1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 35 /* Might need a hrtimer here? */ 36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 37 38 void vmw_du_cleanup(struct vmw_display_unit *du) 39 { 40 drm_plane_cleanup(&du->primary); 41 drm_plane_cleanup(&du->cursor); 42 43 drm_connector_unregister(&du->connector); 44 drm_crtc_cleanup(&du->crtc); 45 drm_encoder_cleanup(&du->encoder); 46 drm_connector_cleanup(&du->connector); 47 } 48 49 /* 50 * Display Unit Cursor functions 51 */ 52 53 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 54 u32 *image, u32 width, u32 height, 55 u32 hotspotX, u32 hotspotY) 56 { 57 struct { 58 u32 cmd; 59 SVGAFifoCmdDefineAlphaCursor cursor; 60 } *cmd; 61 u32 image_size = width * height * 4; 62 u32 cmd_size = sizeof(*cmd) + image_size; 63 64 if (!image) 65 return -EINVAL; 66 67 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 68 if (unlikely(cmd == NULL)) { 69 DRM_ERROR("Fifo reserve failed.\n"); 70 return -ENOMEM; 71 } 72 73 memset(cmd, 0, sizeof(*cmd)); 74 75 memcpy(&cmd[1], image, image_size); 76 77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 78 cmd->cursor.id = 0; 79 cmd->cursor.width = width; 80 cmd->cursor.height = height; 81 cmd->cursor.hotspotX = hotspotX; 82 cmd->cursor.hotspotY = hotspotY; 83 84 vmw_fifo_commit_flush(dev_priv, cmd_size); 85 86 return 0; 87 } 88 89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv, 90 struct vmw_dma_buffer *dmabuf, 91 u32 width, u32 height, 92 u32 hotspotX, u32 hotspotY) 93 { 94 struct ttm_bo_kmap_obj map; 95 unsigned long kmap_offset; 96 unsigned long kmap_num; 97 void *virtual; 98 bool dummy; 99 int ret; 100 101 kmap_offset = 0; 102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 103 104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL); 105 if (unlikely(ret != 0)) { 106 DRM_ERROR("reserve failed\n"); 107 return -EINVAL; 108 } 109 110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map); 111 if (unlikely(ret != 0)) 112 goto err_unreserve; 113 114 virtual = ttm_kmap_obj_virtual(&map, &dummy); 115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 116 hotspotX, hotspotY); 117 118 ttm_bo_kunmap(&map); 119 err_unreserve: 120 ttm_bo_unreserve(&dmabuf->base); 121 122 return ret; 123 } 124 125 126 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 127 bool show, int x, int y) 128 { 129 u32 *fifo_mem = dev_priv->mmio_virt; 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 138 spin_unlock(&dev_priv->cursor_lock); 139 } 140 141 142 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 143 struct ttm_object_file *tfile, 144 struct ttm_buffer_object *bo, 145 SVGA3dCmdHeader *header) 146 { 147 struct ttm_bo_kmap_obj map; 148 unsigned long kmap_offset; 149 unsigned long kmap_num; 150 SVGA3dCopyBox *box; 151 unsigned box_count; 152 void *virtual; 153 bool dummy; 154 struct vmw_dma_cmd { 155 SVGA3dCmdHeader header; 156 SVGA3dCmdSurfaceDMA dma; 157 } *cmd; 158 int i, ret; 159 160 cmd = container_of(header, struct vmw_dma_cmd, header); 161 162 /* No snooper installed */ 163 if (!srf->snooper.image) 164 return; 165 166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 167 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 168 return; 169 } 170 171 if (cmd->header.size < 64) { 172 DRM_ERROR("at least one full copy box must be given\n"); 173 return; 174 } 175 176 box = (SVGA3dCopyBox *)&cmd[1]; 177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 178 sizeof(SVGA3dCopyBox); 179 180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 181 box->x != 0 || box->y != 0 || box->z != 0 || 182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 183 box->d != 1 || box_count != 1) { 184 /* TODO handle none page aligned offsets */ 185 /* TODO handle more dst & src != 0 */ 186 /* TODO handle more then one copy */ 187 DRM_ERROR("Cant snoop dma request for cursor!\n"); 188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 189 box->srcx, box->srcy, box->srcz, 190 box->x, box->y, box->z, 191 box->w, box->h, box->d, box_count, 192 cmd->dma.guest.ptr.offset); 193 return; 194 } 195 196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 197 kmap_num = (64*64*4) >> PAGE_SHIFT; 198 199 ret = ttm_bo_reserve(bo, true, false, NULL); 200 if (unlikely(ret != 0)) { 201 DRM_ERROR("reserve failed\n"); 202 return; 203 } 204 205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 206 if (unlikely(ret != 0)) 207 goto err_unreserve; 208 209 virtual = ttm_kmap_obj_virtual(&map, &dummy); 210 211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 212 memcpy(srf->snooper.image, virtual, 64*64*4); 213 } else { 214 /* Image is unsigned pointer. */ 215 for (i = 0; i < box->h; i++) 216 memcpy(srf->snooper.image + i * 64, 217 virtual + i * cmd->dma.guest.pitch, 218 box->w * 4); 219 } 220 221 srf->snooper.age++; 222 223 ttm_bo_kunmap(&map); 224 err_unreserve: 225 ttm_bo_unreserve(bo); 226 } 227 228 /** 229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 230 * 231 * @dev_priv: Pointer to the device private struct. 232 * 233 * Clears all legacy hotspots. 234 */ 235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 236 { 237 struct drm_device *dev = dev_priv->dev; 238 struct vmw_display_unit *du; 239 struct drm_crtc *crtc; 240 241 drm_modeset_lock_all(dev); 242 drm_for_each_crtc(crtc, dev) { 243 du = vmw_crtc_to_du(crtc); 244 245 du->hotspot_x = 0; 246 du->hotspot_y = 0; 247 } 248 drm_modeset_unlock_all(dev); 249 } 250 251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 252 { 253 struct drm_device *dev = dev_priv->dev; 254 struct vmw_display_unit *du; 255 struct drm_crtc *crtc; 256 257 mutex_lock(&dev->mode_config.mutex); 258 259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 260 du = vmw_crtc_to_du(crtc); 261 if (!du->cursor_surface || 262 du->cursor_age == du->cursor_surface->snooper.age) 263 continue; 264 265 du->cursor_age = du->cursor_surface->snooper.age; 266 vmw_cursor_update_image(dev_priv, 267 du->cursor_surface->snooper.image, 268 64, 64, 269 du->hotspot_x + du->core_hotspot_x, 270 du->hotspot_y + du->core_hotspot_y); 271 } 272 273 mutex_unlock(&dev->mode_config.mutex); 274 } 275 276 277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 278 { 279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 280 281 drm_plane_cleanup(plane); 282 } 283 284 285 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 286 { 287 drm_plane_cleanup(plane); 288 289 /* Planes are static in our case so we don't free it */ 290 } 291 292 293 /** 294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 295 * 296 * @vps: plane state associated with the display surface 297 * @unreference: true if we also want to unreference the display. 298 */ 299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 300 bool unreference) 301 { 302 if (vps->surf) { 303 if (vps->pinned) { 304 vmw_resource_unpin(&vps->surf->res); 305 vps->pinned--; 306 } 307 308 if (unreference) { 309 if (vps->pinned) 310 DRM_ERROR("Surface still pinned\n"); 311 vmw_surface_unreference(&vps->surf); 312 } 313 } 314 } 315 316 317 /** 318 * vmw_du_plane_cleanup_fb - Unpins the cursor 319 * 320 * @plane: display plane 321 * @old_state: Contains the FB to clean up 322 * 323 * Unpins the framebuffer surface 324 * 325 * Returns 0 on success 326 */ 327 void 328 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 329 struct drm_plane_state *old_state) 330 { 331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 332 333 vmw_du_plane_unpin_surf(vps, false); 334 } 335 336 337 /** 338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 339 * 340 * @plane: display plane 341 * @new_state: info on the new plane state, including the FB 342 * 343 * Returns 0 on success 344 */ 345 int 346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 347 struct drm_plane_state *new_state) 348 { 349 struct drm_framebuffer *fb = new_state->fb; 350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 351 352 353 if (vps->surf) 354 vmw_surface_unreference(&vps->surf); 355 356 if (vps->dmabuf) 357 vmw_dmabuf_unreference(&vps->dmabuf); 358 359 if (fb) { 360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) { 361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer; 362 vmw_dmabuf_reference(vps->dmabuf); 363 } else { 364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 365 vmw_surface_reference(vps->surf); 366 } 367 } 368 369 return 0; 370 } 371 372 373 void 374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 375 struct drm_plane_state *old_state) 376 { 377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 378 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 381 s32 hotspot_x, hotspot_y; 382 int ret = 0; 383 384 385 hotspot_x = du->hotspot_x; 386 hotspot_y = du->hotspot_y; 387 388 if (plane->fb) { 389 hotspot_x += plane->fb->hot_x; 390 hotspot_y += plane->fb->hot_y; 391 } 392 393 du->cursor_surface = vps->surf; 394 du->cursor_dmabuf = vps->dmabuf; 395 396 /* setup new image */ 397 if (vps->surf) { 398 du->cursor_age = du->cursor_surface->snooper.age; 399 400 ret = vmw_cursor_update_image(dev_priv, 401 vps->surf->snooper.image, 402 64, 64, hotspot_x, hotspot_y); 403 } else if (vps->dmabuf) { 404 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf, 405 plane->state->crtc_w, 406 plane->state->crtc_h, 407 hotspot_x, hotspot_y); 408 } else { 409 vmw_cursor_update_position(dev_priv, false, 0, 0); 410 return; 411 } 412 413 if (!ret) { 414 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 415 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 416 417 vmw_cursor_update_position(dev_priv, true, 418 du->cursor_x + hotspot_x, 419 du->cursor_y + hotspot_y); 420 421 du->core_hotspot_x = hotspot_x - du->hotspot_x; 422 du->core_hotspot_y = hotspot_y - du->hotspot_y; 423 } else { 424 DRM_ERROR("Failed to update cursor image\n"); 425 } 426 } 427 428 429 /** 430 * vmw_du_primary_plane_atomic_check - check if the new state is okay 431 * 432 * @plane: display plane 433 * @state: info on the new plane state, including the FB 434 * 435 * Check if the new state is settable given the current state. Other 436 * than what the atomic helper checks, we care about crtc fitting 437 * the FB and maintaining one active framebuffer. 438 * 439 * Returns 0 on success 440 */ 441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 442 struct drm_plane_state *state) 443 { 444 struct drm_crtc_state *crtc_state = NULL; 445 struct drm_framebuffer *new_fb = state->fb; 446 int ret; 447 448 if (state->crtc) 449 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 450 451 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 452 DRM_PLANE_HELPER_NO_SCALING, 453 DRM_PLANE_HELPER_NO_SCALING, 454 false, true); 455 456 if (!ret && new_fb) { 457 struct drm_crtc *crtc = state->crtc; 458 struct vmw_connector_state *vcs; 459 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 460 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 461 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 462 463 vcs = vmw_connector_state_to_vcs(du->connector.state); 464 465 /* Only one active implicit framebuffer at a time. */ 466 mutex_lock(&dev_priv->global_kms_state_mutex); 467 if (vcs->is_implicit && dev_priv->implicit_fb && 468 !(dev_priv->num_implicit == 1 && du->active_implicit) 469 && dev_priv->implicit_fb != vfb) { 470 DRM_ERROR("Multiple implicit framebuffers " 471 "not supported.\n"); 472 ret = -EINVAL; 473 } 474 mutex_unlock(&dev_priv->global_kms_state_mutex); 475 } 476 477 478 return ret; 479 } 480 481 482 /** 483 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 484 * 485 * @plane: cursor plane 486 * @state: info on the new plane state 487 * 488 * This is a chance to fail if the new cursor state does not fit 489 * our requirements. 490 * 491 * Returns 0 on success 492 */ 493 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 494 struct drm_plane_state *new_state) 495 { 496 int ret = 0; 497 struct vmw_surface *surface = NULL; 498 struct drm_framebuffer *fb = new_state->fb; 499 500 501 /* Turning off */ 502 if (!fb) 503 return ret; 504 505 /* A lot of the code assumes this */ 506 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 507 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 508 new_state->crtc_w, new_state->crtc_h); 509 ret = -EINVAL; 510 } 511 512 if (!vmw_framebuffer_to_vfb(fb)->dmabuf) 513 surface = vmw_framebuffer_to_vfbs(fb)->surface; 514 515 if (surface && !surface->snooper.image) { 516 DRM_ERROR("surface not suitable for cursor\n"); 517 ret = -EINVAL; 518 } 519 520 return ret; 521 } 522 523 524 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 525 struct drm_crtc_state *new_state) 526 { 527 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 528 int connector_mask = 1 << drm_connector_index(&du->connector); 529 bool has_primary = new_state->plane_mask & 530 BIT(drm_plane_index(crtc->primary)); 531 532 /* We always want to have an active plane with an active CRTC */ 533 if (has_primary != new_state->enable) 534 return -EINVAL; 535 536 537 if (new_state->connector_mask != connector_mask && 538 new_state->connector_mask != 0) { 539 DRM_ERROR("Invalid connectors configuration\n"); 540 return -EINVAL; 541 } 542 543 /* 544 * Our virtual device does not have a dot clock, so use the logical 545 * clock value as the dot clock. 546 */ 547 if (new_state->mode.crtc_clock == 0) 548 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 549 550 return 0; 551 } 552 553 554 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 555 struct drm_crtc_state *old_crtc_state) 556 { 557 } 558 559 560 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 561 struct drm_crtc_state *old_crtc_state) 562 { 563 struct drm_pending_vblank_event *event = crtc->state->event; 564 565 if (event) { 566 crtc->state->event = NULL; 567 568 spin_lock_irq(&crtc->dev->event_lock); 569 if (drm_crtc_vblank_get(crtc) == 0) 570 drm_crtc_arm_vblank_event(crtc, event); 571 else 572 drm_crtc_send_vblank_event(crtc, event); 573 spin_unlock_irq(&crtc->dev->event_lock); 574 } 575 576 } 577 578 579 /** 580 * vmw_du_crtc_duplicate_state - duplicate crtc state 581 * @crtc: DRM crtc 582 * 583 * Allocates and returns a copy of the crtc state (both common and 584 * vmw-specific) for the specified crtc. 585 * 586 * Returns: The newly allocated crtc state, or NULL on failure. 587 */ 588 struct drm_crtc_state * 589 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 590 { 591 struct drm_crtc_state *state; 592 struct vmw_crtc_state *vcs; 593 594 if (WARN_ON(!crtc->state)) 595 return NULL; 596 597 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 598 599 if (!vcs) 600 return NULL; 601 602 state = &vcs->base; 603 604 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 605 606 return state; 607 } 608 609 610 /** 611 * vmw_du_crtc_reset - creates a blank vmw crtc state 612 * @crtc: DRM crtc 613 * 614 * Resets the atomic state for @crtc by freeing the state pointer (which 615 * might be NULL, e.g. at driver load time) and allocating a new empty state 616 * object. 617 */ 618 void vmw_du_crtc_reset(struct drm_crtc *crtc) 619 { 620 struct vmw_crtc_state *vcs; 621 622 623 if (crtc->state) { 624 __drm_atomic_helper_crtc_destroy_state(crtc->state); 625 626 kfree(vmw_crtc_state_to_vcs(crtc->state)); 627 } 628 629 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 630 631 if (!vcs) { 632 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 633 return; 634 } 635 636 crtc->state = &vcs->base; 637 crtc->state->crtc = crtc; 638 } 639 640 641 /** 642 * vmw_du_crtc_destroy_state - destroy crtc state 643 * @crtc: DRM crtc 644 * @state: state object to destroy 645 * 646 * Destroys the crtc state (both common and vmw-specific) for the 647 * specified plane. 648 */ 649 void 650 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 651 struct drm_crtc_state *state) 652 { 653 drm_atomic_helper_crtc_destroy_state(crtc, state); 654 } 655 656 657 /** 658 * vmw_du_plane_duplicate_state - duplicate plane state 659 * @plane: drm plane 660 * 661 * Allocates and returns a copy of the plane state (both common and 662 * vmw-specific) for the specified plane. 663 * 664 * Returns: The newly allocated plane state, or NULL on failure. 665 */ 666 struct drm_plane_state * 667 vmw_du_plane_duplicate_state(struct drm_plane *plane) 668 { 669 struct drm_plane_state *state; 670 struct vmw_plane_state *vps; 671 672 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 673 674 if (!vps) 675 return NULL; 676 677 vps->pinned = 0; 678 679 /* Mapping is managed by prepare_fb/cleanup_fb */ 680 memset(&vps->host_map, 0, sizeof(vps->host_map)); 681 vps->cpp = 0; 682 683 /* Each ref counted resource needs to be acquired again */ 684 if (vps->surf) 685 (void) vmw_surface_reference(vps->surf); 686 687 if (vps->dmabuf) 688 (void) vmw_dmabuf_reference(vps->dmabuf); 689 690 state = &vps->base; 691 692 __drm_atomic_helper_plane_duplicate_state(plane, state); 693 694 return state; 695 } 696 697 698 /** 699 * vmw_du_plane_reset - creates a blank vmw plane state 700 * @plane: drm plane 701 * 702 * Resets the atomic state for @plane by freeing the state pointer (which might 703 * be NULL, e.g. at driver load time) and allocating a new empty state object. 704 */ 705 void vmw_du_plane_reset(struct drm_plane *plane) 706 { 707 struct vmw_plane_state *vps; 708 709 710 if (plane->state) 711 vmw_du_plane_destroy_state(plane, plane->state); 712 713 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 714 715 if (!vps) { 716 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 717 return; 718 } 719 720 plane->state = &vps->base; 721 plane->state->plane = plane; 722 plane->state->rotation = DRM_MODE_ROTATE_0; 723 } 724 725 726 /** 727 * vmw_du_plane_destroy_state - destroy plane state 728 * @plane: DRM plane 729 * @state: state object to destroy 730 * 731 * Destroys the plane state (both common and vmw-specific) for the 732 * specified plane. 733 */ 734 void 735 vmw_du_plane_destroy_state(struct drm_plane *plane, 736 struct drm_plane_state *state) 737 { 738 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 739 740 741 /* Should have been freed by cleanup_fb */ 742 if (vps->host_map.virtual) { 743 DRM_ERROR("Host mapping not freed\n"); 744 ttm_bo_kunmap(&vps->host_map); 745 } 746 747 if (vps->surf) 748 vmw_surface_unreference(&vps->surf); 749 750 if (vps->dmabuf) 751 vmw_dmabuf_unreference(&vps->dmabuf); 752 753 drm_atomic_helper_plane_destroy_state(plane, state); 754 } 755 756 757 /** 758 * vmw_du_connector_duplicate_state - duplicate connector state 759 * @connector: DRM connector 760 * 761 * Allocates and returns a copy of the connector state (both common and 762 * vmw-specific) for the specified connector. 763 * 764 * Returns: The newly allocated connector state, or NULL on failure. 765 */ 766 struct drm_connector_state * 767 vmw_du_connector_duplicate_state(struct drm_connector *connector) 768 { 769 struct drm_connector_state *state; 770 struct vmw_connector_state *vcs; 771 772 if (WARN_ON(!connector->state)) 773 return NULL; 774 775 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 776 777 if (!vcs) 778 return NULL; 779 780 state = &vcs->base; 781 782 __drm_atomic_helper_connector_duplicate_state(connector, state); 783 784 return state; 785 } 786 787 788 /** 789 * vmw_du_connector_reset - creates a blank vmw connector state 790 * @connector: DRM connector 791 * 792 * Resets the atomic state for @connector by freeing the state pointer (which 793 * might be NULL, e.g. at driver load time) and allocating a new empty state 794 * object. 795 */ 796 void vmw_du_connector_reset(struct drm_connector *connector) 797 { 798 struct vmw_connector_state *vcs; 799 800 801 if (connector->state) { 802 __drm_atomic_helper_connector_destroy_state(connector->state); 803 804 kfree(vmw_connector_state_to_vcs(connector->state)); 805 } 806 807 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 808 809 if (!vcs) { 810 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 811 return; 812 } 813 814 __drm_atomic_helper_connector_reset(connector, &vcs->base); 815 } 816 817 818 /** 819 * vmw_du_connector_destroy_state - destroy connector state 820 * @connector: DRM connector 821 * @state: state object to destroy 822 * 823 * Destroys the connector state (both common and vmw-specific) for the 824 * specified plane. 825 */ 826 void 827 vmw_du_connector_destroy_state(struct drm_connector *connector, 828 struct drm_connector_state *state) 829 { 830 drm_atomic_helper_connector_destroy_state(connector, state); 831 } 832 /* 833 * Generic framebuffer code 834 */ 835 836 /* 837 * Surface framebuffer code 838 */ 839 840 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 841 { 842 struct vmw_framebuffer_surface *vfbs = 843 vmw_framebuffer_to_vfbs(framebuffer); 844 845 drm_framebuffer_cleanup(framebuffer); 846 vmw_surface_unreference(&vfbs->surface); 847 if (vfbs->base.user_obj) 848 ttm_base_object_unref(&vfbs->base.user_obj); 849 850 kfree(vfbs); 851 } 852 853 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 854 struct drm_file *file_priv, 855 unsigned flags, unsigned color, 856 struct drm_clip_rect *clips, 857 unsigned num_clips) 858 { 859 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 860 struct vmw_framebuffer_surface *vfbs = 861 vmw_framebuffer_to_vfbs(framebuffer); 862 struct drm_clip_rect norect; 863 int ret, inc = 1; 864 865 /* Legacy Display Unit does not support 3D */ 866 if (dev_priv->active_display_unit == vmw_du_legacy) 867 return -EINVAL; 868 869 drm_modeset_lock_all(dev_priv->dev); 870 871 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 872 if (unlikely(ret != 0)) { 873 drm_modeset_unlock_all(dev_priv->dev); 874 return ret; 875 } 876 877 if (!num_clips) { 878 num_clips = 1; 879 clips = &norect; 880 norect.x1 = norect.y1 = 0; 881 norect.x2 = framebuffer->width; 882 norect.y2 = framebuffer->height; 883 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 884 num_clips /= 2; 885 inc = 2; /* skip source rects */ 886 } 887 888 if (dev_priv->active_display_unit == vmw_du_screen_object) 889 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 890 clips, NULL, NULL, 0, 0, 891 num_clips, inc, NULL); 892 else 893 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 894 clips, NULL, NULL, 0, 0, 895 num_clips, inc, NULL); 896 897 vmw_fifo_flush(dev_priv, false); 898 ttm_read_unlock(&dev_priv->reservation_sem); 899 900 drm_modeset_unlock_all(dev_priv->dev); 901 902 return 0; 903 } 904 905 /** 906 * vmw_kms_readback - Perform a readback from the screen system to 907 * a dma-buffer backed framebuffer. 908 * 909 * @dev_priv: Pointer to the device private structure. 910 * @file_priv: Pointer to a struct drm_file identifying the caller. 911 * Must be set to NULL if @user_fence_rep is NULL. 912 * @vfb: Pointer to the dma-buffer backed framebuffer. 913 * @user_fence_rep: User-space provided structure for fence information. 914 * Must be set to non-NULL if @file_priv is non-NULL. 915 * @vclips: Array of clip rects. 916 * @num_clips: Number of clip rects in @vclips. 917 * 918 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 919 * interrupted. 920 */ 921 int vmw_kms_readback(struct vmw_private *dev_priv, 922 struct drm_file *file_priv, 923 struct vmw_framebuffer *vfb, 924 struct drm_vmw_fence_rep __user *user_fence_rep, 925 struct drm_vmw_rect *vclips, 926 uint32_t num_clips) 927 { 928 switch (dev_priv->active_display_unit) { 929 case vmw_du_screen_object: 930 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 931 user_fence_rep, vclips, num_clips); 932 case vmw_du_screen_target: 933 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 934 user_fence_rep, NULL, vclips, num_clips, 935 1, false, true); 936 default: 937 WARN_ONCE(true, 938 "Readback called with invalid display system.\n"); 939 } 940 941 return -ENOSYS; 942 } 943 944 945 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 946 .destroy = vmw_framebuffer_surface_destroy, 947 .dirty = vmw_framebuffer_surface_dirty, 948 }; 949 950 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 951 struct vmw_surface *surface, 952 struct vmw_framebuffer **out, 953 const struct drm_mode_fb_cmd2 954 *mode_cmd, 955 bool is_dmabuf_proxy) 956 957 { 958 struct drm_device *dev = dev_priv->dev; 959 struct vmw_framebuffer_surface *vfbs; 960 enum SVGA3dSurfaceFormat format; 961 int ret; 962 struct drm_format_name_buf format_name; 963 964 /* 3D is only supported on HWv8 and newer hosts */ 965 if (dev_priv->active_display_unit == vmw_du_legacy) 966 return -ENOSYS; 967 968 /* 969 * Sanity checks. 970 */ 971 972 /* Surface must be marked as a scanout. */ 973 if (unlikely(!surface->scanout)) 974 return -EINVAL; 975 976 if (unlikely(surface->mip_levels[0] != 1 || 977 surface->num_sizes != 1 || 978 surface->base_size.width < mode_cmd->width || 979 surface->base_size.height < mode_cmd->height || 980 surface->base_size.depth != 1)) { 981 DRM_ERROR("Incompatible surface dimensions " 982 "for requested mode.\n"); 983 return -EINVAL; 984 } 985 986 switch (mode_cmd->pixel_format) { 987 case DRM_FORMAT_ARGB8888: 988 format = SVGA3D_A8R8G8B8; 989 break; 990 case DRM_FORMAT_XRGB8888: 991 format = SVGA3D_X8R8G8B8; 992 break; 993 case DRM_FORMAT_RGB565: 994 format = SVGA3D_R5G6B5; 995 break; 996 case DRM_FORMAT_XRGB1555: 997 format = SVGA3D_A1R5G5B5; 998 break; 999 default: 1000 DRM_ERROR("Invalid pixel format: %s\n", 1001 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1002 return -EINVAL; 1003 } 1004 1005 /* 1006 * For DX, surface format validation is done when surface->scanout 1007 * is set. 1008 */ 1009 if (!dev_priv->has_dx && format != surface->format) { 1010 DRM_ERROR("Invalid surface format for requested mode.\n"); 1011 return -EINVAL; 1012 } 1013 1014 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1015 if (!vfbs) { 1016 ret = -ENOMEM; 1017 goto out_err1; 1018 } 1019 1020 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1021 vfbs->surface = vmw_surface_reference(surface); 1022 vfbs->base.user_handle = mode_cmd->handles[0]; 1023 vfbs->is_dmabuf_proxy = is_dmabuf_proxy; 1024 1025 *out = &vfbs->base; 1026 1027 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1028 &vmw_framebuffer_surface_funcs); 1029 if (ret) 1030 goto out_err2; 1031 1032 return 0; 1033 1034 out_err2: 1035 vmw_surface_unreference(&surface); 1036 kfree(vfbs); 1037 out_err1: 1038 return ret; 1039 } 1040 1041 /* 1042 * Dmabuf framebuffer code 1043 */ 1044 1045 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer) 1046 { 1047 struct vmw_framebuffer_dmabuf *vfbd = 1048 vmw_framebuffer_to_vfbd(framebuffer); 1049 1050 drm_framebuffer_cleanup(framebuffer); 1051 vmw_dmabuf_unreference(&vfbd->buffer); 1052 if (vfbd->base.user_obj) 1053 ttm_base_object_unref(&vfbd->base.user_obj); 1054 1055 kfree(vfbd); 1056 } 1057 1058 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer, 1059 struct drm_file *file_priv, 1060 unsigned flags, unsigned color, 1061 struct drm_clip_rect *clips, 1062 unsigned num_clips) 1063 { 1064 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1065 struct vmw_framebuffer_dmabuf *vfbd = 1066 vmw_framebuffer_to_vfbd(framebuffer); 1067 struct drm_clip_rect norect; 1068 int ret, increment = 1; 1069 1070 drm_modeset_lock_all(dev_priv->dev); 1071 1072 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1073 if (unlikely(ret != 0)) { 1074 drm_modeset_unlock_all(dev_priv->dev); 1075 return ret; 1076 } 1077 1078 if (!num_clips) { 1079 num_clips = 1; 1080 clips = &norect; 1081 norect.x1 = norect.y1 = 0; 1082 norect.x2 = framebuffer->width; 1083 norect.y2 = framebuffer->height; 1084 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1085 num_clips /= 2; 1086 increment = 2; 1087 } 1088 1089 switch (dev_priv->active_display_unit) { 1090 case vmw_du_screen_target: 1091 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1092 clips, NULL, num_clips, increment, 1093 true, true); 1094 break; 1095 case vmw_du_screen_object: 1096 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base, 1097 clips, NULL, num_clips, 1098 increment, true, NULL); 1099 break; 1100 case vmw_du_legacy: 1101 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0, 1102 clips, num_clips, increment); 1103 break; 1104 default: 1105 ret = -EINVAL; 1106 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1107 break; 1108 } 1109 1110 vmw_fifo_flush(dev_priv, false); 1111 ttm_read_unlock(&dev_priv->reservation_sem); 1112 1113 drm_modeset_unlock_all(dev_priv->dev); 1114 1115 return ret; 1116 } 1117 1118 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = { 1119 .destroy = vmw_framebuffer_dmabuf_destroy, 1120 .dirty = vmw_framebuffer_dmabuf_dirty, 1121 }; 1122 1123 /** 1124 * Pin the dmabuffer to the start of vram. 1125 */ 1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1127 { 1128 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1129 struct vmw_dma_buffer *buf; 1130 int ret; 1131 1132 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1133 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1134 1135 if (!buf) 1136 return 0; 1137 1138 switch (dev_priv->active_display_unit) { 1139 case vmw_du_legacy: 1140 vmw_overlay_pause_all(dev_priv); 1141 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false); 1142 vmw_overlay_resume_all(dev_priv); 1143 break; 1144 case vmw_du_screen_object: 1145 case vmw_du_screen_target: 1146 if (vfb->dmabuf) 1147 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf, 1148 false); 1149 1150 return vmw_dmabuf_pin_in_placement(dev_priv, buf, 1151 &vmw_mob_placement, false); 1152 default: 1153 return -EINVAL; 1154 } 1155 1156 return ret; 1157 } 1158 1159 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1160 { 1161 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1162 struct vmw_dma_buffer *buf; 1163 1164 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1165 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1166 1167 if (WARN_ON(!buf)) 1168 return 0; 1169 1170 return vmw_dmabuf_unpin(dev_priv, buf, false); 1171 } 1172 1173 /** 1174 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf 1175 * 1176 * @dev: DRM device 1177 * @mode_cmd: parameters for the new surface 1178 * @dmabuf_mob: MOB backing the DMA buf 1179 * @srf_out: newly created surface 1180 * 1181 * When the content FB is a DMA buf, we create a surface as a proxy to the 1182 * same buffer. This way we can do a surface copy rather than a surface DMA. 1183 * This is a more efficient approach 1184 * 1185 * RETURNS: 1186 * 0 on success, error code otherwise 1187 */ 1188 static int vmw_create_dmabuf_proxy(struct drm_device *dev, 1189 const struct drm_mode_fb_cmd2 *mode_cmd, 1190 struct vmw_dma_buffer *dmabuf_mob, 1191 struct vmw_surface **srf_out) 1192 { 1193 uint32_t format; 1194 struct drm_vmw_size content_base_size = {0}; 1195 struct vmw_resource *res; 1196 unsigned int bytes_pp; 1197 struct drm_format_name_buf format_name; 1198 int ret; 1199 1200 switch (mode_cmd->pixel_format) { 1201 case DRM_FORMAT_ARGB8888: 1202 case DRM_FORMAT_XRGB8888: 1203 format = SVGA3D_X8R8G8B8; 1204 bytes_pp = 4; 1205 break; 1206 1207 case DRM_FORMAT_RGB565: 1208 case DRM_FORMAT_XRGB1555: 1209 format = SVGA3D_R5G6B5; 1210 bytes_pp = 2; 1211 break; 1212 1213 case 8: 1214 format = SVGA3D_P8; 1215 bytes_pp = 1; 1216 break; 1217 1218 default: 1219 DRM_ERROR("Invalid framebuffer format %s\n", 1220 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1221 return -EINVAL; 1222 } 1223 1224 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1225 content_base_size.height = mode_cmd->height; 1226 content_base_size.depth = 1; 1227 1228 ret = vmw_surface_gb_priv_define(dev, 1229 0, /* kernel visible only */ 1230 0, /* flags */ 1231 format, 1232 true, /* can be a scanout buffer */ 1233 1, /* num of mip levels */ 1234 0, 1235 0, 1236 content_base_size, 1237 srf_out); 1238 if (ret) { 1239 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1240 return ret; 1241 } 1242 1243 res = &(*srf_out)->res; 1244 1245 /* Reserve and switch the backing mob. */ 1246 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1247 (void) vmw_resource_reserve(res, false, true); 1248 vmw_dmabuf_unreference(&res->backup); 1249 res->backup = vmw_dmabuf_reference(dmabuf_mob); 1250 res->backup_offset = 0; 1251 vmw_resource_unreserve(res, false, NULL, 0); 1252 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1253 1254 return 0; 1255 } 1256 1257 1258 1259 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv, 1260 struct vmw_dma_buffer *dmabuf, 1261 struct vmw_framebuffer **out, 1262 const struct drm_mode_fb_cmd2 1263 *mode_cmd) 1264 1265 { 1266 struct drm_device *dev = dev_priv->dev; 1267 struct vmw_framebuffer_dmabuf *vfbd; 1268 unsigned int requested_size; 1269 struct drm_format_name_buf format_name; 1270 int ret; 1271 1272 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1273 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) { 1274 DRM_ERROR("Screen buffer object size is too small " 1275 "for requested mode.\n"); 1276 return -EINVAL; 1277 } 1278 1279 /* Limited framebuffer color depth support for screen objects */ 1280 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1281 switch (mode_cmd->pixel_format) { 1282 case DRM_FORMAT_XRGB8888: 1283 case DRM_FORMAT_ARGB8888: 1284 break; 1285 case DRM_FORMAT_XRGB1555: 1286 case DRM_FORMAT_RGB565: 1287 break; 1288 default: 1289 DRM_ERROR("Invalid pixel format: %s\n", 1290 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1291 return -EINVAL; 1292 } 1293 } 1294 1295 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1296 if (!vfbd) { 1297 ret = -ENOMEM; 1298 goto out_err1; 1299 } 1300 1301 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1302 vfbd->base.dmabuf = true; 1303 vfbd->buffer = vmw_dmabuf_reference(dmabuf); 1304 vfbd->base.user_handle = mode_cmd->handles[0]; 1305 *out = &vfbd->base; 1306 1307 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1308 &vmw_framebuffer_dmabuf_funcs); 1309 if (ret) 1310 goto out_err2; 1311 1312 return 0; 1313 1314 out_err2: 1315 vmw_dmabuf_unreference(&dmabuf); 1316 kfree(vfbd); 1317 out_err1: 1318 return ret; 1319 } 1320 1321 1322 /** 1323 * vmw_kms_srf_ok - check if a surface can be created 1324 * 1325 * @width: requested width 1326 * @height: requested height 1327 * 1328 * Surfaces need to be less than texture size 1329 */ 1330 static bool 1331 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1332 { 1333 if (width > dev_priv->texture_max_width || 1334 height > dev_priv->texture_max_height) 1335 return false; 1336 1337 return true; 1338 } 1339 1340 /** 1341 * vmw_kms_new_framebuffer - Create a new framebuffer. 1342 * 1343 * @dev_priv: Pointer to device private struct. 1344 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around. 1345 * Either @dmabuf or @surface must be NULL. 1346 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1347 * Either @dmabuf or @surface must be NULL. 1348 * @only_2d: No presents will occur to this dma buffer based framebuffer. This 1349 * Helps the code to do some important optimizations. 1350 * @mode_cmd: Frame-buffer metadata. 1351 */ 1352 struct vmw_framebuffer * 1353 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1354 struct vmw_dma_buffer *dmabuf, 1355 struct vmw_surface *surface, 1356 bool only_2d, 1357 const struct drm_mode_fb_cmd2 *mode_cmd) 1358 { 1359 struct vmw_framebuffer *vfb = NULL; 1360 bool is_dmabuf_proxy = false; 1361 int ret; 1362 1363 /* 1364 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1365 * therefore, wrap the DMA buf in a surface so we can use the 1366 * SurfaceCopy command. 1367 */ 1368 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1369 dmabuf && only_2d && 1370 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1371 dev_priv->active_display_unit == vmw_du_screen_target) { 1372 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd, 1373 dmabuf, &surface); 1374 if (ret) 1375 return ERR_PTR(ret); 1376 1377 is_dmabuf_proxy = true; 1378 } 1379 1380 /* Create the new framebuffer depending one what we have */ 1381 if (surface) { 1382 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1383 mode_cmd, 1384 is_dmabuf_proxy); 1385 1386 /* 1387 * vmw_create_dmabuf_proxy() adds a reference that is no longer 1388 * needed 1389 */ 1390 if (is_dmabuf_proxy) 1391 vmw_surface_unreference(&surface); 1392 } else if (dmabuf) { 1393 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb, 1394 mode_cmd); 1395 } else { 1396 BUG(); 1397 } 1398 1399 if (ret) 1400 return ERR_PTR(ret); 1401 1402 vfb->pin = vmw_framebuffer_pin; 1403 vfb->unpin = vmw_framebuffer_unpin; 1404 1405 return vfb; 1406 } 1407 1408 /* 1409 * Generic Kernel modesetting functions 1410 */ 1411 1412 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1413 struct drm_file *file_priv, 1414 const struct drm_mode_fb_cmd2 *mode_cmd) 1415 { 1416 struct vmw_private *dev_priv = vmw_priv(dev); 1417 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1418 struct vmw_framebuffer *vfb = NULL; 1419 struct vmw_surface *surface = NULL; 1420 struct vmw_dma_buffer *bo = NULL; 1421 struct ttm_base_object *user_obj; 1422 int ret; 1423 1424 /** 1425 * This code should be conditioned on Screen Objects not being used. 1426 * If screen objects are used, we can allocate a GMR to hold the 1427 * requested framebuffer. 1428 */ 1429 1430 if (!vmw_kms_validate_mode_vram(dev_priv, 1431 mode_cmd->pitches[0], 1432 mode_cmd->height)) { 1433 DRM_ERROR("Requested mode exceed bounding box limit.\n"); 1434 return ERR_PTR(-ENOMEM); 1435 } 1436 1437 /* 1438 * Take a reference on the user object of the resource 1439 * backing the kms fb. This ensures that user-space handle 1440 * lookups on that resource will always work as long as 1441 * it's registered with a kms framebuffer. This is important, 1442 * since vmw_execbuf_process identifies resources in the 1443 * command stream using user-space handles. 1444 */ 1445 1446 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1447 if (unlikely(user_obj == NULL)) { 1448 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1449 return ERR_PTR(-ENOENT); 1450 } 1451 1452 /** 1453 * End conditioned code. 1454 */ 1455 1456 /* returns either a dmabuf or surface */ 1457 ret = vmw_user_lookup_handle(dev_priv, tfile, 1458 mode_cmd->handles[0], 1459 &surface, &bo); 1460 if (ret) 1461 goto err_out; 1462 1463 1464 if (!bo && 1465 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1466 DRM_ERROR("Surface size cannot exceed %dx%d", 1467 dev_priv->texture_max_width, 1468 dev_priv->texture_max_height); 1469 goto err_out; 1470 } 1471 1472 1473 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1474 !(dev_priv->capabilities & SVGA_CAP_3D), 1475 mode_cmd); 1476 if (IS_ERR(vfb)) { 1477 ret = PTR_ERR(vfb); 1478 goto err_out; 1479 } 1480 1481 err_out: 1482 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1483 if (bo) 1484 vmw_dmabuf_unreference(&bo); 1485 if (surface) 1486 vmw_surface_unreference(&surface); 1487 1488 if (ret) { 1489 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1490 ttm_base_object_unref(&user_obj); 1491 return ERR_PTR(ret); 1492 } else 1493 vfb->user_obj = user_obj; 1494 1495 return &vfb->base; 1496 } 1497 1498 1499 1500 /** 1501 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1502 * 1503 * @dev: DRM device 1504 * @state: the driver state object 1505 * 1506 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1507 * us to assign a value to mode->crtc_clock so that 1508 * drm_calc_timestamping_constants() won't throw an error message 1509 * 1510 * RETURNS 1511 * Zero for success or -errno 1512 */ 1513 static int 1514 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1515 struct drm_atomic_state *state) 1516 { 1517 struct drm_crtc_state *crtc_state; 1518 struct drm_crtc *crtc; 1519 struct vmw_private *dev_priv = vmw_priv(dev); 1520 int i; 1521 1522 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1523 unsigned long requested_bb_mem = 0; 1524 1525 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1526 if (crtc->primary->fb) { 1527 int cpp = crtc->primary->fb->pitches[0] / 1528 crtc->primary->fb->width; 1529 1530 requested_bb_mem += crtc->mode.hdisplay * cpp * 1531 crtc->mode.vdisplay; 1532 } 1533 1534 if (requested_bb_mem > dev_priv->prim_bb_mem) 1535 return -EINVAL; 1536 } 1537 } 1538 1539 return drm_atomic_helper_check(dev, state); 1540 } 1541 1542 1543 /** 1544 * vmw_kms_atomic_commit - Perform an atomic state commit 1545 * 1546 * @dev: DRM device 1547 * @state: the driver state object 1548 * @nonblock: Whether nonblocking behaviour is requested 1549 * 1550 * This is a simple wrapper around drm_atomic_helper_commit() for 1551 * us to clear the nonblocking value. 1552 * 1553 * Nonblocking commits currently cause synchronization issues 1554 * for vmwgfx. 1555 * 1556 * RETURNS 1557 * Zero for success or negative error code on failure. 1558 */ 1559 int vmw_kms_atomic_commit(struct drm_device *dev, 1560 struct drm_atomic_state *state, 1561 bool nonblock) 1562 { 1563 return drm_atomic_helper_commit(dev, state, false); 1564 } 1565 1566 1567 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1568 .fb_create = vmw_kms_fb_create, 1569 .atomic_check = vmw_kms_atomic_check_modeset, 1570 .atomic_commit = vmw_kms_atomic_commit, 1571 }; 1572 1573 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1574 struct drm_file *file_priv, 1575 struct vmw_framebuffer *vfb, 1576 struct vmw_surface *surface, 1577 uint32_t sid, 1578 int32_t destX, int32_t destY, 1579 struct drm_vmw_rect *clips, 1580 uint32_t num_clips) 1581 { 1582 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1583 &surface->res, destX, destY, 1584 num_clips, 1, NULL); 1585 } 1586 1587 1588 int vmw_kms_present(struct vmw_private *dev_priv, 1589 struct drm_file *file_priv, 1590 struct vmw_framebuffer *vfb, 1591 struct vmw_surface *surface, 1592 uint32_t sid, 1593 int32_t destX, int32_t destY, 1594 struct drm_vmw_rect *clips, 1595 uint32_t num_clips) 1596 { 1597 int ret; 1598 1599 switch (dev_priv->active_display_unit) { 1600 case vmw_du_screen_target: 1601 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1602 &surface->res, destX, destY, 1603 num_clips, 1, NULL); 1604 break; 1605 case vmw_du_screen_object: 1606 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1607 sid, destX, destY, clips, 1608 num_clips); 1609 break; 1610 default: 1611 WARN_ONCE(true, 1612 "Present called with invalid display system.\n"); 1613 ret = -ENOSYS; 1614 break; 1615 } 1616 if (ret) 1617 return ret; 1618 1619 vmw_fifo_flush(dev_priv, false); 1620 1621 return 0; 1622 } 1623 1624 static void 1625 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1626 { 1627 if (dev_priv->hotplug_mode_update_property) 1628 return; 1629 1630 dev_priv->hotplug_mode_update_property = 1631 drm_property_create_range(dev_priv->dev, 1632 DRM_MODE_PROP_IMMUTABLE, 1633 "hotplug_mode_update", 0, 1); 1634 1635 if (!dev_priv->hotplug_mode_update_property) 1636 return; 1637 1638 } 1639 1640 int vmw_kms_init(struct vmw_private *dev_priv) 1641 { 1642 struct drm_device *dev = dev_priv->dev; 1643 int ret; 1644 1645 drm_mode_config_init(dev); 1646 dev->mode_config.funcs = &vmw_kms_funcs; 1647 dev->mode_config.min_width = 1; 1648 dev->mode_config.min_height = 1; 1649 dev->mode_config.max_width = dev_priv->texture_max_width; 1650 dev->mode_config.max_height = dev_priv->texture_max_height; 1651 1652 drm_mode_create_suggested_offset_properties(dev); 1653 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1654 1655 ret = vmw_kms_stdu_init_display(dev_priv); 1656 if (ret) { 1657 ret = vmw_kms_sou_init_display(dev_priv); 1658 if (ret) /* Fallback */ 1659 ret = vmw_kms_ldu_init_display(dev_priv); 1660 } 1661 1662 return ret; 1663 } 1664 1665 int vmw_kms_close(struct vmw_private *dev_priv) 1666 { 1667 int ret = 0; 1668 1669 /* 1670 * Docs says we should take the lock before calling this function 1671 * but since it destroys encoders and our destructor calls 1672 * drm_encoder_cleanup which takes the lock we deadlock. 1673 */ 1674 drm_mode_config_cleanup(dev_priv->dev); 1675 if (dev_priv->active_display_unit == vmw_du_legacy) 1676 ret = vmw_kms_ldu_close_display(dev_priv); 1677 1678 return ret; 1679 } 1680 1681 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1682 struct drm_file *file_priv) 1683 { 1684 struct drm_vmw_cursor_bypass_arg *arg = data; 1685 struct vmw_display_unit *du; 1686 struct drm_crtc *crtc; 1687 int ret = 0; 1688 1689 1690 mutex_lock(&dev->mode_config.mutex); 1691 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1692 1693 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1694 du = vmw_crtc_to_du(crtc); 1695 du->hotspot_x = arg->xhot; 1696 du->hotspot_y = arg->yhot; 1697 } 1698 1699 mutex_unlock(&dev->mode_config.mutex); 1700 return 0; 1701 } 1702 1703 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1704 if (!crtc) { 1705 ret = -ENOENT; 1706 goto out; 1707 } 1708 1709 du = vmw_crtc_to_du(crtc); 1710 1711 du->hotspot_x = arg->xhot; 1712 du->hotspot_y = arg->yhot; 1713 1714 out: 1715 mutex_unlock(&dev->mode_config.mutex); 1716 1717 return ret; 1718 } 1719 1720 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1721 unsigned width, unsigned height, unsigned pitch, 1722 unsigned bpp, unsigned depth) 1723 { 1724 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1725 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1726 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1727 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1728 SVGA_FIFO_PITCHLOCK); 1729 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1730 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1731 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1732 1733 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1734 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1735 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1736 return -EINVAL; 1737 } 1738 1739 return 0; 1740 } 1741 1742 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1743 { 1744 struct vmw_vga_topology_state *save; 1745 uint32_t i; 1746 1747 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1748 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1749 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1750 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1751 vmw_priv->vga_pitchlock = 1752 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1753 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1754 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1755 SVGA_FIFO_PITCHLOCK); 1756 1757 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1758 return 0; 1759 1760 vmw_priv->num_displays = vmw_read(vmw_priv, 1761 SVGA_REG_NUM_GUEST_DISPLAYS); 1762 1763 if (vmw_priv->num_displays == 0) 1764 vmw_priv->num_displays = 1; 1765 1766 for (i = 0; i < vmw_priv->num_displays; ++i) { 1767 save = &vmw_priv->vga_save[i]; 1768 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1769 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1770 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1771 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1772 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1773 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1774 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1775 if (i == 0 && vmw_priv->num_displays == 1 && 1776 save->width == 0 && save->height == 0) { 1777 1778 /* 1779 * It should be fairly safe to assume that these 1780 * values are uninitialized. 1781 */ 1782 1783 save->width = vmw_priv->vga_width - save->pos_x; 1784 save->height = vmw_priv->vga_height - save->pos_y; 1785 } 1786 } 1787 1788 return 0; 1789 } 1790 1791 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1792 { 1793 struct vmw_vga_topology_state *save; 1794 uint32_t i; 1795 1796 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1797 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1798 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1799 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1800 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1801 vmw_priv->vga_pitchlock); 1802 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1803 vmw_mmio_write(vmw_priv->vga_pitchlock, 1804 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1805 1806 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1807 return 0; 1808 1809 for (i = 0; i < vmw_priv->num_displays; ++i) { 1810 save = &vmw_priv->vga_save[i]; 1811 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1812 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1813 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1814 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1815 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1816 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1817 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1818 } 1819 1820 return 0; 1821 } 1822 1823 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1824 uint32_t pitch, 1825 uint32_t height) 1826 { 1827 return ((u64) pitch * (u64) height) < (u64) 1828 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1829 dev_priv->prim_bb_mem : dev_priv->vram_size); 1830 } 1831 1832 1833 /** 1834 * Function called by DRM code called with vbl_lock held. 1835 */ 1836 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1837 { 1838 return 0; 1839 } 1840 1841 /** 1842 * Function called by DRM code called with vbl_lock held. 1843 */ 1844 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1845 { 1846 return -EINVAL; 1847 } 1848 1849 /** 1850 * Function called by DRM code called with vbl_lock held. 1851 */ 1852 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1853 { 1854 } 1855 1856 1857 /* 1858 * Small shared kms functions. 1859 */ 1860 1861 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num, 1862 struct drm_vmw_rect *rects) 1863 { 1864 struct drm_device *dev = dev_priv->dev; 1865 struct vmw_display_unit *du; 1866 struct drm_connector *con; 1867 1868 mutex_lock(&dev->mode_config.mutex); 1869 1870 #if 0 1871 { 1872 unsigned int i; 1873 1874 DRM_INFO("%s: new layout ", __func__); 1875 for (i = 0; i < num; i++) 1876 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y, 1877 rects[i].w, rects[i].h); 1878 DRM_INFO("\n"); 1879 } 1880 #endif 1881 1882 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1883 du = vmw_connector_to_du(con); 1884 if (num > du->unit) { 1885 du->pref_width = rects[du->unit].w; 1886 du->pref_height = rects[du->unit].h; 1887 du->pref_active = true; 1888 du->gui_x = rects[du->unit].x; 1889 du->gui_y = rects[du->unit].y; 1890 drm_object_property_set_value 1891 (&con->base, dev->mode_config.suggested_x_property, 1892 du->gui_x); 1893 drm_object_property_set_value 1894 (&con->base, dev->mode_config.suggested_y_property, 1895 du->gui_y); 1896 } else { 1897 du->pref_width = 800; 1898 du->pref_height = 600; 1899 du->pref_active = false; 1900 drm_object_property_set_value 1901 (&con->base, dev->mode_config.suggested_x_property, 1902 0); 1903 drm_object_property_set_value 1904 (&con->base, dev->mode_config.suggested_y_property, 1905 0); 1906 } 1907 con->status = vmw_du_connector_detect(con, true); 1908 } 1909 1910 mutex_unlock(&dev->mode_config.mutex); 1911 drm_sysfs_hotplug_event(dev); 1912 1913 return 0; 1914 } 1915 1916 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1917 u16 *r, u16 *g, u16 *b, 1918 uint32_t size, 1919 struct drm_modeset_acquire_ctx *ctx) 1920 { 1921 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1922 int i; 1923 1924 for (i = 0; i < size; i++) { 1925 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1926 r[i], g[i], b[i]); 1927 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1928 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1929 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1930 } 1931 1932 return 0; 1933 } 1934 1935 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1936 { 1937 return 0; 1938 } 1939 1940 enum drm_connector_status 1941 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1942 { 1943 uint32_t num_displays; 1944 struct drm_device *dev = connector->dev; 1945 struct vmw_private *dev_priv = vmw_priv(dev); 1946 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1947 1948 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1949 1950 return ((vmw_connector_to_du(connector)->unit < num_displays && 1951 du->pref_active) ? 1952 connector_status_connected : connector_status_disconnected); 1953 } 1954 1955 static struct drm_display_mode vmw_kms_connector_builtin[] = { 1956 /* 640x480@60Hz */ 1957 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 1958 752, 800, 0, 480, 489, 492, 525, 0, 1959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1960 /* 800x600@60Hz */ 1961 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 1962 968, 1056, 0, 600, 601, 605, 628, 0, 1963 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1964 /* 1024x768@60Hz */ 1965 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1966 1184, 1344, 0, 768, 771, 777, 806, 0, 1967 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1968 /* 1152x864@75Hz */ 1969 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1970 1344, 1600, 0, 864, 865, 868, 900, 0, 1971 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1972 /* 1280x768@60Hz */ 1973 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1974 1472, 1664, 0, 768, 771, 778, 798, 0, 1975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1976 /* 1280x800@60Hz */ 1977 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1978 1480, 1680, 0, 800, 803, 809, 831, 0, 1979 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1980 /* 1280x960@60Hz */ 1981 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1982 1488, 1800, 0, 960, 961, 964, 1000, 0, 1983 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1984 /* 1280x1024@60Hz */ 1985 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1986 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 1987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1988 /* 1360x768@60Hz */ 1989 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1990 1536, 1792, 0, 768, 771, 777, 795, 0, 1991 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1992 /* 1440x1050@60Hz */ 1993 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 1994 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 1995 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1996 /* 1440x900@60Hz */ 1997 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 1998 1672, 1904, 0, 900, 903, 909, 934, 0, 1999 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2000 /* 1600x1200@60Hz */ 2001 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2002 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2003 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2004 /* 1680x1050@60Hz */ 2005 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2006 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2007 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2008 /* 1792x1344@60Hz */ 2009 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2010 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2011 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2012 /* 1853x1392@60Hz */ 2013 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2014 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2015 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2016 /* 1920x1200@60Hz */ 2017 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2018 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2019 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2020 /* 1920x1440@60Hz */ 2021 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2022 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2023 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2024 /* 2560x1600@60Hz */ 2025 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2026 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2027 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2028 /* Terminate */ 2029 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2030 }; 2031 2032 /** 2033 * vmw_guess_mode_timing - Provide fake timings for a 2034 * 60Hz vrefresh mode. 2035 * 2036 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2037 * members filled in. 2038 */ 2039 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2040 { 2041 mode->hsync_start = mode->hdisplay + 50; 2042 mode->hsync_end = mode->hsync_start + 50; 2043 mode->htotal = mode->hsync_end + 50; 2044 2045 mode->vsync_start = mode->vdisplay + 50; 2046 mode->vsync_end = mode->vsync_start + 50; 2047 mode->vtotal = mode->vsync_end + 50; 2048 2049 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2050 mode->vrefresh = drm_mode_vrefresh(mode); 2051 } 2052 2053 2054 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2055 uint32_t max_width, uint32_t max_height) 2056 { 2057 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2058 struct drm_device *dev = connector->dev; 2059 struct vmw_private *dev_priv = vmw_priv(dev); 2060 struct drm_display_mode *mode = NULL; 2061 struct drm_display_mode *bmode; 2062 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2063 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2065 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2066 }; 2067 int i; 2068 u32 assumed_bpp = 4; 2069 2070 if (dev_priv->assume_16bpp) 2071 assumed_bpp = 2; 2072 2073 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2074 max_width = min(max_width, dev_priv->stdu_max_width); 2075 max_width = min(max_width, dev_priv->texture_max_width); 2076 2077 max_height = min(max_height, dev_priv->stdu_max_height); 2078 max_height = min(max_height, dev_priv->texture_max_height); 2079 } 2080 2081 /* Add preferred mode */ 2082 mode = drm_mode_duplicate(dev, &prefmode); 2083 if (!mode) 2084 return 0; 2085 mode->hdisplay = du->pref_width; 2086 mode->vdisplay = du->pref_height; 2087 vmw_guess_mode_timing(mode); 2088 2089 if (vmw_kms_validate_mode_vram(dev_priv, 2090 mode->hdisplay * assumed_bpp, 2091 mode->vdisplay)) { 2092 drm_mode_probed_add(connector, mode); 2093 } else { 2094 drm_mode_destroy(dev, mode); 2095 mode = NULL; 2096 } 2097 2098 if (du->pref_mode) { 2099 list_del_init(&du->pref_mode->head); 2100 drm_mode_destroy(dev, du->pref_mode); 2101 } 2102 2103 /* mode might be null here, this is intended */ 2104 du->pref_mode = mode; 2105 2106 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2107 bmode = &vmw_kms_connector_builtin[i]; 2108 if (bmode->hdisplay > max_width || 2109 bmode->vdisplay > max_height) 2110 continue; 2111 2112 if (!vmw_kms_validate_mode_vram(dev_priv, 2113 bmode->hdisplay * assumed_bpp, 2114 bmode->vdisplay)) 2115 continue; 2116 2117 mode = drm_mode_duplicate(dev, bmode); 2118 if (!mode) 2119 return 0; 2120 mode->vrefresh = drm_mode_vrefresh(mode); 2121 2122 drm_mode_probed_add(connector, mode); 2123 } 2124 2125 drm_mode_connector_list_update(connector); 2126 /* Move the prefered mode first, help apps pick the right mode. */ 2127 drm_mode_sort(&connector->modes); 2128 2129 return 1; 2130 } 2131 2132 int vmw_du_connector_set_property(struct drm_connector *connector, 2133 struct drm_property *property, 2134 uint64_t val) 2135 { 2136 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2137 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2138 2139 if (property == dev_priv->implicit_placement_property) 2140 du->is_implicit = val; 2141 2142 return 0; 2143 } 2144 2145 2146 2147 /** 2148 * vmw_du_connector_atomic_set_property - Atomic version of get property 2149 * 2150 * @crtc - crtc the property is associated with 2151 * 2152 * Returns: 2153 * Zero on success, negative errno on failure. 2154 */ 2155 int 2156 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2157 struct drm_connector_state *state, 2158 struct drm_property *property, 2159 uint64_t val) 2160 { 2161 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2162 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2163 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2164 2165 2166 if (property == dev_priv->implicit_placement_property) { 2167 vcs->is_implicit = val; 2168 2169 /* 2170 * We should really be doing a drm_atomic_commit() to 2171 * commit the new state, but since this doesn't cause 2172 * an immedate state change, this is probably ok 2173 */ 2174 du->is_implicit = vcs->is_implicit; 2175 } else { 2176 return -EINVAL; 2177 } 2178 2179 return 0; 2180 } 2181 2182 2183 /** 2184 * vmw_du_connector_atomic_get_property - Atomic version of get property 2185 * 2186 * @connector - connector the property is associated with 2187 * 2188 * Returns: 2189 * Zero on success, negative errno on failure. 2190 */ 2191 int 2192 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2193 const struct drm_connector_state *state, 2194 struct drm_property *property, 2195 uint64_t *val) 2196 { 2197 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2198 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2199 2200 if (property == dev_priv->implicit_placement_property) 2201 *val = vcs->is_implicit; 2202 else { 2203 DRM_ERROR("Invalid Property %s\n", property->name); 2204 return -EINVAL; 2205 } 2206 2207 return 0; 2208 } 2209 2210 2211 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2212 struct drm_file *file_priv) 2213 { 2214 struct vmw_private *dev_priv = vmw_priv(dev); 2215 struct drm_vmw_update_layout_arg *arg = 2216 (struct drm_vmw_update_layout_arg *)data; 2217 void __user *user_rects; 2218 struct drm_vmw_rect *rects; 2219 unsigned rects_size; 2220 int ret; 2221 int i; 2222 u64 total_pixels = 0; 2223 struct drm_mode_config *mode_config = &dev->mode_config; 2224 struct drm_vmw_rect bounding_box = {0}; 2225 2226 if (!arg->num_outputs) { 2227 struct drm_vmw_rect def_rect = {0, 0, 800, 600}; 2228 vmw_du_update_layout(dev_priv, 1, &def_rect); 2229 return 0; 2230 } 2231 2232 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2233 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2234 GFP_KERNEL); 2235 if (unlikely(!rects)) 2236 return -ENOMEM; 2237 2238 user_rects = (void __user *)(unsigned long)arg->rects; 2239 ret = copy_from_user(rects, user_rects, rects_size); 2240 if (unlikely(ret != 0)) { 2241 DRM_ERROR("Failed to get rects.\n"); 2242 ret = -EFAULT; 2243 goto out_free; 2244 } 2245 2246 for (i = 0; i < arg->num_outputs; ++i) { 2247 if (rects[i].x < 0 || 2248 rects[i].y < 0 || 2249 rects[i].x + rects[i].w > mode_config->max_width || 2250 rects[i].y + rects[i].h > mode_config->max_height) { 2251 DRM_ERROR("Invalid GUI layout.\n"); 2252 ret = -EINVAL; 2253 goto out_free; 2254 } 2255 2256 /* 2257 * bounding_box.w and bunding_box.h are used as 2258 * lower-right coordinates 2259 */ 2260 if (rects[i].x + rects[i].w > bounding_box.w) 2261 bounding_box.w = rects[i].x + rects[i].w; 2262 2263 if (rects[i].y + rects[i].h > bounding_box.h) 2264 bounding_box.h = rects[i].y + rects[i].h; 2265 2266 total_pixels += (u64) rects[i].w * (u64) rects[i].h; 2267 } 2268 2269 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2270 /* 2271 * For Screen Targets, the limits for a toplogy are: 2272 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem 2273 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem 2274 */ 2275 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4; 2276 u64 pixel_mem = total_pixels * 4; 2277 2278 if (bb_mem > dev_priv->prim_bb_mem) { 2279 DRM_ERROR("Topology is beyond supported limits.\n"); 2280 ret = -EINVAL; 2281 goto out_free; 2282 } 2283 2284 if (pixel_mem > dev_priv->prim_bb_mem) { 2285 DRM_ERROR("Combined output size too large\n"); 2286 ret = -EINVAL; 2287 goto out_free; 2288 } 2289 } 2290 2291 vmw_du_update_layout(dev_priv, arg->num_outputs, rects); 2292 2293 out_free: 2294 kfree(rects); 2295 return ret; 2296 } 2297 2298 /** 2299 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2300 * on a set of cliprects and a set of display units. 2301 * 2302 * @dev_priv: Pointer to a device private structure. 2303 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2304 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2305 * Cliprects are given in framebuffer coordinates. 2306 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2307 * be NULL. Cliprects are given in source coordinates. 2308 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2309 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2310 * @num_clips: Number of cliprects in the @clips or @vclips array. 2311 * @increment: Integer with which to increment the clip counter when looping. 2312 * Used to skip a predetermined number of clip rects. 2313 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2314 */ 2315 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2316 struct vmw_framebuffer *framebuffer, 2317 const struct drm_clip_rect *clips, 2318 const struct drm_vmw_rect *vclips, 2319 s32 dest_x, s32 dest_y, 2320 int num_clips, 2321 int increment, 2322 struct vmw_kms_dirty *dirty) 2323 { 2324 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2325 struct drm_crtc *crtc; 2326 u32 num_units = 0; 2327 u32 i, k; 2328 2329 dirty->dev_priv = dev_priv; 2330 2331 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) { 2332 if (crtc->primary->fb != &framebuffer->base) 2333 continue; 2334 units[num_units++] = vmw_crtc_to_du(crtc); 2335 } 2336 2337 for (k = 0; k < num_units; k++) { 2338 struct vmw_display_unit *unit = units[k]; 2339 s32 crtc_x = unit->crtc.x; 2340 s32 crtc_y = unit->crtc.y; 2341 s32 crtc_width = unit->crtc.mode.hdisplay; 2342 s32 crtc_height = unit->crtc.mode.vdisplay; 2343 const struct drm_clip_rect *clips_ptr = clips; 2344 const struct drm_vmw_rect *vclips_ptr = vclips; 2345 2346 dirty->unit = unit; 2347 if (dirty->fifo_reserve_size > 0) { 2348 dirty->cmd = vmw_fifo_reserve(dev_priv, 2349 dirty->fifo_reserve_size); 2350 if (!dirty->cmd) { 2351 DRM_ERROR("Couldn't reserve fifo space " 2352 "for dirty blits.\n"); 2353 return -ENOMEM; 2354 } 2355 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2356 } 2357 dirty->num_hits = 0; 2358 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2359 vclips_ptr += increment) { 2360 s32 clip_left; 2361 s32 clip_top; 2362 2363 /* 2364 * Select clip array type. Note that integer type 2365 * in @clips is unsigned short, whereas in @vclips 2366 * it's 32-bit. 2367 */ 2368 if (clips) { 2369 dirty->fb_x = (s32) clips_ptr->x1; 2370 dirty->fb_y = (s32) clips_ptr->y1; 2371 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2372 crtc_x; 2373 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2374 crtc_y; 2375 } else { 2376 dirty->fb_x = vclips_ptr->x; 2377 dirty->fb_y = vclips_ptr->y; 2378 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2379 dest_x - crtc_x; 2380 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2381 dest_y - crtc_y; 2382 } 2383 2384 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2385 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2386 2387 /* Skip this clip if it's outside the crtc region */ 2388 if (dirty->unit_x1 >= crtc_width || 2389 dirty->unit_y1 >= crtc_height || 2390 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2391 continue; 2392 2393 /* Clip right and bottom to crtc limits */ 2394 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2395 crtc_width); 2396 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2397 crtc_height); 2398 2399 /* Clip left and top to crtc limits */ 2400 clip_left = min_t(s32, dirty->unit_x1, 0); 2401 clip_top = min_t(s32, dirty->unit_y1, 0); 2402 dirty->unit_x1 -= clip_left; 2403 dirty->unit_y1 -= clip_top; 2404 dirty->fb_x -= clip_left; 2405 dirty->fb_y -= clip_top; 2406 2407 dirty->clip(dirty); 2408 } 2409 2410 dirty->fifo_commit(dirty); 2411 } 2412 2413 return 0; 2414 } 2415 2416 /** 2417 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2418 * command submission. 2419 * 2420 * @dev_priv. Pointer to a device private structure. 2421 * @buf: The buffer object 2422 * @interruptible: Whether to perform waits as interruptible. 2423 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2424 * The buffer will be validated as a GMR. Already pinned buffers will not be 2425 * validated. 2426 * 2427 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2428 * interrupted by a signal. 2429 */ 2430 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2431 struct vmw_dma_buffer *buf, 2432 bool interruptible, 2433 bool validate_as_mob) 2434 { 2435 struct ttm_buffer_object *bo = &buf->base; 2436 int ret; 2437 2438 ttm_bo_reserve(bo, false, false, NULL); 2439 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2440 validate_as_mob); 2441 if (ret) 2442 ttm_bo_unreserve(bo); 2443 2444 return ret; 2445 } 2446 2447 /** 2448 * vmw_kms_helper_buffer_revert - Undo the actions of 2449 * vmw_kms_helper_buffer_prepare. 2450 * 2451 * @res: Pointer to the buffer object. 2452 * 2453 * Helper to be used if an error forces the caller to undo the actions of 2454 * vmw_kms_helper_buffer_prepare. 2455 */ 2456 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf) 2457 { 2458 if (buf) 2459 ttm_bo_unreserve(&buf->base); 2460 } 2461 2462 /** 2463 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2464 * kms command submission. 2465 * 2466 * @dev_priv: Pointer to a device private structure. 2467 * @file_priv: Pointer to a struct drm_file representing the caller's 2468 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2469 * if non-NULL, @user_fence_rep must be non-NULL. 2470 * @buf: The buffer object. 2471 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2472 * ref-counted fence pointer is returned here. 2473 * @user_fence_rep: Optional pointer to a user-space provided struct 2474 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2475 * function copies fence data to user-space in a fail-safe manner. 2476 */ 2477 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2478 struct drm_file *file_priv, 2479 struct vmw_dma_buffer *buf, 2480 struct vmw_fence_obj **out_fence, 2481 struct drm_vmw_fence_rep __user * 2482 user_fence_rep) 2483 { 2484 struct vmw_fence_obj *fence; 2485 uint32_t handle; 2486 int ret; 2487 2488 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2489 file_priv ? &handle : NULL); 2490 if (buf) 2491 vmw_fence_single_bo(&buf->base, fence); 2492 if (file_priv) 2493 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2494 ret, user_fence_rep, fence, 2495 handle, -1, NULL); 2496 if (out_fence) 2497 *out_fence = fence; 2498 else 2499 vmw_fence_obj_unreference(&fence); 2500 2501 vmw_kms_helper_buffer_revert(buf); 2502 } 2503 2504 2505 /** 2506 * vmw_kms_helper_resource_revert - Undo the actions of 2507 * vmw_kms_helper_resource_prepare. 2508 * 2509 * @res: Pointer to the resource. Typically a surface. 2510 * 2511 * Helper to be used if an error forces the caller to undo the actions of 2512 * vmw_kms_helper_resource_prepare. 2513 */ 2514 void vmw_kms_helper_resource_revert(struct vmw_resource *res) 2515 { 2516 vmw_kms_helper_buffer_revert(res->backup); 2517 vmw_resource_unreserve(res, false, NULL, 0); 2518 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2519 } 2520 2521 /** 2522 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2523 * command submission. 2524 * 2525 * @res: Pointer to the resource. Typically a surface. 2526 * @interruptible: Whether to perform waits as interruptible. 2527 * 2528 * Reserves and validates also the backup buffer if a guest-backed resource. 2529 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2530 * interrupted by a signal. 2531 */ 2532 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2533 bool interruptible) 2534 { 2535 int ret = 0; 2536 2537 if (interruptible) 2538 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2539 else 2540 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2541 2542 if (unlikely(ret != 0)) 2543 return -ERESTARTSYS; 2544 2545 ret = vmw_resource_reserve(res, interruptible, false); 2546 if (ret) 2547 goto out_unlock; 2548 2549 if (res->backup) { 2550 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2551 interruptible, 2552 res->dev_priv->has_mob); 2553 if (ret) 2554 goto out_unreserve; 2555 } 2556 ret = vmw_resource_validate(res); 2557 if (ret) 2558 goto out_revert; 2559 return 0; 2560 2561 out_revert: 2562 vmw_kms_helper_buffer_revert(res->backup); 2563 out_unreserve: 2564 vmw_resource_unreserve(res, false, NULL, 0); 2565 out_unlock: 2566 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2567 return ret; 2568 } 2569 2570 /** 2571 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2572 * kms command submission. 2573 * 2574 * @res: Pointer to the resource. Typically a surface. 2575 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2576 * ref-counted fence pointer is returned here. 2577 */ 2578 void vmw_kms_helper_resource_finish(struct vmw_resource *res, 2579 struct vmw_fence_obj **out_fence) 2580 { 2581 if (res->backup || out_fence) 2582 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup, 2583 out_fence, NULL); 2584 2585 vmw_resource_unreserve(res, false, NULL, 0); 2586 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2587 } 2588 2589 /** 2590 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2591 * its backing MOB. 2592 * 2593 * @res: Pointer to the surface resource 2594 * @clips: Clip rects in framebuffer (surface) space. 2595 * @num_clips: Number of clips in @clips. 2596 * @increment: Integer with which to increment the clip counter when looping. 2597 * Used to skip a predetermined number of clip rects. 2598 * 2599 * This function makes sure the proxy surface is updated from its backing MOB 2600 * using the region given by @clips. The surface resource @res and its backing 2601 * MOB needs to be reserved and validated on call. 2602 */ 2603 int vmw_kms_update_proxy(struct vmw_resource *res, 2604 const struct drm_clip_rect *clips, 2605 unsigned num_clips, 2606 int increment) 2607 { 2608 struct vmw_private *dev_priv = res->dev_priv; 2609 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2610 struct { 2611 SVGA3dCmdHeader header; 2612 SVGA3dCmdUpdateGBImage body; 2613 } *cmd; 2614 SVGA3dBox *box; 2615 size_t copy_size = 0; 2616 int i; 2617 2618 if (!clips) 2619 return 0; 2620 2621 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2622 if (!cmd) { 2623 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2624 "update.\n"); 2625 return -ENOMEM; 2626 } 2627 2628 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2629 box = &cmd->body.box; 2630 2631 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2632 cmd->header.size = sizeof(cmd->body); 2633 cmd->body.image.sid = res->id; 2634 cmd->body.image.face = 0; 2635 cmd->body.image.mipmap = 0; 2636 2637 if (clips->x1 > size->width || clips->x2 > size->width || 2638 clips->y1 > size->height || clips->y2 > size->height) { 2639 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2640 return -EINVAL; 2641 } 2642 2643 box->x = clips->x1; 2644 box->y = clips->y1; 2645 box->z = 0; 2646 box->w = clips->x2 - clips->x1; 2647 box->h = clips->y2 - clips->y1; 2648 box->d = 1; 2649 2650 copy_size += sizeof(*cmd); 2651 } 2652 2653 vmw_fifo_commit(dev_priv, copy_size); 2654 2655 return 0; 2656 } 2657 2658 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2659 unsigned unit, 2660 u32 max_width, 2661 u32 max_height, 2662 struct drm_connector **p_con, 2663 struct drm_crtc **p_crtc, 2664 struct drm_display_mode **p_mode) 2665 { 2666 struct drm_connector *con; 2667 struct vmw_display_unit *du; 2668 struct drm_display_mode *mode; 2669 int i = 0; 2670 2671 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2672 head) { 2673 if (i == unit) 2674 break; 2675 2676 ++i; 2677 } 2678 2679 if (i != unit) { 2680 DRM_ERROR("Could not find initial display unit.\n"); 2681 return -EINVAL; 2682 } 2683 2684 if (list_empty(&con->modes)) 2685 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2686 2687 if (list_empty(&con->modes)) { 2688 DRM_ERROR("Could not find initial display mode.\n"); 2689 return -EINVAL; 2690 } 2691 2692 du = vmw_connector_to_du(con); 2693 *p_con = con; 2694 *p_crtc = &du->crtc; 2695 2696 list_for_each_entry(mode, &con->modes, head) { 2697 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2698 break; 2699 } 2700 2701 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2702 *p_mode = mode; 2703 else { 2704 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2705 *p_mode = list_first_entry(&con->modes, 2706 struct drm_display_mode, 2707 head); 2708 } 2709 2710 return 0; 2711 } 2712 2713 /** 2714 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2715 * 2716 * @dev_priv: Pointer to a device private struct. 2717 * @du: The display unit of the crtc. 2718 */ 2719 void vmw_kms_del_active(struct vmw_private *dev_priv, 2720 struct vmw_display_unit *du) 2721 { 2722 mutex_lock(&dev_priv->global_kms_state_mutex); 2723 if (du->active_implicit) { 2724 if (--(dev_priv->num_implicit) == 0) 2725 dev_priv->implicit_fb = NULL; 2726 du->active_implicit = false; 2727 } 2728 mutex_unlock(&dev_priv->global_kms_state_mutex); 2729 } 2730 2731 /** 2732 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2733 * 2734 * @vmw_priv: Pointer to a device private struct. 2735 * @du: The display unit of the crtc. 2736 * @vfb: The implicit framebuffer 2737 * 2738 * Registers a binding to an implicit framebuffer. 2739 */ 2740 void vmw_kms_add_active(struct vmw_private *dev_priv, 2741 struct vmw_display_unit *du, 2742 struct vmw_framebuffer *vfb) 2743 { 2744 mutex_lock(&dev_priv->global_kms_state_mutex); 2745 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2746 2747 if (!du->active_implicit && du->is_implicit) { 2748 dev_priv->implicit_fb = vfb; 2749 du->active_implicit = true; 2750 dev_priv->num_implicit++; 2751 } 2752 mutex_unlock(&dev_priv->global_kms_state_mutex); 2753 } 2754 2755 /** 2756 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2757 * 2758 * @dev_priv: Pointer to device-private struct. 2759 * @crtc: The crtc we want to flip. 2760 * 2761 * Returns true or false depending whether it's OK to flip this crtc 2762 * based on the criterion that we must not have more than one implicit 2763 * frame-buffer at any one time. 2764 */ 2765 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2766 struct drm_crtc *crtc) 2767 { 2768 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2769 bool ret; 2770 2771 mutex_lock(&dev_priv->global_kms_state_mutex); 2772 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2773 mutex_unlock(&dev_priv->global_kms_state_mutex); 2774 2775 return ret; 2776 } 2777 2778 /** 2779 * vmw_kms_update_implicit_fb - Update the implicit fb. 2780 * 2781 * @dev_priv: Pointer to device-private struct. 2782 * @crtc: The crtc the new implicit frame-buffer is bound to. 2783 */ 2784 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2785 struct drm_crtc *crtc) 2786 { 2787 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2788 struct vmw_framebuffer *vfb; 2789 2790 mutex_lock(&dev_priv->global_kms_state_mutex); 2791 2792 if (!du->is_implicit) 2793 goto out_unlock; 2794 2795 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb); 2796 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2797 dev_priv->implicit_fb != vfb); 2798 2799 dev_priv->implicit_fb = vfb; 2800 out_unlock: 2801 mutex_unlock(&dev_priv->global_kms_state_mutex); 2802 } 2803 2804 /** 2805 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2806 * property. 2807 * 2808 * @dev_priv: Pointer to a device private struct. 2809 * @immutable: Whether the property is immutable. 2810 * 2811 * Sets up the implicit placement property unless it's already set up. 2812 */ 2813 void 2814 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2815 bool immutable) 2816 { 2817 if (dev_priv->implicit_placement_property) 2818 return; 2819 2820 dev_priv->implicit_placement_property = 2821 drm_property_create_range(dev_priv->dev, 2822 immutable ? 2823 DRM_MODE_PROP_IMMUTABLE : 0, 2824 "implicit_placement", 0, 1); 2825 2826 } 2827 2828 2829 /** 2830 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 2831 * 2832 * @set: The configuration to set. 2833 * 2834 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 2835 * when drm_mode_set_crtcinfo is called as part of the configuration setting 2836 * causes it to return incorrect crtc dimensions causing severe problems in 2837 * the vmwgfx modesetting. So explicitly clear that member before calling 2838 * into drm_atomic_helper_set_config. 2839 */ 2840 int vmw_kms_set_config(struct drm_mode_set *set, 2841 struct drm_modeset_acquire_ctx *ctx) 2842 { 2843 if (set && set->mode) 2844 set->mode->type = 0; 2845 2846 return drm_atomic_helper_set_config(set, ctx); 2847 } 2848