1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright (c) 2009-2024 Broadcom. All Rights Reserved. The term 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 #include "vmwgfx_kms.h" 29 30 #include "vmwgfx_bo.h" 31 #include "vmwgfx_vkms.h" 32 #include "vmw_surface_cache.h" 33 34 #include <drm/drm_atomic.h> 35 #include <drm/drm_atomic_helper.h> 36 #include <drm/drm_damage_helper.h> 37 #include <drm/drm_fourcc.h> 38 #include <drm/drm_rect.h> 39 #include <drm/drm_sysfs.h> 40 #include <drm/drm_edid.h> 41 42 void vmw_du_init(struct vmw_display_unit *du) 43 { 44 vmw_vkms_crtc_init(&du->crtc); 45 } 46 47 void vmw_du_cleanup(struct vmw_display_unit *du) 48 { 49 struct vmw_private *dev_priv = vmw_priv(du->primary.dev); 50 51 vmw_vkms_crtc_cleanup(&du->crtc); 52 drm_plane_cleanup(&du->primary); 53 if (vmw_cmd_supported(dev_priv)) 54 drm_plane_cleanup(&du->cursor.base); 55 56 drm_connector_unregister(&du->connector); 57 drm_crtc_cleanup(&du->crtc); 58 drm_encoder_cleanup(&du->encoder); 59 drm_connector_cleanup(&du->connector); 60 } 61 62 /* 63 * Display Unit Cursor functions 64 */ 65 66 static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps); 67 static void vmw_cursor_update_mob(struct vmw_private *dev_priv, 68 struct vmw_plane_state *vps, 69 u32 *image, u32 width, u32 height, 70 u32 hotspotX, u32 hotspotY); 71 72 struct vmw_svga_fifo_cmd_define_cursor { 73 u32 cmd; 74 SVGAFifoCmdDefineAlphaCursor cursor; 75 }; 76 77 /** 78 * vmw_send_define_cursor_cmd - queue a define cursor command 79 * @dev_priv: the private driver struct 80 * @image: buffer which holds the cursor image 81 * @width: width of the mouse cursor image 82 * @height: height of the mouse cursor image 83 * @hotspotX: the horizontal position of mouse hotspot 84 * @hotspotY: the vertical position of mouse hotspot 85 */ 86 static void vmw_send_define_cursor_cmd(struct vmw_private *dev_priv, 87 u32 *image, u32 width, u32 height, 88 u32 hotspotX, u32 hotspotY) 89 { 90 struct vmw_svga_fifo_cmd_define_cursor *cmd; 91 const u32 image_size = width * height * sizeof(*image); 92 const u32 cmd_size = sizeof(*cmd) + image_size; 93 94 /* Try to reserve fifocmd space and swallow any failures; 95 such reservations cannot be left unconsumed for long 96 under the risk of clogging other fifocmd users, so 97 we treat reservations separtely from the way we treat 98 other fallible KMS-atomic resources at prepare_fb */ 99 cmd = VMW_CMD_RESERVE(dev_priv, cmd_size); 100 101 if (unlikely(!cmd)) 102 return; 103 104 memset(cmd, 0, sizeof(*cmd)); 105 106 memcpy(&cmd[1], image, image_size); 107 108 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 109 cmd->cursor.id = 0; 110 cmd->cursor.width = width; 111 cmd->cursor.height = height; 112 cmd->cursor.hotspotX = hotspotX; 113 cmd->cursor.hotspotY = hotspotY; 114 115 vmw_cmd_commit_flush(dev_priv, cmd_size); 116 } 117 118 /** 119 * vmw_cursor_update_image - update the cursor image on the provided plane 120 * @dev_priv: the private driver struct 121 * @vps: the plane state of the cursor plane 122 * @image: buffer which holds the cursor image 123 * @width: width of the mouse cursor image 124 * @height: height of the mouse cursor image 125 * @hotspotX: the horizontal position of mouse hotspot 126 * @hotspotY: the vertical position of mouse hotspot 127 */ 128 static void vmw_cursor_update_image(struct vmw_private *dev_priv, 129 struct vmw_plane_state *vps, 130 u32 *image, u32 width, u32 height, 131 u32 hotspotX, u32 hotspotY) 132 { 133 if (vps->cursor.bo) 134 vmw_cursor_update_mob(dev_priv, vps, image, 135 vps->base.crtc_w, vps->base.crtc_h, 136 hotspotX, hotspotY); 137 138 else 139 vmw_send_define_cursor_cmd(dev_priv, image, width, height, 140 hotspotX, hotspotY); 141 } 142 143 144 /** 145 * vmw_cursor_update_mob - Update cursor vis CursorMob mechanism 146 * 147 * Called from inside vmw_du_cursor_plane_atomic_update to actually 148 * make the cursor-image live. 149 * 150 * @dev_priv: device to work with 151 * @vps: the plane state of the cursor plane 152 * @image: cursor source data to fill the MOB with 153 * @width: source data width 154 * @height: source data height 155 * @hotspotX: cursor hotspot x 156 * @hotspotY: cursor hotspot Y 157 */ 158 static void vmw_cursor_update_mob(struct vmw_private *dev_priv, 159 struct vmw_plane_state *vps, 160 u32 *image, u32 width, u32 height, 161 u32 hotspotX, u32 hotspotY) 162 { 163 SVGAGBCursorHeader *header; 164 SVGAGBAlphaCursorHeader *alpha_header; 165 const u32 image_size = width * height * sizeof(*image); 166 167 header = vmw_bo_map_and_cache(vps->cursor.bo); 168 alpha_header = &header->header.alphaHeader; 169 170 memset(header, 0, sizeof(*header)); 171 172 header->type = SVGA_ALPHA_CURSOR; 173 header->sizeInBytes = image_size; 174 175 alpha_header->hotspotX = hotspotX; 176 alpha_header->hotspotY = hotspotY; 177 alpha_header->width = width; 178 alpha_header->height = height; 179 180 memcpy(header + 1, image, image_size); 181 vmw_write(dev_priv, SVGA_REG_CURSOR_MOBID, 182 vps->cursor.bo->tbo.resource->start); 183 } 184 185 186 static u32 vmw_du_cursor_mob_size(u32 w, u32 h) 187 { 188 return w * h * sizeof(u32) + sizeof(SVGAGBCursorHeader); 189 } 190 191 /** 192 * vmw_du_cursor_plane_acquire_image -- Acquire the image data 193 * @vps: cursor plane state 194 */ 195 static u32 *vmw_du_cursor_plane_acquire_image(struct vmw_plane_state *vps) 196 { 197 struct vmw_surface *surf; 198 199 if (vmw_user_object_is_null(&vps->uo)) 200 return NULL; 201 202 surf = vmw_user_object_surface(&vps->uo); 203 if (surf && !vmw_user_object_is_mapped(&vps->uo)) 204 return surf->snooper.image; 205 206 return vmw_user_object_map(&vps->uo); 207 } 208 209 static bool vmw_du_cursor_plane_has_changed(struct vmw_plane_state *old_vps, 210 struct vmw_plane_state *new_vps) 211 { 212 void *old_image; 213 void *new_image; 214 u32 size; 215 bool changed; 216 217 if (old_vps->base.crtc_w != new_vps->base.crtc_w || 218 old_vps->base.crtc_h != new_vps->base.crtc_h) 219 return true; 220 221 if (old_vps->cursor.hotspot_x != new_vps->cursor.hotspot_x || 222 old_vps->cursor.hotspot_y != new_vps->cursor.hotspot_y) 223 return true; 224 225 size = new_vps->base.crtc_w * new_vps->base.crtc_h * sizeof(u32); 226 227 old_image = vmw_du_cursor_plane_acquire_image(old_vps); 228 new_image = vmw_du_cursor_plane_acquire_image(new_vps); 229 230 changed = false; 231 if (old_image && new_image && old_image != new_image) 232 changed = memcmp(old_image, new_image, size) != 0; 233 234 return changed; 235 } 236 237 static void vmw_du_destroy_cursor_mob(struct vmw_bo **vbo) 238 { 239 if (!(*vbo)) 240 return; 241 242 ttm_bo_unpin(&(*vbo)->tbo); 243 vmw_bo_unreference(vbo); 244 } 245 246 static void vmw_du_put_cursor_mob(struct vmw_cursor_plane *vcp, 247 struct vmw_plane_state *vps) 248 { 249 u32 i; 250 251 if (!vps->cursor.bo) 252 return; 253 254 vmw_du_cursor_plane_unmap_cm(vps); 255 256 /* Look for a free slot to return this mob to the cache. */ 257 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { 258 if (!vcp->cursor_mobs[i]) { 259 vcp->cursor_mobs[i] = vps->cursor.bo; 260 vps->cursor.bo = NULL; 261 return; 262 } 263 } 264 265 /* Cache is full: See if this mob is bigger than an existing mob. */ 266 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { 267 if (vcp->cursor_mobs[i]->tbo.base.size < 268 vps->cursor.bo->tbo.base.size) { 269 vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); 270 vcp->cursor_mobs[i] = vps->cursor.bo; 271 vps->cursor.bo = NULL; 272 return; 273 } 274 } 275 276 /* Destroy it if it's not worth caching. */ 277 vmw_du_destroy_cursor_mob(&vps->cursor.bo); 278 } 279 280 static int vmw_du_get_cursor_mob(struct vmw_cursor_plane *vcp, 281 struct vmw_plane_state *vps) 282 { 283 struct vmw_private *dev_priv = vcp->base.dev->dev_private; 284 u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); 285 u32 i; 286 u32 cursor_max_dim, mob_max_size; 287 struct vmw_fence_obj *fence = NULL; 288 int ret; 289 290 if (!dev_priv->has_mob || 291 (dev_priv->capabilities2 & SVGA_CAP2_CURSOR_MOB) == 0) 292 return -EINVAL; 293 294 mob_max_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE); 295 cursor_max_dim = vmw_read(dev_priv, SVGA_REG_CURSOR_MAX_DIMENSION); 296 297 if (size > mob_max_size || vps->base.crtc_w > cursor_max_dim || 298 vps->base.crtc_h > cursor_max_dim) 299 return -EINVAL; 300 301 if (vps->cursor.bo) { 302 if (vps->cursor.bo->tbo.base.size >= size) 303 return 0; 304 vmw_du_put_cursor_mob(vcp, vps); 305 } 306 307 /* Look for an unused mob in the cache. */ 308 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { 309 if (vcp->cursor_mobs[i] && 310 vcp->cursor_mobs[i]->tbo.base.size >= size) { 311 vps->cursor.bo = vcp->cursor_mobs[i]; 312 vcp->cursor_mobs[i] = NULL; 313 return 0; 314 } 315 } 316 /* Create a new mob if we can't find an existing one. */ 317 ret = vmw_bo_create_and_populate(dev_priv, size, 318 VMW_BO_DOMAIN_MOB, 319 &vps->cursor.bo); 320 321 if (ret != 0) 322 return ret; 323 324 /* Fence the mob creation so we are guarateed to have the mob */ 325 ret = ttm_bo_reserve(&vps->cursor.bo->tbo, false, false, NULL); 326 if (ret != 0) 327 goto teardown; 328 329 ret = vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 330 if (ret != 0) { 331 ttm_bo_unreserve(&vps->cursor.bo->tbo); 332 goto teardown; 333 } 334 335 dma_fence_wait(&fence->base, false); 336 dma_fence_put(&fence->base); 337 338 ttm_bo_unreserve(&vps->cursor.bo->tbo); 339 return 0; 340 341 teardown: 342 vmw_du_destroy_cursor_mob(&vps->cursor.bo); 343 return ret; 344 } 345 346 347 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 348 bool show, int x, int y) 349 { 350 const uint32_t svga_cursor_on = show ? SVGA_CURSOR_ON_SHOW 351 : SVGA_CURSOR_ON_HIDE; 352 uint32_t count; 353 354 spin_lock(&dev_priv->cursor_lock); 355 if (dev_priv->capabilities2 & SVGA_CAP2_EXTRA_REGS) { 356 vmw_write(dev_priv, SVGA_REG_CURSOR4_X, x); 357 vmw_write(dev_priv, SVGA_REG_CURSOR4_Y, y); 358 vmw_write(dev_priv, SVGA_REG_CURSOR4_SCREEN_ID, SVGA3D_INVALID_ID); 359 vmw_write(dev_priv, SVGA_REG_CURSOR4_ON, svga_cursor_on); 360 vmw_write(dev_priv, SVGA_REG_CURSOR4_SUBMIT, 1); 361 } else if (vmw_is_cursor_bypass3_enabled(dev_priv)) { 362 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, svga_cursor_on); 363 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x); 364 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y); 365 count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT); 366 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count); 367 } else { 368 vmw_write(dev_priv, SVGA_REG_CURSOR_X, x); 369 vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y); 370 vmw_write(dev_priv, SVGA_REG_CURSOR_ON, svga_cursor_on); 371 } 372 spin_unlock(&dev_priv->cursor_lock); 373 } 374 375 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 376 struct ttm_object_file *tfile, 377 struct ttm_buffer_object *bo, 378 SVGA3dCmdHeader *header) 379 { 380 struct ttm_bo_kmap_obj map; 381 unsigned long kmap_offset; 382 unsigned long kmap_num; 383 SVGA3dCopyBox *box; 384 unsigned box_count; 385 void *virtual; 386 bool is_iomem; 387 struct vmw_dma_cmd { 388 SVGA3dCmdHeader header; 389 SVGA3dCmdSurfaceDMA dma; 390 } *cmd; 391 int i, ret; 392 const struct SVGA3dSurfaceDesc *desc = 393 vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT); 394 const u32 image_pitch = VMW_CURSOR_SNOOP_WIDTH * desc->pitchBytesPerBlock; 395 396 cmd = container_of(header, struct vmw_dma_cmd, header); 397 398 /* No snooper installed, nothing to copy */ 399 if (!srf->snooper.image) 400 return; 401 402 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 403 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 404 return; 405 } 406 407 if (cmd->header.size < 64) { 408 DRM_ERROR("at least one full copy box must be given\n"); 409 return; 410 } 411 412 box = (SVGA3dCopyBox *)&cmd[1]; 413 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 414 sizeof(SVGA3dCopyBox); 415 416 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 417 box->x != 0 || box->y != 0 || box->z != 0 || 418 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 419 box->d != 1 || box_count != 1 || 420 box->w > VMW_CURSOR_SNOOP_WIDTH || box->h > VMW_CURSOR_SNOOP_HEIGHT) { 421 /* TODO handle none page aligned offsets */ 422 /* TODO handle more dst & src != 0 */ 423 /* TODO handle more then one copy */ 424 DRM_ERROR("Can't snoop dma request for cursor!\n"); 425 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 426 box->srcx, box->srcy, box->srcz, 427 box->x, box->y, box->z, 428 box->w, box->h, box->d, box_count, 429 cmd->dma.guest.ptr.offset); 430 return; 431 } 432 433 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 434 kmap_num = (VMW_CURSOR_SNOOP_HEIGHT*image_pitch) >> PAGE_SHIFT; 435 436 ret = ttm_bo_reserve(bo, true, false, NULL); 437 if (unlikely(ret != 0)) { 438 DRM_ERROR("reserve failed\n"); 439 return; 440 } 441 442 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 443 if (unlikely(ret != 0)) 444 goto err_unreserve; 445 446 virtual = ttm_kmap_obj_virtual(&map, &is_iomem); 447 448 if (box->w == VMW_CURSOR_SNOOP_WIDTH && cmd->dma.guest.pitch == image_pitch) { 449 memcpy(srf->snooper.image, virtual, 450 VMW_CURSOR_SNOOP_HEIGHT*image_pitch); 451 } else { 452 /* Image is unsigned pointer. */ 453 for (i = 0; i < box->h; i++) 454 memcpy(srf->snooper.image + i * image_pitch, 455 virtual + i * cmd->dma.guest.pitch, 456 box->w * desc->pitchBytesPerBlock); 457 } 458 459 srf->snooper.age++; 460 461 ttm_bo_kunmap(&map); 462 err_unreserve: 463 ttm_bo_unreserve(bo); 464 } 465 466 /** 467 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 468 * 469 * @dev_priv: Pointer to the device private struct. 470 * 471 * Clears all legacy hotspots. 472 */ 473 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 474 { 475 struct drm_device *dev = &dev_priv->drm; 476 struct vmw_display_unit *du; 477 struct drm_crtc *crtc; 478 479 drm_modeset_lock_all(dev); 480 drm_for_each_crtc(crtc, dev) { 481 du = vmw_crtc_to_du(crtc); 482 483 du->hotspot_x = 0; 484 du->hotspot_y = 0; 485 } 486 drm_modeset_unlock_all(dev); 487 } 488 489 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 490 { 491 struct drm_device *dev = &dev_priv->drm; 492 struct vmw_display_unit *du; 493 struct drm_crtc *crtc; 494 495 mutex_lock(&dev->mode_config.mutex); 496 497 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 498 du = vmw_crtc_to_du(crtc); 499 if (!du->cursor_surface || 500 du->cursor_age == du->cursor_surface->snooper.age || 501 !du->cursor_surface->snooper.image) 502 continue; 503 504 du->cursor_age = du->cursor_surface->snooper.age; 505 vmw_send_define_cursor_cmd(dev_priv, 506 du->cursor_surface->snooper.image, 507 VMW_CURSOR_SNOOP_WIDTH, 508 VMW_CURSOR_SNOOP_HEIGHT, 509 du->hotspot_x + du->core_hotspot_x, 510 du->hotspot_y + du->core_hotspot_y); 511 } 512 513 mutex_unlock(&dev->mode_config.mutex); 514 } 515 516 517 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 518 { 519 struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); 520 u32 i; 521 522 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 523 524 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) 525 vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); 526 527 drm_plane_cleanup(plane); 528 } 529 530 531 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 532 { 533 drm_plane_cleanup(plane); 534 535 /* Planes are static in our case so we don't free it */ 536 } 537 538 539 /** 540 * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface 541 * 542 * @vps: plane state associated with the display surface 543 */ 544 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps) 545 { 546 struct vmw_surface *surf = vmw_user_object_surface(&vps->uo); 547 548 if (surf) { 549 if (vps->pinned) { 550 vmw_resource_unpin(&surf->res); 551 vps->pinned--; 552 } 553 } 554 } 555 556 557 /** 558 * vmw_du_plane_cleanup_fb - Unpins the plane surface 559 * 560 * @plane: display plane 561 * @old_state: Contains the FB to clean up 562 * 563 * Unpins the framebuffer surface 564 * 565 * Returns 0 on success 566 */ 567 void 568 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 569 struct drm_plane_state *old_state) 570 { 571 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 572 573 vmw_du_plane_unpin_surf(vps); 574 } 575 576 577 /** 578 * vmw_du_cursor_plane_map_cm - Maps the cursor mobs. 579 * 580 * @vps: plane_state 581 * 582 * Returns 0 on success 583 */ 584 585 static int 586 vmw_du_cursor_plane_map_cm(struct vmw_plane_state *vps) 587 { 588 int ret; 589 u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); 590 struct ttm_buffer_object *bo; 591 592 if (!vps->cursor.bo) 593 return -EINVAL; 594 595 bo = &vps->cursor.bo->tbo; 596 597 if (bo->base.size < size) 598 return -EINVAL; 599 600 if (vps->cursor.bo->map.virtual) 601 return 0; 602 603 ret = ttm_bo_reserve(bo, false, false, NULL); 604 if (unlikely(ret != 0)) 605 return -ENOMEM; 606 607 vmw_bo_map_and_cache(vps->cursor.bo); 608 609 ttm_bo_unreserve(bo); 610 611 if (unlikely(ret != 0)) 612 return -ENOMEM; 613 614 return 0; 615 } 616 617 618 /** 619 * vmw_du_cursor_plane_unmap_cm - Unmaps the cursor mobs. 620 * 621 * @vps: state of the cursor plane 622 * 623 * Returns 0 on success 624 */ 625 626 static int 627 vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps) 628 { 629 int ret = 0; 630 struct vmw_bo *vbo = vps->cursor.bo; 631 632 if (!vbo || !vbo->map.virtual) 633 return 0; 634 635 ret = ttm_bo_reserve(&vbo->tbo, true, false, NULL); 636 if (likely(ret == 0)) { 637 vmw_bo_unmap(vbo); 638 ttm_bo_unreserve(&vbo->tbo); 639 } 640 641 return ret; 642 } 643 644 645 /** 646 * vmw_du_cursor_plane_cleanup_fb - Unpins the plane surface 647 * 648 * @plane: cursor plane 649 * @old_state: contains the state to clean up 650 * 651 * Unmaps all cursor bo mappings and unpins the cursor surface 652 * 653 * Returns 0 on success 654 */ 655 void 656 vmw_du_cursor_plane_cleanup_fb(struct drm_plane *plane, 657 struct drm_plane_state *old_state) 658 { 659 struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); 660 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 661 662 if (!vmw_user_object_is_null(&vps->uo)) 663 vmw_user_object_unmap(&vps->uo); 664 665 vmw_du_cursor_plane_unmap_cm(vps); 666 vmw_du_put_cursor_mob(vcp, vps); 667 668 vmw_du_plane_unpin_surf(vps); 669 vmw_user_object_unref(&vps->uo); 670 } 671 672 673 /** 674 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 675 * 676 * @plane: display plane 677 * @new_state: info on the new plane state, including the FB 678 * 679 * Returns 0 on success 680 */ 681 int 682 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 683 struct drm_plane_state *new_state) 684 { 685 struct drm_framebuffer *fb = new_state->fb; 686 struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); 687 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 688 struct vmw_bo *bo = NULL; 689 int ret = 0; 690 691 if (!vmw_user_object_is_null(&vps->uo)) { 692 vmw_user_object_unmap(&vps->uo); 693 vmw_user_object_unref(&vps->uo); 694 } 695 696 if (fb) { 697 if (vmw_framebuffer_to_vfb(fb)->bo) { 698 vps->uo.buffer = vmw_framebuffer_to_vfbd(fb)->buffer; 699 vps->uo.surface = NULL; 700 } else { 701 memcpy(&vps->uo, &vmw_framebuffer_to_vfbs(fb)->uo, sizeof(vps->uo)); 702 } 703 vmw_user_object_ref(&vps->uo); 704 } 705 706 bo = vmw_user_object_buffer(&vps->uo); 707 if (bo) { 708 struct ttm_operation_ctx ctx = {false, false}; 709 710 ret = ttm_bo_reserve(&bo->tbo, true, false, NULL); 711 if (ret != 0) 712 return -ENOMEM; 713 714 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 715 if (ret != 0) 716 return -ENOMEM; 717 718 vmw_bo_pin_reserved(bo, true); 719 if (vmw_framebuffer_to_vfb(fb)->bo) { 720 const u32 size = new_state->crtc_w * new_state->crtc_h * sizeof(u32); 721 722 (void)vmw_bo_map_and_cache_size(bo, size); 723 } else { 724 vmw_bo_map_and_cache(bo); 725 } 726 ttm_bo_unreserve(&bo->tbo); 727 } 728 729 if (!vmw_user_object_is_null(&vps->uo)) { 730 vmw_du_get_cursor_mob(vcp, vps); 731 vmw_du_cursor_plane_map_cm(vps); 732 } 733 734 return 0; 735 } 736 737 738 void 739 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 740 struct drm_atomic_state *state) 741 { 742 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 743 plane); 744 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 745 plane); 746 struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc; 747 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 748 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 749 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 750 struct vmw_plane_state *old_vps = vmw_plane_state_to_vps(old_state); 751 struct vmw_bo *old_bo = NULL; 752 struct vmw_bo *new_bo = NULL; 753 s32 hotspot_x, hotspot_y; 754 int ret; 755 756 hotspot_x = du->hotspot_x + new_state->hotspot_x; 757 hotspot_y = du->hotspot_y + new_state->hotspot_y; 758 759 du->cursor_surface = vmw_user_object_surface(&vps->uo); 760 761 if (vmw_user_object_is_null(&vps->uo)) { 762 vmw_cursor_update_position(dev_priv, false, 0, 0); 763 return; 764 } 765 766 vps->cursor.hotspot_x = hotspot_x; 767 vps->cursor.hotspot_y = hotspot_y; 768 769 if (du->cursor_surface) 770 du->cursor_age = du->cursor_surface->snooper.age; 771 772 if (!vmw_user_object_is_null(&old_vps->uo)) { 773 old_bo = vmw_user_object_buffer(&old_vps->uo); 774 ret = ttm_bo_reserve(&old_bo->tbo, false, false, NULL); 775 if (ret != 0) 776 return; 777 } 778 779 if (!vmw_user_object_is_null(&vps->uo)) { 780 new_bo = vmw_user_object_buffer(&vps->uo); 781 if (old_bo != new_bo) { 782 ret = ttm_bo_reserve(&new_bo->tbo, false, false, NULL); 783 if (ret != 0) 784 return; 785 } else { 786 new_bo = NULL; 787 } 788 } 789 if (!vmw_du_cursor_plane_has_changed(old_vps, vps)) { 790 /* 791 * If it hasn't changed, avoid making the device do extra 792 * work by keeping the old cursor active. 793 */ 794 struct vmw_cursor_plane_state tmp = old_vps->cursor; 795 old_vps->cursor = vps->cursor; 796 vps->cursor = tmp; 797 } else { 798 void *image = vmw_du_cursor_plane_acquire_image(vps); 799 if (image) 800 vmw_cursor_update_image(dev_priv, vps, image, 801 new_state->crtc_w, 802 new_state->crtc_h, 803 hotspot_x, hotspot_y); 804 } 805 806 if (old_bo) 807 ttm_bo_unreserve(&old_bo->tbo); 808 if (new_bo) 809 ttm_bo_unreserve(&new_bo->tbo); 810 811 du->cursor_x = new_state->crtc_x + du->set_gui_x; 812 du->cursor_y = new_state->crtc_y + du->set_gui_y; 813 814 vmw_cursor_update_position(dev_priv, true, 815 du->cursor_x + hotspot_x, 816 du->cursor_y + hotspot_y); 817 818 du->core_hotspot_x = hotspot_x - du->hotspot_x; 819 du->core_hotspot_y = hotspot_y - du->hotspot_y; 820 } 821 822 823 /** 824 * vmw_du_primary_plane_atomic_check - check if the new state is okay 825 * 826 * @plane: display plane 827 * @state: info on the new plane state, including the FB 828 * 829 * Check if the new state is settable given the current state. Other 830 * than what the atomic helper checks, we care about crtc fitting 831 * the FB and maintaining one active framebuffer. 832 * 833 * Returns 0 on success 834 */ 835 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 836 struct drm_atomic_state *state) 837 { 838 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 839 plane); 840 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 841 plane); 842 struct drm_crtc_state *crtc_state = NULL; 843 struct drm_framebuffer *new_fb = new_state->fb; 844 struct drm_framebuffer *old_fb = old_state->fb; 845 int ret; 846 847 /* 848 * Ignore damage clips if the framebuffer attached to the plane's state 849 * has changed since the last plane update (page-flip). In this case, a 850 * full plane update should happen because uploads are done per-buffer. 851 */ 852 if (old_fb != new_fb) 853 new_state->ignore_damage_clips = true; 854 855 if (new_state->crtc) 856 crtc_state = drm_atomic_get_new_crtc_state(state, 857 new_state->crtc); 858 859 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 860 DRM_PLANE_NO_SCALING, 861 DRM_PLANE_NO_SCALING, 862 false, true); 863 return ret; 864 } 865 866 867 /** 868 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 869 * 870 * @plane: cursor plane 871 * @state: info on the new plane state 872 * 873 * This is a chance to fail if the new cursor state does not fit 874 * our requirements. 875 * 876 * Returns 0 on success 877 */ 878 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 879 struct drm_atomic_state *state) 880 { 881 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 882 plane); 883 int ret = 0; 884 struct drm_crtc_state *crtc_state = NULL; 885 struct vmw_surface *surface = NULL; 886 struct drm_framebuffer *fb = new_state->fb; 887 888 if (new_state->crtc) 889 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 890 new_state->crtc); 891 892 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 893 DRM_PLANE_NO_SCALING, 894 DRM_PLANE_NO_SCALING, 895 true, true); 896 if (ret) 897 return ret; 898 899 /* Turning off */ 900 if (!fb) 901 return 0; 902 903 /* A lot of the code assumes this */ 904 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 905 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 906 new_state->crtc_w, new_state->crtc_h); 907 return -EINVAL; 908 } 909 910 if (!vmw_framebuffer_to_vfb(fb)->bo) { 911 surface = vmw_user_object_surface(&vmw_framebuffer_to_vfbs(fb)->uo); 912 913 WARN_ON(!surface); 914 915 if (!surface || 916 (!surface->snooper.image && !surface->res.guest_memory_bo)) { 917 DRM_ERROR("surface not suitable for cursor\n"); 918 return -EINVAL; 919 } 920 } 921 922 return 0; 923 } 924 925 926 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 927 struct drm_atomic_state *state) 928 { 929 struct vmw_private *vmw = vmw_priv(crtc->dev); 930 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 931 crtc); 932 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 933 int connector_mask = drm_connector_mask(&du->connector); 934 bool has_primary = new_state->plane_mask & 935 drm_plane_mask(crtc->primary); 936 937 /* 938 * This is fine in general, but broken userspace might expect 939 * some actual rendering so give a clue as why it's blank. 940 */ 941 if (new_state->enable && !has_primary) 942 drm_dbg_driver(&vmw->drm, 943 "CRTC without a primary plane will be blank.\n"); 944 945 946 if (new_state->connector_mask != connector_mask && 947 new_state->connector_mask != 0) { 948 DRM_ERROR("Invalid connectors configuration\n"); 949 return -EINVAL; 950 } 951 952 /* 953 * Our virtual device does not have a dot clock, so use the logical 954 * clock value as the dot clock. 955 */ 956 if (new_state->mode.crtc_clock == 0) 957 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 958 959 return 0; 960 } 961 962 963 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 964 struct drm_atomic_state *state) 965 { 966 vmw_vkms_crtc_atomic_begin(crtc, state); 967 } 968 969 /** 970 * vmw_du_crtc_duplicate_state - duplicate crtc state 971 * @crtc: DRM crtc 972 * 973 * Allocates and returns a copy of the crtc state (both common and 974 * vmw-specific) for the specified crtc. 975 * 976 * Returns: The newly allocated crtc state, or NULL on failure. 977 */ 978 struct drm_crtc_state * 979 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 980 { 981 struct drm_crtc_state *state; 982 struct vmw_crtc_state *vcs; 983 984 if (WARN_ON(!crtc->state)) 985 return NULL; 986 987 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 988 989 if (!vcs) 990 return NULL; 991 992 state = &vcs->base; 993 994 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 995 996 return state; 997 } 998 999 1000 /** 1001 * vmw_du_crtc_reset - creates a blank vmw crtc state 1002 * @crtc: DRM crtc 1003 * 1004 * Resets the atomic state for @crtc by freeing the state pointer (which 1005 * might be NULL, e.g. at driver load time) and allocating a new empty state 1006 * object. 1007 */ 1008 void vmw_du_crtc_reset(struct drm_crtc *crtc) 1009 { 1010 struct vmw_crtc_state *vcs; 1011 1012 1013 if (crtc->state) { 1014 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1015 1016 kfree(vmw_crtc_state_to_vcs(crtc->state)); 1017 } 1018 1019 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 1020 1021 if (!vcs) { 1022 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 1023 return; 1024 } 1025 1026 __drm_atomic_helper_crtc_reset(crtc, &vcs->base); 1027 } 1028 1029 1030 /** 1031 * vmw_du_crtc_destroy_state - destroy crtc state 1032 * @crtc: DRM crtc 1033 * @state: state object to destroy 1034 * 1035 * Destroys the crtc state (both common and vmw-specific) for the 1036 * specified plane. 1037 */ 1038 void 1039 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 1040 struct drm_crtc_state *state) 1041 { 1042 drm_atomic_helper_crtc_destroy_state(crtc, state); 1043 } 1044 1045 1046 /** 1047 * vmw_du_plane_duplicate_state - duplicate plane state 1048 * @plane: drm plane 1049 * 1050 * Allocates and returns a copy of the plane state (both common and 1051 * vmw-specific) for the specified plane. 1052 * 1053 * Returns: The newly allocated plane state, or NULL on failure. 1054 */ 1055 struct drm_plane_state * 1056 vmw_du_plane_duplicate_state(struct drm_plane *plane) 1057 { 1058 struct drm_plane_state *state; 1059 struct vmw_plane_state *vps; 1060 1061 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 1062 1063 if (!vps) 1064 return NULL; 1065 1066 vps->pinned = 0; 1067 vps->cpp = 0; 1068 1069 memset(&vps->cursor, 0, sizeof(vps->cursor)); 1070 1071 /* Each ref counted resource needs to be acquired again */ 1072 vmw_user_object_ref(&vps->uo); 1073 state = &vps->base; 1074 1075 __drm_atomic_helper_plane_duplicate_state(plane, state); 1076 1077 return state; 1078 } 1079 1080 1081 /** 1082 * vmw_du_plane_reset - creates a blank vmw plane state 1083 * @plane: drm plane 1084 * 1085 * Resets the atomic state for @plane by freeing the state pointer (which might 1086 * be NULL, e.g. at driver load time) and allocating a new empty state object. 1087 */ 1088 void vmw_du_plane_reset(struct drm_plane *plane) 1089 { 1090 struct vmw_plane_state *vps; 1091 1092 if (plane->state) 1093 vmw_du_plane_destroy_state(plane, plane->state); 1094 1095 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 1096 1097 if (!vps) { 1098 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 1099 return; 1100 } 1101 1102 __drm_atomic_helper_plane_reset(plane, &vps->base); 1103 } 1104 1105 1106 /** 1107 * vmw_du_plane_destroy_state - destroy plane state 1108 * @plane: DRM plane 1109 * @state: state object to destroy 1110 * 1111 * Destroys the plane state (both common and vmw-specific) for the 1112 * specified plane. 1113 */ 1114 void 1115 vmw_du_plane_destroy_state(struct drm_plane *plane, 1116 struct drm_plane_state *state) 1117 { 1118 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 1119 1120 /* Should have been freed by cleanup_fb */ 1121 vmw_user_object_unref(&vps->uo); 1122 1123 drm_atomic_helper_plane_destroy_state(plane, state); 1124 } 1125 1126 1127 /** 1128 * vmw_du_connector_duplicate_state - duplicate connector state 1129 * @connector: DRM connector 1130 * 1131 * Allocates and returns a copy of the connector state (both common and 1132 * vmw-specific) for the specified connector. 1133 * 1134 * Returns: The newly allocated connector state, or NULL on failure. 1135 */ 1136 struct drm_connector_state * 1137 vmw_du_connector_duplicate_state(struct drm_connector *connector) 1138 { 1139 struct drm_connector_state *state; 1140 struct vmw_connector_state *vcs; 1141 1142 if (WARN_ON(!connector->state)) 1143 return NULL; 1144 1145 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 1146 1147 if (!vcs) 1148 return NULL; 1149 1150 state = &vcs->base; 1151 1152 __drm_atomic_helper_connector_duplicate_state(connector, state); 1153 1154 return state; 1155 } 1156 1157 1158 /** 1159 * vmw_du_connector_reset - creates a blank vmw connector state 1160 * @connector: DRM connector 1161 * 1162 * Resets the atomic state for @connector by freeing the state pointer (which 1163 * might be NULL, e.g. at driver load time) and allocating a new empty state 1164 * object. 1165 */ 1166 void vmw_du_connector_reset(struct drm_connector *connector) 1167 { 1168 struct vmw_connector_state *vcs; 1169 1170 1171 if (connector->state) { 1172 __drm_atomic_helper_connector_destroy_state(connector->state); 1173 1174 kfree(vmw_connector_state_to_vcs(connector->state)); 1175 } 1176 1177 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 1178 1179 if (!vcs) { 1180 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 1181 return; 1182 } 1183 1184 __drm_atomic_helper_connector_reset(connector, &vcs->base); 1185 } 1186 1187 1188 /** 1189 * vmw_du_connector_destroy_state - destroy connector state 1190 * @connector: DRM connector 1191 * @state: state object to destroy 1192 * 1193 * Destroys the connector state (both common and vmw-specific) for the 1194 * specified plane. 1195 */ 1196 void 1197 vmw_du_connector_destroy_state(struct drm_connector *connector, 1198 struct drm_connector_state *state) 1199 { 1200 drm_atomic_helper_connector_destroy_state(connector, state); 1201 } 1202 /* 1203 * Generic framebuffer code 1204 */ 1205 1206 /* 1207 * Surface framebuffer code 1208 */ 1209 1210 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 1211 { 1212 struct vmw_framebuffer_surface *vfbs = 1213 vmw_framebuffer_to_vfbs(framebuffer); 1214 1215 drm_framebuffer_cleanup(framebuffer); 1216 vmw_user_object_unref(&vfbs->uo); 1217 1218 kfree(vfbs); 1219 } 1220 1221 /** 1222 * vmw_kms_readback - Perform a readback from the screen system to 1223 * a buffer-object backed framebuffer. 1224 * 1225 * @dev_priv: Pointer to the device private structure. 1226 * @file_priv: Pointer to a struct drm_file identifying the caller. 1227 * Must be set to NULL if @user_fence_rep is NULL. 1228 * @vfb: Pointer to the buffer-object backed framebuffer. 1229 * @user_fence_rep: User-space provided structure for fence information. 1230 * Must be set to non-NULL if @file_priv is non-NULL. 1231 * @vclips: Array of clip rects. 1232 * @num_clips: Number of clip rects in @vclips. 1233 * 1234 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 1235 * interrupted. 1236 */ 1237 int vmw_kms_readback(struct vmw_private *dev_priv, 1238 struct drm_file *file_priv, 1239 struct vmw_framebuffer *vfb, 1240 struct drm_vmw_fence_rep __user *user_fence_rep, 1241 struct drm_vmw_rect *vclips, 1242 uint32_t num_clips) 1243 { 1244 switch (dev_priv->active_display_unit) { 1245 case vmw_du_screen_object: 1246 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 1247 user_fence_rep, vclips, num_clips, 1248 NULL); 1249 case vmw_du_screen_target: 1250 return vmw_kms_stdu_readback(dev_priv, file_priv, vfb, 1251 user_fence_rep, NULL, vclips, num_clips, 1252 1, NULL); 1253 default: 1254 WARN_ONCE(true, 1255 "Readback called with invalid display system.\n"); 1256 } 1257 1258 return -ENOSYS; 1259 } 1260 1261 static int vmw_framebuffer_surface_create_handle(struct drm_framebuffer *fb, 1262 struct drm_file *file_priv, 1263 unsigned int *handle) 1264 { 1265 struct vmw_framebuffer_surface *vfbs = vmw_framebuffer_to_vfbs(fb); 1266 struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo); 1267 1268 return drm_gem_handle_create(file_priv, &bo->tbo.base, handle); 1269 } 1270 1271 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 1272 .create_handle = vmw_framebuffer_surface_create_handle, 1273 .destroy = vmw_framebuffer_surface_destroy, 1274 .dirty = drm_atomic_helper_dirtyfb, 1275 }; 1276 1277 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 1278 struct vmw_user_object *uo, 1279 struct vmw_framebuffer **out, 1280 const struct drm_mode_fb_cmd2 1281 *mode_cmd) 1282 1283 { 1284 struct drm_device *dev = &dev_priv->drm; 1285 struct vmw_framebuffer_surface *vfbs; 1286 struct vmw_surface *surface; 1287 int ret; 1288 1289 /* 3D is only supported on HWv8 and newer hosts */ 1290 if (dev_priv->active_display_unit == vmw_du_legacy) 1291 return -ENOSYS; 1292 1293 surface = vmw_user_object_surface(uo); 1294 1295 /* 1296 * Sanity checks. 1297 */ 1298 1299 if (!drm_any_plane_has_format(&dev_priv->drm, 1300 mode_cmd->pixel_format, 1301 mode_cmd->modifier[0])) { 1302 drm_dbg(&dev_priv->drm, 1303 "unsupported pixel format %p4cc / modifier 0x%llx\n", 1304 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 1305 return -EINVAL; 1306 } 1307 1308 /* Surface must be marked as a scanout. */ 1309 if (unlikely(!surface->metadata.scanout)) 1310 return -EINVAL; 1311 1312 if (unlikely(surface->metadata.mip_levels[0] != 1 || 1313 surface->metadata.num_sizes != 1 || 1314 surface->metadata.base_size.width < mode_cmd->width || 1315 surface->metadata.base_size.height < mode_cmd->height || 1316 surface->metadata.base_size.depth != 1)) { 1317 DRM_ERROR("Incompatible surface dimensions " 1318 "for requested mode.\n"); 1319 return -EINVAL; 1320 } 1321 1322 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1323 if (!vfbs) { 1324 ret = -ENOMEM; 1325 goto out_err1; 1326 } 1327 1328 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1329 memcpy(&vfbs->uo, uo, sizeof(vfbs->uo)); 1330 vmw_user_object_ref(&vfbs->uo); 1331 1332 *out = &vfbs->base; 1333 1334 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1335 &vmw_framebuffer_surface_funcs); 1336 if (ret) 1337 goto out_err2; 1338 1339 return 0; 1340 1341 out_err2: 1342 vmw_user_object_unref(&vfbs->uo); 1343 kfree(vfbs); 1344 out_err1: 1345 return ret; 1346 } 1347 1348 /* 1349 * Buffer-object framebuffer code 1350 */ 1351 1352 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb, 1353 struct drm_file *file_priv, 1354 unsigned int *handle) 1355 { 1356 struct vmw_framebuffer_bo *vfbd = 1357 vmw_framebuffer_to_vfbd(fb); 1358 return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle); 1359 } 1360 1361 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 1362 { 1363 struct vmw_framebuffer_bo *vfbd = 1364 vmw_framebuffer_to_vfbd(framebuffer); 1365 1366 drm_framebuffer_cleanup(framebuffer); 1367 vmw_bo_unreference(&vfbd->buffer); 1368 1369 kfree(vfbd); 1370 } 1371 1372 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1373 .create_handle = vmw_framebuffer_bo_create_handle, 1374 .destroy = vmw_framebuffer_bo_destroy, 1375 .dirty = drm_atomic_helper_dirtyfb, 1376 }; 1377 1378 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1379 struct vmw_bo *bo, 1380 struct vmw_framebuffer **out, 1381 const struct drm_mode_fb_cmd2 1382 *mode_cmd) 1383 1384 { 1385 struct drm_device *dev = &dev_priv->drm; 1386 struct vmw_framebuffer_bo *vfbd; 1387 unsigned int requested_size; 1388 int ret; 1389 1390 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1391 if (unlikely(requested_size > bo->tbo.base.size)) { 1392 DRM_ERROR("Screen buffer object size is too small " 1393 "for requested mode.\n"); 1394 return -EINVAL; 1395 } 1396 1397 if (!drm_any_plane_has_format(&dev_priv->drm, 1398 mode_cmd->pixel_format, 1399 mode_cmd->modifier[0])) { 1400 drm_dbg(&dev_priv->drm, 1401 "unsupported pixel format %p4cc / modifier 0x%llx\n", 1402 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 1403 return -EINVAL; 1404 } 1405 1406 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1407 if (!vfbd) { 1408 ret = -ENOMEM; 1409 goto out_err1; 1410 } 1411 1412 vfbd->base.base.obj[0] = &bo->tbo.base; 1413 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1414 vfbd->base.bo = true; 1415 vfbd->buffer = vmw_bo_reference(bo); 1416 *out = &vfbd->base; 1417 1418 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1419 &vmw_framebuffer_bo_funcs); 1420 if (ret) 1421 goto out_err2; 1422 1423 return 0; 1424 1425 out_err2: 1426 vmw_bo_unreference(&bo); 1427 kfree(vfbd); 1428 out_err1: 1429 return ret; 1430 } 1431 1432 1433 /** 1434 * vmw_kms_srf_ok - check if a surface can be created 1435 * 1436 * @dev_priv: Pointer to device private struct. 1437 * @width: requested width 1438 * @height: requested height 1439 * 1440 * Surfaces need to be less than texture size 1441 */ 1442 static bool 1443 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1444 { 1445 if (width > dev_priv->texture_max_width || 1446 height > dev_priv->texture_max_height) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 /** 1453 * vmw_kms_new_framebuffer - Create a new framebuffer. 1454 * 1455 * @dev_priv: Pointer to device private struct. 1456 * @uo: Pointer to user object to wrap the kms framebuffer around. 1457 * Either the buffer or surface inside the user object must be NULL. 1458 * @mode_cmd: Frame-buffer metadata. 1459 */ 1460 struct vmw_framebuffer * 1461 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1462 struct vmw_user_object *uo, 1463 const struct drm_mode_fb_cmd2 *mode_cmd) 1464 { 1465 struct vmw_framebuffer *vfb = NULL; 1466 int ret; 1467 1468 /* Create the new framebuffer depending one what we have */ 1469 if (vmw_user_object_surface(uo)) { 1470 ret = vmw_kms_new_framebuffer_surface(dev_priv, uo, &vfb, 1471 mode_cmd); 1472 } else if (uo->buffer) { 1473 ret = vmw_kms_new_framebuffer_bo(dev_priv, uo->buffer, &vfb, 1474 mode_cmd); 1475 } else { 1476 BUG(); 1477 } 1478 1479 if (ret) 1480 return ERR_PTR(ret); 1481 1482 return vfb; 1483 } 1484 1485 /* 1486 * Generic Kernel modesetting functions 1487 */ 1488 1489 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1490 struct drm_file *file_priv, 1491 const struct drm_mode_fb_cmd2 *mode_cmd) 1492 { 1493 struct vmw_private *dev_priv = vmw_priv(dev); 1494 struct vmw_framebuffer *vfb = NULL; 1495 struct vmw_user_object uo = {0}; 1496 int ret; 1497 1498 /* returns either a bo or surface */ 1499 ret = vmw_user_object_lookup(dev_priv, file_priv, mode_cmd->handles[0], 1500 &uo); 1501 if (ret) { 1502 DRM_ERROR("Invalid buffer object handle %u (0x%x).\n", 1503 mode_cmd->handles[0], mode_cmd->handles[0]); 1504 goto err_out; 1505 } 1506 1507 1508 if (vmw_user_object_surface(&uo) && 1509 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1510 DRM_ERROR("Surface size cannot exceed %dx%d\n", 1511 dev_priv->texture_max_width, 1512 dev_priv->texture_max_height); 1513 ret = -EINVAL; 1514 goto err_out; 1515 } 1516 1517 1518 vfb = vmw_kms_new_framebuffer(dev_priv, &uo, mode_cmd); 1519 if (IS_ERR(vfb)) { 1520 ret = PTR_ERR(vfb); 1521 goto err_out; 1522 } 1523 1524 err_out: 1525 /* vmw_user_object_lookup takes one ref so does new_fb */ 1526 vmw_user_object_unref(&uo); 1527 1528 if (ret) { 1529 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1530 return ERR_PTR(ret); 1531 } 1532 1533 return &vfb->base; 1534 } 1535 1536 /** 1537 * vmw_kms_check_display_memory - Validates display memory required for a 1538 * topology 1539 * @dev: DRM device 1540 * @num_rects: number of drm_rect in rects 1541 * @rects: array of drm_rect representing the topology to validate indexed by 1542 * crtc index. 1543 * 1544 * Returns: 1545 * 0 on success otherwise negative error code 1546 */ 1547 static int vmw_kms_check_display_memory(struct drm_device *dev, 1548 uint32_t num_rects, 1549 struct drm_rect *rects) 1550 { 1551 struct vmw_private *dev_priv = vmw_priv(dev); 1552 struct drm_rect bounding_box = {0}; 1553 u64 total_pixels = 0, pixel_mem, bb_mem; 1554 int i; 1555 1556 for (i = 0; i < num_rects; i++) { 1557 /* 1558 * For STDU only individual screen (screen target) is limited by 1559 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1560 */ 1561 if (dev_priv->active_display_unit == vmw_du_screen_target && 1562 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1563 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1564 VMW_DEBUG_KMS("Screen size not supported.\n"); 1565 return -EINVAL; 1566 } 1567 1568 /* Bounding box upper left is at (0,0). */ 1569 if (rects[i].x2 > bounding_box.x2) 1570 bounding_box.x2 = rects[i].x2; 1571 1572 if (rects[i].y2 > bounding_box.y2) 1573 bounding_box.y2 = rects[i].y2; 1574 1575 total_pixels += (u64) drm_rect_width(&rects[i]) * 1576 (u64) drm_rect_height(&rects[i]); 1577 } 1578 1579 /* Virtual svga device primary limits are always in 32-bpp. */ 1580 pixel_mem = total_pixels * 4; 1581 1582 /* 1583 * For HV10 and below prim_bb_mem is vram size. When 1584 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1585 * limit on primary bounding box 1586 */ 1587 if (pixel_mem > dev_priv->max_primary_mem) { 1588 VMW_DEBUG_KMS("Combined output size too large.\n"); 1589 return -EINVAL; 1590 } 1591 1592 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1593 if (dev_priv->active_display_unit != vmw_du_screen_target || 1594 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1595 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1596 1597 if (bb_mem > dev_priv->max_primary_mem) { 1598 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 1599 return -EINVAL; 1600 } 1601 } 1602 1603 return 0; 1604 } 1605 1606 /** 1607 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 1608 * crtc mutex 1609 * @state: The atomic state pointer containing the new atomic state 1610 * @crtc: The crtc 1611 * 1612 * This function returns the new crtc state if it's part of the state update. 1613 * Otherwise returns the current crtc state. It also makes sure that the 1614 * crtc mutex is locked. 1615 * 1616 * Returns: A valid crtc state pointer or NULL. It may also return a 1617 * pointer error, in particular -EDEADLK if locking needs to be rerun. 1618 */ 1619 static struct drm_crtc_state * 1620 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 1621 { 1622 struct drm_crtc_state *crtc_state; 1623 1624 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 1625 if (crtc_state) { 1626 lockdep_assert_held(&crtc->mutex.mutex.base); 1627 } else { 1628 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 1629 1630 if (ret != 0 && ret != -EALREADY) 1631 return ERR_PTR(ret); 1632 1633 crtc_state = crtc->state; 1634 } 1635 1636 return crtc_state; 1637 } 1638 1639 /** 1640 * vmw_kms_check_implicit - Verify that all implicit display units scan out 1641 * from the same fb after the new state is committed. 1642 * @dev: The drm_device. 1643 * @state: The new state to be checked. 1644 * 1645 * Returns: 1646 * Zero on success, 1647 * -EINVAL on invalid state, 1648 * -EDEADLK if modeset locking needs to be rerun. 1649 */ 1650 static int vmw_kms_check_implicit(struct drm_device *dev, 1651 struct drm_atomic_state *state) 1652 { 1653 struct drm_framebuffer *implicit_fb = NULL; 1654 struct drm_crtc *crtc; 1655 struct drm_crtc_state *crtc_state; 1656 struct drm_plane_state *plane_state; 1657 1658 drm_for_each_crtc(crtc, dev) { 1659 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1660 1661 if (!du->is_implicit) 1662 continue; 1663 1664 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1665 if (IS_ERR(crtc_state)) 1666 return PTR_ERR(crtc_state); 1667 1668 if (!crtc_state || !crtc_state->enable) 1669 continue; 1670 1671 /* 1672 * Can't move primary planes across crtcs, so this is OK. 1673 * It also means we don't need to take the plane mutex. 1674 */ 1675 plane_state = du->primary.state; 1676 if (plane_state->crtc != crtc) 1677 continue; 1678 1679 if (!implicit_fb) 1680 implicit_fb = plane_state->fb; 1681 else if (implicit_fb != plane_state->fb) 1682 return -EINVAL; 1683 } 1684 1685 return 0; 1686 } 1687 1688 /** 1689 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1690 * @dev: DRM device 1691 * @state: the driver state object 1692 * 1693 * Returns: 1694 * 0 on success otherwise negative error code 1695 */ 1696 static int vmw_kms_check_topology(struct drm_device *dev, 1697 struct drm_atomic_state *state) 1698 { 1699 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1700 struct drm_rect *rects; 1701 struct drm_crtc *crtc; 1702 uint32_t i; 1703 int ret = 0; 1704 1705 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1706 GFP_KERNEL); 1707 if (!rects) 1708 return -ENOMEM; 1709 1710 drm_for_each_crtc(crtc, dev) { 1711 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1712 struct drm_crtc_state *crtc_state; 1713 1714 i = drm_crtc_index(crtc); 1715 1716 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1717 if (IS_ERR(crtc_state)) { 1718 ret = PTR_ERR(crtc_state); 1719 goto clean; 1720 } 1721 1722 if (!crtc_state) 1723 continue; 1724 1725 if (crtc_state->enable) { 1726 rects[i].x1 = du->gui_x; 1727 rects[i].y1 = du->gui_y; 1728 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1729 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1730 } else { 1731 rects[i].x1 = 0; 1732 rects[i].y1 = 0; 1733 rects[i].x2 = 0; 1734 rects[i].y2 = 0; 1735 } 1736 } 1737 1738 /* Determine change to topology due to new atomic state */ 1739 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1740 new_crtc_state, i) { 1741 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1742 struct drm_connector *connector; 1743 struct drm_connector_state *conn_state; 1744 struct vmw_connector_state *vmw_conn_state; 1745 1746 if (!du->pref_active && new_crtc_state->enable) { 1747 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 1748 ret = -EINVAL; 1749 goto clean; 1750 } 1751 1752 /* 1753 * For vmwgfx each crtc has only one connector attached and it 1754 * is not changed so don't really need to check the 1755 * crtc->connector_mask and iterate over it. 1756 */ 1757 connector = &du->connector; 1758 conn_state = drm_atomic_get_connector_state(state, connector); 1759 if (IS_ERR(conn_state)) { 1760 ret = PTR_ERR(conn_state); 1761 goto clean; 1762 } 1763 1764 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1765 vmw_conn_state->gui_x = du->gui_x; 1766 vmw_conn_state->gui_y = du->gui_y; 1767 } 1768 1769 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1770 rects); 1771 1772 clean: 1773 kfree(rects); 1774 return ret; 1775 } 1776 1777 /** 1778 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1779 * 1780 * @dev: DRM device 1781 * @state: the driver state object 1782 * 1783 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1784 * us to assign a value to mode->crtc_clock so that 1785 * drm_calc_timestamping_constants() won't throw an error message 1786 * 1787 * Returns: 1788 * Zero for success or -errno 1789 */ 1790 static int 1791 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1792 struct drm_atomic_state *state) 1793 { 1794 struct drm_crtc *crtc; 1795 struct drm_crtc_state *crtc_state; 1796 bool need_modeset = false; 1797 int i, ret; 1798 1799 ret = drm_atomic_helper_check(dev, state); 1800 if (ret) 1801 return ret; 1802 1803 ret = vmw_kms_check_implicit(dev, state); 1804 if (ret) { 1805 VMW_DEBUG_KMS("Invalid implicit state\n"); 1806 return ret; 1807 } 1808 1809 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1810 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1811 need_modeset = true; 1812 } 1813 1814 if (need_modeset) 1815 return vmw_kms_check_topology(dev, state); 1816 1817 return ret; 1818 } 1819 1820 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1821 .fb_create = vmw_kms_fb_create, 1822 .atomic_check = vmw_kms_atomic_check_modeset, 1823 .atomic_commit = drm_atomic_helper_commit, 1824 }; 1825 1826 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1827 struct drm_file *file_priv, 1828 struct vmw_framebuffer *vfb, 1829 struct vmw_surface *surface, 1830 uint32_t sid, 1831 int32_t destX, int32_t destY, 1832 struct drm_vmw_rect *clips, 1833 uint32_t num_clips) 1834 { 1835 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1836 &surface->res, destX, destY, 1837 num_clips, 1, NULL, NULL); 1838 } 1839 1840 1841 int vmw_kms_present(struct vmw_private *dev_priv, 1842 struct drm_file *file_priv, 1843 struct vmw_framebuffer *vfb, 1844 struct vmw_surface *surface, 1845 uint32_t sid, 1846 int32_t destX, int32_t destY, 1847 struct drm_vmw_rect *clips, 1848 uint32_t num_clips) 1849 { 1850 int ret; 1851 1852 switch (dev_priv->active_display_unit) { 1853 case vmw_du_screen_target: 1854 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1855 &surface->res, destX, destY, 1856 num_clips, 1, NULL, NULL); 1857 break; 1858 case vmw_du_screen_object: 1859 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1860 sid, destX, destY, clips, 1861 num_clips); 1862 break; 1863 default: 1864 WARN_ONCE(true, 1865 "Present called with invalid display system.\n"); 1866 ret = -ENOSYS; 1867 break; 1868 } 1869 if (ret) 1870 return ret; 1871 1872 vmw_cmd_flush(dev_priv, false); 1873 1874 return 0; 1875 } 1876 1877 static void 1878 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1879 { 1880 if (dev_priv->hotplug_mode_update_property) 1881 return; 1882 1883 dev_priv->hotplug_mode_update_property = 1884 drm_property_create_range(&dev_priv->drm, 1885 DRM_MODE_PROP_IMMUTABLE, 1886 "hotplug_mode_update", 0, 1); 1887 } 1888 1889 static void 1890 vmw_atomic_commit_tail(struct drm_atomic_state *old_state) 1891 { 1892 struct vmw_private *vmw = vmw_priv(old_state->dev); 1893 struct drm_crtc *crtc; 1894 struct drm_crtc_state *old_crtc_state; 1895 int i; 1896 1897 drm_atomic_helper_commit_tail(old_state); 1898 1899 if (vmw->vkms_enabled) { 1900 for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) { 1901 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1902 (void)old_crtc_state; 1903 flush_work(&du->vkms.crc_generator_work); 1904 } 1905 } 1906 } 1907 1908 static const struct drm_mode_config_helper_funcs vmw_mode_config_helpers = { 1909 .atomic_commit_tail = vmw_atomic_commit_tail, 1910 }; 1911 1912 int vmw_kms_init(struct vmw_private *dev_priv) 1913 { 1914 struct drm_device *dev = &dev_priv->drm; 1915 int ret; 1916 static const char *display_unit_names[] = { 1917 "Invalid", 1918 "Legacy", 1919 "Screen Object", 1920 "Screen Target", 1921 "Invalid (max)" 1922 }; 1923 1924 drm_mode_config_init(dev); 1925 dev->mode_config.funcs = &vmw_kms_funcs; 1926 dev->mode_config.min_width = 1; 1927 dev->mode_config.min_height = 1; 1928 dev->mode_config.max_width = dev_priv->texture_max_width; 1929 dev->mode_config.max_height = dev_priv->texture_max_height; 1930 dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32; 1931 dev->mode_config.helper_private = &vmw_mode_config_helpers; 1932 1933 drm_mode_create_suggested_offset_properties(dev); 1934 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1935 1936 ret = vmw_kms_stdu_init_display(dev_priv); 1937 if (ret) { 1938 ret = vmw_kms_sou_init_display(dev_priv); 1939 if (ret) /* Fallback */ 1940 ret = vmw_kms_ldu_init_display(dev_priv); 1941 } 1942 BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1)); 1943 drm_info(&dev_priv->drm, "%s display unit initialized\n", 1944 display_unit_names[dev_priv->active_display_unit]); 1945 1946 return ret; 1947 } 1948 1949 int vmw_kms_close(struct vmw_private *dev_priv) 1950 { 1951 int ret = 0; 1952 1953 /* 1954 * Docs says we should take the lock before calling this function 1955 * but since it destroys encoders and our destructor calls 1956 * drm_encoder_cleanup which takes the lock we deadlock. 1957 */ 1958 drm_mode_config_cleanup(&dev_priv->drm); 1959 if (dev_priv->active_display_unit == vmw_du_legacy) 1960 ret = vmw_kms_ldu_close_display(dev_priv); 1961 1962 return ret; 1963 } 1964 1965 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1966 struct drm_file *file_priv) 1967 { 1968 struct drm_vmw_cursor_bypass_arg *arg = data; 1969 struct vmw_display_unit *du; 1970 struct drm_crtc *crtc; 1971 int ret = 0; 1972 1973 mutex_lock(&dev->mode_config.mutex); 1974 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1975 1976 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1977 du = vmw_crtc_to_du(crtc); 1978 du->hotspot_x = arg->xhot; 1979 du->hotspot_y = arg->yhot; 1980 } 1981 1982 mutex_unlock(&dev->mode_config.mutex); 1983 return 0; 1984 } 1985 1986 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1987 if (!crtc) { 1988 ret = -ENOENT; 1989 goto out; 1990 } 1991 1992 du = vmw_crtc_to_du(crtc); 1993 1994 du->hotspot_x = arg->xhot; 1995 du->hotspot_y = arg->yhot; 1996 1997 out: 1998 mutex_unlock(&dev->mode_config.mutex); 1999 2000 return ret; 2001 } 2002 2003 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 2004 unsigned width, unsigned height, unsigned pitch, 2005 unsigned bpp, unsigned depth) 2006 { 2007 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 2008 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 2009 else if (vmw_fifo_have_pitchlock(vmw_priv)) 2010 vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); 2011 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 2012 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 2013 if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) 2014 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 2015 2016 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 2017 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 2018 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 2019 return -EINVAL; 2020 } 2021 2022 return 0; 2023 } 2024 2025 static 2026 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 2027 u64 pitch, 2028 u64 height) 2029 { 2030 return (pitch * height) < (u64)dev_priv->vram_size; 2031 } 2032 2033 /** 2034 * vmw_du_update_layout - Update the display unit with topology from resolution 2035 * plugin and generate DRM uevent 2036 * @dev_priv: device private 2037 * @num_rects: number of drm_rect in rects 2038 * @rects: toplogy to update 2039 */ 2040 static int vmw_du_update_layout(struct vmw_private *dev_priv, 2041 unsigned int num_rects, struct drm_rect *rects) 2042 { 2043 struct drm_device *dev = &dev_priv->drm; 2044 struct vmw_display_unit *du; 2045 struct drm_connector *con; 2046 struct drm_connector_list_iter conn_iter; 2047 struct drm_modeset_acquire_ctx ctx; 2048 struct drm_crtc *crtc; 2049 int ret; 2050 2051 /* Currently gui_x/y is protected with the crtc mutex */ 2052 mutex_lock(&dev->mode_config.mutex); 2053 drm_modeset_acquire_init(&ctx, 0); 2054 retry: 2055 drm_for_each_crtc(crtc, dev) { 2056 ret = drm_modeset_lock(&crtc->mutex, &ctx); 2057 if (ret < 0) { 2058 if (ret == -EDEADLK) { 2059 drm_modeset_backoff(&ctx); 2060 goto retry; 2061 } 2062 goto out_fini; 2063 } 2064 } 2065 2066 drm_connector_list_iter_begin(dev, &conn_iter); 2067 drm_for_each_connector_iter(con, &conn_iter) { 2068 du = vmw_connector_to_du(con); 2069 if (num_rects > du->unit) { 2070 du->pref_width = drm_rect_width(&rects[du->unit]); 2071 du->pref_height = drm_rect_height(&rects[du->unit]); 2072 du->pref_active = true; 2073 du->gui_x = rects[du->unit].x1; 2074 du->gui_y = rects[du->unit].y1; 2075 } else { 2076 du->pref_width = VMWGFX_MIN_INITIAL_WIDTH; 2077 du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT; 2078 du->pref_active = false; 2079 du->gui_x = 0; 2080 du->gui_y = 0; 2081 } 2082 } 2083 drm_connector_list_iter_end(&conn_iter); 2084 2085 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 2086 du = vmw_connector_to_du(con); 2087 if (num_rects > du->unit) { 2088 drm_object_property_set_value 2089 (&con->base, dev->mode_config.suggested_x_property, 2090 du->gui_x); 2091 drm_object_property_set_value 2092 (&con->base, dev->mode_config.suggested_y_property, 2093 du->gui_y); 2094 } else { 2095 drm_object_property_set_value 2096 (&con->base, dev->mode_config.suggested_x_property, 2097 0); 2098 drm_object_property_set_value 2099 (&con->base, dev->mode_config.suggested_y_property, 2100 0); 2101 } 2102 con->status = vmw_du_connector_detect(con, true); 2103 } 2104 out_fini: 2105 drm_modeset_drop_locks(&ctx); 2106 drm_modeset_acquire_fini(&ctx); 2107 mutex_unlock(&dev->mode_config.mutex); 2108 2109 drm_sysfs_hotplug_event(dev); 2110 2111 return 0; 2112 } 2113 2114 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2115 u16 *r, u16 *g, u16 *b, 2116 uint32_t size, 2117 struct drm_modeset_acquire_ctx *ctx) 2118 { 2119 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2120 int i; 2121 2122 for (i = 0; i < size; i++) { 2123 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2124 r[i], g[i], b[i]); 2125 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2126 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2127 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2128 } 2129 2130 return 0; 2131 } 2132 2133 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2134 { 2135 return 0; 2136 } 2137 2138 enum drm_connector_status 2139 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2140 { 2141 uint32_t num_displays; 2142 struct drm_device *dev = connector->dev; 2143 struct vmw_private *dev_priv = vmw_priv(dev); 2144 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2145 2146 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2147 2148 return ((vmw_connector_to_du(connector)->unit < num_displays && 2149 du->pref_active) ? 2150 connector_status_connected : connector_status_disconnected); 2151 } 2152 2153 /** 2154 * vmw_guess_mode_timing - Provide fake timings for a 2155 * 60Hz vrefresh mode. 2156 * 2157 * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay 2158 * members filled in. 2159 */ 2160 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2161 { 2162 mode->hsync_start = mode->hdisplay + 50; 2163 mode->hsync_end = mode->hsync_start + 50; 2164 mode->htotal = mode->hsync_end + 50; 2165 2166 mode->vsync_start = mode->vdisplay + 50; 2167 mode->vsync_end = mode->vsync_start + 50; 2168 mode->vtotal = mode->vsync_end + 50; 2169 2170 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2171 } 2172 2173 2174 /** 2175 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2176 * @dev: drm device for the ioctl 2177 * @data: data pointer for the ioctl 2178 * @file_priv: drm file for the ioctl call 2179 * 2180 * Update preferred topology of display unit as per ioctl request. The topology 2181 * is expressed as array of drm_vmw_rect. 2182 * e.g. 2183 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2184 * 2185 * NOTE: 2186 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2187 * device limit on topology, x + w and y + h (lower right) cannot be greater 2188 * than INT_MAX. So topology beyond these limits will return with error. 2189 * 2190 * Returns: 2191 * Zero on success, negative errno on failure. 2192 */ 2193 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2194 struct drm_file *file_priv) 2195 { 2196 struct vmw_private *dev_priv = vmw_priv(dev); 2197 struct drm_mode_config *mode_config = &dev->mode_config; 2198 struct drm_vmw_update_layout_arg *arg = 2199 (struct drm_vmw_update_layout_arg *)data; 2200 const void __user *user_rects; 2201 struct drm_vmw_rect *rects; 2202 struct drm_rect *drm_rects; 2203 unsigned rects_size; 2204 int ret, i; 2205 2206 if (!arg->num_outputs) { 2207 struct drm_rect def_rect = {0, 0, 2208 VMWGFX_MIN_INITIAL_WIDTH, 2209 VMWGFX_MIN_INITIAL_HEIGHT}; 2210 vmw_du_update_layout(dev_priv, 1, &def_rect); 2211 return 0; 2212 } else if (arg->num_outputs > VMWGFX_NUM_DISPLAY_UNITS) { 2213 return -E2BIG; 2214 } 2215 2216 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2217 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2218 GFP_KERNEL); 2219 if (unlikely(!rects)) 2220 return -ENOMEM; 2221 2222 user_rects = (void __user *)(unsigned long)arg->rects; 2223 ret = copy_from_user(rects, user_rects, rects_size); 2224 if (unlikely(ret != 0)) { 2225 DRM_ERROR("Failed to get rects.\n"); 2226 ret = -EFAULT; 2227 goto out_free; 2228 } 2229 2230 drm_rects = (struct drm_rect *)rects; 2231 2232 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 2233 for (i = 0; i < arg->num_outputs; i++) { 2234 struct drm_vmw_rect curr_rect; 2235 2236 /* Verify user-space for overflow as kernel use drm_rect */ 2237 if ((rects[i].x + rects[i].w > INT_MAX) || 2238 (rects[i].y + rects[i].h > INT_MAX)) { 2239 ret = -ERANGE; 2240 goto out_free; 2241 } 2242 2243 curr_rect = rects[i]; 2244 drm_rects[i].x1 = curr_rect.x; 2245 drm_rects[i].y1 = curr_rect.y; 2246 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2247 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2248 2249 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 2250 drm_rects[i].x1, drm_rects[i].y1, 2251 drm_rects[i].x2, drm_rects[i].y2); 2252 2253 /* 2254 * Currently this check is limiting the topology within 2255 * mode_config->max (which actually is max texture size 2256 * supported by virtual device). This limit is here to address 2257 * window managers that create a big framebuffer for whole 2258 * topology. 2259 */ 2260 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2261 drm_rects[i].x2 > mode_config->max_width || 2262 drm_rects[i].y2 > mode_config->max_height) { 2263 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 2264 drm_rects[i].x1, drm_rects[i].y1, 2265 drm_rects[i].x2, drm_rects[i].y2); 2266 ret = -EINVAL; 2267 goto out_free; 2268 } 2269 } 2270 2271 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2272 2273 if (ret == 0) 2274 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2275 2276 out_free: 2277 kfree(rects); 2278 return ret; 2279 } 2280 2281 /** 2282 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2283 * on a set of cliprects and a set of display units. 2284 * 2285 * @dev_priv: Pointer to a device private structure. 2286 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2287 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2288 * Cliprects are given in framebuffer coordinates. 2289 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2290 * be NULL. Cliprects are given in source coordinates. 2291 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2292 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2293 * @num_clips: Number of cliprects in the @clips or @vclips array. 2294 * @increment: Integer with which to increment the clip counter when looping. 2295 * Used to skip a predetermined number of clip rects. 2296 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2297 */ 2298 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2299 struct vmw_framebuffer *framebuffer, 2300 const struct drm_clip_rect *clips, 2301 const struct drm_vmw_rect *vclips, 2302 s32 dest_x, s32 dest_y, 2303 int num_clips, 2304 int increment, 2305 struct vmw_kms_dirty *dirty) 2306 { 2307 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2308 struct drm_crtc *crtc; 2309 u32 num_units = 0; 2310 u32 i, k; 2311 2312 dirty->dev_priv = dev_priv; 2313 2314 /* If crtc is passed, no need to iterate over other display units */ 2315 if (dirty->crtc) { 2316 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2317 } else { 2318 list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, 2319 head) { 2320 struct drm_plane *plane = crtc->primary; 2321 2322 if (plane->state->fb == &framebuffer->base) 2323 units[num_units++] = vmw_crtc_to_du(crtc); 2324 } 2325 } 2326 2327 for (k = 0; k < num_units; k++) { 2328 struct vmw_display_unit *unit = units[k]; 2329 s32 crtc_x = unit->crtc.x; 2330 s32 crtc_y = unit->crtc.y; 2331 s32 crtc_width = unit->crtc.mode.hdisplay; 2332 s32 crtc_height = unit->crtc.mode.vdisplay; 2333 const struct drm_clip_rect *clips_ptr = clips; 2334 const struct drm_vmw_rect *vclips_ptr = vclips; 2335 2336 dirty->unit = unit; 2337 if (dirty->fifo_reserve_size > 0) { 2338 dirty->cmd = VMW_CMD_RESERVE(dev_priv, 2339 dirty->fifo_reserve_size); 2340 if (!dirty->cmd) 2341 return -ENOMEM; 2342 2343 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2344 } 2345 dirty->num_hits = 0; 2346 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2347 vclips_ptr += increment) { 2348 s32 clip_left; 2349 s32 clip_top; 2350 2351 /* 2352 * Select clip array type. Note that integer type 2353 * in @clips is unsigned short, whereas in @vclips 2354 * it's 32-bit. 2355 */ 2356 if (clips) { 2357 dirty->fb_x = (s32) clips_ptr->x1; 2358 dirty->fb_y = (s32) clips_ptr->y1; 2359 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2360 crtc_x; 2361 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2362 crtc_y; 2363 } else { 2364 dirty->fb_x = vclips_ptr->x; 2365 dirty->fb_y = vclips_ptr->y; 2366 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2367 dest_x - crtc_x; 2368 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2369 dest_y - crtc_y; 2370 } 2371 2372 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2373 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2374 2375 /* Skip this clip if it's outside the crtc region */ 2376 if (dirty->unit_x1 >= crtc_width || 2377 dirty->unit_y1 >= crtc_height || 2378 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2379 continue; 2380 2381 /* Clip right and bottom to crtc limits */ 2382 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2383 crtc_width); 2384 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2385 crtc_height); 2386 2387 /* Clip left and top to crtc limits */ 2388 clip_left = min_t(s32, dirty->unit_x1, 0); 2389 clip_top = min_t(s32, dirty->unit_y1, 0); 2390 dirty->unit_x1 -= clip_left; 2391 dirty->unit_y1 -= clip_top; 2392 dirty->fb_x -= clip_left; 2393 dirty->fb_y -= clip_top; 2394 2395 dirty->clip(dirty); 2396 } 2397 2398 dirty->fifo_commit(dirty); 2399 } 2400 2401 return 0; 2402 } 2403 2404 /** 2405 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2406 * cleanup and fencing 2407 * @dev_priv: Pointer to the device-private struct 2408 * @file_priv: Pointer identifying the client when user-space fencing is used 2409 * @ctx: Pointer to the validation context 2410 * @out_fence: If non-NULL, returned refcounted fence-pointer 2411 * @user_fence_rep: If non-NULL, pointer to user-space address area 2412 * in which to copy user-space fence info 2413 */ 2414 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2415 struct drm_file *file_priv, 2416 struct vmw_validation_context *ctx, 2417 struct vmw_fence_obj **out_fence, 2418 struct drm_vmw_fence_rep __user * 2419 user_fence_rep) 2420 { 2421 struct vmw_fence_obj *fence = NULL; 2422 uint32_t handle = 0; 2423 int ret = 0; 2424 2425 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2426 out_fence) 2427 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2428 file_priv ? &handle : NULL); 2429 vmw_validation_done(ctx, fence); 2430 if (file_priv) 2431 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2432 ret, user_fence_rep, fence, 2433 handle, -1); 2434 if (out_fence) 2435 *out_fence = fence; 2436 else 2437 vmw_fence_obj_unreference(&fence); 2438 } 2439 2440 /** 2441 * vmw_kms_create_implicit_placement_property - Set up the implicit placement 2442 * property. 2443 * 2444 * @dev_priv: Pointer to a device private struct. 2445 * 2446 * Sets up the implicit placement property unless it's already set up. 2447 */ 2448 void 2449 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 2450 { 2451 if (dev_priv->implicit_placement_property) 2452 return; 2453 2454 dev_priv->implicit_placement_property = 2455 drm_property_create_range(&dev_priv->drm, 2456 DRM_MODE_PROP_IMMUTABLE, 2457 "implicit_placement", 0, 1); 2458 } 2459 2460 /** 2461 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2462 * 2463 * @dev: Pointer to the drm device 2464 * Return: 0 on success. Negative error code on failure. 2465 */ 2466 int vmw_kms_suspend(struct drm_device *dev) 2467 { 2468 struct vmw_private *dev_priv = vmw_priv(dev); 2469 2470 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2471 if (IS_ERR(dev_priv->suspend_state)) { 2472 int ret = PTR_ERR(dev_priv->suspend_state); 2473 2474 DRM_ERROR("Failed kms suspend: %d\n", ret); 2475 dev_priv->suspend_state = NULL; 2476 2477 return ret; 2478 } 2479 2480 return 0; 2481 } 2482 2483 2484 /** 2485 * vmw_kms_resume - Re-enable modesetting and restore state 2486 * 2487 * @dev: Pointer to the drm device 2488 * Return: 0 on success. Negative error code on failure. 2489 * 2490 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2491 * to call this function without a previous vmw_kms_suspend(). 2492 */ 2493 int vmw_kms_resume(struct drm_device *dev) 2494 { 2495 struct vmw_private *dev_priv = vmw_priv(dev); 2496 int ret; 2497 2498 if (WARN_ON(!dev_priv->suspend_state)) 2499 return 0; 2500 2501 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2502 dev_priv->suspend_state = NULL; 2503 2504 return ret; 2505 } 2506 2507 /** 2508 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2509 * 2510 * @dev: Pointer to the drm device 2511 */ 2512 void vmw_kms_lost_device(struct drm_device *dev) 2513 { 2514 drm_atomic_helper_shutdown(dev); 2515 } 2516 2517 /** 2518 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 2519 * @update: The closure structure. 2520 * 2521 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 2522 * update on display unit. 2523 * 2524 * Return: 0 on success or a negative error code on failure. 2525 */ 2526 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 2527 { 2528 struct drm_plane_state *state = update->plane->state; 2529 struct drm_plane_state *old_state = update->old_state; 2530 struct drm_atomic_helper_damage_iter iter; 2531 struct drm_rect clip; 2532 struct drm_rect bb; 2533 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 2534 uint32_t reserved_size = 0; 2535 uint32_t submit_size = 0; 2536 uint32_t curr_size = 0; 2537 uint32_t num_hits = 0; 2538 void *cmd_start; 2539 char *cmd_next; 2540 int ret; 2541 2542 /* 2543 * Iterate in advance to check if really need plane update and find the 2544 * number of clips that actually are in plane src for fifo allocation. 2545 */ 2546 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2547 drm_atomic_for_each_plane_damage(&iter, &clip) 2548 num_hits++; 2549 2550 if (num_hits == 0) 2551 return 0; 2552 2553 if (update->vfb->bo) { 2554 struct vmw_framebuffer_bo *vfbbo = 2555 container_of(update->vfb, typeof(*vfbbo), base); 2556 2557 /* 2558 * For screen targets we want a mappable bo, for everything else we want 2559 * accelerated i.e. host backed (vram or gmr) bo. If the display unit 2560 * is not screen target then mob's shouldn't be available. 2561 */ 2562 if (update->dev_priv->active_display_unit == vmw_du_screen_target) { 2563 vmw_bo_placement_set(vfbbo->buffer, 2564 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR, 2565 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR); 2566 } else { 2567 WARN_ON(update->dev_priv->has_mob); 2568 vmw_bo_placement_set_default_accelerated(vfbbo->buffer); 2569 } 2570 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer); 2571 } else { 2572 struct vmw_framebuffer_surface *vfbs = 2573 container_of(update->vfb, typeof(*vfbs), base); 2574 struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo); 2575 2576 ret = vmw_validation_add_resource(&val_ctx, &surf->res, 2577 0, VMW_RES_DIRTY_NONE, NULL, 2578 NULL); 2579 } 2580 2581 if (ret) 2582 return ret; 2583 2584 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 2585 if (ret) 2586 goto out_unref; 2587 2588 reserved_size = update->calc_fifo_size(update, num_hits); 2589 cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); 2590 if (!cmd_start) { 2591 ret = -ENOMEM; 2592 goto out_revert; 2593 } 2594 2595 cmd_next = cmd_start; 2596 2597 if (update->post_prepare) { 2598 curr_size = update->post_prepare(update, cmd_next); 2599 cmd_next += curr_size; 2600 submit_size += curr_size; 2601 } 2602 2603 if (update->pre_clip) { 2604 curr_size = update->pre_clip(update, cmd_next, num_hits); 2605 cmd_next += curr_size; 2606 submit_size += curr_size; 2607 } 2608 2609 bb.x1 = INT_MAX; 2610 bb.y1 = INT_MAX; 2611 bb.x2 = INT_MIN; 2612 bb.y2 = INT_MIN; 2613 2614 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2615 drm_atomic_for_each_plane_damage(&iter, &clip) { 2616 uint32_t fb_x = clip.x1; 2617 uint32_t fb_y = clip.y1; 2618 2619 vmw_du_translate_to_crtc(state, &clip); 2620 if (update->clip) { 2621 curr_size = update->clip(update, cmd_next, &clip, fb_x, 2622 fb_y); 2623 cmd_next += curr_size; 2624 submit_size += curr_size; 2625 } 2626 bb.x1 = min_t(int, bb.x1, clip.x1); 2627 bb.y1 = min_t(int, bb.y1, clip.y1); 2628 bb.x2 = max_t(int, bb.x2, clip.x2); 2629 bb.y2 = max_t(int, bb.y2, clip.y2); 2630 } 2631 2632 curr_size = update->post_clip(update, cmd_next, &bb); 2633 submit_size += curr_size; 2634 2635 if (reserved_size < submit_size) 2636 submit_size = 0; 2637 2638 vmw_cmd_commit(update->dev_priv, submit_size); 2639 2640 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 2641 update->out_fence, NULL); 2642 return ret; 2643 2644 out_revert: 2645 vmw_validation_revert(&val_ctx); 2646 2647 out_unref: 2648 vmw_validation_unref_lists(&val_ctx); 2649 return ret; 2650 } 2651 2652 /** 2653 * vmw_connector_mode_valid - implements drm_connector_helper_funcs.mode_valid callback 2654 * 2655 * @connector: the drm connector, part of a DU container 2656 * @mode: drm mode to check 2657 * 2658 * Returns MODE_OK on success, or a drm_mode_status error code. 2659 */ 2660 enum drm_mode_status vmw_connector_mode_valid(struct drm_connector *connector, 2661 struct drm_display_mode *mode) 2662 { 2663 enum drm_mode_status ret; 2664 struct drm_device *dev = connector->dev; 2665 struct vmw_private *dev_priv = vmw_priv(dev); 2666 u32 assumed_cpp = 4; 2667 2668 if (dev_priv->assume_16bpp) 2669 assumed_cpp = 2; 2670 2671 ret = drm_mode_validate_size(mode, dev_priv->texture_max_width, 2672 dev_priv->texture_max_height); 2673 if (ret != MODE_OK) 2674 return ret; 2675 2676 if (!vmw_kms_validate_mode_vram(dev_priv, 2677 mode->hdisplay * assumed_cpp, 2678 mode->vdisplay)) 2679 return MODE_MEM; 2680 2681 return MODE_OK; 2682 } 2683 2684 /** 2685 * vmw_connector_get_modes - implements drm_connector_helper_funcs.get_modes callback 2686 * 2687 * @connector: the drm connector, part of a DU container 2688 * 2689 * Returns the number of added modes. 2690 */ 2691 int vmw_connector_get_modes(struct drm_connector *connector) 2692 { 2693 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2694 struct drm_device *dev = connector->dev; 2695 struct vmw_private *dev_priv = vmw_priv(dev); 2696 struct drm_display_mode *mode = NULL; 2697 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2698 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2699 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2700 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2701 }; 2702 u32 max_width; 2703 u32 max_height; 2704 u32 num_modes; 2705 2706 /* Add preferred mode */ 2707 mode = drm_mode_duplicate(dev, &prefmode); 2708 if (!mode) 2709 return 0; 2710 2711 mode->hdisplay = du->pref_width; 2712 mode->vdisplay = du->pref_height; 2713 vmw_guess_mode_timing(mode); 2714 drm_mode_set_name(mode); 2715 2716 drm_mode_probed_add(connector, mode); 2717 drm_dbg_kms(dev, "preferred mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); 2718 2719 /* Probe connector for all modes not exceeding our geom limits */ 2720 max_width = dev_priv->texture_max_width; 2721 max_height = dev_priv->texture_max_height; 2722 2723 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2724 max_width = min(dev_priv->stdu_max_width, max_width); 2725 max_height = min(dev_priv->stdu_max_height, max_height); 2726 } 2727 2728 num_modes = 1 + drm_add_modes_noedid(connector, max_width, max_height); 2729 2730 return num_modes; 2731 } 2732 2733 struct vmw_user_object *vmw_user_object_ref(struct vmw_user_object *uo) 2734 { 2735 if (uo->buffer) 2736 vmw_user_bo_ref(uo->buffer); 2737 else if (uo->surface) 2738 vmw_surface_reference(uo->surface); 2739 return uo; 2740 } 2741 2742 void vmw_user_object_unref(struct vmw_user_object *uo) 2743 { 2744 if (uo->buffer) 2745 vmw_user_bo_unref(&uo->buffer); 2746 else if (uo->surface) 2747 vmw_surface_unreference(&uo->surface); 2748 } 2749 2750 struct vmw_bo * 2751 vmw_user_object_buffer(struct vmw_user_object *uo) 2752 { 2753 if (uo->buffer) 2754 return uo->buffer; 2755 else if (uo->surface) 2756 return uo->surface->res.guest_memory_bo; 2757 return NULL; 2758 } 2759 2760 struct vmw_surface * 2761 vmw_user_object_surface(struct vmw_user_object *uo) 2762 { 2763 if (uo->buffer) 2764 return uo->buffer->dumb_surface; 2765 return uo->surface; 2766 } 2767 2768 void *vmw_user_object_map(struct vmw_user_object *uo) 2769 { 2770 struct vmw_bo *bo = vmw_user_object_buffer(uo); 2771 2772 WARN_ON(!bo); 2773 return vmw_bo_map_and_cache(bo); 2774 } 2775 2776 void *vmw_user_object_map_size(struct vmw_user_object *uo, size_t size) 2777 { 2778 struct vmw_bo *bo = vmw_user_object_buffer(uo); 2779 2780 WARN_ON(!bo); 2781 return vmw_bo_map_and_cache_size(bo, size); 2782 } 2783 2784 void vmw_user_object_unmap(struct vmw_user_object *uo) 2785 { 2786 struct vmw_bo *bo = vmw_user_object_buffer(uo); 2787 int ret; 2788 2789 WARN_ON(!bo); 2790 2791 /* Fence the mob creation so we are guarateed to have the mob */ 2792 ret = ttm_bo_reserve(&bo->tbo, false, false, NULL); 2793 if (ret != 0) 2794 return; 2795 2796 vmw_bo_unmap(bo); 2797 vmw_bo_pin_reserved(bo, false); 2798 2799 ttm_bo_unreserve(&bo->tbo); 2800 } 2801 2802 bool vmw_user_object_is_mapped(struct vmw_user_object *uo) 2803 { 2804 struct vmw_bo *bo; 2805 2806 if (!uo || vmw_user_object_is_null(uo)) 2807 return false; 2808 2809 bo = vmw_user_object_buffer(uo); 2810 2811 if (WARN_ON(!bo)) 2812 return false; 2813 2814 WARN_ON(bo->map.bo && !bo->map.virtual); 2815 return bo->map.virtual; 2816 } 2817 2818 bool vmw_user_object_is_null(struct vmw_user_object *uo) 2819 { 2820 return !uo->buffer && !uo->surface; 2821 } 2822