
1876 
1877 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1878 		save = &vmw_priv->vga_save[i];
1879 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1880 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1881 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1882 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1883 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1884 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1885 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1886 		if (i == 0 && vmw_priv->num_displays == 1 &&
1887 		    save->width == 0 && save->height == 0) {
1888 
1889 			/*
1890 			 * It should be fairly safe to assume that these
1891 			 * values are uninitialized.
1892 			 */
1893 
1894 			save->width = vmw_priv->vga_width - save->pos_x;
1895 			save->height = vmw_priv->vga_height - save->pos_y;
1896 		}
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1903 {
1904 	struct vmw_vga_topology_state *save;
1905 	uint32_t i;
1906 
1907 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1908 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1909 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1910 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1911 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1912 			  vmw_priv->vga_pitchlock);
1913 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1914 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1915 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1916 
1917 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1918 		return 0;
1919 
1920 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1921 		save = &vmw_priv->vga_save[i];
1922 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1923 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1924 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1925 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1926 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1927 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1928 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1935 				uint32_t pitch,
1936 				uint32_t height)
1937 {
1938 	return ((u64) pitch * (u64) height) < (u64)
1939 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1940 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1941 }
1942 
1943 
1944 /**
1945  * Function called by DRM code called with vbl_lock held.
1946  */
1947 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1948 {
1949 	return 0;
1950 }
1951 
1952 /**
1953  * Function called by DRM code called with vbl_lock held.
1954  */
1955 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1956 {
1957 	return -ENOSYS;
1958 }
1959 
1960 /**
1961  * Function called by DRM code called with vbl_lock held.
1962  */
1963 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1964 {
1965 }
1966 
1967 
1968 /*
1969  * Small shared kms functions.
1970  */
1971 
1972 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1973 			 struct drm_vmw_rect *rects)
1974 {
1975 	struct drm_device *dev = dev_priv->dev;
1976 	struct vmw_display_unit *du;
1977 	struct drm_connector *con;
1978 
1979 	mutex_lock(&dev->mode_config.mutex);
1980 
1981 #if 0
1982 	{
1983 		unsigned int i;
1984 
1985 		DRM_INFO("%s: new layout ", __func__);
1986 		for (i = 0; i < num; i++)
1987 			DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1988 				 rects[i].w, rects[i].h);
1989 		DRM_INFO("\n");
1990 	}
1991 #endif
1992 
1993 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1994 		du = vmw_connector_to_du(con);
1995 		if (num > du->unit) {
1996 			du->pref_width = rects[du->unit].w;
1997 			du->pref_height = rects[du->unit].h;
1998 			du->pref_active = true;
1999 			du->gui_x = rects[du->unit].x;
2000 			du->gui_y = rects[du->unit].y;
2001 			drm_object_property_set_value
2002 			  (&con->base, dev->mode_config.suggested_x_property,
2003 			   du->gui_x);
2004 			drm_object_property_set_value
2005 			  (&con->base, dev->mode_config.suggested_y_property,
2006 			   du->gui_y);
2007 		} else {
2008 			du->pref_width = 800;
2009 			du->pref_height = 600;
2010 			du->pref_active = false;
2011 			drm_object_property_set_value
2012 			  (&con->base, dev->mode_config.suggested_x_property,
2013 			   0);
2014 			drm_object_property_set_value
2015 			  (&con->base, dev->mode_config.suggested_y_property,
2016 			   0);
2017 		}
2018 		con->status = vmw_du_connector_detect(con, true);
2019 	}
2020 
2021 	mutex_unlock(&dev->mode_config.mutex);
2022 	drm_sysfs_hotplug_event(dev);
2023 
2024 	return 0;
2025 }
2026 
2027 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2028 			  u16 *r, u16 *g, u16 *b,
2029 			  uint32_t size)
2030 {
2031 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2032 	int i;
2033 
2034 	for (i = 0; i < size; i++) {
2035 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2036 			  r[i], g[i], b[i]);
2037 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2038 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2039 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2046 {
2047 	return 0;
2048 }
2049 
2050 enum drm_connector_status
2051 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2052 {
2053 	uint32_t num_displays;
2054 	struct drm_device *dev = connector->dev;
2055 	struct vmw_private *dev_priv = vmw_priv(dev);
2056 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2057 
2058 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2059 
2060 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2061 		 du->pref_active) ?
2062 		connector_status_connected : connector_status_disconnected);
2063 }
2064 
2065 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2066 	/* 640x480@60Hz */
2067 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2068 		   752, 800, 0, 480, 489, 492, 525, 0,
2069 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2070 	/* 800x600@60Hz */
2071 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2072 		   968, 1056, 0, 600, 601, 605, 628, 0,
2073 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2074 	/* 1024x768@60Hz */
2075 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2076 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2077 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2078 	/* 1152x864@75Hz */
2079 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2080 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2081 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2082 	/* 1280x768@60Hz */
2083 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2084 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2085 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2086 	/* 1280x800@60Hz */
2087 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2088 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2089 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2090 	/* 1280x960@60Hz */
2091 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2092 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2093 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2094 	/* 1280x1024@60Hz */
2095 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2096 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2097 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2098 	/* 1360x768@60Hz */
2099 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2100 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2101 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2102 	/* 1440x1050@60Hz */
2103 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2104 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2105 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2106 	/* 1440x900@60Hz */
2107 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2108 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2109 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2110 	/* 1600x1200@60Hz */
2111 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2112 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2113 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2114 	/* 1680x1050@60Hz */
2115 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2116 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2117 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2118 	/* 1792x1344@60Hz */
2119 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2120 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2121 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2122 	/* 1853x1392@60Hz */
2123 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2124 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2125 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2126 	/* 1920x1200@60Hz */
2127 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2128 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2129 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2130 	/* 1920x1440@60Hz */
2131 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2132 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2133 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2134 	/* 2560x1600@60Hz */
2135 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2136 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2137 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2138 	/* Terminate */
2139 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2140 };
2141 
2142 /**
2143  * vmw_guess_mode_timing - Provide fake timings for a
2144  * 60Hz vrefresh mode.
2145  *
2146  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2147  * members filled in.
2148  */
2149 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2150 {
2151 	mode->hsync_start = mode->hdisplay + 50;
2152 	mode->hsync_end = mode->hsync_start + 50;
2153 	mode->htotal = mode->hsync_end + 50;
2154 
2155 	mode->vsync_start = mode->vdisplay + 50;
2156 	mode->vsync_end = mode->vsync_start + 50;
2157 	mode->vtotal = mode->vsync_end + 50;
2158 
2159 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2160 	mode->vrefresh = drm_mode_vrefresh(mode);
2161 }
2162 
2163 
2164 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2165 				uint32_t max_width, uint32_t max_height)
2166 {
2167 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2168 	struct drm_device *dev = connector->dev;
2169 	struct vmw_private *dev_priv = vmw_priv(dev);
2170 	struct drm_display_mode *mode = NULL;
2171 	struct drm_display_mode *bmode;
2172 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2173 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2174 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2175 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2176 	};
2177 	int i;
2178 	u32 assumed_bpp = 4;
2179 
2180 	if (dev_priv->assume_16bpp)
2181 		assumed_bpp = 2;
2182 
2183 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2184 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2185 		max_width  = min(max_width,  dev_priv->texture_max_width);
2186 
2187 		max_height = min(max_height, dev_priv->stdu_max_height);
2188 		max_height = min(max_height, dev_priv->texture_max_height);
2189 	}
2190 
2191 	/* Add preferred mode */
2192 	mode = drm_mode_duplicate(dev, &prefmode);
2193 	if (!mode)
2194 		return 0;
2195 	mode->hdisplay = du->pref_width;
2196 	mode->vdisplay = du->pref_height;
2197 	vmw_guess_mode_timing(mode);
2198 
2199 	if (vmw_kms_validate_mode_vram(dev_priv,
2200 					mode->hdisplay * assumed_bpp,
2201 					mode->vdisplay)) {
2202 		drm_mode_probed_add(connector, mode);
2203 	} else {
2204 		drm_mode_destroy(dev, mode);
2205 		mode = NULL;
2206 	}
2207 
2208 	if (du->pref_mode) {
2209 		list_del_init(&du->pref_mode->head);
2210 		drm_mode_destroy(dev, du->pref_mode);
2211 	}
2212 
2213 	/* mode might be null here, this is intended */
2214 	du->pref_mode = mode;
2215 
2216 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2217 		bmode = &vmw_kms_connector_builtin[i];
2218 		if (bmode->hdisplay > max_width ||
2219 		    bmode->vdisplay > max_height)
2220 			continue;
2221 
2222 		if (!vmw_kms_validate_mode_vram(dev_priv,
2223 						bmode->hdisplay * assumed_bpp,
2224 						bmode->vdisplay))
2225 			continue;
2226 
2227 		mode = drm_mode_duplicate(dev, bmode);
2228 		if (!mode)
2229 			return 0;
2230 		mode->vrefresh = drm_mode_vrefresh(mode);
2231 
2232 		drm_mode_probed_add(connector, mode);
2233 	}
2234 
2235 	drm_mode_connector_list_update(connector);
2236 	/* Move the prefered mode first, help apps pick the right mode. */
2237 	drm_mode_sort(&connector->modes);
2238 
2239 	return 1;
2240 }
2241 
2242 int vmw_du_connector_set_property(struct drm_connector *connector,
2243 				  struct drm_property *property,
2244 				  uint64_t val)
2245 {
2246 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2247 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2248 
2249 	if (property == dev_priv->implicit_placement_property)
2250 		du->is_implicit = val;
2251 
2252 	return 0;
2253 }
2254 
2255 
2256 
2257 /**
2258  * vmw_du_connector_atomic_set_property - Atomic version of get property
2259  *
2260  * @crtc - crtc the property is associated with
2261  *
2262  * Returns:
2263  * Zero on success, negative errno on failure.
2264  */
2265 int
2266 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2267 				     struct drm_connector_state *state,
2268 				     struct drm_property *property,
2269 				     uint64_t val)
2270 {
2271 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2272 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2273 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2274 
2275 
2276 	if (property == dev_priv->implicit_placement_property) {
2277 		vcs->is_implicit = val;
2278 
2279 		/*
2280 		 * We should really be doing a drm_atomic_commit() to
2281 		 * commit the new state, but since this doesn't cause
2282 		 * an immedate state change, this is probably ok
2283 		 */
2284 		du->is_implicit = vcs->is_implicit;
2285 	} else {
2286 		return -EINVAL;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 
2293 /**
2294  * vmw_du_connector_atomic_get_property - Atomic version of get property
2295  *
2296  * @connector - connector the property is associated with
2297  *
2298  * Returns:
2299  * Zero on success, negative errno on failure.
2300  */
2301 int
2302 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2303 				     const struct drm_connector_state *state,
2304 				     struct drm_property *property,
2305 				     uint64_t *val)
2306 {
2307 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2308 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2309 
2310 	if (property == dev_priv->implicit_placement_property)
2311 		*val = vcs->is_implicit;
2312 	else {
2313 		DRM_ERROR("Invalid Property %s\n", property->name);
2314 		return -EINVAL;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 
2321 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2322 				struct drm_file *file_priv)
2323 {
2324 	struct vmw_private *dev_priv = vmw_priv(dev);
2325 	struct drm_vmw_update_layout_arg *arg =
2326 		(struct drm_vmw_update_layout_arg *)data;
2327 	void __user *user_rects;
2328 	struct drm_vmw_rect *rects;
2329 	unsigned rects_size;
2330 	int ret;
2331 	int i;
2332 	u64 total_pixels = 0;
2333 	struct drm_mode_config *mode_config = &dev->mode_config;
2334 	struct drm_vmw_rect bounding_box = {0};
2335 
2336 	if (!arg->num_outputs) {
2337 		struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2338 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2339 		return 0;
2340 	}
2341 
2342 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2343 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2344 			GFP_KERNEL);
2345 	if (unlikely(!rects))
2346 		return -ENOMEM;
2347 
2348 	user_rects = (void __user *)(unsigned long)arg->rects;
2349 	ret = copy_from_user(rects, user_rects, rects_size);
2350 	if (unlikely(ret != 0)) {
2351 		DRM_ERROR("Failed to get rects.\n");
2352 		ret = -EFAULT;
2353 		goto out_free;
2354 	}
2355 
2356 	for (i = 0; i < arg->num_outputs; ++i) {
2357 		if (rects[i].x < 0 ||
2358 		    rects[i].y < 0 ||
2359 		    rects[i].x + rects[i].w > mode_config->max_width ||
2360 		    rects[i].y + rects[i].h > mode_config->max_height) {
2361 			DRM_ERROR("Invalid GUI layout.\n");
2362 			ret = -EINVAL;
2363 			goto out_free;
2364 		}
2365 
2366 		/*
2367 		 * bounding_box.w and bunding_box.h are used as
2368 		 * lower-right coordinates
2369 		 */
2370 		if (rects[i].x + rects[i].w > bounding_box.w)
2371 			bounding_box.w = rects[i].x + rects[i].w;
2372 
2373 		if (rects[i].y + rects[i].h > bounding_box.h)
2374 			bounding_box.h = rects[i].y + rects[i].h;
2375 
2376 		total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2377 	}
2378 
2379 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2380 		/*
2381 		 * For Screen Targets, the limits for a toplogy are:
2382 		 *	1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2383 		 *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2384 		 */
2385 		u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2386 		u64 pixel_mem = total_pixels * 4;
2387 
2388 		if (bb_mem > dev_priv->prim_bb_mem) {
2389 			DRM_ERROR("Topology is beyond supported limits.\n");
2390 			ret = -EINVAL;
2391 			goto out_free;
2392 		}
2393 
2394 		if (pixel_mem > dev_priv->prim_bb_mem) {
2395 			DRM_ERROR("Combined output size too large\n");
2396 			ret = -EINVAL;
2397 			goto out_free;
2398 		}
2399 	}
2400 
2401 	vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2402 
2403 out_free:
2404 	kfree(rects);
2405 	return ret;
2406 }
2407 
2408 /**
2409  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2410  * on a set of cliprects and a set of display units.
2411  *
2412  * @dev_priv: Pointer to a device private structure.
2413  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2414  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2415  * Cliprects are given in framebuffer coordinates.
2416  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2417  * be NULL. Cliprects are given in source coordinates.
2418  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2419  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2420  * @num_clips: Number of cliprects in the @clips or @vclips array.
2421  * @increment: Integer with which to increment the clip counter when looping.
2422  * Used to skip a predetermined number of clip rects.
2423  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2424  */
2425 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2426 			 struct vmw_framebuffer *framebuffer,
2427 			 const struct drm_clip_rect *clips,
2428 			 const struct drm_vmw_rect *vclips,
2429 			 s32 dest_x, s32 dest_y,
2430 			 int num_clips,
2431 			 int increment,
2432 			 struct vmw_kms_dirty *dirty)
2433 {
2434 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2435 	struct drm_crtc *crtc;
2436 	u32 num_units = 0;
2437 	u32 i, k;
2438 
2439 	dirty->dev_priv = dev_priv;
2440 
2441 	list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2442 		if (crtc->primary->fb != &framebuffer->base)
2443 			continue;
2444 		units[num_units++] = vmw_crtc_to_du(crtc);
2445 	}
2446 
2447 	for (k = 0; k < num_units; k++) {
2448 		struct vmw_display_unit *unit = units[k];
2449 		s32 crtc_x = unit->crtc.x;
2450 		s32 crtc_y = unit->crtc.y;
2451 		s32 crtc_width = unit->crtc.mode.hdisplay;
2452 		s32 crtc_height = unit->crtc.mode.vdisplay;
2453 		const struct drm_clip_rect *clips_ptr = clips;
2454 		const struct drm_vmw_rect *vclips_ptr = vclips;
2455 
2456 		dirty->unit = unit;
2457 		if (dirty->fifo_reserve_size > 0) {
2458 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2459 						      dirty->fifo_reserve_size);
2460 			if (!dirty->cmd) {
2461 				DRM_ERROR("Couldn't reserve fifo space "
2462 					  "for dirty blits.\n");
2463 				return -ENOMEM;
2464 			}
2465 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2466 		}
2467 		dirty->num_hits = 0;
2468 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2469 		       vclips_ptr += increment) {
2470 			s32 clip_left;
2471 			s32 clip_top;
2472 
2473 			/*
2474 			 * Select clip array type. Note that integer type
2475 			 * in @clips is unsigned short, whereas in @vclips
2476 			 * it's 32-bit.
2477 			 */
2478 			if (clips) {
2479 				dirty->fb_x = (s32) clips_ptr->x1;
2480 				dirty->fb_y = (s32) clips_ptr->y1;
2481 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2482 					crtc_x;
2483 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2484 					crtc_y;
2485 			} else {
2486 				dirty->fb_x = vclips_ptr->x;
2487 				dirty->fb_y = vclips_ptr->y;
2488 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2489 					dest_x - crtc_x;
2490 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2491 					dest_y - crtc_y;
2492 			}
2493 
2494 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2495 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2496 
2497 			/* Skip this clip if it's outside the crtc region */
2498 			if (dirty->unit_x1 >= crtc_width ||
2499 			    dirty->unit_y1 >= crtc_height ||
2500 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2501 				continue;
2502 
2503 			/* Clip right and bottom to crtc limits */
2504 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2505 					       crtc_width);
2506 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2507 					       crtc_height);
2508 
2509 			/* Clip left and top to crtc limits */
2510 			clip_left = min_t(s32, dirty->unit_x1, 0);
2511 			clip_top = min_t(s32, dirty->unit_y1, 0);
2512 			dirty->unit_x1 -= clip_left;
2513 			dirty->unit_y1 -= clip_top;
2514 			dirty->fb_x -= clip_left;
2515 			dirty->fb_y -= clip_top;
2516 
2517 			dirty->clip(dirty);
2518 		}
2519 
2520 		dirty->fifo_commit(dirty);
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 /**
2527  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2528  * command submission.
2529  *
2530  * @dev_priv. Pointer to a device private structure.
2531  * @buf: The buffer object
2532  * @interruptible: Whether to perform waits as interruptible.
2533  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2534  * The buffer will be validated as a GMR. Already pinned buffers will not be
2535  * validated.
2536  *
2537  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2538  * interrupted by a signal.
2539  */
2540 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2541 				  struct vmw_dma_buffer *buf,
2542 				  bool interruptible,
2543 				  bool validate_as_mob)
2544 {
2545 	struct ttm_buffer_object *bo = &buf->base;
2546 	int ret;
2547 
2548 	ttm_bo_reserve(bo, false, false, NULL);
2549 	ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2550 					 validate_as_mob);
2551 	if (ret)
2552 		ttm_bo_unreserve(bo);
2553 
2554 	return ret;
2555 }
2556 
2557 /**
2558  * vmw_kms_helper_buffer_revert - Undo the actions of
2559  * vmw_kms_helper_buffer_prepare.
2560  *
2561  * @res: Pointer to the buffer object.
2562  *
2563  * Helper to be used if an error forces the caller to undo the actions of
2564  * vmw_kms_helper_buffer_prepare.
2565  */
2566 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2567 {
2568 	if (buf)
2569 		ttm_bo_unreserve(&buf->base);
2570 }
2571 
2572 /**
2573  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2574  * kms command submission.
2575  *
2576  * @dev_priv: Pointer to a device private structure.
2577  * @file_priv: Pointer to a struct drm_file representing the caller's
2578  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2579  * if non-NULL, @user_fence_rep must be non-NULL.
2580  * @buf: The buffer object.
2581  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2582  * ref-counted fence pointer is returned here.
2583  * @user_fence_rep: Optional pointer to a user-space provided struct
2584  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2585  * function copies fence data to user-space in a fail-safe manner.
2586  */
2587 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2588 				  struct drm_file *file_priv,
2589 				  struct vmw_dma_buffer *buf,
2590 				  struct vmw_fence_obj **out_fence,
2591 				  struct drm_vmw_fence_rep __user *
2592 				  user_fence_rep)
2593 {
2594 	struct vmw_fence_obj *fence;
2595 	uint32_t handle;
2596 	int ret;
2597 
2598 	ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2599 					 file_priv ? &handle : NULL);
2600 	if (buf)
2601 		vmw_fence_single_bo(&buf->base, fence);
2602 	if (file_priv)
2603 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2604 					    ret, user_fence_rep, fence,
2605 					    handle);
2606 	if (out_fence)
2607 		*out_fence = fence;
2608 	else
2609 		vmw_fence_obj_unreference(&fence);
2610 
2611 	vmw_kms_helper_buffer_revert(buf);
2612 }
2613 
2614 
2615 /**
2616  * vmw_kms_helper_resource_revert - Undo the actions of
2617  * vmw_kms_helper_resource_prepare.
2618  *
2619  * @res: Pointer to the resource. Typically a surface.
2620  *
2621  * Helper to be used if an error forces the caller to undo the actions of
2622  * vmw_kms_helper_resource_prepare.
2623  */
2624 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2625 {
2626 	vmw_kms_helper_buffer_revert(res->backup);
2627 	vmw_resource_unreserve(res, false, NULL, 0);
2628 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2629 }
2630 
2631 /**
2632  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2633  * command submission.
2634  *
2635  * @res: Pointer to the resource. Typically a surface.
2636  * @interruptible: Whether to perform waits as interruptible.
2637  *
2638  * Reserves and validates also the backup buffer if a guest-backed resource.
2639  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2640  * interrupted by a signal.
2641  */
2642 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2643 				    bool interruptible)
2644 {
2645 	int ret = 0;
2646 
2647 	if (interruptible)
2648 		ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2649 	else
2650 		mutex_lock(&res->dev_priv->cmdbuf_mutex);
2651 
2652 	if (unlikely(ret != 0))
2653 		return -ERESTARTSYS;
2654 
2655 	ret = vmw_resource_reserve(res, interruptible, false);
2656 	if (ret)
2657 		goto out_unlock;
2658 
2659 	if (res->backup) {
2660 		ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2661 						    interruptible,
2662 						    res->dev_priv->has_mob);
2663 		if (ret)
2664 			goto out_unreserve;
2665 	}
2666 	ret = vmw_resource_validate(res);
2667 	if (ret)
2668 		goto out_revert;
2669 	return 0;
2670 
2671 out_revert:
2672 	vmw_kms_helper_buffer_revert(res->backup);
2673 out_unreserve:
2674 	vmw_resource_unreserve(res, false, NULL, 0);
2675 out_unlock:
2676 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2677 	return ret;
2678 }
2679 
2680 /**
2681  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2682  * kms command submission.
2683  *
2684  * @res: Pointer to the resource. Typically a surface.
2685  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2686  * ref-counted fence pointer is returned here.
2687  */
2688 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2689 			     struct vmw_fence_obj **out_fence)
2690 {
2691 	if (res->backup || out_fence)
2692 		vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2693 					     out_fence, NULL);
2694 
2695 	vmw_resource_unreserve(res, false, NULL, 0);
2696 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2697 }
2698 
2699 /**
2700  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2701  * its backing MOB.
2702  *
2703  * @res: Pointer to the surface resource
2704  * @clips: Clip rects in framebuffer (surface) space.
2705  * @num_clips: Number of clips in @clips.
2706  * @increment: Integer with which to increment the clip counter when looping.
2707  * Used to skip a predetermined number of clip rects.
2708  *
2709  * This function makes sure the proxy surface is updated from its backing MOB
2710  * using the region given by @clips. The surface resource @res and its backing
2711  * MOB needs to be reserved and validated on call.
2712  */
2713 int vmw_kms_update_proxy(struct vmw_resource *res,
2714 			 const struct drm_clip_rect *clips,
2715 			 unsigned num_clips,
2716 			 int increment)
2717 {
2718 	struct vmw_private *dev_priv = res->dev_priv;
2719 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2720 	struct {
2721 		SVGA3dCmdHeader header;
2722 		SVGA3dCmdUpdateGBImage body;
2723 	} *cmd;
2724 	SVGA3dBox *box;
2725 	size_t copy_size = 0;
2726 	int i;
2727 
2728 	if (!clips)
2729 		return 0;
2730 
2731 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2732 	if (!cmd) {
2733 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2734 			  "update.\n");
2735 		return -ENOMEM;
2736 	}
2737 
2738 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2739 		box = &cmd->body.box;
2740 
2741 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2742 		cmd->header.size = sizeof(cmd->body);
2743 		cmd->body.image.sid = res->id;
2744 		cmd->body.image.face = 0;
2745 		cmd->body.image.mipmap = 0;
2746 
2747 		if (clips->x1 > size->width || clips->x2 > size->width ||
2748 		    clips->y1 > size->height || clips->y2 > size->height) {
2749 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2750 			return -EINVAL;
2751 		}
2752 
2753 		box->x = clips->x1;
2754 		box->y = clips->y1;
2755 		box->z = 0;
2756 		box->w = clips->x2 - clips->x1;
2757 		box->h = clips->y2 - clips->y1;
2758 		box->d = 1;
2759 
2760 		copy_size += sizeof(*cmd);
2761 	}
2762 
2763 	vmw_fifo_commit(dev_priv, copy_size);
2764 
2765 	return 0;
2766 }
2767 
2768 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2769 			    unsigned unit,
2770 			    u32 max_width,
2771 			    u32 max_height,
2772 			    struct drm_connector **p_con,
2773 			    struct drm_crtc **p_crtc,
2774 			    struct drm_display_mode **p_mode)
2775 {
2776 	struct drm_connector *con;
2777 	struct vmw_display_unit *du;
2778 	struct drm_display_mode *mode;
2779 	int i = 0;
2780 
2781 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2782 			    head) {
2783 		if (i == unit)
2784 			break;
2785 
2786 		++i;
2787 	}
2788 
2789 	if (i != unit) {
2790 		DRM_ERROR("Could not find initial display unit.\n");
2791 		return -EINVAL;
2792 	}
2793 
2794 	if (list_empty(&con->modes))
2795 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2796 
2797 	if (list_empty(&con->modes)) {
2798 		DRM_ERROR("Could not find initial display mode.\n");
2799 		return -EINVAL;
2800 	}
2801 
2802 	du = vmw_connector_to_du(con);
2803 	*p_con = con;
2804 	*p_crtc = &du->crtc;
2805 
2806 	list_for_each_entry(mode, &con->modes, head) {
2807 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2808 			break;
2809 	}
2810 
2811 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2812 		*p_mode = mode;
2813 	else {
2814 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2815 		*p_mode = list_first_entry(&con->modes,
2816 					   struct drm_display_mode,
2817 					   head);
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 /**
2824  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2825  *
2826  * @dev_priv: Pointer to a device private struct.
2827  * @du: The display unit of the crtc.
2828  */
2829 void vmw_kms_del_active(struct vmw_private *dev_priv,
2830 			struct vmw_display_unit *du)
2831 {
2832 	mutex_lock(&dev_priv->global_kms_state_mutex);
2833 	if (du->active_implicit) {
2834 		if (--(dev_priv->num_implicit) == 0)
2835 			dev_priv->implicit_fb = NULL;
2836 		du->active_implicit = false;
2837 	}
2838 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2839 }
2840 
2841 /**
2842  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2843  *
2844  * @vmw_priv: Pointer to a device private struct.
2845  * @du: The display unit of the crtc.
2846  * @vfb: The implicit framebuffer
2847  *
2848  * Registers a binding to an implicit framebuffer.
2849  */
2850 void vmw_kms_add_active(struct vmw_private *dev_priv,
2851 			struct vmw_display_unit *du,
2852 			struct vmw_framebuffer *vfb)
2853 {
2854 	mutex_lock(&dev_priv->global_kms_state_mutex);
2855 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2856 
2857 	if (!du->active_implicit && du->is_implicit) {
2858 		dev_priv->implicit_fb = vfb;
2859 		du->active_implicit = true;
2860 		dev_priv->num_implicit++;
2861 	}
2862 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2863 }
2864 
2865 /**
2866  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2867  *
2868  * @dev_priv: Pointer to device-private struct.
2869  * @crtc: The crtc we want to flip.
2870  *
2871  * Returns true or false depending whether it's OK to flip this crtc
2872  * based on the criterion that we must not have more than one implicit
2873  * frame-buffer at any one time.
2874  */
2875 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2876 			    struct drm_crtc *crtc)
2877 {
2878 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2879 	bool ret;
2880 
2881 	mutex_lock(&dev_priv->global_kms_state_mutex);
2882 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2883 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2884 
2885 	return ret;
2886 }
2887 
2888 /**
2889  * vmw_kms_update_implicit_fb - Update the implicit fb.
2890  *
2891  * @dev_priv: Pointer to device-private struct.
2892  * @crtc: The crtc the new implicit frame-buffer is bound to.
2893  */
2894 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2895 				struct drm_crtc *crtc)
2896 {
2897 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2898 	struct vmw_framebuffer *vfb;
2899 
2900 	mutex_lock(&dev_priv->global_kms_state_mutex);
2901 
2902 	if (!du->is_implicit)
2903 		goto out_unlock;
2904 
2905 	vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2906 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2907 		     dev_priv->implicit_fb != vfb);
2908 
2909 	dev_priv->implicit_fb = vfb;
2910 out_unlock:
2911 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2912 }
2913 
2914 /**
2915  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2916  * property.
2917  *
2918  * @dev_priv: Pointer to a device private struct.
2919  * @immutable: Whether the property is immutable.
2920  *
2921  * Sets up the implicit placement property unless it's already set up.
2922  */
2923 void
2924 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2925 					   bool immutable)
2926 {
2927 	if (dev_priv->implicit_placement_property)
2928 		return;
2929 
2930 	dev_priv->implicit_placement_property =
2931 		drm_property_create_range(dev_priv->dev,
2932 					  immutable ?
2933 					  DRM_MODE_PROP_IMMUTABLE : 0,
2934 					  "implicit_placement", 0, 1);
2935 
2936 }
2937 
2938 
2939 /**
2940  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2941  *
2942  * @set: The configuration to set.
2943  *
2944  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2945  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2946  * causes it to return incorrect crtc dimensions causing severe problems in
2947  * the vmwgfx modesetting. So explicitly clear that member before calling
2948  * into drm_atomic_helper_set_config.
2949  */
2950 int vmw_kms_set_config(struct drm_mode_set *set,
2951 		       struct drm_modeset_acquire_ctx *ctx)
2952 {
2953 	if (set && set->mode)
2954 		set->mode->type = 0;
2955 
2956 	return drm_atomic_helper_set_config(set, ctx);
2957 }
2958