xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_damage_helper.h>
31 #include <drm/drm_fourcc.h>
32 #include <drm/drm_plane_helper.h>
33 #include <drm/drm_rect.h>
34 #include <drm/drm_sysfs.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "vmwgfx_kms.h"
38 
39 /* Might need a hrtimer here? */
40 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
41 
42 void vmw_du_cleanup(struct vmw_display_unit *du)
43 {
44 	drm_plane_cleanup(&du->primary);
45 	drm_plane_cleanup(&du->cursor);
46 
47 	drm_connector_unregister(&du->connector);
48 	drm_crtc_cleanup(&du->crtc);
49 	drm_encoder_cleanup(&du->encoder);
50 	drm_connector_cleanup(&du->connector);
51 }
52 
53 /*
54  * Display Unit Cursor functions
55  */
56 
57 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
58 				   u32 *image, u32 width, u32 height,
59 				   u32 hotspotX, u32 hotspotY)
60 {
61 	struct {
62 		u32 cmd;
63 		SVGAFifoCmdDefineAlphaCursor cursor;
64 	} *cmd;
65 	u32 image_size = width * height * 4;
66 	u32 cmd_size = sizeof(*cmd) + image_size;
67 
68 	if (!image)
69 		return -EINVAL;
70 
71 	cmd = VMW_FIFO_RESERVE(dev_priv, cmd_size);
72 	if (unlikely(cmd == NULL))
73 		return -ENOMEM;
74 
75 	memset(cmd, 0, sizeof(*cmd));
76 
77 	memcpy(&cmd[1], image, image_size);
78 
79 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
80 	cmd->cursor.id = 0;
81 	cmd->cursor.width = width;
82 	cmd->cursor.height = height;
83 	cmd->cursor.hotspotX = hotspotX;
84 	cmd->cursor.hotspotY = hotspotY;
85 
86 	vmw_fifo_commit_flush(dev_priv, cmd_size);
87 
88 	return 0;
89 }
90 
91 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
92 				struct vmw_buffer_object *bo,
93 				u32 width, u32 height,
94 				u32 hotspotX, u32 hotspotY)
95 {
96 	struct ttm_bo_kmap_obj map;
97 	unsigned long kmap_offset;
98 	unsigned long kmap_num;
99 	void *virtual;
100 	bool dummy;
101 	int ret;
102 
103 	kmap_offset = 0;
104 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
105 
106 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
107 	if (unlikely(ret != 0)) {
108 		DRM_ERROR("reserve failed\n");
109 		return -EINVAL;
110 	}
111 
112 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
113 	if (unlikely(ret != 0))
114 		goto err_unreserve;
115 
116 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
117 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
118 				      hotspotX, hotspotY);
119 
120 	ttm_bo_kunmap(&map);
121 err_unreserve:
122 	ttm_bo_unreserve(&bo->base);
123 
124 	return ret;
125 }
126 
127 
128 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
129 				       bool show, int x, int y)
130 {
131 	u32 *fifo_mem = dev_priv->mmio_virt;
132 	uint32_t count;
133 
134 	spin_lock(&dev_priv->cursor_lock);
135 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
136 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
137 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
138 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
139 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
140 	spin_unlock(&dev_priv->cursor_lock);
141 }
142 
143 
144 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
145 			  struct ttm_object_file *tfile,
146 			  struct ttm_buffer_object *bo,
147 			  SVGA3dCmdHeader *header)
148 {
149 	struct ttm_bo_kmap_obj map;
150 	unsigned long kmap_offset;
151 	unsigned long kmap_num;
152 	SVGA3dCopyBox *box;
153 	unsigned box_count;
154 	void *virtual;
155 	bool dummy;
156 	struct vmw_dma_cmd {
157 		SVGA3dCmdHeader header;
158 		SVGA3dCmdSurfaceDMA dma;
159 	} *cmd;
160 	int i, ret;
161 
162 	cmd = container_of(header, struct vmw_dma_cmd, header);
163 
164 	/* No snooper installed */
165 	if (!srf->snooper.image)
166 		return;
167 
168 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
169 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
170 		return;
171 	}
172 
173 	if (cmd->header.size < 64) {
174 		DRM_ERROR("at least one full copy box must be given\n");
175 		return;
176 	}
177 
178 	box = (SVGA3dCopyBox *)&cmd[1];
179 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
180 			sizeof(SVGA3dCopyBox);
181 
182 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
183 	    box->x != 0    || box->y != 0    || box->z != 0    ||
184 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
185 	    box->d != 1    || box_count != 1) {
186 		/* TODO handle none page aligned offsets */
187 		/* TODO handle more dst & src != 0 */
188 		/* TODO handle more then one copy */
189 		DRM_ERROR("Cant snoop dma request for cursor!\n");
190 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
191 			  box->srcx, box->srcy, box->srcz,
192 			  box->x, box->y, box->z,
193 			  box->w, box->h, box->d, box_count,
194 			  cmd->dma.guest.ptr.offset);
195 		return;
196 	}
197 
198 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
199 	kmap_num = (64*64*4) >> PAGE_SHIFT;
200 
201 	ret = ttm_bo_reserve(bo, true, false, NULL);
202 	if (unlikely(ret != 0)) {
203 		DRM_ERROR("reserve failed\n");
204 		return;
205 	}
206 
207 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
208 	if (unlikely(ret != 0))
209 		goto err_unreserve;
210 
211 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
212 
213 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
214 		memcpy(srf->snooper.image, virtual, 64*64*4);
215 	} else {
216 		/* Image is unsigned pointer. */
217 		for (i = 0; i < box->h; i++)
218 			memcpy(srf->snooper.image + i * 64,
219 			       virtual + i * cmd->dma.guest.pitch,
220 			       box->w * 4);
221 	}
222 
223 	srf->snooper.age++;
224 
225 	ttm_bo_kunmap(&map);
226 err_unreserve:
227 	ttm_bo_unreserve(bo);
228 }
229 
230 /**
231  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
232  *
233  * @dev_priv: Pointer to the device private struct.
234  *
235  * Clears all legacy hotspots.
236  */
237 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
238 {
239 	struct drm_device *dev = dev_priv->dev;
240 	struct vmw_display_unit *du;
241 	struct drm_crtc *crtc;
242 
243 	drm_modeset_lock_all(dev);
244 	drm_for_each_crtc(crtc, dev) {
245 		du = vmw_crtc_to_du(crtc);
246 
247 		du->hotspot_x = 0;
248 		du->hotspot_y = 0;
249 	}
250 	drm_modeset_unlock_all(dev);
251 }
252 
253 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
254 {
255 	struct drm_device *dev = dev_priv->dev;
256 	struct vmw_display_unit *du;
257 	struct drm_crtc *crtc;
258 
259 	mutex_lock(&dev->mode_config.mutex);
260 
261 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
262 		du = vmw_crtc_to_du(crtc);
263 		if (!du->cursor_surface ||
264 		    du->cursor_age == du->cursor_surface->snooper.age)
265 			continue;
266 
267 		du->cursor_age = du->cursor_surface->snooper.age;
268 		vmw_cursor_update_image(dev_priv,
269 					du->cursor_surface->snooper.image,
270 					64, 64,
271 					du->hotspot_x + du->core_hotspot_x,
272 					du->hotspot_y + du->core_hotspot_y);
273 	}
274 
275 	mutex_unlock(&dev->mode_config.mutex);
276 }
277 
278 
279 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
280 {
281 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
282 
283 	drm_plane_cleanup(plane);
284 }
285 
286 
287 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
288 {
289 	drm_plane_cleanup(plane);
290 
291 	/* Planes are static in our case so we don't free it */
292 }
293 
294 
295 /**
296  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
297  *
298  * @vps: plane state associated with the display surface
299  * @unreference: true if we also want to unreference the display.
300  */
301 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
302 			     bool unreference)
303 {
304 	if (vps->surf) {
305 		if (vps->pinned) {
306 			vmw_resource_unpin(&vps->surf->res);
307 			vps->pinned--;
308 		}
309 
310 		if (unreference) {
311 			if (vps->pinned)
312 				DRM_ERROR("Surface still pinned\n");
313 			vmw_surface_unreference(&vps->surf);
314 		}
315 	}
316 }
317 
318 
319 /**
320  * vmw_du_plane_cleanup_fb - Unpins the cursor
321  *
322  * @plane:  display plane
323  * @old_state: Contains the FB to clean up
324  *
325  * Unpins the framebuffer surface
326  *
327  * Returns 0 on success
328  */
329 void
330 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
331 			struct drm_plane_state *old_state)
332 {
333 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
334 
335 	vmw_du_plane_unpin_surf(vps, false);
336 }
337 
338 
339 /**
340  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
341  *
342  * @plane:  display plane
343  * @new_state: info on the new plane state, including the FB
344  *
345  * Returns 0 on success
346  */
347 int
348 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
349 			       struct drm_plane_state *new_state)
350 {
351 	struct drm_framebuffer *fb = new_state->fb;
352 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
353 
354 
355 	if (vps->surf)
356 		vmw_surface_unreference(&vps->surf);
357 
358 	if (vps->bo)
359 		vmw_bo_unreference(&vps->bo);
360 
361 	if (fb) {
362 		if (vmw_framebuffer_to_vfb(fb)->bo) {
363 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
364 			vmw_bo_reference(vps->bo);
365 		} else {
366 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
367 			vmw_surface_reference(vps->surf);
368 		}
369 	}
370 
371 	return 0;
372 }
373 
374 
375 void
376 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
377 				  struct drm_plane_state *old_state)
378 {
379 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
380 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
381 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
382 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
383 	s32 hotspot_x, hotspot_y;
384 	int ret = 0;
385 
386 
387 	hotspot_x = du->hotspot_x;
388 	hotspot_y = du->hotspot_y;
389 
390 	if (plane->state->fb) {
391 		hotspot_x += plane->state->fb->hot_x;
392 		hotspot_y += plane->state->fb->hot_y;
393 	}
394 
395 	du->cursor_surface = vps->surf;
396 	du->cursor_bo = vps->bo;
397 
398 	if (vps->surf) {
399 		du->cursor_age = du->cursor_surface->snooper.age;
400 
401 		ret = vmw_cursor_update_image(dev_priv,
402 					      vps->surf->snooper.image,
403 					      64, 64, hotspot_x,
404 					      hotspot_y);
405 	} else if (vps->bo) {
406 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
407 					   plane->state->crtc_w,
408 					   plane->state->crtc_h,
409 					   hotspot_x, hotspot_y);
410 	} else {
411 		vmw_cursor_update_position(dev_priv, false, 0, 0);
412 		return;
413 	}
414 
415 	if (!ret) {
416 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
417 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
418 
419 		vmw_cursor_update_position(dev_priv, true,
420 					   du->cursor_x + hotspot_x,
421 					   du->cursor_y + hotspot_y);
422 
423 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
424 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
425 	} else {
426 		DRM_ERROR("Failed to update cursor image\n");
427 	}
428 }
429 
430 
431 /**
432  * vmw_du_primary_plane_atomic_check - check if the new state is okay
433  *
434  * @plane: display plane
435  * @state: info on the new plane state, including the FB
436  *
437  * Check if the new state is settable given the current state.  Other
438  * than what the atomic helper checks, we care about crtc fitting
439  * the FB and maintaining one active framebuffer.
440  *
441  * Returns 0 on success
442  */
443 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
444 				      struct drm_plane_state *state)
445 {
446 	struct drm_crtc_state *crtc_state = NULL;
447 	struct drm_framebuffer *new_fb = state->fb;
448 	int ret;
449 
450 	if (state->crtc)
451 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
452 
453 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
454 						  DRM_PLANE_HELPER_NO_SCALING,
455 						  DRM_PLANE_HELPER_NO_SCALING,
456 						  false, true);
457 
458 	if (!ret && new_fb) {
459 		struct drm_crtc *crtc = state->crtc;
460 		struct vmw_connector_state *vcs;
461 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
462 
463 		vcs = vmw_connector_state_to_vcs(du->connector.state);
464 	}
465 
466 
467 	return ret;
468 }
469 
470 
471 /**
472  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
473  *
474  * @plane: cursor plane
475  * @state: info on the new plane state
476  *
477  * This is a chance to fail if the new cursor state does not fit
478  * our requirements.
479  *
480  * Returns 0 on success
481  */
482 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
483 				     struct drm_plane_state *new_state)
484 {
485 	int ret = 0;
486 	struct drm_crtc_state *crtc_state = NULL;
487 	struct vmw_surface *surface = NULL;
488 	struct drm_framebuffer *fb = new_state->fb;
489 
490 	if (new_state->crtc)
491 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
492 							   new_state->crtc);
493 
494 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
495 						  DRM_PLANE_HELPER_NO_SCALING,
496 						  DRM_PLANE_HELPER_NO_SCALING,
497 						  true, true);
498 	if (ret)
499 		return ret;
500 
501 	/* Turning off */
502 	if (!fb)
503 		return 0;
504 
505 	/* A lot of the code assumes this */
506 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
507 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
508 			  new_state->crtc_w, new_state->crtc_h);
509 		ret = -EINVAL;
510 	}
511 
512 	if (!vmw_framebuffer_to_vfb(fb)->bo)
513 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
514 
515 	if (surface && !surface->snooper.image) {
516 		DRM_ERROR("surface not suitable for cursor\n");
517 		ret = -EINVAL;
518 	}
519 
520 	return ret;
521 }
522 
523 
524 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
525 			     struct drm_crtc_state *new_state)
526 {
527 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
528 	int connector_mask = drm_connector_mask(&du->connector);
529 	bool has_primary = new_state->plane_mask &
530 			   drm_plane_mask(crtc->primary);
531 
532 	/* We always want to have an active plane with an active CRTC */
533 	if (has_primary != new_state->enable)
534 		return -EINVAL;
535 
536 
537 	if (new_state->connector_mask != connector_mask &&
538 	    new_state->connector_mask != 0) {
539 		DRM_ERROR("Invalid connectors configuration\n");
540 		return -EINVAL;
541 	}
542 
543 	/*
544 	 * Our virtual device does not have a dot clock, so use the logical
545 	 * clock value as the dot clock.
546 	 */
547 	if (new_state->mode.crtc_clock == 0)
548 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
549 
550 	return 0;
551 }
552 
553 
554 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
555 			      struct drm_crtc_state *old_crtc_state)
556 {
557 }
558 
559 
560 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
561 			      struct drm_crtc_state *old_crtc_state)
562 {
563 	struct drm_pending_vblank_event *event = crtc->state->event;
564 
565 	if (event) {
566 		crtc->state->event = NULL;
567 
568 		spin_lock_irq(&crtc->dev->event_lock);
569 		drm_crtc_send_vblank_event(crtc, event);
570 		spin_unlock_irq(&crtc->dev->event_lock);
571 	}
572 }
573 
574 
575 /**
576  * vmw_du_crtc_duplicate_state - duplicate crtc state
577  * @crtc: DRM crtc
578  *
579  * Allocates and returns a copy of the crtc state (both common and
580  * vmw-specific) for the specified crtc.
581  *
582  * Returns: The newly allocated crtc state, or NULL on failure.
583  */
584 struct drm_crtc_state *
585 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
586 {
587 	struct drm_crtc_state *state;
588 	struct vmw_crtc_state *vcs;
589 
590 	if (WARN_ON(!crtc->state))
591 		return NULL;
592 
593 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
594 
595 	if (!vcs)
596 		return NULL;
597 
598 	state = &vcs->base;
599 
600 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
601 
602 	return state;
603 }
604 
605 
606 /**
607  * vmw_du_crtc_reset - creates a blank vmw crtc state
608  * @crtc: DRM crtc
609  *
610  * Resets the atomic state for @crtc by freeing the state pointer (which
611  * might be NULL, e.g. at driver load time) and allocating a new empty state
612  * object.
613  */
614 void vmw_du_crtc_reset(struct drm_crtc *crtc)
615 {
616 	struct vmw_crtc_state *vcs;
617 
618 
619 	if (crtc->state) {
620 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
621 
622 		kfree(vmw_crtc_state_to_vcs(crtc->state));
623 	}
624 
625 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
626 
627 	if (!vcs) {
628 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
629 		return;
630 	}
631 
632 	crtc->state = &vcs->base;
633 	crtc->state->crtc = crtc;
634 }
635 
636 
637 /**
638  * vmw_du_crtc_destroy_state - destroy crtc state
639  * @crtc: DRM crtc
640  * @state: state object to destroy
641  *
642  * Destroys the crtc state (both common and vmw-specific) for the
643  * specified plane.
644  */
645 void
646 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
647 			  struct drm_crtc_state *state)
648 {
649 	drm_atomic_helper_crtc_destroy_state(crtc, state);
650 }
651 
652 
653 /**
654  * vmw_du_plane_duplicate_state - duplicate plane state
655  * @plane: drm plane
656  *
657  * Allocates and returns a copy of the plane state (both common and
658  * vmw-specific) for the specified plane.
659  *
660  * Returns: The newly allocated plane state, or NULL on failure.
661  */
662 struct drm_plane_state *
663 vmw_du_plane_duplicate_state(struct drm_plane *plane)
664 {
665 	struct drm_plane_state *state;
666 	struct vmw_plane_state *vps;
667 
668 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
669 
670 	if (!vps)
671 		return NULL;
672 
673 	vps->pinned = 0;
674 	vps->cpp = 0;
675 
676 	/* Each ref counted resource needs to be acquired again */
677 	if (vps->surf)
678 		(void) vmw_surface_reference(vps->surf);
679 
680 	if (vps->bo)
681 		(void) vmw_bo_reference(vps->bo);
682 
683 	state = &vps->base;
684 
685 	__drm_atomic_helper_plane_duplicate_state(plane, state);
686 
687 	return state;
688 }
689 
690 
691 /**
692  * vmw_du_plane_reset - creates a blank vmw plane state
693  * @plane: drm plane
694  *
695  * Resets the atomic state for @plane by freeing the state pointer (which might
696  * be NULL, e.g. at driver load time) and allocating a new empty state object.
697  */
698 void vmw_du_plane_reset(struct drm_plane *plane)
699 {
700 	struct vmw_plane_state *vps;
701 
702 
703 	if (plane->state)
704 		vmw_du_plane_destroy_state(plane, plane->state);
705 
706 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
707 
708 	if (!vps) {
709 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
710 		return;
711 	}
712 
713 	__drm_atomic_helper_plane_reset(plane, &vps->base);
714 }
715 
716 
717 /**
718  * vmw_du_plane_destroy_state - destroy plane state
719  * @plane: DRM plane
720  * @state: state object to destroy
721  *
722  * Destroys the plane state (both common and vmw-specific) for the
723  * specified plane.
724  */
725 void
726 vmw_du_plane_destroy_state(struct drm_plane *plane,
727 			   struct drm_plane_state *state)
728 {
729 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
730 
731 
732 	/* Should have been freed by cleanup_fb */
733 	if (vps->surf)
734 		vmw_surface_unreference(&vps->surf);
735 
736 	if (vps->bo)
737 		vmw_bo_unreference(&vps->bo);
738 
739 	drm_atomic_helper_plane_destroy_state(plane, state);
740 }
741 
742 
743 /**
744  * vmw_du_connector_duplicate_state - duplicate connector state
745  * @connector: DRM connector
746  *
747  * Allocates and returns a copy of the connector state (both common and
748  * vmw-specific) for the specified connector.
749  *
750  * Returns: The newly allocated connector state, or NULL on failure.
751  */
752 struct drm_connector_state *
753 vmw_du_connector_duplicate_state(struct drm_connector *connector)
754 {
755 	struct drm_connector_state *state;
756 	struct vmw_connector_state *vcs;
757 
758 	if (WARN_ON(!connector->state))
759 		return NULL;
760 
761 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
762 
763 	if (!vcs)
764 		return NULL;
765 
766 	state = &vcs->base;
767 
768 	__drm_atomic_helper_connector_duplicate_state(connector, state);
769 
770 	return state;
771 }
772 
773 
774 /**
775  * vmw_du_connector_reset - creates a blank vmw connector state
776  * @connector: DRM connector
777  *
778  * Resets the atomic state for @connector by freeing the state pointer (which
779  * might be NULL, e.g. at driver load time) and allocating a new empty state
780  * object.
781  */
782 void vmw_du_connector_reset(struct drm_connector *connector)
783 {
784 	struct vmw_connector_state *vcs;
785 
786 
787 	if (connector->state) {
788 		__drm_atomic_helper_connector_destroy_state(connector->state);
789 
790 		kfree(vmw_connector_state_to_vcs(connector->state));
791 	}
792 
793 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
794 
795 	if (!vcs) {
796 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
797 		return;
798 	}
799 
800 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
801 }
802 
803 
804 /**
805  * vmw_du_connector_destroy_state - destroy connector state
806  * @connector: DRM connector
807  * @state: state object to destroy
808  *
809  * Destroys the connector state (both common and vmw-specific) for the
810  * specified plane.
811  */
812 void
813 vmw_du_connector_destroy_state(struct drm_connector *connector,
814 			  struct drm_connector_state *state)
815 {
816 	drm_atomic_helper_connector_destroy_state(connector, state);
817 }
818 /*
819  * Generic framebuffer code
820  */
821 
822 /*
823  * Surface framebuffer code
824  */
825 
826 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
827 {
828 	struct vmw_framebuffer_surface *vfbs =
829 		vmw_framebuffer_to_vfbs(framebuffer);
830 
831 	drm_framebuffer_cleanup(framebuffer);
832 	vmw_surface_unreference(&vfbs->surface);
833 	if (vfbs->base.user_obj)
834 		ttm_base_object_unref(&vfbs->base.user_obj);
835 
836 	kfree(vfbs);
837 }
838 
839 /**
840  * vmw_kms_readback - Perform a readback from the screen system to
841  * a buffer-object backed framebuffer.
842  *
843  * @dev_priv: Pointer to the device private structure.
844  * @file_priv: Pointer to a struct drm_file identifying the caller.
845  * Must be set to NULL if @user_fence_rep is NULL.
846  * @vfb: Pointer to the buffer-object backed framebuffer.
847  * @user_fence_rep: User-space provided structure for fence information.
848  * Must be set to non-NULL if @file_priv is non-NULL.
849  * @vclips: Array of clip rects.
850  * @num_clips: Number of clip rects in @vclips.
851  *
852  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
853  * interrupted.
854  */
855 int vmw_kms_readback(struct vmw_private *dev_priv,
856 		     struct drm_file *file_priv,
857 		     struct vmw_framebuffer *vfb,
858 		     struct drm_vmw_fence_rep __user *user_fence_rep,
859 		     struct drm_vmw_rect *vclips,
860 		     uint32_t num_clips)
861 {
862 	switch (dev_priv->active_display_unit) {
863 	case vmw_du_screen_object:
864 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
865 					    user_fence_rep, vclips, num_clips,
866 					    NULL);
867 	case vmw_du_screen_target:
868 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
869 					user_fence_rep, NULL, vclips, num_clips,
870 					1, false, true, NULL);
871 	default:
872 		WARN_ONCE(true,
873 			  "Readback called with invalid display system.\n");
874 }
875 
876 	return -ENOSYS;
877 }
878 
879 
880 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
881 	.destroy = vmw_framebuffer_surface_destroy,
882 	.dirty = drm_atomic_helper_dirtyfb,
883 };
884 
885 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
886 					   struct vmw_surface *surface,
887 					   struct vmw_framebuffer **out,
888 					   const struct drm_mode_fb_cmd2
889 					   *mode_cmd,
890 					   bool is_bo_proxy)
891 
892 {
893 	struct drm_device *dev = dev_priv->dev;
894 	struct vmw_framebuffer_surface *vfbs;
895 	enum SVGA3dSurfaceFormat format;
896 	int ret;
897 	struct drm_format_name_buf format_name;
898 
899 	/* 3D is only supported on HWv8 and newer hosts */
900 	if (dev_priv->active_display_unit == vmw_du_legacy)
901 		return -ENOSYS;
902 
903 	/*
904 	 * Sanity checks.
905 	 */
906 
907 	/* Surface must be marked as a scanout. */
908 	if (unlikely(!surface->scanout))
909 		return -EINVAL;
910 
911 	if (unlikely(surface->mip_levels[0] != 1 ||
912 		     surface->num_sizes != 1 ||
913 		     surface->base_size.width < mode_cmd->width ||
914 		     surface->base_size.height < mode_cmd->height ||
915 		     surface->base_size.depth != 1)) {
916 		DRM_ERROR("Incompatible surface dimensions "
917 			  "for requested mode.\n");
918 		return -EINVAL;
919 	}
920 
921 	switch (mode_cmd->pixel_format) {
922 	case DRM_FORMAT_ARGB8888:
923 		format = SVGA3D_A8R8G8B8;
924 		break;
925 	case DRM_FORMAT_XRGB8888:
926 		format = SVGA3D_X8R8G8B8;
927 		break;
928 	case DRM_FORMAT_RGB565:
929 		format = SVGA3D_R5G6B5;
930 		break;
931 	case DRM_FORMAT_XRGB1555:
932 		format = SVGA3D_A1R5G5B5;
933 		break;
934 	default:
935 		DRM_ERROR("Invalid pixel format: %s\n",
936 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
937 		return -EINVAL;
938 	}
939 
940 	/*
941 	 * For DX, surface format validation is done when surface->scanout
942 	 * is set.
943 	 */
944 	if (!dev_priv->has_dx && format != surface->format) {
945 		DRM_ERROR("Invalid surface format for requested mode.\n");
946 		return -EINVAL;
947 	}
948 
949 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
950 	if (!vfbs) {
951 		ret = -ENOMEM;
952 		goto out_err1;
953 	}
954 
955 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
956 	vfbs->surface = vmw_surface_reference(surface);
957 	vfbs->base.user_handle = mode_cmd->handles[0];
958 	vfbs->is_bo_proxy = is_bo_proxy;
959 
960 	*out = &vfbs->base;
961 
962 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
963 				   &vmw_framebuffer_surface_funcs);
964 	if (ret)
965 		goto out_err2;
966 
967 	return 0;
968 
969 out_err2:
970 	vmw_surface_unreference(&surface);
971 	kfree(vfbs);
972 out_err1:
973 	return ret;
974 }
975 
976 /*
977  * Buffer-object framebuffer code
978  */
979 
980 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
981 {
982 	struct vmw_framebuffer_bo *vfbd =
983 		vmw_framebuffer_to_vfbd(framebuffer);
984 
985 	drm_framebuffer_cleanup(framebuffer);
986 	vmw_bo_unreference(&vfbd->buffer);
987 	if (vfbd->base.user_obj)
988 		ttm_base_object_unref(&vfbd->base.user_obj);
989 
990 	kfree(vfbd);
991 }
992 
993 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
994 				    struct drm_file *file_priv,
995 				    unsigned int flags, unsigned int color,
996 				    struct drm_clip_rect *clips,
997 				    unsigned int num_clips)
998 {
999 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1000 	struct vmw_framebuffer_bo *vfbd =
1001 		vmw_framebuffer_to_vfbd(framebuffer);
1002 	struct drm_clip_rect norect;
1003 	int ret, increment = 1;
1004 
1005 	drm_modeset_lock_all(dev_priv->dev);
1006 
1007 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1008 	if (unlikely(ret != 0)) {
1009 		drm_modeset_unlock_all(dev_priv->dev);
1010 		return ret;
1011 	}
1012 
1013 	if (!num_clips) {
1014 		num_clips = 1;
1015 		clips = &norect;
1016 		norect.x1 = norect.y1 = 0;
1017 		norect.x2 = framebuffer->width;
1018 		norect.y2 = framebuffer->height;
1019 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1020 		num_clips /= 2;
1021 		increment = 2;
1022 	}
1023 
1024 	switch (dev_priv->active_display_unit) {
1025 	case vmw_du_legacy:
1026 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1027 					      clips, num_clips, increment);
1028 		break;
1029 	default:
1030 		ret = -EINVAL;
1031 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1032 		break;
1033 	}
1034 
1035 	vmw_fifo_flush(dev_priv, false);
1036 	ttm_read_unlock(&dev_priv->reservation_sem);
1037 
1038 	drm_modeset_unlock_all(dev_priv->dev);
1039 
1040 	return ret;
1041 }
1042 
1043 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1044 					struct drm_file *file_priv,
1045 					unsigned int flags, unsigned int color,
1046 					struct drm_clip_rect *clips,
1047 					unsigned int num_clips)
1048 {
1049 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1050 
1051 	if (dev_priv->active_display_unit == vmw_du_legacy)
1052 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1053 						color, clips, num_clips);
1054 
1055 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1056 					 clips, num_clips);
1057 }
1058 
1059 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1060 	.destroy = vmw_framebuffer_bo_destroy,
1061 	.dirty = vmw_framebuffer_bo_dirty_ext,
1062 };
1063 
1064 /**
1065  * Pin the bofer in a location suitable for access by the
1066  * display system.
1067  */
1068 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1069 {
1070 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1071 	struct vmw_buffer_object *buf;
1072 	struct ttm_placement *placement;
1073 	int ret;
1074 
1075 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1076 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1077 
1078 	if (!buf)
1079 		return 0;
1080 
1081 	switch (dev_priv->active_display_unit) {
1082 	case vmw_du_legacy:
1083 		vmw_overlay_pause_all(dev_priv);
1084 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1085 		vmw_overlay_resume_all(dev_priv);
1086 		break;
1087 	case vmw_du_screen_object:
1088 	case vmw_du_screen_target:
1089 		if (vfb->bo) {
1090 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1091 				/*
1092 				 * Use surface DMA to get content to
1093 				 * sreen target surface.
1094 				 */
1095 				placement = &vmw_vram_gmr_placement;
1096 			} else {
1097 				/* Use CPU blit. */
1098 				placement = &vmw_sys_placement;
1099 			}
1100 		} else {
1101 			/* Use surface / image update */
1102 			placement = &vmw_mob_placement;
1103 		}
1104 
1105 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1106 	default:
1107 		return -EINVAL;
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1114 {
1115 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1116 	struct vmw_buffer_object *buf;
1117 
1118 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1119 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1120 
1121 	if (WARN_ON(!buf))
1122 		return 0;
1123 
1124 	return vmw_bo_unpin(dev_priv, buf, false);
1125 }
1126 
1127 /**
1128  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1129  *
1130  * @dev: DRM device
1131  * @mode_cmd: parameters for the new surface
1132  * @bo_mob: MOB backing the buffer object
1133  * @srf_out: newly created surface
1134  *
1135  * When the content FB is a buffer object, we create a surface as a proxy to the
1136  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1137  * This is a more efficient approach
1138  *
1139  * RETURNS:
1140  * 0 on success, error code otherwise
1141  */
1142 static int vmw_create_bo_proxy(struct drm_device *dev,
1143 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1144 			       struct vmw_buffer_object *bo_mob,
1145 			       struct vmw_surface **srf_out)
1146 {
1147 	uint32_t format;
1148 	struct drm_vmw_size content_base_size = {0};
1149 	struct vmw_resource *res;
1150 	unsigned int bytes_pp;
1151 	struct drm_format_name_buf format_name;
1152 	int ret;
1153 
1154 	switch (mode_cmd->pixel_format) {
1155 	case DRM_FORMAT_ARGB8888:
1156 	case DRM_FORMAT_XRGB8888:
1157 		format = SVGA3D_X8R8G8B8;
1158 		bytes_pp = 4;
1159 		break;
1160 
1161 	case DRM_FORMAT_RGB565:
1162 	case DRM_FORMAT_XRGB1555:
1163 		format = SVGA3D_R5G6B5;
1164 		bytes_pp = 2;
1165 		break;
1166 
1167 	case 8:
1168 		format = SVGA3D_P8;
1169 		bytes_pp = 1;
1170 		break;
1171 
1172 	default:
1173 		DRM_ERROR("Invalid framebuffer format %s\n",
1174 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1175 		return -EINVAL;
1176 	}
1177 
1178 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1179 	content_base_size.height = mode_cmd->height;
1180 	content_base_size.depth  = 1;
1181 
1182 	ret = vmw_surface_gb_priv_define(dev,
1183 					 0, /* kernel visible only */
1184 					 0, /* flags */
1185 					 format,
1186 					 true, /* can be a scanout buffer */
1187 					 1, /* num of mip levels */
1188 					 0,
1189 					 0,
1190 					 content_base_size,
1191 					 SVGA3D_MS_PATTERN_NONE,
1192 					 SVGA3D_MS_QUALITY_NONE,
1193 					 srf_out);
1194 	if (ret) {
1195 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1196 		return ret;
1197 	}
1198 
1199 	res = &(*srf_out)->res;
1200 
1201 	/* Reserve and switch the backing mob. */
1202 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1203 	(void) vmw_resource_reserve(res, false, true);
1204 	vmw_bo_unreference(&res->backup);
1205 	res->backup = vmw_bo_reference(bo_mob);
1206 	res->backup_offset = 0;
1207 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1208 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1209 
1210 	return 0;
1211 }
1212 
1213 
1214 
1215 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1216 				      struct vmw_buffer_object *bo,
1217 				      struct vmw_framebuffer **out,
1218 				      const struct drm_mode_fb_cmd2
1219 				      *mode_cmd)
1220 
1221 {
1222 	struct drm_device *dev = dev_priv->dev;
1223 	struct vmw_framebuffer_bo *vfbd;
1224 	unsigned int requested_size;
1225 	struct drm_format_name_buf format_name;
1226 	int ret;
1227 
1228 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1229 	if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1230 		DRM_ERROR("Screen buffer object size is too small "
1231 			  "for requested mode.\n");
1232 		return -EINVAL;
1233 	}
1234 
1235 	/* Limited framebuffer color depth support for screen objects */
1236 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1237 		switch (mode_cmd->pixel_format) {
1238 		case DRM_FORMAT_XRGB8888:
1239 		case DRM_FORMAT_ARGB8888:
1240 			break;
1241 		case DRM_FORMAT_XRGB1555:
1242 		case DRM_FORMAT_RGB565:
1243 			break;
1244 		default:
1245 			DRM_ERROR("Invalid pixel format: %s\n",
1246 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1247 			return -EINVAL;
1248 		}
1249 	}
1250 
1251 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1252 	if (!vfbd) {
1253 		ret = -ENOMEM;
1254 		goto out_err1;
1255 	}
1256 
1257 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1258 	vfbd->base.bo = true;
1259 	vfbd->buffer = vmw_bo_reference(bo);
1260 	vfbd->base.user_handle = mode_cmd->handles[0];
1261 	*out = &vfbd->base;
1262 
1263 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1264 				   &vmw_framebuffer_bo_funcs);
1265 	if (ret)
1266 		goto out_err2;
1267 
1268 	return 0;
1269 
1270 out_err2:
1271 	vmw_bo_unreference(&bo);
1272 	kfree(vfbd);
1273 out_err1:
1274 	return ret;
1275 }
1276 
1277 
1278 /**
1279  * vmw_kms_srf_ok - check if a surface can be created
1280  *
1281  * @width: requested width
1282  * @height: requested height
1283  *
1284  * Surfaces need to be less than texture size
1285  */
1286 static bool
1287 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1288 {
1289 	if (width  > dev_priv->texture_max_width ||
1290 	    height > dev_priv->texture_max_height)
1291 		return false;
1292 
1293 	return true;
1294 }
1295 
1296 /**
1297  * vmw_kms_new_framebuffer - Create a new framebuffer.
1298  *
1299  * @dev_priv: Pointer to device private struct.
1300  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1301  * Either @bo or @surface must be NULL.
1302  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1303  * Either @bo or @surface must be NULL.
1304  * @only_2d: No presents will occur to this buffer object based framebuffer.
1305  * This helps the code to do some important optimizations.
1306  * @mode_cmd: Frame-buffer metadata.
1307  */
1308 struct vmw_framebuffer *
1309 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1310 			struct vmw_buffer_object *bo,
1311 			struct vmw_surface *surface,
1312 			bool only_2d,
1313 			const struct drm_mode_fb_cmd2 *mode_cmd)
1314 {
1315 	struct vmw_framebuffer *vfb = NULL;
1316 	bool is_bo_proxy = false;
1317 	int ret;
1318 
1319 	/*
1320 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1321 	 * therefore, wrap the buffer object in a surface so we can use the
1322 	 * SurfaceCopy command.
1323 	 */
1324 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1325 	    bo && only_2d &&
1326 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1327 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1328 		ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1329 					  bo, &surface);
1330 		if (ret)
1331 			return ERR_PTR(ret);
1332 
1333 		is_bo_proxy = true;
1334 	}
1335 
1336 	/* Create the new framebuffer depending one what we have */
1337 	if (surface) {
1338 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1339 						      mode_cmd,
1340 						      is_bo_proxy);
1341 
1342 		/*
1343 		 * vmw_create_bo_proxy() adds a reference that is no longer
1344 		 * needed
1345 		 */
1346 		if (is_bo_proxy)
1347 			vmw_surface_unreference(&surface);
1348 	} else if (bo) {
1349 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1350 						 mode_cmd);
1351 	} else {
1352 		BUG();
1353 	}
1354 
1355 	if (ret)
1356 		return ERR_PTR(ret);
1357 
1358 	vfb->pin = vmw_framebuffer_pin;
1359 	vfb->unpin = vmw_framebuffer_unpin;
1360 
1361 	return vfb;
1362 }
1363 
1364 /*
1365  * Generic Kernel modesetting functions
1366  */
1367 
1368 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1369 						 struct drm_file *file_priv,
1370 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1371 {
1372 	struct vmw_private *dev_priv = vmw_priv(dev);
1373 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1374 	struct vmw_framebuffer *vfb = NULL;
1375 	struct vmw_surface *surface = NULL;
1376 	struct vmw_buffer_object *bo = NULL;
1377 	struct ttm_base_object *user_obj;
1378 	int ret;
1379 
1380 	/*
1381 	 * Take a reference on the user object of the resource
1382 	 * backing the kms fb. This ensures that user-space handle
1383 	 * lookups on that resource will always work as long as
1384 	 * it's registered with a kms framebuffer. This is important,
1385 	 * since vmw_execbuf_process identifies resources in the
1386 	 * command stream using user-space handles.
1387 	 */
1388 
1389 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1390 	if (unlikely(user_obj == NULL)) {
1391 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1392 		return ERR_PTR(-ENOENT);
1393 	}
1394 
1395 	/**
1396 	 * End conditioned code.
1397 	 */
1398 
1399 	/* returns either a bo or surface */
1400 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1401 				     mode_cmd->handles[0],
1402 				     &surface, &bo);
1403 	if (ret)
1404 		goto err_out;
1405 
1406 
1407 	if (!bo &&
1408 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1409 		DRM_ERROR("Surface size cannot exceed %dx%d",
1410 			dev_priv->texture_max_width,
1411 			dev_priv->texture_max_height);
1412 		goto err_out;
1413 	}
1414 
1415 
1416 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1417 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1418 				      mode_cmd);
1419 	if (IS_ERR(vfb)) {
1420 		ret = PTR_ERR(vfb);
1421 		goto err_out;
1422  	}
1423 
1424 err_out:
1425 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1426 	if (bo)
1427 		vmw_bo_unreference(&bo);
1428 	if (surface)
1429 		vmw_surface_unreference(&surface);
1430 
1431 	if (ret) {
1432 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1433 		ttm_base_object_unref(&user_obj);
1434 		return ERR_PTR(ret);
1435 	} else
1436 		vfb->user_obj = user_obj;
1437 
1438 	return &vfb->base;
1439 }
1440 
1441 /**
1442  * vmw_kms_check_display_memory - Validates display memory required for a
1443  * topology
1444  * @dev: DRM device
1445  * @num_rects: number of drm_rect in rects
1446  * @rects: array of drm_rect representing the topology to validate indexed by
1447  * crtc index.
1448  *
1449  * Returns:
1450  * 0 on success otherwise negative error code
1451  */
1452 static int vmw_kms_check_display_memory(struct drm_device *dev,
1453 					uint32_t num_rects,
1454 					struct drm_rect *rects)
1455 {
1456 	struct vmw_private *dev_priv = vmw_priv(dev);
1457 	struct drm_rect bounding_box = {0};
1458 	u64 total_pixels = 0, pixel_mem, bb_mem;
1459 	int i;
1460 
1461 	for (i = 0; i < num_rects; i++) {
1462 		/*
1463 		 * For STDU only individual screen (screen target) is limited by
1464 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1465 		 */
1466 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1467 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1468 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1469 			VMW_DEBUG_KMS("Screen size not supported.\n");
1470 			return -EINVAL;
1471 		}
1472 
1473 		/* Bounding box upper left is at (0,0). */
1474 		if (rects[i].x2 > bounding_box.x2)
1475 			bounding_box.x2 = rects[i].x2;
1476 
1477 		if (rects[i].y2 > bounding_box.y2)
1478 			bounding_box.y2 = rects[i].y2;
1479 
1480 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1481 			(u64) drm_rect_height(&rects[i]);
1482 	}
1483 
1484 	/* Virtual svga device primary limits are always in 32-bpp. */
1485 	pixel_mem = total_pixels * 4;
1486 
1487 	/*
1488 	 * For HV10 and below prim_bb_mem is vram size. When
1489 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1490 	 * limit on primary bounding box
1491 	 */
1492 	if (pixel_mem > dev_priv->prim_bb_mem) {
1493 		VMW_DEBUG_KMS("Combined output size too large.\n");
1494 		return -EINVAL;
1495 	}
1496 
1497 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1498 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1499 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1500 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1501 
1502 		if (bb_mem > dev_priv->prim_bb_mem) {
1503 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1504 			return -EINVAL;
1505 		}
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 /**
1512  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1513  * crtc mutex
1514  * @state: The atomic state pointer containing the new atomic state
1515  * @crtc: The crtc
1516  *
1517  * This function returns the new crtc state if it's part of the state update.
1518  * Otherwise returns the current crtc state. It also makes sure that the
1519  * crtc mutex is locked.
1520  *
1521  * Returns: A valid crtc state pointer or NULL. It may also return a
1522  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1523  */
1524 static struct drm_crtc_state *
1525 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1526 {
1527 	struct drm_crtc_state *crtc_state;
1528 
1529 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1530 	if (crtc_state) {
1531 		lockdep_assert_held(&crtc->mutex.mutex.base);
1532 	} else {
1533 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1534 
1535 		if (ret != 0 && ret != -EALREADY)
1536 			return ERR_PTR(ret);
1537 
1538 		crtc_state = crtc->state;
1539 	}
1540 
1541 	return crtc_state;
1542 }
1543 
1544 /**
1545  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1546  * from the same fb after the new state is committed.
1547  * @dev: The drm_device.
1548  * @state: The new state to be checked.
1549  *
1550  * Returns:
1551  *   Zero on success,
1552  *   -EINVAL on invalid state,
1553  *   -EDEADLK if modeset locking needs to be rerun.
1554  */
1555 static int vmw_kms_check_implicit(struct drm_device *dev,
1556 				  struct drm_atomic_state *state)
1557 {
1558 	struct drm_framebuffer *implicit_fb = NULL;
1559 	struct drm_crtc *crtc;
1560 	struct drm_crtc_state *crtc_state;
1561 	struct drm_plane_state *plane_state;
1562 
1563 	drm_for_each_crtc(crtc, dev) {
1564 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1565 
1566 		if (!du->is_implicit)
1567 			continue;
1568 
1569 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1570 		if (IS_ERR(crtc_state))
1571 			return PTR_ERR(crtc_state);
1572 
1573 		if (!crtc_state || !crtc_state->enable)
1574 			continue;
1575 
1576 		/*
1577 		 * Can't move primary planes across crtcs, so this is OK.
1578 		 * It also means we don't need to take the plane mutex.
1579 		 */
1580 		plane_state = du->primary.state;
1581 		if (plane_state->crtc != crtc)
1582 			continue;
1583 
1584 		if (!implicit_fb)
1585 			implicit_fb = plane_state->fb;
1586 		else if (implicit_fb != plane_state->fb)
1587 			return -EINVAL;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 /**
1594  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1595  * @dev: DRM device
1596  * @state: the driver state object
1597  *
1598  * Returns:
1599  * 0 on success otherwise negative error code
1600  */
1601 static int vmw_kms_check_topology(struct drm_device *dev,
1602 				  struct drm_atomic_state *state)
1603 {
1604 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1605 	struct drm_rect *rects;
1606 	struct drm_crtc *crtc;
1607 	uint32_t i;
1608 	int ret = 0;
1609 
1610 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1611 			GFP_KERNEL);
1612 	if (!rects)
1613 		return -ENOMEM;
1614 
1615 	drm_for_each_crtc(crtc, dev) {
1616 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1617 		struct drm_crtc_state *crtc_state;
1618 
1619 		i = drm_crtc_index(crtc);
1620 
1621 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1622 		if (IS_ERR(crtc_state)) {
1623 			ret = PTR_ERR(crtc_state);
1624 			goto clean;
1625 		}
1626 
1627 		if (!crtc_state)
1628 			continue;
1629 
1630 		if (crtc_state->enable) {
1631 			rects[i].x1 = du->gui_x;
1632 			rects[i].y1 = du->gui_y;
1633 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1634 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1635 		} else {
1636 			rects[i].x1 = 0;
1637 			rects[i].y1 = 0;
1638 			rects[i].x2 = 0;
1639 			rects[i].y2 = 0;
1640 		}
1641 	}
1642 
1643 	/* Determine change to topology due to new atomic state */
1644 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1645 				      new_crtc_state, i) {
1646 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1647 		struct drm_connector *connector;
1648 		struct drm_connector_state *conn_state;
1649 		struct vmw_connector_state *vmw_conn_state;
1650 
1651 		if (!du->pref_active && new_crtc_state->enable) {
1652 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1653 			ret = -EINVAL;
1654 			goto clean;
1655 		}
1656 
1657 		/*
1658 		 * For vmwgfx each crtc has only one connector attached and it
1659 		 * is not changed so don't really need to check the
1660 		 * crtc->connector_mask and iterate over it.
1661 		 */
1662 		connector = &du->connector;
1663 		conn_state = drm_atomic_get_connector_state(state, connector);
1664 		if (IS_ERR(conn_state)) {
1665 			ret = PTR_ERR(conn_state);
1666 			goto clean;
1667 		}
1668 
1669 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1670 		vmw_conn_state->gui_x = du->gui_x;
1671 		vmw_conn_state->gui_y = du->gui_y;
1672 	}
1673 
1674 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1675 					   rects);
1676 
1677 clean:
1678 	kfree(rects);
1679 	return ret;
1680 }
1681 
1682 /**
1683  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1684  *
1685  * @dev: DRM device
1686  * @state: the driver state object
1687  *
1688  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1689  * us to assign a value to mode->crtc_clock so that
1690  * drm_calc_timestamping_constants() won't throw an error message
1691  *
1692  * Returns:
1693  * Zero for success or -errno
1694  */
1695 static int
1696 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1697 			     struct drm_atomic_state *state)
1698 {
1699 	struct drm_crtc *crtc;
1700 	struct drm_crtc_state *crtc_state;
1701 	bool need_modeset = false;
1702 	int i, ret;
1703 
1704 	ret = drm_atomic_helper_check(dev, state);
1705 	if (ret)
1706 		return ret;
1707 
1708 	ret = vmw_kms_check_implicit(dev, state);
1709 	if (ret) {
1710 		VMW_DEBUG_KMS("Invalid implicit state\n");
1711 		return ret;
1712 	}
1713 
1714 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1715 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1716 			need_modeset = true;
1717 	}
1718 
1719 	if (need_modeset)
1720 		return vmw_kms_check_topology(dev, state);
1721 
1722 	return ret;
1723 }
1724 
1725 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1726 	.fb_create = vmw_kms_fb_create,
1727 	.atomic_check = vmw_kms_atomic_check_modeset,
1728 	.atomic_commit = drm_atomic_helper_commit,
1729 };
1730 
1731 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1732 				   struct drm_file *file_priv,
1733 				   struct vmw_framebuffer *vfb,
1734 				   struct vmw_surface *surface,
1735 				   uint32_t sid,
1736 				   int32_t destX, int32_t destY,
1737 				   struct drm_vmw_rect *clips,
1738 				   uint32_t num_clips)
1739 {
1740 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1741 					    &surface->res, destX, destY,
1742 					    num_clips, 1, NULL, NULL);
1743 }
1744 
1745 
1746 int vmw_kms_present(struct vmw_private *dev_priv,
1747 		    struct drm_file *file_priv,
1748 		    struct vmw_framebuffer *vfb,
1749 		    struct vmw_surface *surface,
1750 		    uint32_t sid,
1751 		    int32_t destX, int32_t destY,
1752 		    struct drm_vmw_rect *clips,
1753 		    uint32_t num_clips)
1754 {
1755 	int ret;
1756 
1757 	switch (dev_priv->active_display_unit) {
1758 	case vmw_du_screen_target:
1759 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1760 						 &surface->res, destX, destY,
1761 						 num_clips, 1, NULL, NULL);
1762 		break;
1763 	case vmw_du_screen_object:
1764 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1765 					      sid, destX, destY, clips,
1766 					      num_clips);
1767 		break;
1768 	default:
1769 		WARN_ONCE(true,
1770 			  "Present called with invalid display system.\n");
1771 		ret = -ENOSYS;
1772 		break;
1773 	}
1774 	if (ret)
1775 		return ret;
1776 
1777 	vmw_fifo_flush(dev_priv, false);
1778 
1779 	return 0;
1780 }
1781 
1782 static void
1783 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1784 {
1785 	if (dev_priv->hotplug_mode_update_property)
1786 		return;
1787 
1788 	dev_priv->hotplug_mode_update_property =
1789 		drm_property_create_range(dev_priv->dev,
1790 					  DRM_MODE_PROP_IMMUTABLE,
1791 					  "hotplug_mode_update", 0, 1);
1792 
1793 	if (!dev_priv->hotplug_mode_update_property)
1794 		return;
1795 
1796 }
1797 
1798 int vmw_kms_init(struct vmw_private *dev_priv)
1799 {
1800 	struct drm_device *dev = dev_priv->dev;
1801 	int ret;
1802 
1803 	drm_mode_config_init(dev);
1804 	dev->mode_config.funcs = &vmw_kms_funcs;
1805 	dev->mode_config.min_width = 1;
1806 	dev->mode_config.min_height = 1;
1807 	dev->mode_config.max_width = dev_priv->texture_max_width;
1808 	dev->mode_config.max_height = dev_priv->texture_max_height;
1809 
1810 	drm_mode_create_suggested_offset_properties(dev);
1811 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1812 
1813 	ret = vmw_kms_stdu_init_display(dev_priv);
1814 	if (ret) {
1815 		ret = vmw_kms_sou_init_display(dev_priv);
1816 		if (ret) /* Fallback */
1817 			ret = vmw_kms_ldu_init_display(dev_priv);
1818 	}
1819 
1820 	return ret;
1821 }
1822 
1823 int vmw_kms_close(struct vmw_private *dev_priv)
1824 {
1825 	int ret = 0;
1826 
1827 	/*
1828 	 * Docs says we should take the lock before calling this function
1829 	 * but since it destroys encoders and our destructor calls
1830 	 * drm_encoder_cleanup which takes the lock we deadlock.
1831 	 */
1832 	drm_mode_config_cleanup(dev_priv->dev);
1833 	if (dev_priv->active_display_unit == vmw_du_legacy)
1834 		ret = vmw_kms_ldu_close_display(dev_priv);
1835 
1836 	return ret;
1837 }
1838 
1839 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1840 				struct drm_file *file_priv)
1841 {
1842 	struct drm_vmw_cursor_bypass_arg *arg = data;
1843 	struct vmw_display_unit *du;
1844 	struct drm_crtc *crtc;
1845 	int ret = 0;
1846 
1847 
1848 	mutex_lock(&dev->mode_config.mutex);
1849 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1850 
1851 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1852 			du = vmw_crtc_to_du(crtc);
1853 			du->hotspot_x = arg->xhot;
1854 			du->hotspot_y = arg->yhot;
1855 		}
1856 
1857 		mutex_unlock(&dev->mode_config.mutex);
1858 		return 0;
1859 	}
1860 
1861 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1862 	if (!crtc) {
1863 		ret = -ENOENT;
1864 		goto out;
1865 	}
1866 
1867 	du = vmw_crtc_to_du(crtc);
1868 
1869 	du->hotspot_x = arg->xhot;
1870 	du->hotspot_y = arg->yhot;
1871 
1872 out:
1873 	mutex_unlock(&dev->mode_config.mutex);
1874 
1875 	return ret;
1876 }
1877 
1878 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1879 			unsigned width, unsigned height, unsigned pitch,
1880 			unsigned bpp, unsigned depth)
1881 {
1882 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1883 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1884 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1885 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1886 			       SVGA_FIFO_PITCHLOCK);
1887 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1888 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1889 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1890 
1891 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1892 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1893 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1894 		return -EINVAL;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1901 {
1902 	struct vmw_vga_topology_state *save;
1903 	uint32_t i;
1904 
1905 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1906 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1907 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1908 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1909 		vmw_priv->vga_pitchlock =
1910 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1911 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1912 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1913 							SVGA_FIFO_PITCHLOCK);
1914 
1915 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1916 		return 0;
1917 
1918 	vmw_priv->num_displays = vmw_read(vmw_priv,
1919 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1920 
1921 	if (vmw_priv->num_displays == 0)
1922 		vmw_priv->num_displays = 1;
1923 
1924 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1925 		save = &vmw_priv->vga_save[i];
1926 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1927 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1928 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1929 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1930 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1931 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1932 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1933 		if (i == 0 && vmw_priv->num_displays == 1 &&
1934 		    save->width == 0 && save->height == 0) {
1935 
1936 			/*
1937 			 * It should be fairly safe to assume that these
1938 			 * values are uninitialized.
1939 			 */
1940 
1941 			save->width = vmw_priv->vga_width - save->pos_x;
1942 			save->height = vmw_priv->vga_height - save->pos_y;
1943 		}
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1950 {
1951 	struct vmw_vga_topology_state *save;
1952 	uint32_t i;
1953 
1954 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1955 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1956 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1957 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1958 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1959 			  vmw_priv->vga_pitchlock);
1960 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1961 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1962 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1963 
1964 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1965 		return 0;
1966 
1967 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1968 		save = &vmw_priv->vga_save[i];
1969 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1970 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1971 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1972 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1973 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1974 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1975 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1982 				uint32_t pitch,
1983 				uint32_t height)
1984 {
1985 	return ((u64) pitch * (u64) height) < (u64)
1986 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1987 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1988 }
1989 
1990 
1991 /**
1992  * Function called by DRM code called with vbl_lock held.
1993  */
1994 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1995 {
1996 	return 0;
1997 }
1998 
1999 /**
2000  * Function called by DRM code called with vbl_lock held.
2001  */
2002 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
2003 {
2004 	return -EINVAL;
2005 }
2006 
2007 /**
2008  * Function called by DRM code called with vbl_lock held.
2009  */
2010 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
2011 {
2012 }
2013 
2014 /**
2015  * vmw_du_update_layout - Update the display unit with topology from resolution
2016  * plugin and generate DRM uevent
2017  * @dev_priv: device private
2018  * @num_rects: number of drm_rect in rects
2019  * @rects: toplogy to update
2020  */
2021 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2022 				unsigned int num_rects, struct drm_rect *rects)
2023 {
2024 	struct drm_device *dev = dev_priv->dev;
2025 	struct vmw_display_unit *du;
2026 	struct drm_connector *con;
2027 	struct drm_connector_list_iter conn_iter;
2028 	struct drm_modeset_acquire_ctx ctx;
2029 	struct drm_crtc *crtc;
2030 	int ret;
2031 
2032 	/* Currently gui_x/y is protected with the crtc mutex */
2033 	mutex_lock(&dev->mode_config.mutex);
2034 	drm_modeset_acquire_init(&ctx, 0);
2035 retry:
2036 	drm_for_each_crtc(crtc, dev) {
2037 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
2038 		if (ret < 0) {
2039 			if (ret == -EDEADLK) {
2040 				drm_modeset_backoff(&ctx);
2041 				goto retry;
2042       		}
2043 			goto out_fini;
2044 		}
2045 	}
2046 
2047 	drm_connector_list_iter_begin(dev, &conn_iter);
2048 	drm_for_each_connector_iter(con, &conn_iter) {
2049 		du = vmw_connector_to_du(con);
2050 		if (num_rects > du->unit) {
2051 			du->pref_width = drm_rect_width(&rects[du->unit]);
2052 			du->pref_height = drm_rect_height(&rects[du->unit]);
2053 			du->pref_active = true;
2054 			du->gui_x = rects[du->unit].x1;
2055 			du->gui_y = rects[du->unit].y1;
2056 		} else {
2057 			du->pref_width = 800;
2058 			du->pref_height = 600;
2059 			du->pref_active = false;
2060 			du->gui_x = 0;
2061 			du->gui_y = 0;
2062 		}
2063 	}
2064 	drm_connector_list_iter_end(&conn_iter);
2065 
2066 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2067 		du = vmw_connector_to_du(con);
2068 		if (num_rects > du->unit) {
2069 			drm_object_property_set_value
2070 			  (&con->base, dev->mode_config.suggested_x_property,
2071 			   du->gui_x);
2072 			drm_object_property_set_value
2073 			  (&con->base, dev->mode_config.suggested_y_property,
2074 			   du->gui_y);
2075 		} else {
2076 			drm_object_property_set_value
2077 			  (&con->base, dev->mode_config.suggested_x_property,
2078 			   0);
2079 			drm_object_property_set_value
2080 			  (&con->base, dev->mode_config.suggested_y_property,
2081 			   0);
2082 		}
2083 		con->status = vmw_du_connector_detect(con, true);
2084 	}
2085 
2086 	drm_sysfs_hotplug_event(dev);
2087 out_fini:
2088 	drm_modeset_drop_locks(&ctx);
2089 	drm_modeset_acquire_fini(&ctx);
2090 	mutex_unlock(&dev->mode_config.mutex);
2091 
2092 	return 0;
2093 }
2094 
2095 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2096 			  u16 *r, u16 *g, u16 *b,
2097 			  uint32_t size,
2098 			  struct drm_modeset_acquire_ctx *ctx)
2099 {
2100 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2101 	int i;
2102 
2103 	for (i = 0; i < size; i++) {
2104 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2105 			  r[i], g[i], b[i]);
2106 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2107 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2108 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2115 {
2116 	return 0;
2117 }
2118 
2119 enum drm_connector_status
2120 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2121 {
2122 	uint32_t num_displays;
2123 	struct drm_device *dev = connector->dev;
2124 	struct vmw_private *dev_priv = vmw_priv(dev);
2125 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2126 
2127 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2128 
2129 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2130 		 du->pref_active) ?
2131 		connector_status_connected : connector_status_disconnected);
2132 }
2133 
2134 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2135 	/* 640x480@60Hz */
2136 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2137 		   752, 800, 0, 480, 489, 492, 525, 0,
2138 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2139 	/* 800x600@60Hz */
2140 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2141 		   968, 1056, 0, 600, 601, 605, 628, 0,
2142 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2143 	/* 1024x768@60Hz */
2144 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2145 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2146 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2147 	/* 1152x864@75Hz */
2148 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2149 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2150 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2151 	/* 1280x768@60Hz */
2152 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2153 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2154 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2155 	/* 1280x800@60Hz */
2156 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2157 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2159 	/* 1280x960@60Hz */
2160 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2161 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2163 	/* 1280x1024@60Hz */
2164 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2165 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2166 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2167 	/* 1360x768@60Hz */
2168 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2169 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2170 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2171 	/* 1440x1050@60Hz */
2172 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2173 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2174 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2175 	/* 1440x900@60Hz */
2176 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2177 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2178 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2179 	/* 1600x1200@60Hz */
2180 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2181 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2183 	/* 1680x1050@60Hz */
2184 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2185 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2186 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2187 	/* 1792x1344@60Hz */
2188 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2189 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2190 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2191 	/* 1853x1392@60Hz */
2192 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2193 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2194 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2195 	/* 1920x1200@60Hz */
2196 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2197 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2198 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2199 	/* 1920x1440@60Hz */
2200 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2201 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2203 	/* 2560x1600@60Hz */
2204 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2205 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2207 	/* Terminate */
2208 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2209 };
2210 
2211 /**
2212  * vmw_guess_mode_timing - Provide fake timings for a
2213  * 60Hz vrefresh mode.
2214  *
2215  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2216  * members filled in.
2217  */
2218 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2219 {
2220 	mode->hsync_start = mode->hdisplay + 50;
2221 	mode->hsync_end = mode->hsync_start + 50;
2222 	mode->htotal = mode->hsync_end + 50;
2223 
2224 	mode->vsync_start = mode->vdisplay + 50;
2225 	mode->vsync_end = mode->vsync_start + 50;
2226 	mode->vtotal = mode->vsync_end + 50;
2227 
2228 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2229 	mode->vrefresh = drm_mode_vrefresh(mode);
2230 }
2231 
2232 
2233 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2234 				uint32_t max_width, uint32_t max_height)
2235 {
2236 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2237 	struct drm_device *dev = connector->dev;
2238 	struct vmw_private *dev_priv = vmw_priv(dev);
2239 	struct drm_display_mode *mode = NULL;
2240 	struct drm_display_mode *bmode;
2241 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2242 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2243 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2244 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2245 	};
2246 	int i;
2247 	u32 assumed_bpp = 4;
2248 
2249 	if (dev_priv->assume_16bpp)
2250 		assumed_bpp = 2;
2251 
2252 	max_width  = min(max_width,  dev_priv->texture_max_width);
2253 	max_height = min(max_height, dev_priv->texture_max_height);
2254 
2255 	/*
2256 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2257 	 * HEIGHT registers.
2258 	 */
2259 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2260 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2261 		max_height = min(max_height, dev_priv->stdu_max_height);
2262 	}
2263 
2264 	/* Add preferred mode */
2265 	mode = drm_mode_duplicate(dev, &prefmode);
2266 	if (!mode)
2267 		return 0;
2268 	mode->hdisplay = du->pref_width;
2269 	mode->vdisplay = du->pref_height;
2270 	vmw_guess_mode_timing(mode);
2271 
2272 	if (vmw_kms_validate_mode_vram(dev_priv,
2273 					mode->hdisplay * assumed_bpp,
2274 					mode->vdisplay)) {
2275 		drm_mode_probed_add(connector, mode);
2276 	} else {
2277 		drm_mode_destroy(dev, mode);
2278 		mode = NULL;
2279 	}
2280 
2281 	if (du->pref_mode) {
2282 		list_del_init(&du->pref_mode->head);
2283 		drm_mode_destroy(dev, du->pref_mode);
2284 	}
2285 
2286 	/* mode might be null here, this is intended */
2287 	du->pref_mode = mode;
2288 
2289 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2290 		bmode = &vmw_kms_connector_builtin[i];
2291 		if (bmode->hdisplay > max_width ||
2292 		    bmode->vdisplay > max_height)
2293 			continue;
2294 
2295 		if (!vmw_kms_validate_mode_vram(dev_priv,
2296 						bmode->hdisplay * assumed_bpp,
2297 						bmode->vdisplay))
2298 			continue;
2299 
2300 		mode = drm_mode_duplicate(dev, bmode);
2301 		if (!mode)
2302 			return 0;
2303 		mode->vrefresh = drm_mode_vrefresh(mode);
2304 
2305 		drm_mode_probed_add(connector, mode);
2306 	}
2307 
2308 	drm_connector_list_update(connector);
2309 	/* Move the prefered mode first, help apps pick the right mode. */
2310 	drm_mode_sort(&connector->modes);
2311 
2312 	return 1;
2313 }
2314 
2315 /**
2316  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2317  * @dev: drm device for the ioctl
2318  * @data: data pointer for the ioctl
2319  * @file_priv: drm file for the ioctl call
2320  *
2321  * Update preferred topology of display unit as per ioctl request. The topology
2322  * is expressed as array of drm_vmw_rect.
2323  * e.g.
2324  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2325  *
2326  * NOTE:
2327  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2328  * device limit on topology, x + w and y + h (lower right) cannot be greater
2329  * than INT_MAX. So topology beyond these limits will return with error.
2330  *
2331  * Returns:
2332  * Zero on success, negative errno on failure.
2333  */
2334 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2335 				struct drm_file *file_priv)
2336 {
2337 	struct vmw_private *dev_priv = vmw_priv(dev);
2338 	struct drm_mode_config *mode_config = &dev->mode_config;
2339 	struct drm_vmw_update_layout_arg *arg =
2340 		(struct drm_vmw_update_layout_arg *)data;
2341 	void __user *user_rects;
2342 	struct drm_vmw_rect *rects;
2343 	struct drm_rect *drm_rects;
2344 	unsigned rects_size;
2345 	int ret, i;
2346 
2347 	if (!arg->num_outputs) {
2348 		struct drm_rect def_rect = {0, 0, 800, 600};
2349 		VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n",
2350 			      def_rect.x1, def_rect.y1,
2351 			      def_rect.x2, def_rect.y2);
2352 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2353 		return 0;
2354 	}
2355 
2356 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2357 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2358 			GFP_KERNEL);
2359 	if (unlikely(!rects))
2360 		return -ENOMEM;
2361 
2362 	user_rects = (void __user *)(unsigned long)arg->rects;
2363 	ret = copy_from_user(rects, user_rects, rects_size);
2364 	if (unlikely(ret != 0)) {
2365 		DRM_ERROR("Failed to get rects.\n");
2366 		ret = -EFAULT;
2367 		goto out_free;
2368 	}
2369 
2370 	drm_rects = (struct drm_rect *)rects;
2371 
2372 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2373 	for (i = 0; i < arg->num_outputs; i++) {
2374 		struct drm_vmw_rect curr_rect;
2375 
2376 		/* Verify user-space for overflow as kernel use drm_rect */
2377 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2378 		    (rects[i].y + rects[i].h > INT_MAX)) {
2379 			ret = -ERANGE;
2380 			goto out_free;
2381 		}
2382 
2383 		curr_rect = rects[i];
2384 		drm_rects[i].x1 = curr_rect.x;
2385 		drm_rects[i].y1 = curr_rect.y;
2386 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2387 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2388 
2389 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2390 			      drm_rects[i].x1, drm_rects[i].y1,
2391 			      drm_rects[i].x2, drm_rects[i].y2);
2392 
2393 		/*
2394 		 * Currently this check is limiting the topology within
2395 		 * mode_config->max (which actually is max texture size
2396 		 * supported by virtual device). This limit is here to address
2397 		 * window managers that create a big framebuffer for whole
2398 		 * topology.
2399 		 */
2400 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2401 		    drm_rects[i].x2 > mode_config->max_width ||
2402 		    drm_rects[i].y2 > mode_config->max_height) {
2403 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2404 				      drm_rects[i].x1, drm_rects[i].y1,
2405 				      drm_rects[i].x2, drm_rects[i].y2);
2406 			ret = -EINVAL;
2407 			goto out_free;
2408 		}
2409 	}
2410 
2411 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2412 
2413 	if (ret == 0)
2414 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2415 
2416 out_free:
2417 	kfree(rects);
2418 	return ret;
2419 }
2420 
2421 /**
2422  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2423  * on a set of cliprects and a set of display units.
2424  *
2425  * @dev_priv: Pointer to a device private structure.
2426  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2427  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2428  * Cliprects are given in framebuffer coordinates.
2429  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2430  * be NULL. Cliprects are given in source coordinates.
2431  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2432  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2433  * @num_clips: Number of cliprects in the @clips or @vclips array.
2434  * @increment: Integer with which to increment the clip counter when looping.
2435  * Used to skip a predetermined number of clip rects.
2436  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2437  */
2438 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2439 			 struct vmw_framebuffer *framebuffer,
2440 			 const struct drm_clip_rect *clips,
2441 			 const struct drm_vmw_rect *vclips,
2442 			 s32 dest_x, s32 dest_y,
2443 			 int num_clips,
2444 			 int increment,
2445 			 struct vmw_kms_dirty *dirty)
2446 {
2447 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2448 	struct drm_crtc *crtc;
2449 	u32 num_units = 0;
2450 	u32 i, k;
2451 
2452 	dirty->dev_priv = dev_priv;
2453 
2454 	/* If crtc is passed, no need to iterate over other display units */
2455 	if (dirty->crtc) {
2456 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2457 	} else {
2458 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2459 				    head) {
2460 			struct drm_plane *plane = crtc->primary;
2461 
2462 			if (plane->state->fb == &framebuffer->base)
2463 				units[num_units++] = vmw_crtc_to_du(crtc);
2464 		}
2465 	}
2466 
2467 	for (k = 0; k < num_units; k++) {
2468 		struct vmw_display_unit *unit = units[k];
2469 		s32 crtc_x = unit->crtc.x;
2470 		s32 crtc_y = unit->crtc.y;
2471 		s32 crtc_width = unit->crtc.mode.hdisplay;
2472 		s32 crtc_height = unit->crtc.mode.vdisplay;
2473 		const struct drm_clip_rect *clips_ptr = clips;
2474 		const struct drm_vmw_rect *vclips_ptr = vclips;
2475 
2476 		dirty->unit = unit;
2477 		if (dirty->fifo_reserve_size > 0) {
2478 			dirty->cmd = VMW_FIFO_RESERVE(dev_priv,
2479 						      dirty->fifo_reserve_size);
2480 			if (!dirty->cmd)
2481 				return -ENOMEM;
2482 
2483 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2484 		}
2485 		dirty->num_hits = 0;
2486 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2487 		       vclips_ptr += increment) {
2488 			s32 clip_left;
2489 			s32 clip_top;
2490 
2491 			/*
2492 			 * Select clip array type. Note that integer type
2493 			 * in @clips is unsigned short, whereas in @vclips
2494 			 * it's 32-bit.
2495 			 */
2496 			if (clips) {
2497 				dirty->fb_x = (s32) clips_ptr->x1;
2498 				dirty->fb_y = (s32) clips_ptr->y1;
2499 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2500 					crtc_x;
2501 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2502 					crtc_y;
2503 			} else {
2504 				dirty->fb_x = vclips_ptr->x;
2505 				dirty->fb_y = vclips_ptr->y;
2506 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2507 					dest_x - crtc_x;
2508 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2509 					dest_y - crtc_y;
2510 			}
2511 
2512 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2513 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2514 
2515 			/* Skip this clip if it's outside the crtc region */
2516 			if (dirty->unit_x1 >= crtc_width ||
2517 			    dirty->unit_y1 >= crtc_height ||
2518 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2519 				continue;
2520 
2521 			/* Clip right and bottom to crtc limits */
2522 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2523 					       crtc_width);
2524 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2525 					       crtc_height);
2526 
2527 			/* Clip left and top to crtc limits */
2528 			clip_left = min_t(s32, dirty->unit_x1, 0);
2529 			clip_top = min_t(s32, dirty->unit_y1, 0);
2530 			dirty->unit_x1 -= clip_left;
2531 			dirty->unit_y1 -= clip_top;
2532 			dirty->fb_x -= clip_left;
2533 			dirty->fb_y -= clip_top;
2534 
2535 			dirty->clip(dirty);
2536 		}
2537 
2538 		dirty->fifo_commit(dirty);
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 /**
2545  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2546  * cleanup and fencing
2547  * @dev_priv: Pointer to the device-private struct
2548  * @file_priv: Pointer identifying the client when user-space fencing is used
2549  * @ctx: Pointer to the validation context
2550  * @out_fence: If non-NULL, returned refcounted fence-pointer
2551  * @user_fence_rep: If non-NULL, pointer to user-space address area
2552  * in which to copy user-space fence info
2553  */
2554 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2555 				      struct drm_file *file_priv,
2556 				      struct vmw_validation_context *ctx,
2557 				      struct vmw_fence_obj **out_fence,
2558 				      struct drm_vmw_fence_rep __user *
2559 				      user_fence_rep)
2560 {
2561 	struct vmw_fence_obj *fence = NULL;
2562 	uint32_t handle = 0;
2563 	int ret = 0;
2564 
2565 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2566 	    out_fence)
2567 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2568 						 file_priv ? &handle : NULL);
2569 	vmw_validation_done(ctx, fence);
2570 	if (file_priv)
2571 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2572 					    ret, user_fence_rep, fence,
2573 					    handle, -1, NULL);
2574 	if (out_fence)
2575 		*out_fence = fence;
2576 	else
2577 		vmw_fence_obj_unreference(&fence);
2578 }
2579 
2580 /**
2581  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2582  * its backing MOB.
2583  *
2584  * @res: Pointer to the surface resource
2585  * @clips: Clip rects in framebuffer (surface) space.
2586  * @num_clips: Number of clips in @clips.
2587  * @increment: Integer with which to increment the clip counter when looping.
2588  * Used to skip a predetermined number of clip rects.
2589  *
2590  * This function makes sure the proxy surface is updated from its backing MOB
2591  * using the region given by @clips. The surface resource @res and its backing
2592  * MOB needs to be reserved and validated on call.
2593  */
2594 int vmw_kms_update_proxy(struct vmw_resource *res,
2595 			 const struct drm_clip_rect *clips,
2596 			 unsigned num_clips,
2597 			 int increment)
2598 {
2599 	struct vmw_private *dev_priv = res->dev_priv;
2600 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2601 	struct {
2602 		SVGA3dCmdHeader header;
2603 		SVGA3dCmdUpdateGBImage body;
2604 	} *cmd;
2605 	SVGA3dBox *box;
2606 	size_t copy_size = 0;
2607 	int i;
2608 
2609 	if (!clips)
2610 		return 0;
2611 
2612 	cmd = VMW_FIFO_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2613 	if (!cmd)
2614 		return -ENOMEM;
2615 
2616 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2617 		box = &cmd->body.box;
2618 
2619 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2620 		cmd->header.size = sizeof(cmd->body);
2621 		cmd->body.image.sid = res->id;
2622 		cmd->body.image.face = 0;
2623 		cmd->body.image.mipmap = 0;
2624 
2625 		if (clips->x1 > size->width || clips->x2 > size->width ||
2626 		    clips->y1 > size->height || clips->y2 > size->height) {
2627 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2628 			return -EINVAL;
2629 		}
2630 
2631 		box->x = clips->x1;
2632 		box->y = clips->y1;
2633 		box->z = 0;
2634 		box->w = clips->x2 - clips->x1;
2635 		box->h = clips->y2 - clips->y1;
2636 		box->d = 1;
2637 
2638 		copy_size += sizeof(*cmd);
2639 	}
2640 
2641 	vmw_fifo_commit(dev_priv, copy_size);
2642 
2643 	return 0;
2644 }
2645 
2646 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2647 			    unsigned unit,
2648 			    u32 max_width,
2649 			    u32 max_height,
2650 			    struct drm_connector **p_con,
2651 			    struct drm_crtc **p_crtc,
2652 			    struct drm_display_mode **p_mode)
2653 {
2654 	struct drm_connector *con;
2655 	struct vmw_display_unit *du;
2656 	struct drm_display_mode *mode;
2657 	int i = 0;
2658 	int ret = 0;
2659 
2660 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2661 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2662 			    head) {
2663 		if (i == unit)
2664 			break;
2665 
2666 		++i;
2667 	}
2668 
2669 	if (i != unit) {
2670 		DRM_ERROR("Could not find initial display unit.\n");
2671 		ret = -EINVAL;
2672 		goto out_unlock;
2673 	}
2674 
2675 	if (list_empty(&con->modes))
2676 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2677 
2678 	if (list_empty(&con->modes)) {
2679 		DRM_ERROR("Could not find initial display mode.\n");
2680 		ret = -EINVAL;
2681 		goto out_unlock;
2682 	}
2683 
2684 	du = vmw_connector_to_du(con);
2685 	*p_con = con;
2686 	*p_crtc = &du->crtc;
2687 
2688 	list_for_each_entry(mode, &con->modes, head) {
2689 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2690 			break;
2691 	}
2692 
2693 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2694 		*p_mode = mode;
2695 	else {
2696 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2697 		*p_mode = list_first_entry(&con->modes,
2698 					   struct drm_display_mode,
2699 					   head);
2700 	}
2701 
2702  out_unlock:
2703 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2704 
2705 	return ret;
2706 }
2707 
2708 /**
2709  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2710  * property.
2711  *
2712  * @dev_priv: Pointer to a device private struct.
2713  *
2714  * Sets up the implicit placement property unless it's already set up.
2715  */
2716 void
2717 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2718 {
2719 	if (dev_priv->implicit_placement_property)
2720 		return;
2721 
2722 	dev_priv->implicit_placement_property =
2723 		drm_property_create_range(dev_priv->dev,
2724 					  DRM_MODE_PROP_IMMUTABLE,
2725 					  "implicit_placement", 0, 1);
2726 }
2727 
2728 /**
2729  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2730  *
2731  * @dev: Pointer to the drm device
2732  * Return: 0 on success. Negative error code on failure.
2733  */
2734 int vmw_kms_suspend(struct drm_device *dev)
2735 {
2736 	struct vmw_private *dev_priv = vmw_priv(dev);
2737 
2738 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2739 	if (IS_ERR(dev_priv->suspend_state)) {
2740 		int ret = PTR_ERR(dev_priv->suspend_state);
2741 
2742 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2743 		dev_priv->suspend_state = NULL;
2744 
2745 		return ret;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 
2752 /**
2753  * vmw_kms_resume - Re-enable modesetting and restore state
2754  *
2755  * @dev: Pointer to the drm device
2756  * Return: 0 on success. Negative error code on failure.
2757  *
2758  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2759  * to call this function without a previous vmw_kms_suspend().
2760  */
2761 int vmw_kms_resume(struct drm_device *dev)
2762 {
2763 	struct vmw_private *dev_priv = vmw_priv(dev);
2764 	int ret;
2765 
2766 	if (WARN_ON(!dev_priv->suspend_state))
2767 		return 0;
2768 
2769 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2770 	dev_priv->suspend_state = NULL;
2771 
2772 	return ret;
2773 }
2774 
2775 /**
2776  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2777  *
2778  * @dev: Pointer to the drm device
2779  */
2780 void vmw_kms_lost_device(struct drm_device *dev)
2781 {
2782 	drm_atomic_helper_shutdown(dev);
2783 }
2784 
2785 /**
2786  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2787  * @update: The closure structure.
2788  *
2789  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2790  * update on display unit.
2791  *
2792  * Return: 0 on success or a negative error code on failure.
2793  */
2794 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2795 {
2796 	struct drm_plane_state *state = update->plane->state;
2797 	struct drm_plane_state *old_state = update->old_state;
2798 	struct drm_atomic_helper_damage_iter iter;
2799 	struct drm_rect clip;
2800 	struct drm_rect bb;
2801 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2802 	uint32_t reserved_size = 0;
2803 	uint32_t submit_size = 0;
2804 	uint32_t curr_size = 0;
2805 	uint32_t num_hits = 0;
2806 	void *cmd_start;
2807 	char *cmd_next;
2808 	int ret;
2809 
2810 	/*
2811 	 * Iterate in advance to check if really need plane update and find the
2812 	 * number of clips that actually are in plane src for fifo allocation.
2813 	 */
2814 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2815 	drm_atomic_for_each_plane_damage(&iter, &clip)
2816 		num_hits++;
2817 
2818 	if (num_hits == 0)
2819 		return 0;
2820 
2821 	if (update->vfb->bo) {
2822 		struct vmw_framebuffer_bo *vfbbo =
2823 			container_of(update->vfb, typeof(*vfbbo), base);
2824 
2825 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2826 					    update->cpu_blit);
2827 	} else {
2828 		struct vmw_framebuffer_surface *vfbs =
2829 			container_of(update->vfb, typeof(*vfbs), base);
2830 
2831 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2832 						  0, VMW_RES_DIRTY_NONE, NULL,
2833 						  NULL);
2834 	}
2835 
2836 	if (ret)
2837 		return ret;
2838 
2839 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2840 	if (ret)
2841 		goto out_unref;
2842 
2843 	reserved_size = update->calc_fifo_size(update, num_hits);
2844 	cmd_start = VMW_FIFO_RESERVE(update->dev_priv, reserved_size);
2845 	if (!cmd_start) {
2846 		ret = -ENOMEM;
2847 		goto out_revert;
2848 	}
2849 
2850 	cmd_next = cmd_start;
2851 
2852 	if (update->post_prepare) {
2853 		curr_size = update->post_prepare(update, cmd_next);
2854 		cmd_next += curr_size;
2855 		submit_size += curr_size;
2856 	}
2857 
2858 	if (update->pre_clip) {
2859 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2860 		cmd_next += curr_size;
2861 		submit_size += curr_size;
2862 	}
2863 
2864 	bb.x1 = INT_MAX;
2865 	bb.y1 = INT_MAX;
2866 	bb.x2 = INT_MIN;
2867 	bb.y2 = INT_MIN;
2868 
2869 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2870 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2871 		uint32_t fb_x = clip.x1;
2872 		uint32_t fb_y = clip.y1;
2873 
2874 		vmw_du_translate_to_crtc(state, &clip);
2875 		if (update->clip) {
2876 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2877 						 fb_y);
2878 			cmd_next += curr_size;
2879 			submit_size += curr_size;
2880 		}
2881 		bb.x1 = min_t(int, bb.x1, clip.x1);
2882 		bb.y1 = min_t(int, bb.y1, clip.y1);
2883 		bb.x2 = max_t(int, bb.x2, clip.x2);
2884 		bb.y2 = max_t(int, bb.y2, clip.y2);
2885 	}
2886 
2887 	curr_size = update->post_clip(update, cmd_next, &bb);
2888 	submit_size += curr_size;
2889 
2890 	if (reserved_size < submit_size)
2891 		submit_size = 0;
2892 
2893 	vmw_fifo_commit(update->dev_priv, submit_size);
2894 
2895 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2896 					 update->out_fence, NULL);
2897 	return ret;
2898 
2899 out_revert:
2900 	vmw_validation_revert(&val_ctx);
2901 
2902 out_unref:
2903 	vmw_validation_unref_lists(&val_ctx);
2904 	return ret;
2905 }
2906