xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_damage_helper.h>
31 #include <drm/drm_fourcc.h>
32 #include <drm/drm_plane_helper.h>
33 #include <drm/drm_rect.h>
34 #include <drm/drm_sysfs.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "vmwgfx_kms.h"
38 
39 /* Might need a hrtimer here? */
40 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
41 
42 void vmw_du_cleanup(struct vmw_display_unit *du)
43 {
44 	drm_plane_cleanup(&du->primary);
45 	drm_plane_cleanup(&du->cursor);
46 
47 	drm_connector_unregister(&du->connector);
48 	drm_crtc_cleanup(&du->crtc);
49 	drm_encoder_cleanup(&du->encoder);
50 	drm_connector_cleanup(&du->connector);
51 }
52 
53 /*
54  * Display Unit Cursor functions
55  */
56 
57 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
58 				   u32 *image, u32 width, u32 height,
59 				   u32 hotspotX, u32 hotspotY)
60 {
61 	struct {
62 		u32 cmd;
63 		SVGAFifoCmdDefineAlphaCursor cursor;
64 	} *cmd;
65 	u32 image_size = width * height * 4;
66 	u32 cmd_size = sizeof(*cmd) + image_size;
67 
68 	if (!image)
69 		return -EINVAL;
70 
71 	cmd = VMW_FIFO_RESERVE(dev_priv, cmd_size);
72 	if (unlikely(cmd == NULL))
73 		return -ENOMEM;
74 
75 	memset(cmd, 0, sizeof(*cmd));
76 
77 	memcpy(&cmd[1], image, image_size);
78 
79 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
80 	cmd->cursor.id = 0;
81 	cmd->cursor.width = width;
82 	cmd->cursor.height = height;
83 	cmd->cursor.hotspotX = hotspotX;
84 	cmd->cursor.hotspotY = hotspotY;
85 
86 	vmw_fifo_commit_flush(dev_priv, cmd_size);
87 
88 	return 0;
89 }
90 
91 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
92 				struct vmw_buffer_object *bo,
93 				u32 width, u32 height,
94 				u32 hotspotX, u32 hotspotY)
95 {
96 	struct ttm_bo_kmap_obj map;
97 	unsigned long kmap_offset;
98 	unsigned long kmap_num;
99 	void *virtual;
100 	bool dummy;
101 	int ret;
102 
103 	kmap_offset = 0;
104 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
105 
106 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
107 	if (unlikely(ret != 0)) {
108 		DRM_ERROR("reserve failed\n");
109 		return -EINVAL;
110 	}
111 
112 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
113 	if (unlikely(ret != 0))
114 		goto err_unreserve;
115 
116 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
117 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
118 				      hotspotX, hotspotY);
119 
120 	ttm_bo_kunmap(&map);
121 err_unreserve:
122 	ttm_bo_unreserve(&bo->base);
123 
124 	return ret;
125 }
126 
127 
128 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
129 				       bool show, int x, int y)
130 {
131 	u32 *fifo_mem = dev_priv->mmio_virt;
132 	uint32_t count;
133 
134 	spin_lock(&dev_priv->cursor_lock);
135 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
136 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
137 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
138 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
139 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
140 	spin_unlock(&dev_priv->cursor_lock);
141 }
142 
143 
144 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
145 			  struct ttm_object_file *tfile,
146 			  struct ttm_buffer_object *bo,
147 			  SVGA3dCmdHeader *header)
148 {
149 	struct ttm_bo_kmap_obj map;
150 	unsigned long kmap_offset;
151 	unsigned long kmap_num;
152 	SVGA3dCopyBox *box;
153 	unsigned box_count;
154 	void *virtual;
155 	bool dummy;
156 	struct vmw_dma_cmd {
157 		SVGA3dCmdHeader header;
158 		SVGA3dCmdSurfaceDMA dma;
159 	} *cmd;
160 	int i, ret;
161 
162 	cmd = container_of(header, struct vmw_dma_cmd, header);
163 
164 	/* No snooper installed */
165 	if (!srf->snooper.image)
166 		return;
167 
168 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
169 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
170 		return;
171 	}
172 
173 	if (cmd->header.size < 64) {
174 		DRM_ERROR("at least one full copy box must be given\n");
175 		return;
176 	}
177 
178 	box = (SVGA3dCopyBox *)&cmd[1];
179 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
180 			sizeof(SVGA3dCopyBox);
181 
182 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
183 	    box->x != 0    || box->y != 0    || box->z != 0    ||
184 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
185 	    box->d != 1    || box_count != 1) {
186 		/* TODO handle none page aligned offsets */
187 		/* TODO handle more dst & src != 0 */
188 		/* TODO handle more then one copy */
189 		DRM_ERROR("Can't snoop dma request for cursor!\n");
190 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
191 			  box->srcx, box->srcy, box->srcz,
192 			  box->x, box->y, box->z,
193 			  box->w, box->h, box->d, box_count,
194 			  cmd->dma.guest.ptr.offset);
195 		return;
196 	}
197 
198 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
199 	kmap_num = (64*64*4) >> PAGE_SHIFT;
200 
201 	ret = ttm_bo_reserve(bo, true, false, NULL);
202 	if (unlikely(ret != 0)) {
203 		DRM_ERROR("reserve failed\n");
204 		return;
205 	}
206 
207 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
208 	if (unlikely(ret != 0))
209 		goto err_unreserve;
210 
211 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
212 
213 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
214 		memcpy(srf->snooper.image, virtual, 64*64*4);
215 	} else {
216 		/* Image is unsigned pointer. */
217 		for (i = 0; i < box->h; i++)
218 			memcpy(srf->snooper.image + i * 64,
219 			       virtual + i * cmd->dma.guest.pitch,
220 			       box->w * 4);
221 	}
222 
223 	srf->snooper.age++;
224 
225 	ttm_bo_kunmap(&map);
226 err_unreserve:
227 	ttm_bo_unreserve(bo);
228 }
229 
230 /**
231  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
232  *
233  * @dev_priv: Pointer to the device private struct.
234  *
235  * Clears all legacy hotspots.
236  */
237 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
238 {
239 	struct drm_device *dev = dev_priv->dev;
240 	struct vmw_display_unit *du;
241 	struct drm_crtc *crtc;
242 
243 	drm_modeset_lock_all(dev);
244 	drm_for_each_crtc(crtc, dev) {
245 		du = vmw_crtc_to_du(crtc);
246 
247 		du->hotspot_x = 0;
248 		du->hotspot_y = 0;
249 	}
250 	drm_modeset_unlock_all(dev);
251 }
252 
253 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
254 {
255 	struct drm_device *dev = dev_priv->dev;
256 	struct vmw_display_unit *du;
257 	struct drm_crtc *crtc;
258 
259 	mutex_lock(&dev->mode_config.mutex);
260 
261 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
262 		du = vmw_crtc_to_du(crtc);
263 		if (!du->cursor_surface ||
264 		    du->cursor_age == du->cursor_surface->snooper.age)
265 			continue;
266 
267 		du->cursor_age = du->cursor_surface->snooper.age;
268 		vmw_cursor_update_image(dev_priv,
269 					du->cursor_surface->snooper.image,
270 					64, 64,
271 					du->hotspot_x + du->core_hotspot_x,
272 					du->hotspot_y + du->core_hotspot_y);
273 	}
274 
275 	mutex_unlock(&dev->mode_config.mutex);
276 }
277 
278 
279 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
280 {
281 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
282 
283 	drm_plane_cleanup(plane);
284 }
285 
286 
287 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
288 {
289 	drm_plane_cleanup(plane);
290 
291 	/* Planes are static in our case so we don't free it */
292 }
293 
294 
295 /**
296  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
297  *
298  * @vps: plane state associated with the display surface
299  * @unreference: true if we also want to unreference the display.
300  */
301 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
302 			     bool unreference)
303 {
304 	if (vps->surf) {
305 		if (vps->pinned) {
306 			vmw_resource_unpin(&vps->surf->res);
307 			vps->pinned--;
308 		}
309 
310 		if (unreference) {
311 			if (vps->pinned)
312 				DRM_ERROR("Surface still pinned\n");
313 			vmw_surface_unreference(&vps->surf);
314 		}
315 	}
316 }
317 
318 
319 /**
320  * vmw_du_plane_cleanup_fb - Unpins the cursor
321  *
322  * @plane:  display plane
323  * @old_state: Contains the FB to clean up
324  *
325  * Unpins the framebuffer surface
326  *
327  * Returns 0 on success
328  */
329 void
330 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
331 			struct drm_plane_state *old_state)
332 {
333 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
334 
335 	vmw_du_plane_unpin_surf(vps, false);
336 }
337 
338 
339 /**
340  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
341  *
342  * @plane:  display plane
343  * @new_state: info on the new plane state, including the FB
344  *
345  * Returns 0 on success
346  */
347 int
348 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
349 			       struct drm_plane_state *new_state)
350 {
351 	struct drm_framebuffer *fb = new_state->fb;
352 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
353 
354 
355 	if (vps->surf)
356 		vmw_surface_unreference(&vps->surf);
357 
358 	if (vps->bo)
359 		vmw_bo_unreference(&vps->bo);
360 
361 	if (fb) {
362 		if (vmw_framebuffer_to_vfb(fb)->bo) {
363 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
364 			vmw_bo_reference(vps->bo);
365 		} else {
366 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
367 			vmw_surface_reference(vps->surf);
368 		}
369 	}
370 
371 	return 0;
372 }
373 
374 
375 void
376 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
377 				  struct drm_plane_state *old_state)
378 {
379 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
380 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
381 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
382 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
383 	s32 hotspot_x, hotspot_y;
384 	int ret = 0;
385 
386 
387 	hotspot_x = du->hotspot_x;
388 	hotspot_y = du->hotspot_y;
389 
390 	if (plane->state->fb) {
391 		hotspot_x += plane->state->fb->hot_x;
392 		hotspot_y += plane->state->fb->hot_y;
393 	}
394 
395 	du->cursor_surface = vps->surf;
396 	du->cursor_bo = vps->bo;
397 
398 	if (vps->surf) {
399 		du->cursor_age = du->cursor_surface->snooper.age;
400 
401 		ret = vmw_cursor_update_image(dev_priv,
402 					      vps->surf->snooper.image,
403 					      64, 64, hotspot_x,
404 					      hotspot_y);
405 	} else if (vps->bo) {
406 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
407 					   plane->state->crtc_w,
408 					   plane->state->crtc_h,
409 					   hotspot_x, hotspot_y);
410 	} else {
411 		vmw_cursor_update_position(dev_priv, false, 0, 0);
412 		return;
413 	}
414 
415 	if (!ret) {
416 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
417 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
418 
419 		vmw_cursor_update_position(dev_priv, true,
420 					   du->cursor_x + hotspot_x,
421 					   du->cursor_y + hotspot_y);
422 
423 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
424 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
425 	} else {
426 		DRM_ERROR("Failed to update cursor image\n");
427 	}
428 }
429 
430 
431 /**
432  * vmw_du_primary_plane_atomic_check - check if the new state is okay
433  *
434  * @plane: display plane
435  * @state: info on the new plane state, including the FB
436  *
437  * Check if the new state is settable given the current state.  Other
438  * than what the atomic helper checks, we care about crtc fitting
439  * the FB and maintaining one active framebuffer.
440  *
441  * Returns 0 on success
442  */
443 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
444 				      struct drm_plane_state *state)
445 {
446 	struct drm_crtc_state *crtc_state = NULL;
447 	struct drm_framebuffer *new_fb = state->fb;
448 	int ret;
449 
450 	if (state->crtc)
451 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
452 
453 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
454 						  DRM_PLANE_HELPER_NO_SCALING,
455 						  DRM_PLANE_HELPER_NO_SCALING,
456 						  false, true);
457 
458 	if (!ret && new_fb) {
459 		struct drm_crtc *crtc = state->crtc;
460 		struct vmw_connector_state *vcs;
461 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
462 
463 		vcs = vmw_connector_state_to_vcs(du->connector.state);
464 	}
465 
466 
467 	return ret;
468 }
469 
470 
471 /**
472  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
473  *
474  * @plane: cursor plane
475  * @state: info on the new plane state
476  *
477  * This is a chance to fail if the new cursor state does not fit
478  * our requirements.
479  *
480  * Returns 0 on success
481  */
482 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
483 				     struct drm_plane_state *new_state)
484 {
485 	int ret = 0;
486 	struct drm_crtc_state *crtc_state = NULL;
487 	struct vmw_surface *surface = NULL;
488 	struct drm_framebuffer *fb = new_state->fb;
489 
490 	if (new_state->crtc)
491 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
492 							   new_state->crtc);
493 
494 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
495 						  DRM_PLANE_HELPER_NO_SCALING,
496 						  DRM_PLANE_HELPER_NO_SCALING,
497 						  true, true);
498 	if (ret)
499 		return ret;
500 
501 	/* Turning off */
502 	if (!fb)
503 		return 0;
504 
505 	/* A lot of the code assumes this */
506 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
507 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
508 			  new_state->crtc_w, new_state->crtc_h);
509 		ret = -EINVAL;
510 	}
511 
512 	if (!vmw_framebuffer_to_vfb(fb)->bo)
513 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
514 
515 	if (surface && !surface->snooper.image) {
516 		DRM_ERROR("surface not suitable for cursor\n");
517 		ret = -EINVAL;
518 	}
519 
520 	return ret;
521 }
522 
523 
524 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
525 			     struct drm_atomic_state *state)
526 {
527 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
528 									 crtc);
529 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
530 	int connector_mask = drm_connector_mask(&du->connector);
531 	bool has_primary = new_state->plane_mask &
532 			   drm_plane_mask(crtc->primary);
533 
534 	/* We always want to have an active plane with an active CRTC */
535 	if (has_primary != new_state->enable)
536 		return -EINVAL;
537 
538 
539 	if (new_state->connector_mask != connector_mask &&
540 	    new_state->connector_mask != 0) {
541 		DRM_ERROR("Invalid connectors configuration\n");
542 		return -EINVAL;
543 	}
544 
545 	/*
546 	 * Our virtual device does not have a dot clock, so use the logical
547 	 * clock value as the dot clock.
548 	 */
549 	if (new_state->mode.crtc_clock == 0)
550 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
551 
552 	return 0;
553 }
554 
555 
556 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
557 			      struct drm_atomic_state *state)
558 {
559 }
560 
561 
562 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
563 			      struct drm_atomic_state *state)
564 {
565 	struct drm_pending_vblank_event *event = crtc->state->event;
566 
567 	if (event) {
568 		crtc->state->event = NULL;
569 
570 		spin_lock_irq(&crtc->dev->event_lock);
571 		drm_crtc_send_vblank_event(crtc, event);
572 		spin_unlock_irq(&crtc->dev->event_lock);
573 	}
574 }
575 
576 
577 /**
578  * vmw_du_crtc_duplicate_state - duplicate crtc state
579  * @crtc: DRM crtc
580  *
581  * Allocates and returns a copy of the crtc state (both common and
582  * vmw-specific) for the specified crtc.
583  *
584  * Returns: The newly allocated crtc state, or NULL on failure.
585  */
586 struct drm_crtc_state *
587 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
588 {
589 	struct drm_crtc_state *state;
590 	struct vmw_crtc_state *vcs;
591 
592 	if (WARN_ON(!crtc->state))
593 		return NULL;
594 
595 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
596 
597 	if (!vcs)
598 		return NULL;
599 
600 	state = &vcs->base;
601 
602 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
603 
604 	return state;
605 }
606 
607 
608 /**
609  * vmw_du_crtc_reset - creates a blank vmw crtc state
610  * @crtc: DRM crtc
611  *
612  * Resets the atomic state for @crtc by freeing the state pointer (which
613  * might be NULL, e.g. at driver load time) and allocating a new empty state
614  * object.
615  */
616 void vmw_du_crtc_reset(struct drm_crtc *crtc)
617 {
618 	struct vmw_crtc_state *vcs;
619 
620 
621 	if (crtc->state) {
622 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
623 
624 		kfree(vmw_crtc_state_to_vcs(crtc->state));
625 	}
626 
627 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
628 
629 	if (!vcs) {
630 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
631 		return;
632 	}
633 
634 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
635 }
636 
637 
638 /**
639  * vmw_du_crtc_destroy_state - destroy crtc state
640  * @crtc: DRM crtc
641  * @state: state object to destroy
642  *
643  * Destroys the crtc state (both common and vmw-specific) for the
644  * specified plane.
645  */
646 void
647 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
648 			  struct drm_crtc_state *state)
649 {
650 	drm_atomic_helper_crtc_destroy_state(crtc, state);
651 }
652 
653 
654 /**
655  * vmw_du_plane_duplicate_state - duplicate plane state
656  * @plane: drm plane
657  *
658  * Allocates and returns a copy of the plane state (both common and
659  * vmw-specific) for the specified plane.
660  *
661  * Returns: The newly allocated plane state, or NULL on failure.
662  */
663 struct drm_plane_state *
664 vmw_du_plane_duplicate_state(struct drm_plane *plane)
665 {
666 	struct drm_plane_state *state;
667 	struct vmw_plane_state *vps;
668 
669 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
670 
671 	if (!vps)
672 		return NULL;
673 
674 	vps->pinned = 0;
675 	vps->cpp = 0;
676 
677 	/* Each ref counted resource needs to be acquired again */
678 	if (vps->surf)
679 		(void) vmw_surface_reference(vps->surf);
680 
681 	if (vps->bo)
682 		(void) vmw_bo_reference(vps->bo);
683 
684 	state = &vps->base;
685 
686 	__drm_atomic_helper_plane_duplicate_state(plane, state);
687 
688 	return state;
689 }
690 
691 
692 /**
693  * vmw_du_plane_reset - creates a blank vmw plane state
694  * @plane: drm plane
695  *
696  * Resets the atomic state for @plane by freeing the state pointer (which might
697  * be NULL, e.g. at driver load time) and allocating a new empty state object.
698  */
699 void vmw_du_plane_reset(struct drm_plane *plane)
700 {
701 	struct vmw_plane_state *vps;
702 
703 
704 	if (plane->state)
705 		vmw_du_plane_destroy_state(plane, plane->state);
706 
707 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
708 
709 	if (!vps) {
710 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
711 		return;
712 	}
713 
714 	__drm_atomic_helper_plane_reset(plane, &vps->base);
715 }
716 
717 
718 /**
719  * vmw_du_plane_destroy_state - destroy plane state
720  * @plane: DRM plane
721  * @state: state object to destroy
722  *
723  * Destroys the plane state (both common and vmw-specific) for the
724  * specified plane.
725  */
726 void
727 vmw_du_plane_destroy_state(struct drm_plane *plane,
728 			   struct drm_plane_state *state)
729 {
730 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
731 
732 
733 	/* Should have been freed by cleanup_fb */
734 	if (vps->surf)
735 		vmw_surface_unreference(&vps->surf);
736 
737 	if (vps->bo)
738 		vmw_bo_unreference(&vps->bo);
739 
740 	drm_atomic_helper_plane_destroy_state(plane, state);
741 }
742 
743 
744 /**
745  * vmw_du_connector_duplicate_state - duplicate connector state
746  * @connector: DRM connector
747  *
748  * Allocates and returns a copy of the connector state (both common and
749  * vmw-specific) for the specified connector.
750  *
751  * Returns: The newly allocated connector state, or NULL on failure.
752  */
753 struct drm_connector_state *
754 vmw_du_connector_duplicate_state(struct drm_connector *connector)
755 {
756 	struct drm_connector_state *state;
757 	struct vmw_connector_state *vcs;
758 
759 	if (WARN_ON(!connector->state))
760 		return NULL;
761 
762 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
763 
764 	if (!vcs)
765 		return NULL;
766 
767 	state = &vcs->base;
768 
769 	__drm_atomic_helper_connector_duplicate_state(connector, state);
770 
771 	return state;
772 }
773 
774 
775 /**
776  * vmw_du_connector_reset - creates a blank vmw connector state
777  * @connector: DRM connector
778  *
779  * Resets the atomic state for @connector by freeing the state pointer (which
780  * might be NULL, e.g. at driver load time) and allocating a new empty state
781  * object.
782  */
783 void vmw_du_connector_reset(struct drm_connector *connector)
784 {
785 	struct vmw_connector_state *vcs;
786 
787 
788 	if (connector->state) {
789 		__drm_atomic_helper_connector_destroy_state(connector->state);
790 
791 		kfree(vmw_connector_state_to_vcs(connector->state));
792 	}
793 
794 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
795 
796 	if (!vcs) {
797 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
798 		return;
799 	}
800 
801 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
802 }
803 
804 
805 /**
806  * vmw_du_connector_destroy_state - destroy connector state
807  * @connector: DRM connector
808  * @state: state object to destroy
809  *
810  * Destroys the connector state (both common and vmw-specific) for the
811  * specified plane.
812  */
813 void
814 vmw_du_connector_destroy_state(struct drm_connector *connector,
815 			  struct drm_connector_state *state)
816 {
817 	drm_atomic_helper_connector_destroy_state(connector, state);
818 }
819 /*
820  * Generic framebuffer code
821  */
822 
823 /*
824  * Surface framebuffer code
825  */
826 
827 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
828 {
829 	struct vmw_framebuffer_surface *vfbs =
830 		vmw_framebuffer_to_vfbs(framebuffer);
831 
832 	drm_framebuffer_cleanup(framebuffer);
833 	vmw_surface_unreference(&vfbs->surface);
834 	if (vfbs->base.user_obj)
835 		ttm_base_object_unref(&vfbs->base.user_obj);
836 
837 	kfree(vfbs);
838 }
839 
840 /**
841  * vmw_kms_readback - Perform a readback from the screen system to
842  * a buffer-object backed framebuffer.
843  *
844  * @dev_priv: Pointer to the device private structure.
845  * @file_priv: Pointer to a struct drm_file identifying the caller.
846  * Must be set to NULL if @user_fence_rep is NULL.
847  * @vfb: Pointer to the buffer-object backed framebuffer.
848  * @user_fence_rep: User-space provided structure for fence information.
849  * Must be set to non-NULL if @file_priv is non-NULL.
850  * @vclips: Array of clip rects.
851  * @num_clips: Number of clip rects in @vclips.
852  *
853  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
854  * interrupted.
855  */
856 int vmw_kms_readback(struct vmw_private *dev_priv,
857 		     struct drm_file *file_priv,
858 		     struct vmw_framebuffer *vfb,
859 		     struct drm_vmw_fence_rep __user *user_fence_rep,
860 		     struct drm_vmw_rect *vclips,
861 		     uint32_t num_clips)
862 {
863 	switch (dev_priv->active_display_unit) {
864 	case vmw_du_screen_object:
865 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
866 					    user_fence_rep, vclips, num_clips,
867 					    NULL);
868 	case vmw_du_screen_target:
869 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
870 					user_fence_rep, NULL, vclips, num_clips,
871 					1, false, true, NULL);
872 	default:
873 		WARN_ONCE(true,
874 			  "Readback called with invalid display system.\n");
875 }
876 
877 	return -ENOSYS;
878 }
879 
880 
881 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
882 	.destroy = vmw_framebuffer_surface_destroy,
883 	.dirty = drm_atomic_helper_dirtyfb,
884 };
885 
886 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
887 					   struct vmw_surface *surface,
888 					   struct vmw_framebuffer **out,
889 					   const struct drm_mode_fb_cmd2
890 					   *mode_cmd,
891 					   bool is_bo_proxy)
892 
893 {
894 	struct drm_device *dev = dev_priv->dev;
895 	struct vmw_framebuffer_surface *vfbs;
896 	enum SVGA3dSurfaceFormat format;
897 	int ret;
898 	struct drm_format_name_buf format_name;
899 
900 	/* 3D is only supported on HWv8 and newer hosts */
901 	if (dev_priv->active_display_unit == vmw_du_legacy)
902 		return -ENOSYS;
903 
904 	/*
905 	 * Sanity checks.
906 	 */
907 
908 	/* Surface must be marked as a scanout. */
909 	if (unlikely(!surface->metadata.scanout))
910 		return -EINVAL;
911 
912 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
913 		     surface->metadata.num_sizes != 1 ||
914 		     surface->metadata.base_size.width < mode_cmd->width ||
915 		     surface->metadata.base_size.height < mode_cmd->height ||
916 		     surface->metadata.base_size.depth != 1)) {
917 		DRM_ERROR("Incompatible surface dimensions "
918 			  "for requested mode.\n");
919 		return -EINVAL;
920 	}
921 
922 	switch (mode_cmd->pixel_format) {
923 	case DRM_FORMAT_ARGB8888:
924 		format = SVGA3D_A8R8G8B8;
925 		break;
926 	case DRM_FORMAT_XRGB8888:
927 		format = SVGA3D_X8R8G8B8;
928 		break;
929 	case DRM_FORMAT_RGB565:
930 		format = SVGA3D_R5G6B5;
931 		break;
932 	case DRM_FORMAT_XRGB1555:
933 		format = SVGA3D_A1R5G5B5;
934 		break;
935 	default:
936 		DRM_ERROR("Invalid pixel format: %s\n",
937 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
938 		return -EINVAL;
939 	}
940 
941 	/*
942 	 * For DX, surface format validation is done when surface->scanout
943 	 * is set.
944 	 */
945 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
946 		DRM_ERROR("Invalid surface format for requested mode.\n");
947 		return -EINVAL;
948 	}
949 
950 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
951 	if (!vfbs) {
952 		ret = -ENOMEM;
953 		goto out_err1;
954 	}
955 
956 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
957 	vfbs->surface = vmw_surface_reference(surface);
958 	vfbs->base.user_handle = mode_cmd->handles[0];
959 	vfbs->is_bo_proxy = is_bo_proxy;
960 
961 	*out = &vfbs->base;
962 
963 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
964 				   &vmw_framebuffer_surface_funcs);
965 	if (ret)
966 		goto out_err2;
967 
968 	return 0;
969 
970 out_err2:
971 	vmw_surface_unreference(&surface);
972 	kfree(vfbs);
973 out_err1:
974 	return ret;
975 }
976 
977 /*
978  * Buffer-object framebuffer code
979  */
980 
981 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
982 {
983 	struct vmw_framebuffer_bo *vfbd =
984 		vmw_framebuffer_to_vfbd(framebuffer);
985 
986 	drm_framebuffer_cleanup(framebuffer);
987 	vmw_bo_unreference(&vfbd->buffer);
988 	if (vfbd->base.user_obj)
989 		ttm_base_object_unref(&vfbd->base.user_obj);
990 
991 	kfree(vfbd);
992 }
993 
994 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
995 				    struct drm_file *file_priv,
996 				    unsigned int flags, unsigned int color,
997 				    struct drm_clip_rect *clips,
998 				    unsigned int num_clips)
999 {
1000 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1001 	struct vmw_framebuffer_bo *vfbd =
1002 		vmw_framebuffer_to_vfbd(framebuffer);
1003 	struct drm_clip_rect norect;
1004 	int ret, increment = 1;
1005 
1006 	drm_modeset_lock_all(dev_priv->dev);
1007 
1008 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1009 	if (unlikely(ret != 0)) {
1010 		drm_modeset_unlock_all(dev_priv->dev);
1011 		return ret;
1012 	}
1013 
1014 	if (!num_clips) {
1015 		num_clips = 1;
1016 		clips = &norect;
1017 		norect.x1 = norect.y1 = 0;
1018 		norect.x2 = framebuffer->width;
1019 		norect.y2 = framebuffer->height;
1020 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1021 		num_clips /= 2;
1022 		increment = 2;
1023 	}
1024 
1025 	switch (dev_priv->active_display_unit) {
1026 	case vmw_du_legacy:
1027 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1028 					      clips, num_clips, increment);
1029 		break;
1030 	default:
1031 		ret = -EINVAL;
1032 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1033 		break;
1034 	}
1035 
1036 	vmw_fifo_flush(dev_priv, false);
1037 	ttm_read_unlock(&dev_priv->reservation_sem);
1038 
1039 	drm_modeset_unlock_all(dev_priv->dev);
1040 
1041 	return ret;
1042 }
1043 
1044 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1045 					struct drm_file *file_priv,
1046 					unsigned int flags, unsigned int color,
1047 					struct drm_clip_rect *clips,
1048 					unsigned int num_clips)
1049 {
1050 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1051 
1052 	if (dev_priv->active_display_unit == vmw_du_legacy)
1053 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1054 						color, clips, num_clips);
1055 
1056 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1057 					 clips, num_clips);
1058 }
1059 
1060 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1061 	.destroy = vmw_framebuffer_bo_destroy,
1062 	.dirty = vmw_framebuffer_bo_dirty_ext,
1063 };
1064 
1065 /**
1066  * Pin the bofer in a location suitable for access by the
1067  * display system.
1068  */
1069 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1070 {
1071 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1072 	struct vmw_buffer_object *buf;
1073 	struct ttm_placement *placement;
1074 	int ret;
1075 
1076 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1077 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1078 
1079 	if (!buf)
1080 		return 0;
1081 
1082 	switch (dev_priv->active_display_unit) {
1083 	case vmw_du_legacy:
1084 		vmw_overlay_pause_all(dev_priv);
1085 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1086 		vmw_overlay_resume_all(dev_priv);
1087 		break;
1088 	case vmw_du_screen_object:
1089 	case vmw_du_screen_target:
1090 		if (vfb->bo) {
1091 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1092 				/*
1093 				 * Use surface DMA to get content to
1094 				 * sreen target surface.
1095 				 */
1096 				placement = &vmw_vram_gmr_placement;
1097 			} else {
1098 				/* Use CPU blit. */
1099 				placement = &vmw_sys_placement;
1100 			}
1101 		} else {
1102 			/* Use surface / image update */
1103 			placement = &vmw_mob_placement;
1104 		}
1105 
1106 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1107 	default:
1108 		return -EINVAL;
1109 	}
1110 
1111 	return ret;
1112 }
1113 
1114 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1115 {
1116 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1117 	struct vmw_buffer_object *buf;
1118 
1119 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1120 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1121 
1122 	if (WARN_ON(!buf))
1123 		return 0;
1124 
1125 	return vmw_bo_unpin(dev_priv, buf, false);
1126 }
1127 
1128 /**
1129  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1130  *
1131  * @dev: DRM device
1132  * @mode_cmd: parameters for the new surface
1133  * @bo_mob: MOB backing the buffer object
1134  * @srf_out: newly created surface
1135  *
1136  * When the content FB is a buffer object, we create a surface as a proxy to the
1137  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1138  * This is a more efficient approach
1139  *
1140  * RETURNS:
1141  * 0 on success, error code otherwise
1142  */
1143 static int vmw_create_bo_proxy(struct drm_device *dev,
1144 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1145 			       struct vmw_buffer_object *bo_mob,
1146 			       struct vmw_surface **srf_out)
1147 {
1148 	struct vmw_surface_metadata metadata = {0};
1149 	uint32_t format;
1150 	struct vmw_resource *res;
1151 	unsigned int bytes_pp;
1152 	struct drm_format_name_buf format_name;
1153 	int ret;
1154 
1155 	switch (mode_cmd->pixel_format) {
1156 	case DRM_FORMAT_ARGB8888:
1157 	case DRM_FORMAT_XRGB8888:
1158 		format = SVGA3D_X8R8G8B8;
1159 		bytes_pp = 4;
1160 		break;
1161 
1162 	case DRM_FORMAT_RGB565:
1163 	case DRM_FORMAT_XRGB1555:
1164 		format = SVGA3D_R5G6B5;
1165 		bytes_pp = 2;
1166 		break;
1167 
1168 	case 8:
1169 		format = SVGA3D_P8;
1170 		bytes_pp = 1;
1171 		break;
1172 
1173 	default:
1174 		DRM_ERROR("Invalid framebuffer format %s\n",
1175 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1176 		return -EINVAL;
1177 	}
1178 
1179 	metadata.format = format;
1180 	metadata.mip_levels[0] = 1;
1181 	metadata.num_sizes = 1;
1182 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1183 	metadata.base_size.height =  mode_cmd->height;
1184 	metadata.base_size.depth = 1;
1185 	metadata.scanout = true;
1186 
1187 	ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out);
1188 	if (ret) {
1189 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1190 		return ret;
1191 	}
1192 
1193 	res = &(*srf_out)->res;
1194 
1195 	/* Reserve and switch the backing mob. */
1196 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1197 	(void) vmw_resource_reserve(res, false, true);
1198 	vmw_bo_unreference(&res->backup);
1199 	res->backup = vmw_bo_reference(bo_mob);
1200 	res->backup_offset = 0;
1201 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1202 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1203 
1204 	return 0;
1205 }
1206 
1207 
1208 
1209 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1210 				      struct vmw_buffer_object *bo,
1211 				      struct vmw_framebuffer **out,
1212 				      const struct drm_mode_fb_cmd2
1213 				      *mode_cmd)
1214 
1215 {
1216 	struct drm_device *dev = dev_priv->dev;
1217 	struct vmw_framebuffer_bo *vfbd;
1218 	unsigned int requested_size;
1219 	struct drm_format_name_buf format_name;
1220 	int ret;
1221 
1222 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1223 	if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1224 		DRM_ERROR("Screen buffer object size is too small "
1225 			  "for requested mode.\n");
1226 		return -EINVAL;
1227 	}
1228 
1229 	/* Limited framebuffer color depth support for screen objects */
1230 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1231 		switch (mode_cmd->pixel_format) {
1232 		case DRM_FORMAT_XRGB8888:
1233 		case DRM_FORMAT_ARGB8888:
1234 			break;
1235 		case DRM_FORMAT_XRGB1555:
1236 		case DRM_FORMAT_RGB565:
1237 			break;
1238 		default:
1239 			DRM_ERROR("Invalid pixel format: %s\n",
1240 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1241 			return -EINVAL;
1242 		}
1243 	}
1244 
1245 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1246 	if (!vfbd) {
1247 		ret = -ENOMEM;
1248 		goto out_err1;
1249 	}
1250 
1251 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1252 	vfbd->base.bo = true;
1253 	vfbd->buffer = vmw_bo_reference(bo);
1254 	vfbd->base.user_handle = mode_cmd->handles[0];
1255 	*out = &vfbd->base;
1256 
1257 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1258 				   &vmw_framebuffer_bo_funcs);
1259 	if (ret)
1260 		goto out_err2;
1261 
1262 	return 0;
1263 
1264 out_err2:
1265 	vmw_bo_unreference(&bo);
1266 	kfree(vfbd);
1267 out_err1:
1268 	return ret;
1269 }
1270 
1271 
1272 /**
1273  * vmw_kms_srf_ok - check if a surface can be created
1274  *
1275  * @width: requested width
1276  * @height: requested height
1277  *
1278  * Surfaces need to be less than texture size
1279  */
1280 static bool
1281 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1282 {
1283 	if (width  > dev_priv->texture_max_width ||
1284 	    height > dev_priv->texture_max_height)
1285 		return false;
1286 
1287 	return true;
1288 }
1289 
1290 /**
1291  * vmw_kms_new_framebuffer - Create a new framebuffer.
1292  *
1293  * @dev_priv: Pointer to device private struct.
1294  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1295  * Either @bo or @surface must be NULL.
1296  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1297  * Either @bo or @surface must be NULL.
1298  * @only_2d: No presents will occur to this buffer object based framebuffer.
1299  * This helps the code to do some important optimizations.
1300  * @mode_cmd: Frame-buffer metadata.
1301  */
1302 struct vmw_framebuffer *
1303 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1304 			struct vmw_buffer_object *bo,
1305 			struct vmw_surface *surface,
1306 			bool only_2d,
1307 			const struct drm_mode_fb_cmd2 *mode_cmd)
1308 {
1309 	struct vmw_framebuffer *vfb = NULL;
1310 	bool is_bo_proxy = false;
1311 	int ret;
1312 
1313 	/*
1314 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1315 	 * therefore, wrap the buffer object in a surface so we can use the
1316 	 * SurfaceCopy command.
1317 	 */
1318 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1319 	    bo && only_2d &&
1320 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1321 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1322 		ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1323 					  bo, &surface);
1324 		if (ret)
1325 			return ERR_PTR(ret);
1326 
1327 		is_bo_proxy = true;
1328 	}
1329 
1330 	/* Create the new framebuffer depending one what we have */
1331 	if (surface) {
1332 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1333 						      mode_cmd,
1334 						      is_bo_proxy);
1335 
1336 		/*
1337 		 * vmw_create_bo_proxy() adds a reference that is no longer
1338 		 * needed
1339 		 */
1340 		if (is_bo_proxy)
1341 			vmw_surface_unreference(&surface);
1342 	} else if (bo) {
1343 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1344 						 mode_cmd);
1345 	} else {
1346 		BUG();
1347 	}
1348 
1349 	if (ret)
1350 		return ERR_PTR(ret);
1351 
1352 	vfb->pin = vmw_framebuffer_pin;
1353 	vfb->unpin = vmw_framebuffer_unpin;
1354 
1355 	return vfb;
1356 }
1357 
1358 /*
1359  * Generic Kernel modesetting functions
1360  */
1361 
1362 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1363 						 struct drm_file *file_priv,
1364 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1365 {
1366 	struct vmw_private *dev_priv = vmw_priv(dev);
1367 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1368 	struct vmw_framebuffer *vfb = NULL;
1369 	struct vmw_surface *surface = NULL;
1370 	struct vmw_buffer_object *bo = NULL;
1371 	struct ttm_base_object *user_obj;
1372 	int ret;
1373 
1374 	/*
1375 	 * Take a reference on the user object of the resource
1376 	 * backing the kms fb. This ensures that user-space handle
1377 	 * lookups on that resource will always work as long as
1378 	 * it's registered with a kms framebuffer. This is important,
1379 	 * since vmw_execbuf_process identifies resources in the
1380 	 * command stream using user-space handles.
1381 	 */
1382 
1383 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1384 	if (unlikely(user_obj == NULL)) {
1385 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1386 		return ERR_PTR(-ENOENT);
1387 	}
1388 
1389 	/**
1390 	 * End conditioned code.
1391 	 */
1392 
1393 	/* returns either a bo or surface */
1394 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1395 				     mode_cmd->handles[0],
1396 				     &surface, &bo);
1397 	if (ret)
1398 		goto err_out;
1399 
1400 
1401 	if (!bo &&
1402 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1403 		DRM_ERROR("Surface size cannot exceed %dx%d",
1404 			dev_priv->texture_max_width,
1405 			dev_priv->texture_max_height);
1406 		goto err_out;
1407 	}
1408 
1409 
1410 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1411 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1412 				      mode_cmd);
1413 	if (IS_ERR(vfb)) {
1414 		ret = PTR_ERR(vfb);
1415 		goto err_out;
1416  	}
1417 
1418 err_out:
1419 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1420 	if (bo)
1421 		vmw_bo_unreference(&bo);
1422 	if (surface)
1423 		vmw_surface_unreference(&surface);
1424 
1425 	if (ret) {
1426 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1427 		ttm_base_object_unref(&user_obj);
1428 		return ERR_PTR(ret);
1429 	} else
1430 		vfb->user_obj = user_obj;
1431 
1432 	return &vfb->base;
1433 }
1434 
1435 /**
1436  * vmw_kms_check_display_memory - Validates display memory required for a
1437  * topology
1438  * @dev: DRM device
1439  * @num_rects: number of drm_rect in rects
1440  * @rects: array of drm_rect representing the topology to validate indexed by
1441  * crtc index.
1442  *
1443  * Returns:
1444  * 0 on success otherwise negative error code
1445  */
1446 static int vmw_kms_check_display_memory(struct drm_device *dev,
1447 					uint32_t num_rects,
1448 					struct drm_rect *rects)
1449 {
1450 	struct vmw_private *dev_priv = vmw_priv(dev);
1451 	struct drm_rect bounding_box = {0};
1452 	u64 total_pixels = 0, pixel_mem, bb_mem;
1453 	int i;
1454 
1455 	for (i = 0; i < num_rects; i++) {
1456 		/*
1457 		 * For STDU only individual screen (screen target) is limited by
1458 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1459 		 */
1460 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1461 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1462 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1463 			VMW_DEBUG_KMS("Screen size not supported.\n");
1464 			return -EINVAL;
1465 		}
1466 
1467 		/* Bounding box upper left is at (0,0). */
1468 		if (rects[i].x2 > bounding_box.x2)
1469 			bounding_box.x2 = rects[i].x2;
1470 
1471 		if (rects[i].y2 > bounding_box.y2)
1472 			bounding_box.y2 = rects[i].y2;
1473 
1474 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1475 			(u64) drm_rect_height(&rects[i]);
1476 	}
1477 
1478 	/* Virtual svga device primary limits are always in 32-bpp. */
1479 	pixel_mem = total_pixels * 4;
1480 
1481 	/*
1482 	 * For HV10 and below prim_bb_mem is vram size. When
1483 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1484 	 * limit on primary bounding box
1485 	 */
1486 	if (pixel_mem > dev_priv->prim_bb_mem) {
1487 		VMW_DEBUG_KMS("Combined output size too large.\n");
1488 		return -EINVAL;
1489 	}
1490 
1491 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1492 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1493 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1494 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1495 
1496 		if (bb_mem > dev_priv->prim_bb_mem) {
1497 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1498 			return -EINVAL;
1499 		}
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 /**
1506  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1507  * crtc mutex
1508  * @state: The atomic state pointer containing the new atomic state
1509  * @crtc: The crtc
1510  *
1511  * This function returns the new crtc state if it's part of the state update.
1512  * Otherwise returns the current crtc state. It also makes sure that the
1513  * crtc mutex is locked.
1514  *
1515  * Returns: A valid crtc state pointer or NULL. It may also return a
1516  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1517  */
1518 static struct drm_crtc_state *
1519 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1520 {
1521 	struct drm_crtc_state *crtc_state;
1522 
1523 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1524 	if (crtc_state) {
1525 		lockdep_assert_held(&crtc->mutex.mutex.base);
1526 	} else {
1527 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1528 
1529 		if (ret != 0 && ret != -EALREADY)
1530 			return ERR_PTR(ret);
1531 
1532 		crtc_state = crtc->state;
1533 	}
1534 
1535 	return crtc_state;
1536 }
1537 
1538 /**
1539  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1540  * from the same fb after the new state is committed.
1541  * @dev: The drm_device.
1542  * @state: The new state to be checked.
1543  *
1544  * Returns:
1545  *   Zero on success,
1546  *   -EINVAL on invalid state,
1547  *   -EDEADLK if modeset locking needs to be rerun.
1548  */
1549 static int vmw_kms_check_implicit(struct drm_device *dev,
1550 				  struct drm_atomic_state *state)
1551 {
1552 	struct drm_framebuffer *implicit_fb = NULL;
1553 	struct drm_crtc *crtc;
1554 	struct drm_crtc_state *crtc_state;
1555 	struct drm_plane_state *plane_state;
1556 
1557 	drm_for_each_crtc(crtc, dev) {
1558 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1559 
1560 		if (!du->is_implicit)
1561 			continue;
1562 
1563 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1564 		if (IS_ERR(crtc_state))
1565 			return PTR_ERR(crtc_state);
1566 
1567 		if (!crtc_state || !crtc_state->enable)
1568 			continue;
1569 
1570 		/*
1571 		 * Can't move primary planes across crtcs, so this is OK.
1572 		 * It also means we don't need to take the plane mutex.
1573 		 */
1574 		plane_state = du->primary.state;
1575 		if (plane_state->crtc != crtc)
1576 			continue;
1577 
1578 		if (!implicit_fb)
1579 			implicit_fb = plane_state->fb;
1580 		else if (implicit_fb != plane_state->fb)
1581 			return -EINVAL;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 /**
1588  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1589  * @dev: DRM device
1590  * @state: the driver state object
1591  *
1592  * Returns:
1593  * 0 on success otherwise negative error code
1594  */
1595 static int vmw_kms_check_topology(struct drm_device *dev,
1596 				  struct drm_atomic_state *state)
1597 {
1598 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1599 	struct drm_rect *rects;
1600 	struct drm_crtc *crtc;
1601 	uint32_t i;
1602 	int ret = 0;
1603 
1604 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1605 			GFP_KERNEL);
1606 	if (!rects)
1607 		return -ENOMEM;
1608 
1609 	drm_for_each_crtc(crtc, dev) {
1610 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1611 		struct drm_crtc_state *crtc_state;
1612 
1613 		i = drm_crtc_index(crtc);
1614 
1615 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1616 		if (IS_ERR(crtc_state)) {
1617 			ret = PTR_ERR(crtc_state);
1618 			goto clean;
1619 		}
1620 
1621 		if (!crtc_state)
1622 			continue;
1623 
1624 		if (crtc_state->enable) {
1625 			rects[i].x1 = du->gui_x;
1626 			rects[i].y1 = du->gui_y;
1627 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1628 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1629 		} else {
1630 			rects[i].x1 = 0;
1631 			rects[i].y1 = 0;
1632 			rects[i].x2 = 0;
1633 			rects[i].y2 = 0;
1634 		}
1635 	}
1636 
1637 	/* Determine change to topology due to new atomic state */
1638 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1639 				      new_crtc_state, i) {
1640 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1641 		struct drm_connector *connector;
1642 		struct drm_connector_state *conn_state;
1643 		struct vmw_connector_state *vmw_conn_state;
1644 
1645 		if (!du->pref_active && new_crtc_state->enable) {
1646 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1647 			ret = -EINVAL;
1648 			goto clean;
1649 		}
1650 
1651 		/*
1652 		 * For vmwgfx each crtc has only one connector attached and it
1653 		 * is not changed so don't really need to check the
1654 		 * crtc->connector_mask and iterate over it.
1655 		 */
1656 		connector = &du->connector;
1657 		conn_state = drm_atomic_get_connector_state(state, connector);
1658 		if (IS_ERR(conn_state)) {
1659 			ret = PTR_ERR(conn_state);
1660 			goto clean;
1661 		}
1662 
1663 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1664 		vmw_conn_state->gui_x = du->gui_x;
1665 		vmw_conn_state->gui_y = du->gui_y;
1666 	}
1667 
1668 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1669 					   rects);
1670 
1671 clean:
1672 	kfree(rects);
1673 	return ret;
1674 }
1675 
1676 /**
1677  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1678  *
1679  * @dev: DRM device
1680  * @state: the driver state object
1681  *
1682  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1683  * us to assign a value to mode->crtc_clock so that
1684  * drm_calc_timestamping_constants() won't throw an error message
1685  *
1686  * Returns:
1687  * Zero for success or -errno
1688  */
1689 static int
1690 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1691 			     struct drm_atomic_state *state)
1692 {
1693 	struct drm_crtc *crtc;
1694 	struct drm_crtc_state *crtc_state;
1695 	bool need_modeset = false;
1696 	int i, ret;
1697 
1698 	ret = drm_atomic_helper_check(dev, state);
1699 	if (ret)
1700 		return ret;
1701 
1702 	ret = vmw_kms_check_implicit(dev, state);
1703 	if (ret) {
1704 		VMW_DEBUG_KMS("Invalid implicit state\n");
1705 		return ret;
1706 	}
1707 
1708 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1709 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1710 			need_modeset = true;
1711 	}
1712 
1713 	if (need_modeset)
1714 		return vmw_kms_check_topology(dev, state);
1715 
1716 	return ret;
1717 }
1718 
1719 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1720 	.fb_create = vmw_kms_fb_create,
1721 	.atomic_check = vmw_kms_atomic_check_modeset,
1722 	.atomic_commit = drm_atomic_helper_commit,
1723 };
1724 
1725 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1726 				   struct drm_file *file_priv,
1727 				   struct vmw_framebuffer *vfb,
1728 				   struct vmw_surface *surface,
1729 				   uint32_t sid,
1730 				   int32_t destX, int32_t destY,
1731 				   struct drm_vmw_rect *clips,
1732 				   uint32_t num_clips)
1733 {
1734 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1735 					    &surface->res, destX, destY,
1736 					    num_clips, 1, NULL, NULL);
1737 }
1738 
1739 
1740 int vmw_kms_present(struct vmw_private *dev_priv,
1741 		    struct drm_file *file_priv,
1742 		    struct vmw_framebuffer *vfb,
1743 		    struct vmw_surface *surface,
1744 		    uint32_t sid,
1745 		    int32_t destX, int32_t destY,
1746 		    struct drm_vmw_rect *clips,
1747 		    uint32_t num_clips)
1748 {
1749 	int ret;
1750 
1751 	switch (dev_priv->active_display_unit) {
1752 	case vmw_du_screen_target:
1753 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1754 						 &surface->res, destX, destY,
1755 						 num_clips, 1, NULL, NULL);
1756 		break;
1757 	case vmw_du_screen_object:
1758 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1759 					      sid, destX, destY, clips,
1760 					      num_clips);
1761 		break;
1762 	default:
1763 		WARN_ONCE(true,
1764 			  "Present called with invalid display system.\n");
1765 		ret = -ENOSYS;
1766 		break;
1767 	}
1768 	if (ret)
1769 		return ret;
1770 
1771 	vmw_fifo_flush(dev_priv, false);
1772 
1773 	return 0;
1774 }
1775 
1776 static void
1777 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1778 {
1779 	if (dev_priv->hotplug_mode_update_property)
1780 		return;
1781 
1782 	dev_priv->hotplug_mode_update_property =
1783 		drm_property_create_range(dev_priv->dev,
1784 					  DRM_MODE_PROP_IMMUTABLE,
1785 					  "hotplug_mode_update", 0, 1);
1786 
1787 	if (!dev_priv->hotplug_mode_update_property)
1788 		return;
1789 
1790 }
1791 
1792 int vmw_kms_init(struct vmw_private *dev_priv)
1793 {
1794 	struct drm_device *dev = dev_priv->dev;
1795 	int ret;
1796 
1797 	drm_mode_config_init(dev);
1798 	dev->mode_config.funcs = &vmw_kms_funcs;
1799 	dev->mode_config.min_width = 1;
1800 	dev->mode_config.min_height = 1;
1801 	dev->mode_config.max_width = dev_priv->texture_max_width;
1802 	dev->mode_config.max_height = dev_priv->texture_max_height;
1803 
1804 	drm_mode_create_suggested_offset_properties(dev);
1805 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1806 
1807 	ret = vmw_kms_stdu_init_display(dev_priv);
1808 	if (ret) {
1809 		ret = vmw_kms_sou_init_display(dev_priv);
1810 		if (ret) /* Fallback */
1811 			ret = vmw_kms_ldu_init_display(dev_priv);
1812 	}
1813 
1814 	return ret;
1815 }
1816 
1817 int vmw_kms_close(struct vmw_private *dev_priv)
1818 {
1819 	int ret = 0;
1820 
1821 	/*
1822 	 * Docs says we should take the lock before calling this function
1823 	 * but since it destroys encoders and our destructor calls
1824 	 * drm_encoder_cleanup which takes the lock we deadlock.
1825 	 */
1826 	drm_mode_config_cleanup(dev_priv->dev);
1827 	if (dev_priv->active_display_unit == vmw_du_legacy)
1828 		ret = vmw_kms_ldu_close_display(dev_priv);
1829 
1830 	return ret;
1831 }
1832 
1833 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1834 				struct drm_file *file_priv)
1835 {
1836 	struct drm_vmw_cursor_bypass_arg *arg = data;
1837 	struct vmw_display_unit *du;
1838 	struct drm_crtc *crtc;
1839 	int ret = 0;
1840 
1841 
1842 	mutex_lock(&dev->mode_config.mutex);
1843 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1844 
1845 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1846 			du = vmw_crtc_to_du(crtc);
1847 			du->hotspot_x = arg->xhot;
1848 			du->hotspot_y = arg->yhot;
1849 		}
1850 
1851 		mutex_unlock(&dev->mode_config.mutex);
1852 		return 0;
1853 	}
1854 
1855 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1856 	if (!crtc) {
1857 		ret = -ENOENT;
1858 		goto out;
1859 	}
1860 
1861 	du = vmw_crtc_to_du(crtc);
1862 
1863 	du->hotspot_x = arg->xhot;
1864 	du->hotspot_y = arg->yhot;
1865 
1866 out:
1867 	mutex_unlock(&dev->mode_config.mutex);
1868 
1869 	return ret;
1870 }
1871 
1872 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1873 			unsigned width, unsigned height, unsigned pitch,
1874 			unsigned bpp, unsigned depth)
1875 {
1876 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1877 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1878 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1879 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1880 			       SVGA_FIFO_PITCHLOCK);
1881 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1882 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1883 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1884 
1885 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1886 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1887 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1888 		return -EINVAL;
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1895 				uint32_t pitch,
1896 				uint32_t height)
1897 {
1898 	return ((u64) pitch * (u64) height) < (u64)
1899 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1900 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1901 }
1902 
1903 
1904 /**
1905  * Function called by DRM code called with vbl_lock held.
1906  */
1907 u32 vmw_get_vblank_counter(struct drm_crtc *crtc)
1908 {
1909 	return 0;
1910 }
1911 
1912 /**
1913  * Function called by DRM code called with vbl_lock held.
1914  */
1915 int vmw_enable_vblank(struct drm_crtc *crtc)
1916 {
1917 	return -EINVAL;
1918 }
1919 
1920 /**
1921  * Function called by DRM code called with vbl_lock held.
1922  */
1923 void vmw_disable_vblank(struct drm_crtc *crtc)
1924 {
1925 }
1926 
1927 /**
1928  * vmw_du_update_layout - Update the display unit with topology from resolution
1929  * plugin and generate DRM uevent
1930  * @dev_priv: device private
1931  * @num_rects: number of drm_rect in rects
1932  * @rects: toplogy to update
1933  */
1934 static int vmw_du_update_layout(struct vmw_private *dev_priv,
1935 				unsigned int num_rects, struct drm_rect *rects)
1936 {
1937 	struct drm_device *dev = dev_priv->dev;
1938 	struct vmw_display_unit *du;
1939 	struct drm_connector *con;
1940 	struct drm_connector_list_iter conn_iter;
1941 	struct drm_modeset_acquire_ctx ctx;
1942 	struct drm_crtc *crtc;
1943 	int ret;
1944 
1945 	/* Currently gui_x/y is protected with the crtc mutex */
1946 	mutex_lock(&dev->mode_config.mutex);
1947 	drm_modeset_acquire_init(&ctx, 0);
1948 retry:
1949 	drm_for_each_crtc(crtc, dev) {
1950 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
1951 		if (ret < 0) {
1952 			if (ret == -EDEADLK) {
1953 				drm_modeset_backoff(&ctx);
1954 				goto retry;
1955       		}
1956 			goto out_fini;
1957 		}
1958 	}
1959 
1960 	drm_connector_list_iter_begin(dev, &conn_iter);
1961 	drm_for_each_connector_iter(con, &conn_iter) {
1962 		du = vmw_connector_to_du(con);
1963 		if (num_rects > du->unit) {
1964 			du->pref_width = drm_rect_width(&rects[du->unit]);
1965 			du->pref_height = drm_rect_height(&rects[du->unit]);
1966 			du->pref_active = true;
1967 			du->gui_x = rects[du->unit].x1;
1968 			du->gui_y = rects[du->unit].y1;
1969 		} else {
1970 			du->pref_width = 800;
1971 			du->pref_height = 600;
1972 			du->pref_active = false;
1973 			du->gui_x = 0;
1974 			du->gui_y = 0;
1975 		}
1976 	}
1977 	drm_connector_list_iter_end(&conn_iter);
1978 
1979 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1980 		du = vmw_connector_to_du(con);
1981 		if (num_rects > du->unit) {
1982 			drm_object_property_set_value
1983 			  (&con->base, dev->mode_config.suggested_x_property,
1984 			   du->gui_x);
1985 			drm_object_property_set_value
1986 			  (&con->base, dev->mode_config.suggested_y_property,
1987 			   du->gui_y);
1988 		} else {
1989 			drm_object_property_set_value
1990 			  (&con->base, dev->mode_config.suggested_x_property,
1991 			   0);
1992 			drm_object_property_set_value
1993 			  (&con->base, dev->mode_config.suggested_y_property,
1994 			   0);
1995 		}
1996 		con->status = vmw_du_connector_detect(con, true);
1997 	}
1998 
1999 	drm_sysfs_hotplug_event(dev);
2000 out_fini:
2001 	drm_modeset_drop_locks(&ctx);
2002 	drm_modeset_acquire_fini(&ctx);
2003 	mutex_unlock(&dev->mode_config.mutex);
2004 
2005 	return 0;
2006 }
2007 
2008 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2009 			  u16 *r, u16 *g, u16 *b,
2010 			  uint32_t size,
2011 			  struct drm_modeset_acquire_ctx *ctx)
2012 {
2013 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2014 	int i;
2015 
2016 	for (i = 0; i < size; i++) {
2017 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2018 			  r[i], g[i], b[i]);
2019 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2020 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2021 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2028 {
2029 	return 0;
2030 }
2031 
2032 enum drm_connector_status
2033 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2034 {
2035 	uint32_t num_displays;
2036 	struct drm_device *dev = connector->dev;
2037 	struct vmw_private *dev_priv = vmw_priv(dev);
2038 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2039 
2040 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2041 
2042 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2043 		 du->pref_active) ?
2044 		connector_status_connected : connector_status_disconnected);
2045 }
2046 
2047 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2048 	/* 640x480@60Hz */
2049 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2050 		   752, 800, 0, 480, 489, 492, 525, 0,
2051 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2052 	/* 800x600@60Hz */
2053 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2054 		   968, 1056, 0, 600, 601, 605, 628, 0,
2055 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2056 	/* 1024x768@60Hz */
2057 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2058 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2059 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2060 	/* 1152x864@75Hz */
2061 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2062 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2063 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2064 	/* 1280x768@60Hz */
2065 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2066 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2067 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2068 	/* 1280x800@60Hz */
2069 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2070 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2071 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2072 	/* 1280x960@60Hz */
2073 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2074 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2075 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2076 	/* 1280x1024@60Hz */
2077 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2078 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2079 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2080 	/* 1360x768@60Hz */
2081 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2082 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2083 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2084 	/* 1440x1050@60Hz */
2085 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2086 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2087 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2088 	/* 1440x900@60Hz */
2089 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2090 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2091 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2092 	/* 1600x1200@60Hz */
2093 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2094 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2095 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2096 	/* 1680x1050@60Hz */
2097 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2098 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2099 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2100 	/* 1792x1344@60Hz */
2101 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2102 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2103 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2104 	/* 1853x1392@60Hz */
2105 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2106 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2107 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2108 	/* 1920x1200@60Hz */
2109 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2110 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2111 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2112 	/* 1920x1440@60Hz */
2113 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2114 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2115 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2116 	/* 2560x1600@60Hz */
2117 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2118 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2119 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2120 	/* Terminate */
2121 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2122 };
2123 
2124 /**
2125  * vmw_guess_mode_timing - Provide fake timings for a
2126  * 60Hz vrefresh mode.
2127  *
2128  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2129  * members filled in.
2130  */
2131 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2132 {
2133 	mode->hsync_start = mode->hdisplay + 50;
2134 	mode->hsync_end = mode->hsync_start + 50;
2135 	mode->htotal = mode->hsync_end + 50;
2136 
2137 	mode->vsync_start = mode->vdisplay + 50;
2138 	mode->vsync_end = mode->vsync_start + 50;
2139 	mode->vtotal = mode->vsync_end + 50;
2140 
2141 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2142 }
2143 
2144 
2145 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2146 				uint32_t max_width, uint32_t max_height)
2147 {
2148 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2149 	struct drm_device *dev = connector->dev;
2150 	struct vmw_private *dev_priv = vmw_priv(dev);
2151 	struct drm_display_mode *mode = NULL;
2152 	struct drm_display_mode *bmode;
2153 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2154 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2155 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2156 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2157 	};
2158 	int i;
2159 	u32 assumed_bpp = 4;
2160 
2161 	if (dev_priv->assume_16bpp)
2162 		assumed_bpp = 2;
2163 
2164 	max_width  = min(max_width,  dev_priv->texture_max_width);
2165 	max_height = min(max_height, dev_priv->texture_max_height);
2166 
2167 	/*
2168 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2169 	 * HEIGHT registers.
2170 	 */
2171 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2172 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2173 		max_height = min(max_height, dev_priv->stdu_max_height);
2174 	}
2175 
2176 	/* Add preferred mode */
2177 	mode = drm_mode_duplicate(dev, &prefmode);
2178 	if (!mode)
2179 		return 0;
2180 	mode->hdisplay = du->pref_width;
2181 	mode->vdisplay = du->pref_height;
2182 	vmw_guess_mode_timing(mode);
2183 
2184 	if (vmw_kms_validate_mode_vram(dev_priv,
2185 					mode->hdisplay * assumed_bpp,
2186 					mode->vdisplay)) {
2187 		drm_mode_probed_add(connector, mode);
2188 	} else {
2189 		drm_mode_destroy(dev, mode);
2190 		mode = NULL;
2191 	}
2192 
2193 	if (du->pref_mode) {
2194 		list_del_init(&du->pref_mode->head);
2195 		drm_mode_destroy(dev, du->pref_mode);
2196 	}
2197 
2198 	/* mode might be null here, this is intended */
2199 	du->pref_mode = mode;
2200 
2201 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2202 		bmode = &vmw_kms_connector_builtin[i];
2203 		if (bmode->hdisplay > max_width ||
2204 		    bmode->vdisplay > max_height)
2205 			continue;
2206 
2207 		if (!vmw_kms_validate_mode_vram(dev_priv,
2208 						bmode->hdisplay * assumed_bpp,
2209 						bmode->vdisplay))
2210 			continue;
2211 
2212 		mode = drm_mode_duplicate(dev, bmode);
2213 		if (!mode)
2214 			return 0;
2215 
2216 		drm_mode_probed_add(connector, mode);
2217 	}
2218 
2219 	drm_connector_list_update(connector);
2220 	/* Move the prefered mode first, help apps pick the right mode. */
2221 	drm_mode_sort(&connector->modes);
2222 
2223 	return 1;
2224 }
2225 
2226 /**
2227  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2228  * @dev: drm device for the ioctl
2229  * @data: data pointer for the ioctl
2230  * @file_priv: drm file for the ioctl call
2231  *
2232  * Update preferred topology of display unit as per ioctl request. The topology
2233  * is expressed as array of drm_vmw_rect.
2234  * e.g.
2235  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2236  *
2237  * NOTE:
2238  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2239  * device limit on topology, x + w and y + h (lower right) cannot be greater
2240  * than INT_MAX. So topology beyond these limits will return with error.
2241  *
2242  * Returns:
2243  * Zero on success, negative errno on failure.
2244  */
2245 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2246 				struct drm_file *file_priv)
2247 {
2248 	struct vmw_private *dev_priv = vmw_priv(dev);
2249 	struct drm_mode_config *mode_config = &dev->mode_config;
2250 	struct drm_vmw_update_layout_arg *arg =
2251 		(struct drm_vmw_update_layout_arg *)data;
2252 	void __user *user_rects;
2253 	struct drm_vmw_rect *rects;
2254 	struct drm_rect *drm_rects;
2255 	unsigned rects_size;
2256 	int ret, i;
2257 
2258 	if (!arg->num_outputs) {
2259 		struct drm_rect def_rect = {0, 0, 800, 600};
2260 		VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n",
2261 			      def_rect.x1, def_rect.y1,
2262 			      def_rect.x2, def_rect.y2);
2263 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2264 		return 0;
2265 	}
2266 
2267 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2268 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2269 			GFP_KERNEL);
2270 	if (unlikely(!rects))
2271 		return -ENOMEM;
2272 
2273 	user_rects = (void __user *)(unsigned long)arg->rects;
2274 	ret = copy_from_user(rects, user_rects, rects_size);
2275 	if (unlikely(ret != 0)) {
2276 		DRM_ERROR("Failed to get rects.\n");
2277 		ret = -EFAULT;
2278 		goto out_free;
2279 	}
2280 
2281 	drm_rects = (struct drm_rect *)rects;
2282 
2283 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2284 	for (i = 0; i < arg->num_outputs; i++) {
2285 		struct drm_vmw_rect curr_rect;
2286 
2287 		/* Verify user-space for overflow as kernel use drm_rect */
2288 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2289 		    (rects[i].y + rects[i].h > INT_MAX)) {
2290 			ret = -ERANGE;
2291 			goto out_free;
2292 		}
2293 
2294 		curr_rect = rects[i];
2295 		drm_rects[i].x1 = curr_rect.x;
2296 		drm_rects[i].y1 = curr_rect.y;
2297 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2298 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2299 
2300 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2301 			      drm_rects[i].x1, drm_rects[i].y1,
2302 			      drm_rects[i].x2, drm_rects[i].y2);
2303 
2304 		/*
2305 		 * Currently this check is limiting the topology within
2306 		 * mode_config->max (which actually is max texture size
2307 		 * supported by virtual device). This limit is here to address
2308 		 * window managers that create a big framebuffer for whole
2309 		 * topology.
2310 		 */
2311 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2312 		    drm_rects[i].x2 > mode_config->max_width ||
2313 		    drm_rects[i].y2 > mode_config->max_height) {
2314 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2315 				      drm_rects[i].x1, drm_rects[i].y1,
2316 				      drm_rects[i].x2, drm_rects[i].y2);
2317 			ret = -EINVAL;
2318 			goto out_free;
2319 		}
2320 	}
2321 
2322 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2323 
2324 	if (ret == 0)
2325 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2326 
2327 out_free:
2328 	kfree(rects);
2329 	return ret;
2330 }
2331 
2332 /**
2333  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2334  * on a set of cliprects and a set of display units.
2335  *
2336  * @dev_priv: Pointer to a device private structure.
2337  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2338  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2339  * Cliprects are given in framebuffer coordinates.
2340  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2341  * be NULL. Cliprects are given in source coordinates.
2342  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2343  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2344  * @num_clips: Number of cliprects in the @clips or @vclips array.
2345  * @increment: Integer with which to increment the clip counter when looping.
2346  * Used to skip a predetermined number of clip rects.
2347  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2348  */
2349 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2350 			 struct vmw_framebuffer *framebuffer,
2351 			 const struct drm_clip_rect *clips,
2352 			 const struct drm_vmw_rect *vclips,
2353 			 s32 dest_x, s32 dest_y,
2354 			 int num_clips,
2355 			 int increment,
2356 			 struct vmw_kms_dirty *dirty)
2357 {
2358 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2359 	struct drm_crtc *crtc;
2360 	u32 num_units = 0;
2361 	u32 i, k;
2362 
2363 	dirty->dev_priv = dev_priv;
2364 
2365 	/* If crtc is passed, no need to iterate over other display units */
2366 	if (dirty->crtc) {
2367 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2368 	} else {
2369 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2370 				    head) {
2371 			struct drm_plane *plane = crtc->primary;
2372 
2373 			if (plane->state->fb == &framebuffer->base)
2374 				units[num_units++] = vmw_crtc_to_du(crtc);
2375 		}
2376 	}
2377 
2378 	for (k = 0; k < num_units; k++) {
2379 		struct vmw_display_unit *unit = units[k];
2380 		s32 crtc_x = unit->crtc.x;
2381 		s32 crtc_y = unit->crtc.y;
2382 		s32 crtc_width = unit->crtc.mode.hdisplay;
2383 		s32 crtc_height = unit->crtc.mode.vdisplay;
2384 		const struct drm_clip_rect *clips_ptr = clips;
2385 		const struct drm_vmw_rect *vclips_ptr = vclips;
2386 
2387 		dirty->unit = unit;
2388 		if (dirty->fifo_reserve_size > 0) {
2389 			dirty->cmd = VMW_FIFO_RESERVE(dev_priv,
2390 						      dirty->fifo_reserve_size);
2391 			if (!dirty->cmd)
2392 				return -ENOMEM;
2393 
2394 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2395 		}
2396 		dirty->num_hits = 0;
2397 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2398 		       vclips_ptr += increment) {
2399 			s32 clip_left;
2400 			s32 clip_top;
2401 
2402 			/*
2403 			 * Select clip array type. Note that integer type
2404 			 * in @clips is unsigned short, whereas in @vclips
2405 			 * it's 32-bit.
2406 			 */
2407 			if (clips) {
2408 				dirty->fb_x = (s32) clips_ptr->x1;
2409 				dirty->fb_y = (s32) clips_ptr->y1;
2410 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2411 					crtc_x;
2412 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2413 					crtc_y;
2414 			} else {
2415 				dirty->fb_x = vclips_ptr->x;
2416 				dirty->fb_y = vclips_ptr->y;
2417 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2418 					dest_x - crtc_x;
2419 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2420 					dest_y - crtc_y;
2421 			}
2422 
2423 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2424 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2425 
2426 			/* Skip this clip if it's outside the crtc region */
2427 			if (dirty->unit_x1 >= crtc_width ||
2428 			    dirty->unit_y1 >= crtc_height ||
2429 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2430 				continue;
2431 
2432 			/* Clip right and bottom to crtc limits */
2433 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2434 					       crtc_width);
2435 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2436 					       crtc_height);
2437 
2438 			/* Clip left and top to crtc limits */
2439 			clip_left = min_t(s32, dirty->unit_x1, 0);
2440 			clip_top = min_t(s32, dirty->unit_y1, 0);
2441 			dirty->unit_x1 -= clip_left;
2442 			dirty->unit_y1 -= clip_top;
2443 			dirty->fb_x -= clip_left;
2444 			dirty->fb_y -= clip_top;
2445 
2446 			dirty->clip(dirty);
2447 		}
2448 
2449 		dirty->fifo_commit(dirty);
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 /**
2456  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2457  * cleanup and fencing
2458  * @dev_priv: Pointer to the device-private struct
2459  * @file_priv: Pointer identifying the client when user-space fencing is used
2460  * @ctx: Pointer to the validation context
2461  * @out_fence: If non-NULL, returned refcounted fence-pointer
2462  * @user_fence_rep: If non-NULL, pointer to user-space address area
2463  * in which to copy user-space fence info
2464  */
2465 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2466 				      struct drm_file *file_priv,
2467 				      struct vmw_validation_context *ctx,
2468 				      struct vmw_fence_obj **out_fence,
2469 				      struct drm_vmw_fence_rep __user *
2470 				      user_fence_rep)
2471 {
2472 	struct vmw_fence_obj *fence = NULL;
2473 	uint32_t handle = 0;
2474 	int ret = 0;
2475 
2476 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2477 	    out_fence)
2478 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2479 						 file_priv ? &handle : NULL);
2480 	vmw_validation_done(ctx, fence);
2481 	if (file_priv)
2482 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2483 					    ret, user_fence_rep, fence,
2484 					    handle, -1, NULL);
2485 	if (out_fence)
2486 		*out_fence = fence;
2487 	else
2488 		vmw_fence_obj_unreference(&fence);
2489 }
2490 
2491 /**
2492  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2493  * its backing MOB.
2494  *
2495  * @res: Pointer to the surface resource
2496  * @clips: Clip rects in framebuffer (surface) space.
2497  * @num_clips: Number of clips in @clips.
2498  * @increment: Integer with which to increment the clip counter when looping.
2499  * Used to skip a predetermined number of clip rects.
2500  *
2501  * This function makes sure the proxy surface is updated from its backing MOB
2502  * using the region given by @clips. The surface resource @res and its backing
2503  * MOB needs to be reserved and validated on call.
2504  */
2505 int vmw_kms_update_proxy(struct vmw_resource *res,
2506 			 const struct drm_clip_rect *clips,
2507 			 unsigned num_clips,
2508 			 int increment)
2509 {
2510 	struct vmw_private *dev_priv = res->dev_priv;
2511 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2512 	struct {
2513 		SVGA3dCmdHeader header;
2514 		SVGA3dCmdUpdateGBImage body;
2515 	} *cmd;
2516 	SVGA3dBox *box;
2517 	size_t copy_size = 0;
2518 	int i;
2519 
2520 	if (!clips)
2521 		return 0;
2522 
2523 	cmd = VMW_FIFO_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2524 	if (!cmd)
2525 		return -ENOMEM;
2526 
2527 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2528 		box = &cmd->body.box;
2529 
2530 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2531 		cmd->header.size = sizeof(cmd->body);
2532 		cmd->body.image.sid = res->id;
2533 		cmd->body.image.face = 0;
2534 		cmd->body.image.mipmap = 0;
2535 
2536 		if (clips->x1 > size->width || clips->x2 > size->width ||
2537 		    clips->y1 > size->height || clips->y2 > size->height) {
2538 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2539 			return -EINVAL;
2540 		}
2541 
2542 		box->x = clips->x1;
2543 		box->y = clips->y1;
2544 		box->z = 0;
2545 		box->w = clips->x2 - clips->x1;
2546 		box->h = clips->y2 - clips->y1;
2547 		box->d = 1;
2548 
2549 		copy_size += sizeof(*cmd);
2550 	}
2551 
2552 	vmw_fifo_commit(dev_priv, copy_size);
2553 
2554 	return 0;
2555 }
2556 
2557 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2558 			    unsigned unit,
2559 			    u32 max_width,
2560 			    u32 max_height,
2561 			    struct drm_connector **p_con,
2562 			    struct drm_crtc **p_crtc,
2563 			    struct drm_display_mode **p_mode)
2564 {
2565 	struct drm_connector *con;
2566 	struct vmw_display_unit *du;
2567 	struct drm_display_mode *mode;
2568 	int i = 0;
2569 	int ret = 0;
2570 
2571 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2572 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2573 			    head) {
2574 		if (i == unit)
2575 			break;
2576 
2577 		++i;
2578 	}
2579 
2580 	if (&con->head == &dev_priv->dev->mode_config.connector_list) {
2581 		DRM_ERROR("Could not find initial display unit.\n");
2582 		ret = -EINVAL;
2583 		goto out_unlock;
2584 	}
2585 
2586 	if (list_empty(&con->modes))
2587 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2588 
2589 	if (list_empty(&con->modes)) {
2590 		DRM_ERROR("Could not find initial display mode.\n");
2591 		ret = -EINVAL;
2592 		goto out_unlock;
2593 	}
2594 
2595 	du = vmw_connector_to_du(con);
2596 	*p_con = con;
2597 	*p_crtc = &du->crtc;
2598 
2599 	list_for_each_entry(mode, &con->modes, head) {
2600 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2601 			break;
2602 	}
2603 
2604 	if (&mode->head == &con->modes) {
2605 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2606 		*p_mode = list_first_entry(&con->modes,
2607 					   struct drm_display_mode,
2608 					   head);
2609 	} else {
2610 		*p_mode = mode;
2611 	}
2612 
2613  out_unlock:
2614 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2615 
2616 	return ret;
2617 }
2618 
2619 /**
2620  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2621  * property.
2622  *
2623  * @dev_priv: Pointer to a device private struct.
2624  *
2625  * Sets up the implicit placement property unless it's already set up.
2626  */
2627 void
2628 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2629 {
2630 	if (dev_priv->implicit_placement_property)
2631 		return;
2632 
2633 	dev_priv->implicit_placement_property =
2634 		drm_property_create_range(dev_priv->dev,
2635 					  DRM_MODE_PROP_IMMUTABLE,
2636 					  "implicit_placement", 0, 1);
2637 }
2638 
2639 /**
2640  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2641  *
2642  * @dev: Pointer to the drm device
2643  * Return: 0 on success. Negative error code on failure.
2644  */
2645 int vmw_kms_suspend(struct drm_device *dev)
2646 {
2647 	struct vmw_private *dev_priv = vmw_priv(dev);
2648 
2649 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2650 	if (IS_ERR(dev_priv->suspend_state)) {
2651 		int ret = PTR_ERR(dev_priv->suspend_state);
2652 
2653 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2654 		dev_priv->suspend_state = NULL;
2655 
2656 		return ret;
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 
2663 /**
2664  * vmw_kms_resume - Re-enable modesetting and restore state
2665  *
2666  * @dev: Pointer to the drm device
2667  * Return: 0 on success. Negative error code on failure.
2668  *
2669  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2670  * to call this function without a previous vmw_kms_suspend().
2671  */
2672 int vmw_kms_resume(struct drm_device *dev)
2673 {
2674 	struct vmw_private *dev_priv = vmw_priv(dev);
2675 	int ret;
2676 
2677 	if (WARN_ON(!dev_priv->suspend_state))
2678 		return 0;
2679 
2680 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2681 	dev_priv->suspend_state = NULL;
2682 
2683 	return ret;
2684 }
2685 
2686 /**
2687  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2688  *
2689  * @dev: Pointer to the drm device
2690  */
2691 void vmw_kms_lost_device(struct drm_device *dev)
2692 {
2693 	drm_atomic_helper_shutdown(dev);
2694 }
2695 
2696 /**
2697  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2698  * @update: The closure structure.
2699  *
2700  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2701  * update on display unit.
2702  *
2703  * Return: 0 on success or a negative error code on failure.
2704  */
2705 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2706 {
2707 	struct drm_plane_state *state = update->plane->state;
2708 	struct drm_plane_state *old_state = update->old_state;
2709 	struct drm_atomic_helper_damage_iter iter;
2710 	struct drm_rect clip;
2711 	struct drm_rect bb;
2712 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2713 	uint32_t reserved_size = 0;
2714 	uint32_t submit_size = 0;
2715 	uint32_t curr_size = 0;
2716 	uint32_t num_hits = 0;
2717 	void *cmd_start;
2718 	char *cmd_next;
2719 	int ret;
2720 
2721 	/*
2722 	 * Iterate in advance to check if really need plane update and find the
2723 	 * number of clips that actually are in plane src for fifo allocation.
2724 	 */
2725 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2726 	drm_atomic_for_each_plane_damage(&iter, &clip)
2727 		num_hits++;
2728 
2729 	if (num_hits == 0)
2730 		return 0;
2731 
2732 	if (update->vfb->bo) {
2733 		struct vmw_framebuffer_bo *vfbbo =
2734 			container_of(update->vfb, typeof(*vfbbo), base);
2735 
2736 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2737 					    update->cpu_blit);
2738 	} else {
2739 		struct vmw_framebuffer_surface *vfbs =
2740 			container_of(update->vfb, typeof(*vfbs), base);
2741 
2742 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2743 						  0, VMW_RES_DIRTY_NONE, NULL,
2744 						  NULL);
2745 	}
2746 
2747 	if (ret)
2748 		return ret;
2749 
2750 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2751 	if (ret)
2752 		goto out_unref;
2753 
2754 	reserved_size = update->calc_fifo_size(update, num_hits);
2755 	cmd_start = VMW_FIFO_RESERVE(update->dev_priv, reserved_size);
2756 	if (!cmd_start) {
2757 		ret = -ENOMEM;
2758 		goto out_revert;
2759 	}
2760 
2761 	cmd_next = cmd_start;
2762 
2763 	if (update->post_prepare) {
2764 		curr_size = update->post_prepare(update, cmd_next);
2765 		cmd_next += curr_size;
2766 		submit_size += curr_size;
2767 	}
2768 
2769 	if (update->pre_clip) {
2770 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2771 		cmd_next += curr_size;
2772 		submit_size += curr_size;
2773 	}
2774 
2775 	bb.x1 = INT_MAX;
2776 	bb.y1 = INT_MAX;
2777 	bb.x2 = INT_MIN;
2778 	bb.y2 = INT_MIN;
2779 
2780 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2781 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2782 		uint32_t fb_x = clip.x1;
2783 		uint32_t fb_y = clip.y1;
2784 
2785 		vmw_du_translate_to_crtc(state, &clip);
2786 		if (update->clip) {
2787 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2788 						 fb_y);
2789 			cmd_next += curr_size;
2790 			submit_size += curr_size;
2791 		}
2792 		bb.x1 = min_t(int, bb.x1, clip.x1);
2793 		bb.y1 = min_t(int, bb.y1, clip.y1);
2794 		bb.x2 = max_t(int, bb.x2, clip.x2);
2795 		bb.y2 = max_t(int, bb.y2, clip.y2);
2796 	}
2797 
2798 	curr_size = update->post_clip(update, cmd_next, &bb);
2799 	submit_size += curr_size;
2800 
2801 	if (reserved_size < submit_size)
2802 		submit_size = 0;
2803 
2804 	vmw_fifo_commit(update->dev_priv, submit_size);
2805 
2806 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2807 					 update->out_fence, NULL);
2808 	return ret;
2809 
2810 out_revert:
2811 	vmw_validation_revert(&val_ctx);
2812 
2813 out_unref:
2814 	vmw_validation_unref_lists(&val_ctx);
2815 	return ret;
2816 }
2817