1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 35 /* Might need a hrtimer here? */ 36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 37 38 void vmw_du_cleanup(struct vmw_display_unit *du) 39 { 40 drm_plane_cleanup(&du->primary); 41 drm_plane_cleanup(&du->cursor); 42 43 drm_connector_unregister(&du->connector); 44 drm_crtc_cleanup(&du->crtc); 45 drm_encoder_cleanup(&du->encoder); 46 drm_connector_cleanup(&du->connector); 47 } 48 49 /* 50 * Display Unit Cursor functions 51 */ 52 53 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 54 u32 *image, u32 width, u32 height, 55 u32 hotspotX, u32 hotspotY) 56 { 57 struct { 58 u32 cmd; 59 SVGAFifoCmdDefineAlphaCursor cursor; 60 } *cmd; 61 u32 image_size = width * height * 4; 62 u32 cmd_size = sizeof(*cmd) + image_size; 63 64 if (!image) 65 return -EINVAL; 66 67 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 68 if (unlikely(cmd == NULL)) { 69 DRM_ERROR("Fifo reserve failed.\n"); 70 return -ENOMEM; 71 } 72 73 memset(cmd, 0, sizeof(*cmd)); 74 75 memcpy(&cmd[1], image, image_size); 76 77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 78 cmd->cursor.id = 0; 79 cmd->cursor.width = width; 80 cmd->cursor.height = height; 81 cmd->cursor.hotspotX = hotspotX; 82 cmd->cursor.hotspotY = hotspotY; 83 84 vmw_fifo_commit_flush(dev_priv, cmd_size); 85 86 return 0; 87 } 88 89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv, 90 struct vmw_dma_buffer *dmabuf, 91 u32 width, u32 height, 92 u32 hotspotX, u32 hotspotY) 93 { 94 struct ttm_bo_kmap_obj map; 95 unsigned long kmap_offset; 96 unsigned long kmap_num; 97 void *virtual; 98 bool dummy; 99 int ret; 100 101 kmap_offset = 0; 102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 103 104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL); 105 if (unlikely(ret != 0)) { 106 DRM_ERROR("reserve failed\n"); 107 return -EINVAL; 108 } 109 110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map); 111 if (unlikely(ret != 0)) 112 goto err_unreserve; 113 114 virtual = ttm_kmap_obj_virtual(&map, &dummy); 115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 116 hotspotX, hotspotY); 117 118 ttm_bo_kunmap(&map); 119 err_unreserve: 120 ttm_bo_unreserve(&dmabuf->base); 121 122 return ret; 123 } 124 125 126 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 127 bool show, int x, int y) 128 { 129 u32 *fifo_mem = dev_priv->mmio_virt; 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 138 spin_unlock(&dev_priv->cursor_lock); 139 } 140 141 142 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 143 struct ttm_object_file *tfile, 144 struct ttm_buffer_object *bo, 145 SVGA3dCmdHeader *header) 146 { 147 struct ttm_bo_kmap_obj map; 148 unsigned long kmap_offset; 149 unsigned long kmap_num; 150 SVGA3dCopyBox *box; 151 unsigned box_count; 152 void *virtual; 153 bool dummy; 154 struct vmw_dma_cmd { 155 SVGA3dCmdHeader header; 156 SVGA3dCmdSurfaceDMA dma; 157 } *cmd; 158 int i, ret; 159 160 cmd = container_of(header, struct vmw_dma_cmd, header); 161 162 /* No snooper installed */ 163 if (!srf->snooper.image) 164 return; 165 166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 167 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 168 return; 169 } 170 171 if (cmd->header.size < 64) { 172 DRM_ERROR("at least one full copy box must be given\n"); 173 return; 174 } 175 176 box = (SVGA3dCopyBox *)&cmd[1]; 177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 178 sizeof(SVGA3dCopyBox); 179 180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 181 box->x != 0 || box->y != 0 || box->z != 0 || 182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 183 box->d != 1 || box_count != 1) { 184 /* TODO handle none page aligned offsets */ 185 /* TODO handle more dst & src != 0 */ 186 /* TODO handle more then one copy */ 187 DRM_ERROR("Cant snoop dma request for cursor!\n"); 188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 189 box->srcx, box->srcy, box->srcz, 190 box->x, box->y, box->z, 191 box->w, box->h, box->d, box_count, 192 cmd->dma.guest.ptr.offset); 193 return; 194 } 195 196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 197 kmap_num = (64*64*4) >> PAGE_SHIFT; 198 199 ret = ttm_bo_reserve(bo, true, false, NULL); 200 if (unlikely(ret != 0)) { 201 DRM_ERROR("reserve failed\n"); 202 return; 203 } 204 205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 206 if (unlikely(ret != 0)) 207 goto err_unreserve; 208 209 virtual = ttm_kmap_obj_virtual(&map, &dummy); 210 211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 212 memcpy(srf->snooper.image, virtual, 64*64*4); 213 } else { 214 /* Image is unsigned pointer. */ 215 for (i = 0; i < box->h; i++) 216 memcpy(srf->snooper.image + i * 64, 217 virtual + i * cmd->dma.guest.pitch, 218 box->w * 4); 219 } 220 221 srf->snooper.age++; 222 223 ttm_bo_kunmap(&map); 224 err_unreserve: 225 ttm_bo_unreserve(bo); 226 } 227 228 /** 229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 230 * 231 * @dev_priv: Pointer to the device private struct. 232 * 233 * Clears all legacy hotspots. 234 */ 235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 236 { 237 struct drm_device *dev = dev_priv->dev; 238 struct vmw_display_unit *du; 239 struct drm_crtc *crtc; 240 241 drm_modeset_lock_all(dev); 242 drm_for_each_crtc(crtc, dev) { 243 du = vmw_crtc_to_du(crtc); 244 245 du->hotspot_x = 0; 246 du->hotspot_y = 0; 247 } 248 drm_modeset_unlock_all(dev); 249 } 250 251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 252 { 253 struct drm_device *dev = dev_priv->dev; 254 struct vmw_display_unit *du; 255 struct drm_crtc *crtc; 256 257 mutex_lock(&dev->mode_config.mutex); 258 259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 260 du = vmw_crtc_to_du(crtc); 261 if (!du->cursor_surface || 262 du->cursor_age == du->cursor_surface->snooper.age) 263 continue; 264 265 du->cursor_age = du->cursor_surface->snooper.age; 266 vmw_cursor_update_image(dev_priv, 267 du->cursor_surface->snooper.image, 268 64, 64, 269 du->hotspot_x + du->core_hotspot_x, 270 du->hotspot_y + du->core_hotspot_y); 271 } 272 273 mutex_unlock(&dev->mode_config.mutex); 274 } 275 276 277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 278 { 279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 280 281 drm_plane_cleanup(plane); 282 } 283 284 285 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 286 { 287 drm_plane_cleanup(plane); 288 289 /* Planes are static in our case so we don't free it */ 290 } 291 292 293 /** 294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 295 * 296 * @vps: plane state associated with the display surface 297 * @unreference: true if we also want to unreference the display. 298 */ 299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 300 bool unreference) 301 { 302 if (vps->surf) { 303 if (vps->pinned) { 304 vmw_resource_unpin(&vps->surf->res); 305 vps->pinned--; 306 } 307 308 if (unreference) { 309 if (vps->pinned) 310 DRM_ERROR("Surface still pinned\n"); 311 vmw_surface_unreference(&vps->surf); 312 } 313 } 314 } 315 316 317 /** 318 * vmw_du_plane_cleanup_fb - Unpins the cursor 319 * 320 * @plane: display plane 321 * @old_state: Contains the FB to clean up 322 * 323 * Unpins the framebuffer surface 324 * 325 * Returns 0 on success 326 */ 327 void 328 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 329 struct drm_plane_state *old_state) 330 { 331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 332 333 vmw_du_plane_unpin_surf(vps, false); 334 } 335 336 337 /** 338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 339 * 340 * @plane: display plane 341 * @new_state: info on the new plane state, including the FB 342 * 343 * Returns 0 on success 344 */ 345 int 346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 347 struct drm_plane_state *new_state) 348 { 349 struct drm_framebuffer *fb = new_state->fb; 350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 351 352 353 if (vps->surf) 354 vmw_surface_unreference(&vps->surf); 355 356 if (vps->dmabuf) 357 vmw_dmabuf_unreference(&vps->dmabuf); 358 359 if (fb) { 360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) { 361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer; 362 vmw_dmabuf_reference(vps->dmabuf); 363 } else { 364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 365 vmw_surface_reference(vps->surf); 366 } 367 } 368 369 return 0; 370 } 371 372 373 void 374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 375 struct drm_plane_state *old_state) 376 { 377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 378 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 381 s32 hotspot_x, hotspot_y; 382 int ret = 0; 383 384 385 hotspot_x = du->hotspot_x; 386 hotspot_y = du->hotspot_y; 387 388 if (plane->fb) { 389 hotspot_x += plane->fb->hot_x; 390 hotspot_y += plane->fb->hot_y; 391 } 392 393 du->cursor_surface = vps->surf; 394 du->cursor_dmabuf = vps->dmabuf; 395 396 /* setup new image */ 397 if (vps->surf) { 398 du->cursor_age = du->cursor_surface->snooper.age; 399 400 ret = vmw_cursor_update_image(dev_priv, 401 vps->surf->snooper.image, 402 64, 64, hotspot_x, hotspot_y); 403 } else if (vps->dmabuf) { 404 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf, 405 plane->state->crtc_w, 406 plane->state->crtc_h, 407 hotspot_x, hotspot_y); 408 } else { 409 vmw_cursor_update_position(dev_priv, false, 0, 0); 410 return; 411 } 412 413 if (!ret) { 414 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 415 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 416 417 vmw_cursor_update_position(dev_priv, true, 418 du->cursor_x + hotspot_x, 419 du->cursor_y + hotspot_y); 420 421 du->core_hotspot_x = hotspot_x - du->hotspot_x; 422 du->core_hotspot_y = hotspot_y - du->hotspot_y; 423 } else { 424 DRM_ERROR("Failed to update cursor image\n"); 425 } 426 } 427 428 429 /** 430 * vmw_du_primary_plane_atomic_check - check if the new state is okay 431 * 432 * @plane: display plane 433 * @state: info on the new plane state, including the FB 434 * 435 * Check if the new state is settable given the current state. Other 436 * than what the atomic helper checks, we care about crtc fitting 437 * the FB and maintaining one active framebuffer. 438 * 439 * Returns 0 on success 440 */ 441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 442 struct drm_plane_state *state) 443 { 444 struct drm_framebuffer *new_fb = state->fb; 445 bool visible; 446 447 struct drm_rect src = { 448 .x1 = state->src_x, 449 .y1 = state->src_y, 450 .x2 = state->src_x + state->src_w, 451 .y2 = state->src_y + state->src_h, 452 }; 453 struct drm_rect dest = { 454 .x1 = state->crtc_x, 455 .y1 = state->crtc_y, 456 .x2 = state->crtc_x + state->crtc_w, 457 .y2 = state->crtc_y + state->crtc_h, 458 }; 459 struct drm_rect clip = dest; 460 int ret; 461 462 ret = drm_plane_helper_check_update(plane, state->crtc, new_fb, 463 &src, &dest, &clip, 464 DRM_MODE_ROTATE_0, 465 DRM_PLANE_HELPER_NO_SCALING, 466 DRM_PLANE_HELPER_NO_SCALING, 467 false, true, &visible); 468 469 470 if (!ret && new_fb) { 471 struct drm_crtc *crtc = state->crtc; 472 struct vmw_connector_state *vcs; 473 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 474 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 475 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 476 477 vcs = vmw_connector_state_to_vcs(du->connector.state); 478 479 if ((dest.x2 > new_fb->width || 480 dest.y2 > new_fb->height)) { 481 DRM_ERROR("CRTC area outside of framebuffer\n"); 482 return -EINVAL; 483 } 484 485 /* Only one active implicit framebuffer at a time. */ 486 mutex_lock(&dev_priv->global_kms_state_mutex); 487 if (vcs->is_implicit && dev_priv->implicit_fb && 488 !(dev_priv->num_implicit == 1 && du->active_implicit) 489 && dev_priv->implicit_fb != vfb) { 490 DRM_ERROR("Multiple implicit framebuffers " 491 "not supported.\n"); 492 ret = -EINVAL; 493 } 494 mutex_unlock(&dev_priv->global_kms_state_mutex); 495 } 496 497 498 return ret; 499 } 500 501 502 /** 503 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 504 * 505 * @plane: cursor plane 506 * @state: info on the new plane state 507 * 508 * This is a chance to fail if the new cursor state does not fit 509 * our requirements. 510 * 511 * Returns 0 on success 512 */ 513 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 514 struct drm_plane_state *new_state) 515 { 516 int ret = 0; 517 struct vmw_surface *surface = NULL; 518 struct drm_framebuffer *fb = new_state->fb; 519 520 521 /* Turning off */ 522 if (!fb) 523 return ret; 524 525 /* A lot of the code assumes this */ 526 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 527 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 528 new_state->crtc_w, new_state->crtc_h); 529 ret = -EINVAL; 530 } 531 532 if (!vmw_framebuffer_to_vfb(fb)->dmabuf) 533 surface = vmw_framebuffer_to_vfbs(fb)->surface; 534 535 if (surface && !surface->snooper.image) { 536 DRM_ERROR("surface not suitable for cursor\n"); 537 ret = -EINVAL; 538 } 539 540 return ret; 541 } 542 543 544 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 545 struct drm_crtc_state *new_state) 546 { 547 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 548 int connector_mask = 1 << drm_connector_index(&du->connector); 549 bool has_primary = new_state->plane_mask & 550 BIT(drm_plane_index(crtc->primary)); 551 552 /* We always want to have an active plane with an active CRTC */ 553 if (has_primary != new_state->enable) 554 return -EINVAL; 555 556 557 if (new_state->connector_mask != connector_mask && 558 new_state->connector_mask != 0) { 559 DRM_ERROR("Invalid connectors configuration\n"); 560 return -EINVAL; 561 } 562 563 /* 564 * Our virtual device does not have a dot clock, so use the logical 565 * clock value as the dot clock. 566 */ 567 if (new_state->mode.crtc_clock == 0) 568 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 569 570 return 0; 571 } 572 573 574 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 575 struct drm_crtc_state *old_crtc_state) 576 { 577 } 578 579 580 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 581 struct drm_crtc_state *old_crtc_state) 582 { 583 struct drm_pending_vblank_event *event = crtc->state->event; 584 585 if (event) { 586 crtc->state->event = NULL; 587 588 spin_lock_irq(&crtc->dev->event_lock); 589 if (drm_crtc_vblank_get(crtc) == 0) 590 drm_crtc_arm_vblank_event(crtc, event); 591 else 592 drm_crtc_send_vblank_event(crtc, event); 593 spin_unlock_irq(&crtc->dev->event_lock); 594 } 595 596 } 597 598 599 /** 600 * vmw_du_crtc_duplicate_state - duplicate crtc state 601 * @crtc: DRM crtc 602 * 603 * Allocates and returns a copy of the crtc state (both common and 604 * vmw-specific) for the specified crtc. 605 * 606 * Returns: The newly allocated crtc state, or NULL on failure. 607 */ 608 struct drm_crtc_state * 609 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 610 { 611 struct drm_crtc_state *state; 612 struct vmw_crtc_state *vcs; 613 614 if (WARN_ON(!crtc->state)) 615 return NULL; 616 617 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 618 619 if (!vcs) 620 return NULL; 621 622 state = &vcs->base; 623 624 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 625 626 return state; 627 } 628 629 630 /** 631 * vmw_du_crtc_reset - creates a blank vmw crtc state 632 * @crtc: DRM crtc 633 * 634 * Resets the atomic state for @crtc by freeing the state pointer (which 635 * might be NULL, e.g. at driver load time) and allocating a new empty state 636 * object. 637 */ 638 void vmw_du_crtc_reset(struct drm_crtc *crtc) 639 { 640 struct vmw_crtc_state *vcs; 641 642 643 if (crtc->state) { 644 __drm_atomic_helper_crtc_destroy_state(crtc->state); 645 646 kfree(vmw_crtc_state_to_vcs(crtc->state)); 647 } 648 649 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 650 651 if (!vcs) { 652 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 653 return; 654 } 655 656 crtc->state = &vcs->base; 657 crtc->state->crtc = crtc; 658 } 659 660 661 /** 662 * vmw_du_crtc_destroy_state - destroy crtc state 663 * @crtc: DRM crtc 664 * @state: state object to destroy 665 * 666 * Destroys the crtc state (both common and vmw-specific) for the 667 * specified plane. 668 */ 669 void 670 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 671 struct drm_crtc_state *state) 672 { 673 drm_atomic_helper_crtc_destroy_state(crtc, state); 674 } 675 676 677 /** 678 * vmw_du_plane_duplicate_state - duplicate plane state 679 * @plane: drm plane 680 * 681 * Allocates and returns a copy of the plane state (both common and 682 * vmw-specific) for the specified plane. 683 * 684 * Returns: The newly allocated plane state, or NULL on failure. 685 */ 686 struct drm_plane_state * 687 vmw_du_plane_duplicate_state(struct drm_plane *plane) 688 { 689 struct drm_plane_state *state; 690 struct vmw_plane_state *vps; 691 692 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 693 694 if (!vps) 695 return NULL; 696 697 vps->pinned = 0; 698 699 /* Mapping is managed by prepare_fb/cleanup_fb */ 700 memset(&vps->host_map, 0, sizeof(vps->host_map)); 701 vps->cpp = 0; 702 703 /* Each ref counted resource needs to be acquired again */ 704 if (vps->surf) 705 (void) vmw_surface_reference(vps->surf); 706 707 if (vps->dmabuf) 708 (void) vmw_dmabuf_reference(vps->dmabuf); 709 710 state = &vps->base; 711 712 __drm_atomic_helper_plane_duplicate_state(plane, state); 713 714 return state; 715 } 716 717 718 /** 719 * vmw_du_plane_reset - creates a blank vmw plane state 720 * @plane: drm plane 721 * 722 * Resets the atomic state for @plane by freeing the state pointer (which might 723 * be NULL, e.g. at driver load time) and allocating a new empty state object. 724 */ 725 void vmw_du_plane_reset(struct drm_plane *plane) 726 { 727 struct vmw_plane_state *vps; 728 729 730 if (plane->state) 731 vmw_du_plane_destroy_state(plane, plane->state); 732 733 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 734 735 if (!vps) { 736 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 737 return; 738 } 739 740 plane->state = &vps->base; 741 plane->state->plane = plane; 742 plane->state->rotation = DRM_MODE_ROTATE_0; 743 } 744 745 746 /** 747 * vmw_du_plane_destroy_state - destroy plane state 748 * @plane: DRM plane 749 * @state: state object to destroy 750 * 751 * Destroys the plane state (both common and vmw-specific) for the 752 * specified plane. 753 */ 754 void 755 vmw_du_plane_destroy_state(struct drm_plane *plane, 756 struct drm_plane_state *state) 757 { 758 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 759 760 761 /* Should have been freed by cleanup_fb */ 762 if (vps->host_map.virtual) { 763 DRM_ERROR("Host mapping not freed\n"); 764 ttm_bo_kunmap(&vps->host_map); 765 } 766 767 if (vps->surf) 768 vmw_surface_unreference(&vps->surf); 769 770 if (vps->dmabuf) 771 vmw_dmabuf_unreference(&vps->dmabuf); 772 773 drm_atomic_helper_plane_destroy_state(plane, state); 774 } 775 776 777 /** 778 * vmw_du_connector_duplicate_state - duplicate connector state 779 * @connector: DRM connector 780 * 781 * Allocates and returns a copy of the connector state (both common and 782 * vmw-specific) for the specified connector. 783 * 784 * Returns: The newly allocated connector state, or NULL on failure. 785 */ 786 struct drm_connector_state * 787 vmw_du_connector_duplicate_state(struct drm_connector *connector) 788 { 789 struct drm_connector_state *state; 790 struct vmw_connector_state *vcs; 791 792 if (WARN_ON(!connector->state)) 793 return NULL; 794 795 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 796 797 if (!vcs) 798 return NULL; 799 800 state = &vcs->base; 801 802 __drm_atomic_helper_connector_duplicate_state(connector, state); 803 804 return state; 805 } 806 807 808 /** 809 * vmw_du_connector_reset - creates a blank vmw connector state 810 * @connector: DRM connector 811 * 812 * Resets the atomic state for @connector by freeing the state pointer (which 813 * might be NULL, e.g. at driver load time) and allocating a new empty state 814 * object. 815 */ 816 void vmw_du_connector_reset(struct drm_connector *connector) 817 { 818 struct vmw_connector_state *vcs; 819 820 821 if (connector->state) { 822 __drm_atomic_helper_connector_destroy_state(connector->state); 823 824 kfree(vmw_connector_state_to_vcs(connector->state)); 825 } 826 827 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 828 829 if (!vcs) { 830 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 831 return; 832 } 833 834 __drm_atomic_helper_connector_reset(connector, &vcs->base); 835 } 836 837 838 /** 839 * vmw_du_connector_destroy_state - destroy connector state 840 * @connector: DRM connector 841 * @state: state object to destroy 842 * 843 * Destroys the connector state (both common and vmw-specific) for the 844 * specified plane. 845 */ 846 void 847 vmw_du_connector_destroy_state(struct drm_connector *connector, 848 struct drm_connector_state *state) 849 { 850 drm_atomic_helper_connector_destroy_state(connector, state); 851 } 852 /* 853 * Generic framebuffer code 854 */ 855 856 /* 857 * Surface framebuffer code 858 */ 859 860 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 861 { 862 struct vmw_framebuffer_surface *vfbs = 863 vmw_framebuffer_to_vfbs(framebuffer); 864 865 drm_framebuffer_cleanup(framebuffer); 866 vmw_surface_unreference(&vfbs->surface); 867 if (vfbs->base.user_obj) 868 ttm_base_object_unref(&vfbs->base.user_obj); 869 870 kfree(vfbs); 871 } 872 873 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 874 struct drm_file *file_priv, 875 unsigned flags, unsigned color, 876 struct drm_clip_rect *clips, 877 unsigned num_clips) 878 { 879 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 880 struct vmw_framebuffer_surface *vfbs = 881 vmw_framebuffer_to_vfbs(framebuffer); 882 struct drm_clip_rect norect; 883 int ret, inc = 1; 884 885 /* Legacy Display Unit does not support 3D */ 886 if (dev_priv->active_display_unit == vmw_du_legacy) 887 return -EINVAL; 888 889 drm_modeset_lock_all(dev_priv->dev); 890 891 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 892 if (unlikely(ret != 0)) { 893 drm_modeset_unlock_all(dev_priv->dev); 894 return ret; 895 } 896 897 if (!num_clips) { 898 num_clips = 1; 899 clips = &norect; 900 norect.x1 = norect.y1 = 0; 901 norect.x2 = framebuffer->width; 902 norect.y2 = framebuffer->height; 903 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 904 num_clips /= 2; 905 inc = 2; /* skip source rects */ 906 } 907 908 if (dev_priv->active_display_unit == vmw_du_screen_object) 909 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 910 clips, NULL, NULL, 0, 0, 911 num_clips, inc, NULL); 912 else 913 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 914 clips, NULL, NULL, 0, 0, 915 num_clips, inc, NULL); 916 917 vmw_fifo_flush(dev_priv, false); 918 ttm_read_unlock(&dev_priv->reservation_sem); 919 920 drm_modeset_unlock_all(dev_priv->dev); 921 922 return 0; 923 } 924 925 /** 926 * vmw_kms_readback - Perform a readback from the screen system to 927 * a dma-buffer backed framebuffer. 928 * 929 * @dev_priv: Pointer to the device private structure. 930 * @file_priv: Pointer to a struct drm_file identifying the caller. 931 * Must be set to NULL if @user_fence_rep is NULL. 932 * @vfb: Pointer to the dma-buffer backed framebuffer. 933 * @user_fence_rep: User-space provided structure for fence information. 934 * Must be set to non-NULL if @file_priv is non-NULL. 935 * @vclips: Array of clip rects. 936 * @num_clips: Number of clip rects in @vclips. 937 * 938 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 939 * interrupted. 940 */ 941 int vmw_kms_readback(struct vmw_private *dev_priv, 942 struct drm_file *file_priv, 943 struct vmw_framebuffer *vfb, 944 struct drm_vmw_fence_rep __user *user_fence_rep, 945 struct drm_vmw_rect *vclips, 946 uint32_t num_clips) 947 { 948 switch (dev_priv->active_display_unit) { 949 case vmw_du_screen_object: 950 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 951 user_fence_rep, vclips, num_clips); 952 case vmw_du_screen_target: 953 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 954 user_fence_rep, NULL, vclips, num_clips, 955 1, false, true); 956 default: 957 WARN_ONCE(true, 958 "Readback called with invalid display system.\n"); 959 } 960 961 return -ENOSYS; 962 } 963 964 965 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 966 .destroy = vmw_framebuffer_surface_destroy, 967 .dirty = vmw_framebuffer_surface_dirty, 968 }; 969 970 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 971 struct vmw_surface *surface, 972 struct vmw_framebuffer **out, 973 const struct drm_mode_fb_cmd2 974 *mode_cmd, 975 bool is_dmabuf_proxy) 976 977 { 978 struct drm_device *dev = dev_priv->dev; 979 struct vmw_framebuffer_surface *vfbs; 980 enum SVGA3dSurfaceFormat format; 981 int ret; 982 struct drm_format_name_buf format_name; 983 984 /* 3D is only supported on HWv8 and newer hosts */ 985 if (dev_priv->active_display_unit == vmw_du_legacy) 986 return -ENOSYS; 987 988 /* 989 * Sanity checks. 990 */ 991 992 /* Surface must be marked as a scanout. */ 993 if (unlikely(!surface->scanout)) 994 return -EINVAL; 995 996 if (unlikely(surface->mip_levels[0] != 1 || 997 surface->num_sizes != 1 || 998 surface->base_size.width < mode_cmd->width || 999 surface->base_size.height < mode_cmd->height || 1000 surface->base_size.depth != 1)) { 1001 DRM_ERROR("Incompatible surface dimensions " 1002 "for requested mode.\n"); 1003 return -EINVAL; 1004 } 1005 1006 switch (mode_cmd->pixel_format) { 1007 case DRM_FORMAT_ARGB8888: 1008 format = SVGA3D_A8R8G8B8; 1009 break; 1010 case DRM_FORMAT_XRGB8888: 1011 format = SVGA3D_X8R8G8B8; 1012 break; 1013 case DRM_FORMAT_RGB565: 1014 format = SVGA3D_R5G6B5; 1015 break; 1016 case DRM_FORMAT_XRGB1555: 1017 format = SVGA3D_A1R5G5B5; 1018 break; 1019 default: 1020 DRM_ERROR("Invalid pixel format: %s\n", 1021 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1022 return -EINVAL; 1023 } 1024 1025 /* 1026 * For DX, surface format validation is done when surface->scanout 1027 * is set. 1028 */ 1029 if (!dev_priv->has_dx && format != surface->format) { 1030 DRM_ERROR("Invalid surface format for requested mode.\n"); 1031 return -EINVAL; 1032 } 1033 1034 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1035 if (!vfbs) { 1036 ret = -ENOMEM; 1037 goto out_err1; 1038 } 1039 1040 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1041 vfbs->surface = vmw_surface_reference(surface); 1042 vfbs->base.user_handle = mode_cmd->handles[0]; 1043 vfbs->is_dmabuf_proxy = is_dmabuf_proxy; 1044 1045 *out = &vfbs->base; 1046 1047 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1048 &vmw_framebuffer_surface_funcs); 1049 if (ret) 1050 goto out_err2; 1051 1052 return 0; 1053 1054 out_err2: 1055 vmw_surface_unreference(&surface); 1056 kfree(vfbs); 1057 out_err1: 1058 return ret; 1059 } 1060 1061 /* 1062 * Dmabuf framebuffer code 1063 */ 1064 1065 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer) 1066 { 1067 struct vmw_framebuffer_dmabuf *vfbd = 1068 vmw_framebuffer_to_vfbd(framebuffer); 1069 1070 drm_framebuffer_cleanup(framebuffer); 1071 vmw_dmabuf_unreference(&vfbd->buffer); 1072 if (vfbd->base.user_obj) 1073 ttm_base_object_unref(&vfbd->base.user_obj); 1074 1075 kfree(vfbd); 1076 } 1077 1078 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer, 1079 struct drm_file *file_priv, 1080 unsigned flags, unsigned color, 1081 struct drm_clip_rect *clips, 1082 unsigned num_clips) 1083 { 1084 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1085 struct vmw_framebuffer_dmabuf *vfbd = 1086 vmw_framebuffer_to_vfbd(framebuffer); 1087 struct drm_clip_rect norect; 1088 int ret, increment = 1; 1089 1090 drm_modeset_lock_all(dev_priv->dev); 1091 1092 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1093 if (unlikely(ret != 0)) { 1094 drm_modeset_unlock_all(dev_priv->dev); 1095 return ret; 1096 } 1097 1098 if (!num_clips) { 1099 num_clips = 1; 1100 clips = &norect; 1101 norect.x1 = norect.y1 = 0; 1102 norect.x2 = framebuffer->width; 1103 norect.y2 = framebuffer->height; 1104 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1105 num_clips /= 2; 1106 increment = 2; 1107 } 1108 1109 switch (dev_priv->active_display_unit) { 1110 case vmw_du_screen_target: 1111 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1112 clips, NULL, num_clips, increment, 1113 true, true); 1114 break; 1115 case vmw_du_screen_object: 1116 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base, 1117 clips, NULL, num_clips, 1118 increment, true, NULL); 1119 break; 1120 case vmw_du_legacy: 1121 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0, 1122 clips, num_clips, increment); 1123 break; 1124 default: 1125 ret = -EINVAL; 1126 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1127 break; 1128 } 1129 1130 vmw_fifo_flush(dev_priv, false); 1131 ttm_read_unlock(&dev_priv->reservation_sem); 1132 1133 drm_modeset_unlock_all(dev_priv->dev); 1134 1135 return ret; 1136 } 1137 1138 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = { 1139 .destroy = vmw_framebuffer_dmabuf_destroy, 1140 .dirty = vmw_framebuffer_dmabuf_dirty, 1141 }; 1142 1143 /** 1144 * Pin the dmabuffer to the start of vram. 1145 */ 1146 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1147 { 1148 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1149 struct vmw_dma_buffer *buf; 1150 int ret; 1151 1152 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1153 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1154 1155 if (!buf) 1156 return 0; 1157 1158 switch (dev_priv->active_display_unit) { 1159 case vmw_du_legacy: 1160 vmw_overlay_pause_all(dev_priv); 1161 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false); 1162 vmw_overlay_resume_all(dev_priv); 1163 break; 1164 case vmw_du_screen_object: 1165 case vmw_du_screen_target: 1166 if (vfb->dmabuf) 1167 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf, 1168 false); 1169 1170 return vmw_dmabuf_pin_in_placement(dev_priv, buf, 1171 &vmw_mob_placement, false); 1172 default: 1173 return -EINVAL; 1174 } 1175 1176 return ret; 1177 } 1178 1179 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1180 { 1181 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1182 struct vmw_dma_buffer *buf; 1183 1184 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1185 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1186 1187 if (WARN_ON(!buf)) 1188 return 0; 1189 1190 return vmw_dmabuf_unpin(dev_priv, buf, false); 1191 } 1192 1193 /** 1194 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf 1195 * 1196 * @dev: DRM device 1197 * @mode_cmd: parameters for the new surface 1198 * @dmabuf_mob: MOB backing the DMA buf 1199 * @srf_out: newly created surface 1200 * 1201 * When the content FB is a DMA buf, we create a surface as a proxy to the 1202 * same buffer. This way we can do a surface copy rather than a surface DMA. 1203 * This is a more efficient approach 1204 * 1205 * RETURNS: 1206 * 0 on success, error code otherwise 1207 */ 1208 static int vmw_create_dmabuf_proxy(struct drm_device *dev, 1209 const struct drm_mode_fb_cmd2 *mode_cmd, 1210 struct vmw_dma_buffer *dmabuf_mob, 1211 struct vmw_surface **srf_out) 1212 { 1213 uint32_t format; 1214 struct drm_vmw_size content_base_size = {0}; 1215 struct vmw_resource *res; 1216 unsigned int bytes_pp; 1217 struct drm_format_name_buf format_name; 1218 int ret; 1219 1220 switch (mode_cmd->pixel_format) { 1221 case DRM_FORMAT_ARGB8888: 1222 case DRM_FORMAT_XRGB8888: 1223 format = SVGA3D_X8R8G8B8; 1224 bytes_pp = 4; 1225 break; 1226 1227 case DRM_FORMAT_RGB565: 1228 case DRM_FORMAT_XRGB1555: 1229 format = SVGA3D_R5G6B5; 1230 bytes_pp = 2; 1231 break; 1232 1233 case 8: 1234 format = SVGA3D_P8; 1235 bytes_pp = 1; 1236 break; 1237 1238 default: 1239 DRM_ERROR("Invalid framebuffer format %s\n", 1240 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1241 return -EINVAL; 1242 } 1243 1244 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1245 content_base_size.height = mode_cmd->height; 1246 content_base_size.depth = 1; 1247 1248 ret = vmw_surface_gb_priv_define(dev, 1249 0, /* kernel visible only */ 1250 0, /* flags */ 1251 format, 1252 true, /* can be a scanout buffer */ 1253 1, /* num of mip levels */ 1254 0, 1255 0, 1256 content_base_size, 1257 srf_out); 1258 if (ret) { 1259 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1260 return ret; 1261 } 1262 1263 res = &(*srf_out)->res; 1264 1265 /* Reserve and switch the backing mob. */ 1266 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1267 (void) vmw_resource_reserve(res, false, true); 1268 vmw_dmabuf_unreference(&res->backup); 1269 res->backup = vmw_dmabuf_reference(dmabuf_mob); 1270 res->backup_offset = 0; 1271 vmw_resource_unreserve(res, false, NULL, 0); 1272 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1273 1274 return 0; 1275 } 1276 1277 1278 1279 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv, 1280 struct vmw_dma_buffer *dmabuf, 1281 struct vmw_framebuffer **out, 1282 const struct drm_mode_fb_cmd2 1283 *mode_cmd) 1284 1285 { 1286 struct drm_device *dev = dev_priv->dev; 1287 struct vmw_framebuffer_dmabuf *vfbd; 1288 unsigned int requested_size; 1289 struct drm_format_name_buf format_name; 1290 int ret; 1291 1292 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1293 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) { 1294 DRM_ERROR("Screen buffer object size is too small " 1295 "for requested mode.\n"); 1296 return -EINVAL; 1297 } 1298 1299 /* Limited framebuffer color depth support for screen objects */ 1300 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1301 switch (mode_cmd->pixel_format) { 1302 case DRM_FORMAT_XRGB8888: 1303 case DRM_FORMAT_ARGB8888: 1304 break; 1305 case DRM_FORMAT_XRGB1555: 1306 case DRM_FORMAT_RGB565: 1307 break; 1308 default: 1309 DRM_ERROR("Invalid pixel format: %s\n", 1310 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1311 return -EINVAL; 1312 } 1313 } 1314 1315 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1316 if (!vfbd) { 1317 ret = -ENOMEM; 1318 goto out_err1; 1319 } 1320 1321 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1322 vfbd->base.dmabuf = true; 1323 vfbd->buffer = vmw_dmabuf_reference(dmabuf); 1324 vfbd->base.user_handle = mode_cmd->handles[0]; 1325 *out = &vfbd->base; 1326 1327 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1328 &vmw_framebuffer_dmabuf_funcs); 1329 if (ret) 1330 goto out_err2; 1331 1332 return 0; 1333 1334 out_err2: 1335 vmw_dmabuf_unreference(&dmabuf); 1336 kfree(vfbd); 1337 out_err1: 1338 return ret; 1339 } 1340 1341 1342 /** 1343 * vmw_kms_srf_ok - check if a surface can be created 1344 * 1345 * @width: requested width 1346 * @height: requested height 1347 * 1348 * Surfaces need to be less than texture size 1349 */ 1350 static bool 1351 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1352 { 1353 if (width > dev_priv->texture_max_width || 1354 height > dev_priv->texture_max_height) 1355 return false; 1356 1357 return true; 1358 } 1359 1360 /** 1361 * vmw_kms_new_framebuffer - Create a new framebuffer. 1362 * 1363 * @dev_priv: Pointer to device private struct. 1364 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around. 1365 * Either @dmabuf or @surface must be NULL. 1366 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1367 * Either @dmabuf or @surface must be NULL. 1368 * @only_2d: No presents will occur to this dma buffer based framebuffer. This 1369 * Helps the code to do some important optimizations. 1370 * @mode_cmd: Frame-buffer metadata. 1371 */ 1372 struct vmw_framebuffer * 1373 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1374 struct vmw_dma_buffer *dmabuf, 1375 struct vmw_surface *surface, 1376 bool only_2d, 1377 const struct drm_mode_fb_cmd2 *mode_cmd) 1378 { 1379 struct vmw_framebuffer *vfb = NULL; 1380 bool is_dmabuf_proxy = false; 1381 int ret; 1382 1383 /* 1384 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1385 * therefore, wrap the DMA buf in a surface so we can use the 1386 * SurfaceCopy command. 1387 */ 1388 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1389 dmabuf && only_2d && 1390 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1391 dev_priv->active_display_unit == vmw_du_screen_target) { 1392 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd, 1393 dmabuf, &surface); 1394 if (ret) 1395 return ERR_PTR(ret); 1396 1397 is_dmabuf_proxy = true; 1398 } 1399 1400 /* Create the new framebuffer depending one what we have */ 1401 if (surface) { 1402 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1403 mode_cmd, 1404 is_dmabuf_proxy); 1405 1406 /* 1407 * vmw_create_dmabuf_proxy() adds a reference that is no longer 1408 * needed 1409 */ 1410 if (is_dmabuf_proxy) 1411 vmw_surface_unreference(&surface); 1412 } else if (dmabuf) { 1413 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb, 1414 mode_cmd); 1415 } else { 1416 BUG(); 1417 } 1418 1419 if (ret) 1420 return ERR_PTR(ret); 1421 1422 vfb->pin = vmw_framebuffer_pin; 1423 vfb->unpin = vmw_framebuffer_unpin; 1424 1425 return vfb; 1426 } 1427 1428 /* 1429 * Generic Kernel modesetting functions 1430 */ 1431 1432 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1433 struct drm_file *file_priv, 1434 const struct drm_mode_fb_cmd2 *mode_cmd) 1435 { 1436 struct vmw_private *dev_priv = vmw_priv(dev); 1437 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1438 struct vmw_framebuffer *vfb = NULL; 1439 struct vmw_surface *surface = NULL; 1440 struct vmw_dma_buffer *bo = NULL; 1441 struct ttm_base_object *user_obj; 1442 int ret; 1443 1444 /** 1445 * This code should be conditioned on Screen Objects not being used. 1446 * If screen objects are used, we can allocate a GMR to hold the 1447 * requested framebuffer. 1448 */ 1449 1450 if (!vmw_kms_validate_mode_vram(dev_priv, 1451 mode_cmd->pitches[0], 1452 mode_cmd->height)) { 1453 DRM_ERROR("Requested mode exceed bounding box limit.\n"); 1454 return ERR_PTR(-ENOMEM); 1455 } 1456 1457 /* 1458 * Take a reference on the user object of the resource 1459 * backing the kms fb. This ensures that user-space handle 1460 * lookups on that resource will always work as long as 1461 * it's registered with a kms framebuffer. This is important, 1462 * since vmw_execbuf_process identifies resources in the 1463 * command stream using user-space handles. 1464 */ 1465 1466 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1467 if (unlikely(user_obj == NULL)) { 1468 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1469 return ERR_PTR(-ENOENT); 1470 } 1471 1472 /** 1473 * End conditioned code. 1474 */ 1475 1476 /* returns either a dmabuf or surface */ 1477 ret = vmw_user_lookup_handle(dev_priv, tfile, 1478 mode_cmd->handles[0], 1479 &surface, &bo); 1480 if (ret) 1481 goto err_out; 1482 1483 1484 if (!bo && 1485 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1486 DRM_ERROR("Surface size cannot exceed %dx%d", 1487 dev_priv->texture_max_width, 1488 dev_priv->texture_max_height); 1489 goto err_out; 1490 } 1491 1492 1493 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1494 !(dev_priv->capabilities & SVGA_CAP_3D), 1495 mode_cmd); 1496 if (IS_ERR(vfb)) { 1497 ret = PTR_ERR(vfb); 1498 goto err_out; 1499 } 1500 1501 err_out: 1502 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1503 if (bo) 1504 vmw_dmabuf_unreference(&bo); 1505 if (surface) 1506 vmw_surface_unreference(&surface); 1507 1508 if (ret) { 1509 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1510 ttm_base_object_unref(&user_obj); 1511 return ERR_PTR(ret); 1512 } else 1513 vfb->user_obj = user_obj; 1514 1515 return &vfb->base; 1516 } 1517 1518 1519 1520 /** 1521 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1522 * 1523 * @dev: DRM device 1524 * @state: the driver state object 1525 * 1526 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1527 * us to assign a value to mode->crtc_clock so that 1528 * drm_calc_timestamping_constants() won't throw an error message 1529 * 1530 * RETURNS 1531 * Zero for success or -errno 1532 */ 1533 static int 1534 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1535 struct drm_atomic_state *state) 1536 { 1537 struct drm_crtc_state *crtc_state; 1538 struct drm_crtc *crtc; 1539 struct vmw_private *dev_priv = vmw_priv(dev); 1540 int i; 1541 1542 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1543 unsigned long requested_bb_mem = 0; 1544 1545 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1546 if (crtc->primary->fb) { 1547 int cpp = crtc->primary->fb->pitches[0] / 1548 crtc->primary->fb->width; 1549 1550 requested_bb_mem += crtc->mode.hdisplay * cpp * 1551 crtc->mode.vdisplay; 1552 } 1553 1554 if (requested_bb_mem > dev_priv->prim_bb_mem) 1555 return -EINVAL; 1556 } 1557 } 1558 1559 return drm_atomic_helper_check(dev, state); 1560 } 1561 1562 1563 /** 1564 * vmw_kms_atomic_commit - Perform an atomic state commit 1565 * 1566 * @dev: DRM device 1567 * @state: the driver state object 1568 * @nonblock: Whether nonblocking behaviour is requested 1569 * 1570 * This is a simple wrapper around drm_atomic_helper_commit() for 1571 * us to clear the nonblocking value. 1572 * 1573 * Nonblocking commits currently cause synchronization issues 1574 * for vmwgfx. 1575 * 1576 * RETURNS 1577 * Zero for success or negative error code on failure. 1578 */ 1579 int vmw_kms_atomic_commit(struct drm_device *dev, 1580 struct drm_atomic_state *state, 1581 bool nonblock) 1582 { 1583 return drm_atomic_helper_commit(dev, state, false); 1584 } 1585 1586 1587 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1588 .fb_create = vmw_kms_fb_create, 1589 .atomic_check = vmw_kms_atomic_check_modeset, 1590 .atomic_commit = vmw_kms_atomic_commit, 1591 }; 1592 1593 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1594 struct drm_file *file_priv, 1595 struct vmw_framebuffer *vfb, 1596 struct vmw_surface *surface, 1597 uint32_t sid, 1598 int32_t destX, int32_t destY, 1599 struct drm_vmw_rect *clips, 1600 uint32_t num_clips) 1601 { 1602 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1603 &surface->res, destX, destY, 1604 num_clips, 1, NULL); 1605 } 1606 1607 1608 int vmw_kms_present(struct vmw_private *dev_priv, 1609 struct drm_file *file_priv, 1610 struct vmw_framebuffer *vfb, 1611 struct vmw_surface *surface, 1612 uint32_t sid, 1613 int32_t destX, int32_t destY, 1614 struct drm_vmw_rect *clips, 1615 uint32_t num_clips) 1616 { 1617 int ret; 1618 1619 switch (dev_priv->active_display_unit) { 1620 case vmw_du_screen_target: 1621 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1622 &surface->res, destX, destY, 1623 num_clips, 1, NULL); 1624 break; 1625 case vmw_du_screen_object: 1626 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1627 sid, destX, destY, clips, 1628 num_clips); 1629 break; 1630 default: 1631 WARN_ONCE(true, 1632 "Present called with invalid display system.\n"); 1633 ret = -ENOSYS; 1634 break; 1635 } 1636 if (ret) 1637 return ret; 1638 1639 vmw_fifo_flush(dev_priv, false); 1640 1641 return 0; 1642 } 1643 1644 static void 1645 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1646 { 1647 if (dev_priv->hotplug_mode_update_property) 1648 return; 1649 1650 dev_priv->hotplug_mode_update_property = 1651 drm_property_create_range(dev_priv->dev, 1652 DRM_MODE_PROP_IMMUTABLE, 1653 "hotplug_mode_update", 0, 1); 1654 1655 if (!dev_priv->hotplug_mode_update_property) 1656 return; 1657 1658 } 1659 1660 int vmw_kms_init(struct vmw_private *dev_priv) 1661 { 1662 struct drm_device *dev = dev_priv->dev; 1663 int ret; 1664 1665 drm_mode_config_init(dev); 1666 dev->mode_config.funcs = &vmw_kms_funcs; 1667 dev->mode_config.min_width = 1; 1668 dev->mode_config.min_height = 1; 1669 dev->mode_config.max_width = dev_priv->texture_max_width; 1670 dev->mode_config.max_height = dev_priv->texture_max_height; 1671 1672 drm_mode_create_suggested_offset_properties(dev); 1673 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1674 1675 ret = vmw_kms_stdu_init_display(dev_priv); 1676 if (ret) { 1677 ret = vmw_kms_sou_init_display(dev_priv); 1678 if (ret) /* Fallback */ 1679 ret = vmw_kms_ldu_init_display(dev_priv); 1680 } 1681 1682 return ret; 1683 } 1684 1685 int vmw_kms_close(struct vmw_private *dev_priv) 1686 { 1687 int ret = 0; 1688 1689 /* 1690 * Docs says we should take the lock before calling this function 1691 * but since it destroys encoders and our destructor calls 1692 * drm_encoder_cleanup which takes the lock we deadlock. 1693 */ 1694 drm_mode_config_cleanup(dev_priv->dev); 1695 if (dev_priv->active_display_unit == vmw_du_legacy) 1696 ret = vmw_kms_ldu_close_display(dev_priv); 1697 1698 return ret; 1699 } 1700 1701 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1702 struct drm_file *file_priv) 1703 { 1704 struct drm_vmw_cursor_bypass_arg *arg = data; 1705 struct vmw_display_unit *du; 1706 struct drm_crtc *crtc; 1707 int ret = 0; 1708 1709 1710 mutex_lock(&dev->mode_config.mutex); 1711 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1712 1713 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1714 du = vmw_crtc_to_du(crtc); 1715 du->hotspot_x = arg->xhot; 1716 du->hotspot_y = arg->yhot; 1717 } 1718 1719 mutex_unlock(&dev->mode_config.mutex); 1720 return 0; 1721 } 1722 1723 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1724 if (!crtc) { 1725 ret = -ENOENT; 1726 goto out; 1727 } 1728 1729 du = vmw_crtc_to_du(crtc); 1730 1731 du->hotspot_x = arg->xhot; 1732 du->hotspot_y = arg->yhot; 1733 1734 out: 1735 mutex_unlock(&dev->mode_config.mutex); 1736 1737 return ret; 1738 } 1739 1740 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1741 unsigned width, unsigned height, unsigned pitch, 1742 unsigned bpp, unsigned depth) 1743 { 1744 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1745 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1746 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1747 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1748 SVGA_FIFO_PITCHLOCK); 1749 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1750 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1751 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1752 1753 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1754 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1755 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1756 return -EINVAL; 1757 } 1758 1759 return 0; 1760 } 1761 1762 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1763 { 1764 struct vmw_vga_topology_state *save; 1765 uint32_t i; 1766 1767 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1768 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1769 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1770 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1771 vmw_priv->vga_pitchlock = 1772 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1773 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1774 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1775 SVGA_FIFO_PITCHLOCK); 1776 1777 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1778 return 0; 1779 1780 vmw_priv->num_displays = vmw_read(vmw_priv, 1781 SVGA_REG_NUM_GUEST_DISPLAYS); 1782 1783 if (vmw_priv->num_displays == 0) 1784 vmw_priv->num_displays = 1; 1785 1786 for (i = 0; i < vmw_priv->num_displays; ++i) { 1787 save = &vmw_priv->vga_save[i]; 1788 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1789 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1790 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1791 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1792 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1793 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1794 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1795 if (i == 0 && vmw_priv->num_displays == 1 && 1796 save->width == 0 && save->height == 0) { 1797 1798 /* 1799 * It should be fairly safe to assume that these 1800 * values are uninitialized. 1801 */ 1802 1803 save->width = vmw_priv->vga_width - save->pos_x; 1804 save->height = vmw_priv->vga_height - save->pos_y; 1805 } 1806 } 1807 1808 return 0; 1809 } 1810 1811 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1812 { 1813 struct vmw_vga_topology_state *save; 1814 uint32_t i; 1815 1816 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1817 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1818 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1819 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1820 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1821 vmw_priv->vga_pitchlock); 1822 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1823 vmw_mmio_write(vmw_priv->vga_pitchlock, 1824 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1825 1826 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1827 return 0; 1828 1829 for (i = 0; i < vmw_priv->num_displays; ++i) { 1830 save = &vmw_priv->vga_save[i]; 1831 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1832 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1833 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1834 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1835 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1836 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1837 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1838 } 1839 1840 return 0; 1841 } 1842 1843 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1844 uint32_t pitch, 1845 uint32_t height) 1846 { 1847 return ((u64) pitch * (u64) height) < (u64) 1848 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1849 dev_priv->prim_bb_mem : dev_priv->vram_size); 1850 } 1851 1852 1853 /** 1854 * Function called by DRM code called with vbl_lock held. 1855 */ 1856 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1857 { 1858 return 0; 1859 } 1860 1861 /** 1862 * Function called by DRM code called with vbl_lock held. 1863 */ 1864 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1865 { 1866 return -EINVAL; 1867 } 1868 1869 /** 1870 * Function called by DRM code called with vbl_lock held. 1871 */ 1872 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1873 { 1874 } 1875 1876 1877 /* 1878 * Small shared kms functions. 1879 */ 1880 1881 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num, 1882 struct drm_vmw_rect *rects) 1883 { 1884 struct drm_device *dev = dev_priv->dev; 1885 struct vmw_display_unit *du; 1886 struct drm_connector *con; 1887 1888 mutex_lock(&dev->mode_config.mutex); 1889 1890 #if 0 1891 { 1892 unsigned int i; 1893 1894 DRM_INFO("%s: new layout ", __func__); 1895 for (i = 0; i < num; i++) 1896 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y, 1897 rects[i].w, rects[i].h); 1898 DRM_INFO("\n"); 1899 } 1900 #endif 1901 1902 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1903 du = vmw_connector_to_du(con); 1904 if (num > du->unit) { 1905 du->pref_width = rects[du->unit].w; 1906 du->pref_height = rects[du->unit].h; 1907 du->pref_active = true; 1908 du->gui_x = rects[du->unit].x; 1909 du->gui_y = rects[du->unit].y; 1910 drm_object_property_set_value 1911 (&con->base, dev->mode_config.suggested_x_property, 1912 du->gui_x); 1913 drm_object_property_set_value 1914 (&con->base, dev->mode_config.suggested_y_property, 1915 du->gui_y); 1916 } else { 1917 du->pref_width = 800; 1918 du->pref_height = 600; 1919 du->pref_active = false; 1920 drm_object_property_set_value 1921 (&con->base, dev->mode_config.suggested_x_property, 1922 0); 1923 drm_object_property_set_value 1924 (&con->base, dev->mode_config.suggested_y_property, 1925 0); 1926 } 1927 con->status = vmw_du_connector_detect(con, true); 1928 } 1929 1930 mutex_unlock(&dev->mode_config.mutex); 1931 drm_sysfs_hotplug_event(dev); 1932 1933 return 0; 1934 } 1935 1936 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1937 u16 *r, u16 *g, u16 *b, 1938 uint32_t size, 1939 struct drm_modeset_acquire_ctx *ctx) 1940 { 1941 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1942 int i; 1943 1944 for (i = 0; i < size; i++) { 1945 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1946 r[i], g[i], b[i]); 1947 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1948 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1949 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1950 } 1951 1952 return 0; 1953 } 1954 1955 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1956 { 1957 return 0; 1958 } 1959 1960 enum drm_connector_status 1961 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1962 { 1963 uint32_t num_displays; 1964 struct drm_device *dev = connector->dev; 1965 struct vmw_private *dev_priv = vmw_priv(dev); 1966 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1967 1968 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1969 1970 return ((vmw_connector_to_du(connector)->unit < num_displays && 1971 du->pref_active) ? 1972 connector_status_connected : connector_status_disconnected); 1973 } 1974 1975 static struct drm_display_mode vmw_kms_connector_builtin[] = { 1976 /* 640x480@60Hz */ 1977 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 1978 752, 800, 0, 480, 489, 492, 525, 0, 1979 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1980 /* 800x600@60Hz */ 1981 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 1982 968, 1056, 0, 600, 601, 605, 628, 0, 1983 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1984 /* 1024x768@60Hz */ 1985 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1986 1184, 1344, 0, 768, 771, 777, 806, 0, 1987 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1988 /* 1152x864@75Hz */ 1989 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1990 1344, 1600, 0, 864, 865, 868, 900, 0, 1991 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1992 /* 1280x768@60Hz */ 1993 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1994 1472, 1664, 0, 768, 771, 778, 798, 0, 1995 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1996 /* 1280x800@60Hz */ 1997 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1998 1480, 1680, 0, 800, 803, 809, 831, 0, 1999 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2000 /* 1280x960@60Hz */ 2001 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2002 1488, 1800, 0, 960, 961, 964, 1000, 0, 2003 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2004 /* 1280x1024@60Hz */ 2005 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2006 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2007 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2008 /* 1360x768@60Hz */ 2009 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2010 1536, 1792, 0, 768, 771, 777, 795, 0, 2011 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2012 /* 1440x1050@60Hz */ 2013 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2014 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2015 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2016 /* 1440x900@60Hz */ 2017 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2018 1672, 1904, 0, 900, 903, 909, 934, 0, 2019 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2020 /* 1600x1200@60Hz */ 2021 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2022 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2023 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2024 /* 1680x1050@60Hz */ 2025 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2026 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2027 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2028 /* 1792x1344@60Hz */ 2029 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2030 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2031 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2032 /* 1853x1392@60Hz */ 2033 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2034 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2035 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2036 /* 1920x1200@60Hz */ 2037 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2038 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2039 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2040 /* 1920x1440@60Hz */ 2041 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2042 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2043 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2044 /* 2560x1600@60Hz */ 2045 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2046 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2048 /* Terminate */ 2049 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2050 }; 2051 2052 /** 2053 * vmw_guess_mode_timing - Provide fake timings for a 2054 * 60Hz vrefresh mode. 2055 * 2056 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2057 * members filled in. 2058 */ 2059 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2060 { 2061 mode->hsync_start = mode->hdisplay + 50; 2062 mode->hsync_end = mode->hsync_start + 50; 2063 mode->htotal = mode->hsync_end + 50; 2064 2065 mode->vsync_start = mode->vdisplay + 50; 2066 mode->vsync_end = mode->vsync_start + 50; 2067 mode->vtotal = mode->vsync_end + 50; 2068 2069 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2070 mode->vrefresh = drm_mode_vrefresh(mode); 2071 } 2072 2073 2074 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2075 uint32_t max_width, uint32_t max_height) 2076 { 2077 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2078 struct drm_device *dev = connector->dev; 2079 struct vmw_private *dev_priv = vmw_priv(dev); 2080 struct drm_display_mode *mode = NULL; 2081 struct drm_display_mode *bmode; 2082 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2083 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2084 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2085 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2086 }; 2087 int i; 2088 u32 assumed_bpp = 4; 2089 2090 if (dev_priv->assume_16bpp) 2091 assumed_bpp = 2; 2092 2093 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2094 max_width = min(max_width, dev_priv->stdu_max_width); 2095 max_width = min(max_width, dev_priv->texture_max_width); 2096 2097 max_height = min(max_height, dev_priv->stdu_max_height); 2098 max_height = min(max_height, dev_priv->texture_max_height); 2099 } 2100 2101 /* Add preferred mode */ 2102 mode = drm_mode_duplicate(dev, &prefmode); 2103 if (!mode) 2104 return 0; 2105 mode->hdisplay = du->pref_width; 2106 mode->vdisplay = du->pref_height; 2107 vmw_guess_mode_timing(mode); 2108 2109 if (vmw_kms_validate_mode_vram(dev_priv, 2110 mode->hdisplay * assumed_bpp, 2111 mode->vdisplay)) { 2112 drm_mode_probed_add(connector, mode); 2113 } else { 2114 drm_mode_destroy(dev, mode); 2115 mode = NULL; 2116 } 2117 2118 if (du->pref_mode) { 2119 list_del_init(&du->pref_mode->head); 2120 drm_mode_destroy(dev, du->pref_mode); 2121 } 2122 2123 /* mode might be null here, this is intended */ 2124 du->pref_mode = mode; 2125 2126 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2127 bmode = &vmw_kms_connector_builtin[i]; 2128 if (bmode->hdisplay > max_width || 2129 bmode->vdisplay > max_height) 2130 continue; 2131 2132 if (!vmw_kms_validate_mode_vram(dev_priv, 2133 bmode->hdisplay * assumed_bpp, 2134 bmode->vdisplay)) 2135 continue; 2136 2137 mode = drm_mode_duplicate(dev, bmode); 2138 if (!mode) 2139 return 0; 2140 mode->vrefresh = drm_mode_vrefresh(mode); 2141 2142 drm_mode_probed_add(connector, mode); 2143 } 2144 2145 drm_mode_connector_list_update(connector); 2146 /* Move the prefered mode first, help apps pick the right mode. */ 2147 drm_mode_sort(&connector->modes); 2148 2149 return 1; 2150 } 2151 2152 int vmw_du_connector_set_property(struct drm_connector *connector, 2153 struct drm_property *property, 2154 uint64_t val) 2155 { 2156 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2157 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2158 2159 if (property == dev_priv->implicit_placement_property) 2160 du->is_implicit = val; 2161 2162 return 0; 2163 } 2164 2165 2166 2167 /** 2168 * vmw_du_connector_atomic_set_property - Atomic version of get property 2169 * 2170 * @crtc - crtc the property is associated with 2171 * 2172 * Returns: 2173 * Zero on success, negative errno on failure. 2174 */ 2175 int 2176 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2177 struct drm_connector_state *state, 2178 struct drm_property *property, 2179 uint64_t val) 2180 { 2181 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2182 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2183 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2184 2185 2186 if (property == dev_priv->implicit_placement_property) { 2187 vcs->is_implicit = val; 2188 2189 /* 2190 * We should really be doing a drm_atomic_commit() to 2191 * commit the new state, but since this doesn't cause 2192 * an immedate state change, this is probably ok 2193 */ 2194 du->is_implicit = vcs->is_implicit; 2195 } else { 2196 return -EINVAL; 2197 } 2198 2199 return 0; 2200 } 2201 2202 2203 /** 2204 * vmw_du_connector_atomic_get_property - Atomic version of get property 2205 * 2206 * @connector - connector the property is associated with 2207 * 2208 * Returns: 2209 * Zero on success, negative errno on failure. 2210 */ 2211 int 2212 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2213 const struct drm_connector_state *state, 2214 struct drm_property *property, 2215 uint64_t *val) 2216 { 2217 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2218 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2219 2220 if (property == dev_priv->implicit_placement_property) 2221 *val = vcs->is_implicit; 2222 else { 2223 DRM_ERROR("Invalid Property %s\n", property->name); 2224 return -EINVAL; 2225 } 2226 2227 return 0; 2228 } 2229 2230 2231 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2232 struct drm_file *file_priv) 2233 { 2234 struct vmw_private *dev_priv = vmw_priv(dev); 2235 struct drm_vmw_update_layout_arg *arg = 2236 (struct drm_vmw_update_layout_arg *)data; 2237 void __user *user_rects; 2238 struct drm_vmw_rect *rects; 2239 unsigned rects_size; 2240 int ret; 2241 int i; 2242 u64 total_pixels = 0; 2243 struct drm_mode_config *mode_config = &dev->mode_config; 2244 struct drm_vmw_rect bounding_box = {0}; 2245 2246 if (!arg->num_outputs) { 2247 struct drm_vmw_rect def_rect = {0, 0, 800, 600}; 2248 vmw_du_update_layout(dev_priv, 1, &def_rect); 2249 return 0; 2250 } 2251 2252 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2253 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2254 GFP_KERNEL); 2255 if (unlikely(!rects)) 2256 return -ENOMEM; 2257 2258 user_rects = (void __user *)(unsigned long)arg->rects; 2259 ret = copy_from_user(rects, user_rects, rects_size); 2260 if (unlikely(ret != 0)) { 2261 DRM_ERROR("Failed to get rects.\n"); 2262 ret = -EFAULT; 2263 goto out_free; 2264 } 2265 2266 for (i = 0; i < arg->num_outputs; ++i) { 2267 if (rects[i].x < 0 || 2268 rects[i].y < 0 || 2269 rects[i].x + rects[i].w > mode_config->max_width || 2270 rects[i].y + rects[i].h > mode_config->max_height) { 2271 DRM_ERROR("Invalid GUI layout.\n"); 2272 ret = -EINVAL; 2273 goto out_free; 2274 } 2275 2276 /* 2277 * bounding_box.w and bunding_box.h are used as 2278 * lower-right coordinates 2279 */ 2280 if (rects[i].x + rects[i].w > bounding_box.w) 2281 bounding_box.w = rects[i].x + rects[i].w; 2282 2283 if (rects[i].y + rects[i].h > bounding_box.h) 2284 bounding_box.h = rects[i].y + rects[i].h; 2285 2286 total_pixels += (u64) rects[i].w * (u64) rects[i].h; 2287 } 2288 2289 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2290 /* 2291 * For Screen Targets, the limits for a toplogy are: 2292 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem 2293 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem 2294 */ 2295 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4; 2296 u64 pixel_mem = total_pixels * 4; 2297 2298 if (bb_mem > dev_priv->prim_bb_mem) { 2299 DRM_ERROR("Topology is beyond supported limits.\n"); 2300 ret = -EINVAL; 2301 goto out_free; 2302 } 2303 2304 if (pixel_mem > dev_priv->prim_bb_mem) { 2305 DRM_ERROR("Combined output size too large\n"); 2306 ret = -EINVAL; 2307 goto out_free; 2308 } 2309 } 2310 2311 vmw_du_update_layout(dev_priv, arg->num_outputs, rects); 2312 2313 out_free: 2314 kfree(rects); 2315 return ret; 2316 } 2317 2318 /** 2319 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2320 * on a set of cliprects and a set of display units. 2321 * 2322 * @dev_priv: Pointer to a device private structure. 2323 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2324 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2325 * Cliprects are given in framebuffer coordinates. 2326 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2327 * be NULL. Cliprects are given in source coordinates. 2328 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2329 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2330 * @num_clips: Number of cliprects in the @clips or @vclips array. 2331 * @increment: Integer with which to increment the clip counter when looping. 2332 * Used to skip a predetermined number of clip rects. 2333 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2334 */ 2335 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2336 struct vmw_framebuffer *framebuffer, 2337 const struct drm_clip_rect *clips, 2338 const struct drm_vmw_rect *vclips, 2339 s32 dest_x, s32 dest_y, 2340 int num_clips, 2341 int increment, 2342 struct vmw_kms_dirty *dirty) 2343 { 2344 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2345 struct drm_crtc *crtc; 2346 u32 num_units = 0; 2347 u32 i, k; 2348 2349 dirty->dev_priv = dev_priv; 2350 2351 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) { 2352 if (crtc->primary->fb != &framebuffer->base) 2353 continue; 2354 units[num_units++] = vmw_crtc_to_du(crtc); 2355 } 2356 2357 for (k = 0; k < num_units; k++) { 2358 struct vmw_display_unit *unit = units[k]; 2359 s32 crtc_x = unit->crtc.x; 2360 s32 crtc_y = unit->crtc.y; 2361 s32 crtc_width = unit->crtc.mode.hdisplay; 2362 s32 crtc_height = unit->crtc.mode.vdisplay; 2363 const struct drm_clip_rect *clips_ptr = clips; 2364 const struct drm_vmw_rect *vclips_ptr = vclips; 2365 2366 dirty->unit = unit; 2367 if (dirty->fifo_reserve_size > 0) { 2368 dirty->cmd = vmw_fifo_reserve(dev_priv, 2369 dirty->fifo_reserve_size); 2370 if (!dirty->cmd) { 2371 DRM_ERROR("Couldn't reserve fifo space " 2372 "for dirty blits.\n"); 2373 return -ENOMEM; 2374 } 2375 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2376 } 2377 dirty->num_hits = 0; 2378 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2379 vclips_ptr += increment) { 2380 s32 clip_left; 2381 s32 clip_top; 2382 2383 /* 2384 * Select clip array type. Note that integer type 2385 * in @clips is unsigned short, whereas in @vclips 2386 * it's 32-bit. 2387 */ 2388 if (clips) { 2389 dirty->fb_x = (s32) clips_ptr->x1; 2390 dirty->fb_y = (s32) clips_ptr->y1; 2391 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2392 crtc_x; 2393 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2394 crtc_y; 2395 } else { 2396 dirty->fb_x = vclips_ptr->x; 2397 dirty->fb_y = vclips_ptr->y; 2398 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2399 dest_x - crtc_x; 2400 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2401 dest_y - crtc_y; 2402 } 2403 2404 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2405 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2406 2407 /* Skip this clip if it's outside the crtc region */ 2408 if (dirty->unit_x1 >= crtc_width || 2409 dirty->unit_y1 >= crtc_height || 2410 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2411 continue; 2412 2413 /* Clip right and bottom to crtc limits */ 2414 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2415 crtc_width); 2416 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2417 crtc_height); 2418 2419 /* Clip left and top to crtc limits */ 2420 clip_left = min_t(s32, dirty->unit_x1, 0); 2421 clip_top = min_t(s32, dirty->unit_y1, 0); 2422 dirty->unit_x1 -= clip_left; 2423 dirty->unit_y1 -= clip_top; 2424 dirty->fb_x -= clip_left; 2425 dirty->fb_y -= clip_top; 2426 2427 dirty->clip(dirty); 2428 } 2429 2430 dirty->fifo_commit(dirty); 2431 } 2432 2433 return 0; 2434 } 2435 2436 /** 2437 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2438 * command submission. 2439 * 2440 * @dev_priv. Pointer to a device private structure. 2441 * @buf: The buffer object 2442 * @interruptible: Whether to perform waits as interruptible. 2443 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2444 * The buffer will be validated as a GMR. Already pinned buffers will not be 2445 * validated. 2446 * 2447 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2448 * interrupted by a signal. 2449 */ 2450 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2451 struct vmw_dma_buffer *buf, 2452 bool interruptible, 2453 bool validate_as_mob) 2454 { 2455 struct ttm_buffer_object *bo = &buf->base; 2456 int ret; 2457 2458 ttm_bo_reserve(bo, false, false, NULL); 2459 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2460 validate_as_mob); 2461 if (ret) 2462 ttm_bo_unreserve(bo); 2463 2464 return ret; 2465 } 2466 2467 /** 2468 * vmw_kms_helper_buffer_revert - Undo the actions of 2469 * vmw_kms_helper_buffer_prepare. 2470 * 2471 * @res: Pointer to the buffer object. 2472 * 2473 * Helper to be used if an error forces the caller to undo the actions of 2474 * vmw_kms_helper_buffer_prepare. 2475 */ 2476 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf) 2477 { 2478 if (buf) 2479 ttm_bo_unreserve(&buf->base); 2480 } 2481 2482 /** 2483 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2484 * kms command submission. 2485 * 2486 * @dev_priv: Pointer to a device private structure. 2487 * @file_priv: Pointer to a struct drm_file representing the caller's 2488 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2489 * if non-NULL, @user_fence_rep must be non-NULL. 2490 * @buf: The buffer object. 2491 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2492 * ref-counted fence pointer is returned here. 2493 * @user_fence_rep: Optional pointer to a user-space provided struct 2494 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2495 * function copies fence data to user-space in a fail-safe manner. 2496 */ 2497 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2498 struct drm_file *file_priv, 2499 struct vmw_dma_buffer *buf, 2500 struct vmw_fence_obj **out_fence, 2501 struct drm_vmw_fence_rep __user * 2502 user_fence_rep) 2503 { 2504 struct vmw_fence_obj *fence; 2505 uint32_t handle; 2506 int ret; 2507 2508 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2509 file_priv ? &handle : NULL); 2510 if (buf) 2511 vmw_fence_single_bo(&buf->base, fence); 2512 if (file_priv) 2513 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2514 ret, user_fence_rep, fence, 2515 handle, -1, NULL); 2516 if (out_fence) 2517 *out_fence = fence; 2518 else 2519 vmw_fence_obj_unreference(&fence); 2520 2521 vmw_kms_helper_buffer_revert(buf); 2522 } 2523 2524 2525 /** 2526 * vmw_kms_helper_resource_revert - Undo the actions of 2527 * vmw_kms_helper_resource_prepare. 2528 * 2529 * @res: Pointer to the resource. Typically a surface. 2530 * 2531 * Helper to be used if an error forces the caller to undo the actions of 2532 * vmw_kms_helper_resource_prepare. 2533 */ 2534 void vmw_kms_helper_resource_revert(struct vmw_resource *res) 2535 { 2536 vmw_kms_helper_buffer_revert(res->backup); 2537 vmw_resource_unreserve(res, false, NULL, 0); 2538 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2539 } 2540 2541 /** 2542 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2543 * command submission. 2544 * 2545 * @res: Pointer to the resource. Typically a surface. 2546 * @interruptible: Whether to perform waits as interruptible. 2547 * 2548 * Reserves and validates also the backup buffer if a guest-backed resource. 2549 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2550 * interrupted by a signal. 2551 */ 2552 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2553 bool interruptible) 2554 { 2555 int ret = 0; 2556 2557 if (interruptible) 2558 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2559 else 2560 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2561 2562 if (unlikely(ret != 0)) 2563 return -ERESTARTSYS; 2564 2565 ret = vmw_resource_reserve(res, interruptible, false); 2566 if (ret) 2567 goto out_unlock; 2568 2569 if (res->backup) { 2570 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2571 interruptible, 2572 res->dev_priv->has_mob); 2573 if (ret) 2574 goto out_unreserve; 2575 } 2576 ret = vmw_resource_validate(res); 2577 if (ret) 2578 goto out_revert; 2579 return 0; 2580 2581 out_revert: 2582 vmw_kms_helper_buffer_revert(res->backup); 2583 out_unreserve: 2584 vmw_resource_unreserve(res, false, NULL, 0); 2585 out_unlock: 2586 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2587 return ret; 2588 } 2589 2590 /** 2591 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2592 * kms command submission. 2593 * 2594 * @res: Pointer to the resource. Typically a surface. 2595 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2596 * ref-counted fence pointer is returned here. 2597 */ 2598 void vmw_kms_helper_resource_finish(struct vmw_resource *res, 2599 struct vmw_fence_obj **out_fence) 2600 { 2601 if (res->backup || out_fence) 2602 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup, 2603 out_fence, NULL); 2604 2605 vmw_resource_unreserve(res, false, NULL, 0); 2606 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2607 } 2608 2609 /** 2610 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2611 * its backing MOB. 2612 * 2613 * @res: Pointer to the surface resource 2614 * @clips: Clip rects in framebuffer (surface) space. 2615 * @num_clips: Number of clips in @clips. 2616 * @increment: Integer with which to increment the clip counter when looping. 2617 * Used to skip a predetermined number of clip rects. 2618 * 2619 * This function makes sure the proxy surface is updated from its backing MOB 2620 * using the region given by @clips. The surface resource @res and its backing 2621 * MOB needs to be reserved and validated on call. 2622 */ 2623 int vmw_kms_update_proxy(struct vmw_resource *res, 2624 const struct drm_clip_rect *clips, 2625 unsigned num_clips, 2626 int increment) 2627 { 2628 struct vmw_private *dev_priv = res->dev_priv; 2629 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2630 struct { 2631 SVGA3dCmdHeader header; 2632 SVGA3dCmdUpdateGBImage body; 2633 } *cmd; 2634 SVGA3dBox *box; 2635 size_t copy_size = 0; 2636 int i; 2637 2638 if (!clips) 2639 return 0; 2640 2641 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2642 if (!cmd) { 2643 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2644 "update.\n"); 2645 return -ENOMEM; 2646 } 2647 2648 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2649 box = &cmd->body.box; 2650 2651 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2652 cmd->header.size = sizeof(cmd->body); 2653 cmd->body.image.sid = res->id; 2654 cmd->body.image.face = 0; 2655 cmd->body.image.mipmap = 0; 2656 2657 if (clips->x1 > size->width || clips->x2 > size->width || 2658 clips->y1 > size->height || clips->y2 > size->height) { 2659 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2660 return -EINVAL; 2661 } 2662 2663 box->x = clips->x1; 2664 box->y = clips->y1; 2665 box->z = 0; 2666 box->w = clips->x2 - clips->x1; 2667 box->h = clips->y2 - clips->y1; 2668 box->d = 1; 2669 2670 copy_size += sizeof(*cmd); 2671 } 2672 2673 vmw_fifo_commit(dev_priv, copy_size); 2674 2675 return 0; 2676 } 2677 2678 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2679 unsigned unit, 2680 u32 max_width, 2681 u32 max_height, 2682 struct drm_connector **p_con, 2683 struct drm_crtc **p_crtc, 2684 struct drm_display_mode **p_mode) 2685 { 2686 struct drm_connector *con; 2687 struct vmw_display_unit *du; 2688 struct drm_display_mode *mode; 2689 int i = 0; 2690 2691 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2692 head) { 2693 if (i == unit) 2694 break; 2695 2696 ++i; 2697 } 2698 2699 if (i != unit) { 2700 DRM_ERROR("Could not find initial display unit.\n"); 2701 return -EINVAL; 2702 } 2703 2704 if (list_empty(&con->modes)) 2705 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2706 2707 if (list_empty(&con->modes)) { 2708 DRM_ERROR("Could not find initial display mode.\n"); 2709 return -EINVAL; 2710 } 2711 2712 du = vmw_connector_to_du(con); 2713 *p_con = con; 2714 *p_crtc = &du->crtc; 2715 2716 list_for_each_entry(mode, &con->modes, head) { 2717 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2718 break; 2719 } 2720 2721 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2722 *p_mode = mode; 2723 else { 2724 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2725 *p_mode = list_first_entry(&con->modes, 2726 struct drm_display_mode, 2727 head); 2728 } 2729 2730 return 0; 2731 } 2732 2733 /** 2734 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2735 * 2736 * @dev_priv: Pointer to a device private struct. 2737 * @du: The display unit of the crtc. 2738 */ 2739 void vmw_kms_del_active(struct vmw_private *dev_priv, 2740 struct vmw_display_unit *du) 2741 { 2742 mutex_lock(&dev_priv->global_kms_state_mutex); 2743 if (du->active_implicit) { 2744 if (--(dev_priv->num_implicit) == 0) 2745 dev_priv->implicit_fb = NULL; 2746 du->active_implicit = false; 2747 } 2748 mutex_unlock(&dev_priv->global_kms_state_mutex); 2749 } 2750 2751 /** 2752 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2753 * 2754 * @vmw_priv: Pointer to a device private struct. 2755 * @du: The display unit of the crtc. 2756 * @vfb: The implicit framebuffer 2757 * 2758 * Registers a binding to an implicit framebuffer. 2759 */ 2760 void vmw_kms_add_active(struct vmw_private *dev_priv, 2761 struct vmw_display_unit *du, 2762 struct vmw_framebuffer *vfb) 2763 { 2764 mutex_lock(&dev_priv->global_kms_state_mutex); 2765 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2766 2767 if (!du->active_implicit && du->is_implicit) { 2768 dev_priv->implicit_fb = vfb; 2769 du->active_implicit = true; 2770 dev_priv->num_implicit++; 2771 } 2772 mutex_unlock(&dev_priv->global_kms_state_mutex); 2773 } 2774 2775 /** 2776 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2777 * 2778 * @dev_priv: Pointer to device-private struct. 2779 * @crtc: The crtc we want to flip. 2780 * 2781 * Returns true or false depending whether it's OK to flip this crtc 2782 * based on the criterion that we must not have more than one implicit 2783 * frame-buffer at any one time. 2784 */ 2785 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2786 struct drm_crtc *crtc) 2787 { 2788 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2789 bool ret; 2790 2791 mutex_lock(&dev_priv->global_kms_state_mutex); 2792 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2793 mutex_unlock(&dev_priv->global_kms_state_mutex); 2794 2795 return ret; 2796 } 2797 2798 /** 2799 * vmw_kms_update_implicit_fb - Update the implicit fb. 2800 * 2801 * @dev_priv: Pointer to device-private struct. 2802 * @crtc: The crtc the new implicit frame-buffer is bound to. 2803 */ 2804 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2805 struct drm_crtc *crtc) 2806 { 2807 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2808 struct vmw_framebuffer *vfb; 2809 2810 mutex_lock(&dev_priv->global_kms_state_mutex); 2811 2812 if (!du->is_implicit) 2813 goto out_unlock; 2814 2815 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb); 2816 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2817 dev_priv->implicit_fb != vfb); 2818 2819 dev_priv->implicit_fb = vfb; 2820 out_unlock: 2821 mutex_unlock(&dev_priv->global_kms_state_mutex); 2822 } 2823 2824 /** 2825 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2826 * property. 2827 * 2828 * @dev_priv: Pointer to a device private struct. 2829 * @immutable: Whether the property is immutable. 2830 * 2831 * Sets up the implicit placement property unless it's already set up. 2832 */ 2833 void 2834 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2835 bool immutable) 2836 { 2837 if (dev_priv->implicit_placement_property) 2838 return; 2839 2840 dev_priv->implicit_placement_property = 2841 drm_property_create_range(dev_priv->dev, 2842 immutable ? 2843 DRM_MODE_PROP_IMMUTABLE : 0, 2844 "implicit_placement", 0, 1); 2845 2846 } 2847 2848 2849 /** 2850 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 2851 * 2852 * @set: The configuration to set. 2853 * 2854 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 2855 * when drm_mode_set_crtcinfo is called as part of the configuration setting 2856 * causes it to return incorrect crtc dimensions causing severe problems in 2857 * the vmwgfx modesetting. So explicitly clear that member before calling 2858 * into drm_atomic_helper_set_config. 2859 */ 2860 int vmw_kms_set_config(struct drm_mode_set *set, 2861 struct drm_modeset_acquire_ctx *ctx) 2862 { 2863 if (set && set->mode) 2864 set->mode->type = 0; 2865 2866 return drm_atomic_helper_set_config(set, ctx); 2867 } 2868