xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 #include "vmwgfx_kms.h"
28 
29 #include "vmwgfx_bo.h"
30 #include "vmw_surface_cache.h"
31 
32 #include <drm/drm_atomic.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_damage_helper.h>
35 #include <drm/drm_fourcc.h>
36 #include <drm/drm_rect.h>
37 #include <drm/drm_sysfs.h>
38 
39 void vmw_du_cleanup(struct vmw_display_unit *du)
40 {
41 	struct vmw_private *dev_priv = vmw_priv(du->primary.dev);
42 	drm_plane_cleanup(&du->primary);
43 	if (vmw_cmd_supported(dev_priv))
44 		drm_plane_cleanup(&du->cursor.base);
45 
46 	drm_connector_unregister(&du->connector);
47 	drm_crtc_cleanup(&du->crtc);
48 	drm_encoder_cleanup(&du->encoder);
49 	drm_connector_cleanup(&du->connector);
50 }
51 
52 /*
53  * Display Unit Cursor functions
54  */
55 
56 static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps);
57 static void vmw_cursor_update_mob(struct vmw_private *dev_priv,
58 				  struct vmw_plane_state *vps,
59 				  u32 *image, u32 width, u32 height,
60 				  u32 hotspotX, u32 hotspotY);
61 
62 struct vmw_svga_fifo_cmd_define_cursor {
63 	u32 cmd;
64 	SVGAFifoCmdDefineAlphaCursor cursor;
65 };
66 
67 /**
68  * vmw_send_define_cursor_cmd - queue a define cursor command
69  * @dev_priv: the private driver struct
70  * @image: buffer which holds the cursor image
71  * @width: width of the mouse cursor image
72  * @height: height of the mouse cursor image
73  * @hotspotX: the horizontal position of mouse hotspot
74  * @hotspotY: the vertical position of mouse hotspot
75  */
76 static void vmw_send_define_cursor_cmd(struct vmw_private *dev_priv,
77 				       u32 *image, u32 width, u32 height,
78 				       u32 hotspotX, u32 hotspotY)
79 {
80 	struct vmw_svga_fifo_cmd_define_cursor *cmd;
81 	const u32 image_size = width * height * sizeof(*image);
82 	const u32 cmd_size = sizeof(*cmd) + image_size;
83 
84 	/* Try to reserve fifocmd space and swallow any failures;
85 	   such reservations cannot be left unconsumed for long
86 	   under the risk of clogging other fifocmd users, so
87 	   we treat reservations separtely from the way we treat
88 	   other fallible KMS-atomic resources at prepare_fb */
89 	cmd = VMW_CMD_RESERVE(dev_priv, cmd_size);
90 
91 	if (unlikely(!cmd))
92 		return;
93 
94 	memset(cmd, 0, sizeof(*cmd));
95 
96 	memcpy(&cmd[1], image, image_size);
97 
98 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
99 	cmd->cursor.id = 0;
100 	cmd->cursor.width = width;
101 	cmd->cursor.height = height;
102 	cmd->cursor.hotspotX = hotspotX;
103 	cmd->cursor.hotspotY = hotspotY;
104 
105 	vmw_cmd_commit_flush(dev_priv, cmd_size);
106 }
107 
108 /**
109  * vmw_cursor_update_image - update the cursor image on the provided plane
110  * @dev_priv: the private driver struct
111  * @vps: the plane state of the cursor plane
112  * @image: buffer which holds the cursor image
113  * @width: width of the mouse cursor image
114  * @height: height of the mouse cursor image
115  * @hotspotX: the horizontal position of mouse hotspot
116  * @hotspotY: the vertical position of mouse hotspot
117  */
118 static void vmw_cursor_update_image(struct vmw_private *dev_priv,
119 				    struct vmw_plane_state *vps,
120 				    u32 *image, u32 width, u32 height,
121 				    u32 hotspotX, u32 hotspotY)
122 {
123 	if (vps->cursor.bo)
124 		vmw_cursor_update_mob(dev_priv, vps, image,
125 				      vps->base.crtc_w, vps->base.crtc_h,
126 				      hotspotX, hotspotY);
127 
128 	else
129 		vmw_send_define_cursor_cmd(dev_priv, image, width, height,
130 					   hotspotX, hotspotY);
131 }
132 
133 
134 /**
135  * vmw_cursor_update_mob - Update cursor vis CursorMob mechanism
136  *
137  * Called from inside vmw_du_cursor_plane_atomic_update to actually
138  * make the cursor-image live.
139  *
140  * @dev_priv: device to work with
141  * @vps: the plane state of the cursor plane
142  * @image: cursor source data to fill the MOB with
143  * @width: source data width
144  * @height: source data height
145  * @hotspotX: cursor hotspot x
146  * @hotspotY: cursor hotspot Y
147  */
148 static void vmw_cursor_update_mob(struct vmw_private *dev_priv,
149 				  struct vmw_plane_state *vps,
150 				  u32 *image, u32 width, u32 height,
151 				  u32 hotspotX, u32 hotspotY)
152 {
153 	SVGAGBCursorHeader *header;
154 	SVGAGBAlphaCursorHeader *alpha_header;
155 	const u32 image_size = width * height * sizeof(*image);
156 
157 	header = vmw_bo_map_and_cache(vps->cursor.bo);
158 	alpha_header = &header->header.alphaHeader;
159 
160 	memset(header, 0, sizeof(*header));
161 
162 	header->type = SVGA_ALPHA_CURSOR;
163 	header->sizeInBytes = image_size;
164 
165 	alpha_header->hotspotX = hotspotX;
166 	alpha_header->hotspotY = hotspotY;
167 	alpha_header->width = width;
168 	alpha_header->height = height;
169 
170 	memcpy(header + 1, image, image_size);
171 	vmw_write(dev_priv, SVGA_REG_CURSOR_MOBID,
172 		  vps->cursor.bo->tbo.resource->start);
173 }
174 
175 
176 static u32 vmw_du_cursor_mob_size(u32 w, u32 h)
177 {
178 	return w * h * sizeof(u32) + sizeof(SVGAGBCursorHeader);
179 }
180 
181 /**
182  * vmw_du_cursor_plane_acquire_image -- Acquire the image data
183  * @vps: cursor plane state
184  */
185 static u32 *vmw_du_cursor_plane_acquire_image(struct vmw_plane_state *vps)
186 {
187 	bool is_iomem;
188 	if (vps->surf) {
189 		if (vps->surf_mapped)
190 			return vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo);
191 		return vps->surf->snooper.image;
192 	} else if (vps->bo)
193 		return ttm_kmap_obj_virtual(&vps->bo->map, &is_iomem);
194 	return NULL;
195 }
196 
197 static bool vmw_du_cursor_plane_has_changed(struct vmw_plane_state *old_vps,
198 					    struct vmw_plane_state *new_vps)
199 {
200 	void *old_image;
201 	void *new_image;
202 	u32 size;
203 	bool changed;
204 
205 	if (old_vps->base.crtc_w != new_vps->base.crtc_w ||
206 	    old_vps->base.crtc_h != new_vps->base.crtc_h)
207 	    return true;
208 
209 	if (old_vps->cursor.hotspot_x != new_vps->cursor.hotspot_x ||
210 	    old_vps->cursor.hotspot_y != new_vps->cursor.hotspot_y)
211 	    return true;
212 
213 	size = new_vps->base.crtc_w * new_vps->base.crtc_h * sizeof(u32);
214 
215 	old_image = vmw_du_cursor_plane_acquire_image(old_vps);
216 	new_image = vmw_du_cursor_plane_acquire_image(new_vps);
217 
218 	changed = false;
219 	if (old_image && new_image)
220 		changed = memcmp(old_image, new_image, size) != 0;
221 
222 	return changed;
223 }
224 
225 static void vmw_du_destroy_cursor_mob(struct vmw_bo **vbo)
226 {
227 	if (!(*vbo))
228 		return;
229 
230 	ttm_bo_unpin(&(*vbo)->tbo);
231 	vmw_bo_unreference(vbo);
232 }
233 
234 static void vmw_du_put_cursor_mob(struct vmw_cursor_plane *vcp,
235 				  struct vmw_plane_state *vps)
236 {
237 	u32 i;
238 
239 	if (!vps->cursor.bo)
240 		return;
241 
242 	vmw_du_cursor_plane_unmap_cm(vps);
243 
244 	/* Look for a free slot to return this mob to the cache. */
245 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
246 		if (!vcp->cursor_mobs[i]) {
247 			vcp->cursor_mobs[i] = vps->cursor.bo;
248 			vps->cursor.bo = NULL;
249 			return;
250 		}
251 	}
252 
253 	/* Cache is full: See if this mob is bigger than an existing mob. */
254 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
255 		if (vcp->cursor_mobs[i]->tbo.base.size <
256 		    vps->cursor.bo->tbo.base.size) {
257 			vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]);
258 			vcp->cursor_mobs[i] = vps->cursor.bo;
259 			vps->cursor.bo = NULL;
260 			return;
261 		}
262 	}
263 
264 	/* Destroy it if it's not worth caching. */
265 	vmw_du_destroy_cursor_mob(&vps->cursor.bo);
266 }
267 
268 static int vmw_du_get_cursor_mob(struct vmw_cursor_plane *vcp,
269 				 struct vmw_plane_state *vps)
270 {
271 	struct vmw_private *dev_priv = vcp->base.dev->dev_private;
272 	u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h);
273 	u32 i;
274 	u32 cursor_max_dim, mob_max_size;
275 	int ret;
276 
277 	if (!dev_priv->has_mob ||
278 	    (dev_priv->capabilities2 & SVGA_CAP2_CURSOR_MOB) == 0)
279 		return -EINVAL;
280 
281 	mob_max_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE);
282 	cursor_max_dim = vmw_read(dev_priv, SVGA_REG_CURSOR_MAX_DIMENSION);
283 
284 	if (size > mob_max_size || vps->base.crtc_w > cursor_max_dim ||
285 	    vps->base.crtc_h > cursor_max_dim)
286 		return -EINVAL;
287 
288 	if (vps->cursor.bo) {
289 		if (vps->cursor.bo->tbo.base.size >= size)
290 			return 0;
291 		vmw_du_put_cursor_mob(vcp, vps);
292 	}
293 
294 	/* Look for an unused mob in the cache. */
295 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
296 		if (vcp->cursor_mobs[i] &&
297 		    vcp->cursor_mobs[i]->tbo.base.size >= size) {
298 			vps->cursor.bo = vcp->cursor_mobs[i];
299 			vcp->cursor_mobs[i] = NULL;
300 			return 0;
301 		}
302 	}
303 	/* Create a new mob if we can't find an existing one. */
304 	ret = vmw_bo_create_and_populate(dev_priv, size,
305 					 VMW_BO_DOMAIN_MOB,
306 					 &vps->cursor.bo);
307 
308 	if (ret != 0)
309 		return ret;
310 
311 	/* Fence the mob creation so we are guarateed to have the mob */
312 	ret = ttm_bo_reserve(&vps->cursor.bo->tbo, false, false, NULL);
313 	if (ret != 0)
314 		goto teardown;
315 
316 	vmw_bo_fence_single(&vps->cursor.bo->tbo, NULL);
317 	ttm_bo_unreserve(&vps->cursor.bo->tbo);
318 	return 0;
319 
320 teardown:
321 	vmw_du_destroy_cursor_mob(&vps->cursor.bo);
322 	return ret;
323 }
324 
325 
326 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
327 				       bool show, int x, int y)
328 {
329 	const uint32_t svga_cursor_on = show ? SVGA_CURSOR_ON_SHOW
330 					     : SVGA_CURSOR_ON_HIDE;
331 	uint32_t count;
332 
333 	spin_lock(&dev_priv->cursor_lock);
334 	if (dev_priv->capabilities2 & SVGA_CAP2_EXTRA_REGS) {
335 		vmw_write(dev_priv, SVGA_REG_CURSOR4_X, x);
336 		vmw_write(dev_priv, SVGA_REG_CURSOR4_Y, y);
337 		vmw_write(dev_priv, SVGA_REG_CURSOR4_SCREEN_ID, SVGA3D_INVALID_ID);
338 		vmw_write(dev_priv, SVGA_REG_CURSOR4_ON, svga_cursor_on);
339 		vmw_write(dev_priv, SVGA_REG_CURSOR4_SUBMIT, 1);
340 	} else if (vmw_is_cursor_bypass3_enabled(dev_priv)) {
341 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, svga_cursor_on);
342 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x);
343 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y);
344 		count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT);
345 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count);
346 	} else {
347 		vmw_write(dev_priv, SVGA_REG_CURSOR_X, x);
348 		vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y);
349 		vmw_write(dev_priv, SVGA_REG_CURSOR_ON, svga_cursor_on);
350 	}
351 	spin_unlock(&dev_priv->cursor_lock);
352 }
353 
354 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
355 			  struct ttm_object_file *tfile,
356 			  struct ttm_buffer_object *bo,
357 			  SVGA3dCmdHeader *header)
358 {
359 	struct ttm_bo_kmap_obj map;
360 	unsigned long kmap_offset;
361 	unsigned long kmap_num;
362 	SVGA3dCopyBox *box;
363 	unsigned box_count;
364 	void *virtual;
365 	bool is_iomem;
366 	struct vmw_dma_cmd {
367 		SVGA3dCmdHeader header;
368 		SVGA3dCmdSurfaceDMA dma;
369 	} *cmd;
370 	int i, ret;
371 	const struct SVGA3dSurfaceDesc *desc =
372 		vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT);
373 	const u32 image_pitch = VMW_CURSOR_SNOOP_WIDTH * desc->pitchBytesPerBlock;
374 
375 	cmd = container_of(header, struct vmw_dma_cmd, header);
376 
377 	/* No snooper installed, nothing to copy */
378 	if (!srf->snooper.image)
379 		return;
380 
381 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
382 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
383 		return;
384 	}
385 
386 	if (cmd->header.size < 64) {
387 		DRM_ERROR("at least one full copy box must be given\n");
388 		return;
389 	}
390 
391 	box = (SVGA3dCopyBox *)&cmd[1];
392 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
393 			sizeof(SVGA3dCopyBox);
394 
395 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
396 	    box->x != 0    || box->y != 0    || box->z != 0    ||
397 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
398 	    box->d != 1    || box_count != 1 ||
399 	    box->w > VMW_CURSOR_SNOOP_WIDTH || box->h > VMW_CURSOR_SNOOP_HEIGHT) {
400 		/* TODO handle none page aligned offsets */
401 		/* TODO handle more dst & src != 0 */
402 		/* TODO handle more then one copy */
403 		DRM_ERROR("Can't snoop dma request for cursor!\n");
404 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
405 			  box->srcx, box->srcy, box->srcz,
406 			  box->x, box->y, box->z,
407 			  box->w, box->h, box->d, box_count,
408 			  cmd->dma.guest.ptr.offset);
409 		return;
410 	}
411 
412 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
413 	kmap_num = (VMW_CURSOR_SNOOP_HEIGHT*image_pitch) >> PAGE_SHIFT;
414 
415 	ret = ttm_bo_reserve(bo, true, false, NULL);
416 	if (unlikely(ret != 0)) {
417 		DRM_ERROR("reserve failed\n");
418 		return;
419 	}
420 
421 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
422 	if (unlikely(ret != 0))
423 		goto err_unreserve;
424 
425 	virtual = ttm_kmap_obj_virtual(&map, &is_iomem);
426 
427 	if (box->w == VMW_CURSOR_SNOOP_WIDTH && cmd->dma.guest.pitch == image_pitch) {
428 		memcpy(srf->snooper.image, virtual,
429 		       VMW_CURSOR_SNOOP_HEIGHT*image_pitch);
430 	} else {
431 		/* Image is unsigned pointer. */
432 		for (i = 0; i < box->h; i++)
433 			memcpy(srf->snooper.image + i * image_pitch,
434 			       virtual + i * cmd->dma.guest.pitch,
435 			       box->w * desc->pitchBytesPerBlock);
436 	}
437 
438 	srf->snooper.age++;
439 
440 	ttm_bo_kunmap(&map);
441 err_unreserve:
442 	ttm_bo_unreserve(bo);
443 }
444 
445 /**
446  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
447  *
448  * @dev_priv: Pointer to the device private struct.
449  *
450  * Clears all legacy hotspots.
451  */
452 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
453 {
454 	struct drm_device *dev = &dev_priv->drm;
455 	struct vmw_display_unit *du;
456 	struct drm_crtc *crtc;
457 
458 	drm_modeset_lock_all(dev);
459 	drm_for_each_crtc(crtc, dev) {
460 		du = vmw_crtc_to_du(crtc);
461 
462 		du->hotspot_x = 0;
463 		du->hotspot_y = 0;
464 	}
465 	drm_modeset_unlock_all(dev);
466 }
467 
468 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
469 {
470 	struct drm_device *dev = &dev_priv->drm;
471 	struct vmw_display_unit *du;
472 	struct drm_crtc *crtc;
473 
474 	mutex_lock(&dev->mode_config.mutex);
475 
476 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
477 		du = vmw_crtc_to_du(crtc);
478 		if (!du->cursor_surface ||
479 		    du->cursor_age == du->cursor_surface->snooper.age ||
480 		    !du->cursor_surface->snooper.image)
481 			continue;
482 
483 		du->cursor_age = du->cursor_surface->snooper.age;
484 		vmw_send_define_cursor_cmd(dev_priv,
485 					   du->cursor_surface->snooper.image,
486 					   VMW_CURSOR_SNOOP_WIDTH,
487 					   VMW_CURSOR_SNOOP_HEIGHT,
488 					   du->hotspot_x + du->core_hotspot_x,
489 					   du->hotspot_y + du->core_hotspot_y);
490 	}
491 
492 	mutex_unlock(&dev->mode_config.mutex);
493 }
494 
495 
496 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
497 {
498 	struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
499 	u32 i;
500 
501 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
502 
503 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++)
504 		vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]);
505 
506 	drm_plane_cleanup(plane);
507 }
508 
509 
510 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
511 {
512 	drm_plane_cleanup(plane);
513 
514 	/* Planes are static in our case so we don't free it */
515 }
516 
517 
518 /**
519  * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface
520  *
521  * @vps: plane state associated with the display surface
522  * @unreference: true if we also want to unreference the display.
523  */
524 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
525 			     bool unreference)
526 {
527 	if (vps->surf) {
528 		if (vps->pinned) {
529 			vmw_resource_unpin(&vps->surf->res);
530 			vps->pinned--;
531 		}
532 
533 		if (unreference) {
534 			if (vps->pinned)
535 				DRM_ERROR("Surface still pinned\n");
536 			vmw_surface_unreference(&vps->surf);
537 		}
538 	}
539 }
540 
541 
542 /**
543  * vmw_du_plane_cleanup_fb - Unpins the plane surface
544  *
545  * @plane:  display plane
546  * @old_state: Contains the FB to clean up
547  *
548  * Unpins the framebuffer surface
549  *
550  * Returns 0 on success
551  */
552 void
553 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
554 			struct drm_plane_state *old_state)
555 {
556 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
557 
558 	vmw_du_plane_unpin_surf(vps, false);
559 }
560 
561 
562 /**
563  * vmw_du_cursor_plane_map_cm - Maps the cursor mobs.
564  *
565  * @vps: plane_state
566  *
567  * Returns 0 on success
568  */
569 
570 static int
571 vmw_du_cursor_plane_map_cm(struct vmw_plane_state *vps)
572 {
573 	int ret;
574 	u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h);
575 	struct ttm_buffer_object *bo;
576 
577 	if (!vps->cursor.bo)
578 		return -EINVAL;
579 
580 	bo = &vps->cursor.bo->tbo;
581 
582 	if (bo->base.size < size)
583 		return -EINVAL;
584 
585 	if (vps->cursor.bo->map.virtual)
586 		return 0;
587 
588 	ret = ttm_bo_reserve(bo, false, false, NULL);
589 	if (unlikely(ret != 0))
590 		return -ENOMEM;
591 
592 	vmw_bo_map_and_cache(vps->cursor.bo);
593 
594 	ttm_bo_unreserve(bo);
595 
596 	if (unlikely(ret != 0))
597 		return -ENOMEM;
598 
599 	return 0;
600 }
601 
602 
603 /**
604  * vmw_du_cursor_plane_unmap_cm - Unmaps the cursor mobs.
605  *
606  * @vps: state of the cursor plane
607  *
608  * Returns 0 on success
609  */
610 
611 static int
612 vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps)
613 {
614 	int ret = 0;
615 	struct vmw_bo *vbo = vps->cursor.bo;
616 
617 	if (!vbo || !vbo->map.virtual)
618 		return 0;
619 
620 	ret = ttm_bo_reserve(&vbo->tbo, true, false, NULL);
621 	if (likely(ret == 0)) {
622 		vmw_bo_unmap(vbo);
623 		ttm_bo_unreserve(&vbo->tbo);
624 	}
625 
626 	return ret;
627 }
628 
629 
630 /**
631  * vmw_du_cursor_plane_cleanup_fb - Unpins the plane surface
632  *
633  * @plane: cursor plane
634  * @old_state: contains the state to clean up
635  *
636  * Unmaps all cursor bo mappings and unpins the cursor surface
637  *
638  * Returns 0 on success
639  */
640 void
641 vmw_du_cursor_plane_cleanup_fb(struct drm_plane *plane,
642 			       struct drm_plane_state *old_state)
643 {
644 	struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
645 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
646 	bool is_iomem;
647 
648 	if (vps->surf_mapped) {
649 		vmw_bo_unmap(vps->surf->res.guest_memory_bo);
650 		vps->surf_mapped = false;
651 	}
652 
653 	if (vps->bo && ttm_kmap_obj_virtual(&vps->bo->map, &is_iomem)) {
654 		const int ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL);
655 
656 		if (likely(ret == 0)) {
657 			ttm_bo_kunmap(&vps->bo->map);
658 			ttm_bo_unreserve(&vps->bo->tbo);
659 		}
660 	}
661 
662 	vmw_du_cursor_plane_unmap_cm(vps);
663 	vmw_du_put_cursor_mob(vcp, vps);
664 
665 	vmw_du_plane_unpin_surf(vps, false);
666 
667 	if (vps->surf) {
668 		vmw_surface_unreference(&vps->surf);
669 		vps->surf = NULL;
670 	}
671 
672 	if (vps->bo) {
673 		vmw_bo_unreference(&vps->bo);
674 		vps->bo = NULL;
675 	}
676 }
677 
678 
679 /**
680  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
681  *
682  * @plane:  display plane
683  * @new_state: info on the new plane state, including the FB
684  *
685  * Returns 0 on success
686  */
687 int
688 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
689 			       struct drm_plane_state *new_state)
690 {
691 	struct drm_framebuffer *fb = new_state->fb;
692 	struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
693 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
694 	int ret = 0;
695 
696 	if (vps->surf) {
697 		vmw_surface_unreference(&vps->surf);
698 		vps->surf = NULL;
699 	}
700 
701 	if (vps->bo) {
702 		vmw_bo_unreference(&vps->bo);
703 		vps->bo = NULL;
704 	}
705 
706 	if (fb) {
707 		if (vmw_framebuffer_to_vfb(fb)->bo) {
708 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
709 			vmw_bo_reference(vps->bo);
710 		} else {
711 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
712 			vmw_surface_reference(vps->surf);
713 		}
714 	}
715 
716 	if (!vps->surf && vps->bo) {
717 		const u32 size = new_state->crtc_w * new_state->crtc_h * sizeof(u32);
718 
719 		/*
720 		 * Not using vmw_bo_map_and_cache() helper here as we need to
721 		 * reserve the ttm_buffer_object first which
722 		 * vmw_bo_map_and_cache() omits.
723 		 */
724 		ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL);
725 
726 		if (unlikely(ret != 0))
727 			return -ENOMEM;
728 
729 		ret = ttm_bo_kmap(&vps->bo->tbo, 0, PFN_UP(size), &vps->bo->map);
730 
731 		ttm_bo_unreserve(&vps->bo->tbo);
732 
733 		if (unlikely(ret != 0))
734 			return -ENOMEM;
735 	} else if (vps->surf && !vps->bo && vps->surf->res.guest_memory_bo) {
736 
737 		WARN_ON(vps->surf->snooper.image);
738 		ret = ttm_bo_reserve(&vps->surf->res.guest_memory_bo->tbo, true, false,
739 				     NULL);
740 		if (unlikely(ret != 0))
741 			return -ENOMEM;
742 		vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo);
743 		ttm_bo_unreserve(&vps->surf->res.guest_memory_bo->tbo);
744 		vps->surf_mapped = true;
745 	}
746 
747 	if (vps->surf || vps->bo) {
748 		vmw_du_get_cursor_mob(vcp, vps);
749 		vmw_du_cursor_plane_map_cm(vps);
750 	}
751 
752 	return 0;
753 }
754 
755 
756 void
757 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
758 				  struct drm_atomic_state *state)
759 {
760 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
761 									   plane);
762 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
763 									   plane);
764 	struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc;
765 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
766 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
767 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
768 	struct vmw_plane_state *old_vps = vmw_plane_state_to_vps(old_state);
769 	s32 hotspot_x, hotspot_y;
770 
771 	hotspot_x = du->hotspot_x;
772 	hotspot_y = du->hotspot_y;
773 
774 	if (new_state->fb) {
775 		hotspot_x += new_state->fb->hot_x;
776 		hotspot_y += new_state->fb->hot_y;
777 	}
778 
779 	du->cursor_surface = vps->surf;
780 	du->cursor_bo = vps->bo;
781 
782 	if (!vps->surf && !vps->bo) {
783 		vmw_cursor_update_position(dev_priv, false, 0, 0);
784 		return;
785 	}
786 
787 	vps->cursor.hotspot_x = hotspot_x;
788 	vps->cursor.hotspot_y = hotspot_y;
789 
790 	if (vps->surf) {
791 		du->cursor_age = du->cursor_surface->snooper.age;
792 	}
793 
794 	if (!vmw_du_cursor_plane_has_changed(old_vps, vps)) {
795 		/*
796 		 * If it hasn't changed, avoid making the device do extra
797 		 * work by keeping the old cursor active.
798 		 */
799 		struct vmw_cursor_plane_state tmp = old_vps->cursor;
800 		old_vps->cursor = vps->cursor;
801 		vps->cursor = tmp;
802 	} else {
803 		void *image = vmw_du_cursor_plane_acquire_image(vps);
804 		if (image)
805 			vmw_cursor_update_image(dev_priv, vps, image,
806 						new_state->crtc_w,
807 						new_state->crtc_h,
808 						hotspot_x, hotspot_y);
809 	}
810 
811 	du->cursor_x = new_state->crtc_x + du->set_gui_x;
812 	du->cursor_y = new_state->crtc_y + du->set_gui_y;
813 
814 	vmw_cursor_update_position(dev_priv, true,
815 				   du->cursor_x + hotspot_x,
816 				   du->cursor_y + hotspot_y);
817 
818 	du->core_hotspot_x = hotspot_x - du->hotspot_x;
819 	du->core_hotspot_y = hotspot_y - du->hotspot_y;
820 }
821 
822 
823 /**
824  * vmw_du_primary_plane_atomic_check - check if the new state is okay
825  *
826  * @plane: display plane
827  * @state: info on the new plane state, including the FB
828  *
829  * Check if the new state is settable given the current state.  Other
830  * than what the atomic helper checks, we care about crtc fitting
831  * the FB and maintaining one active framebuffer.
832  *
833  * Returns 0 on success
834  */
835 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
836 				      struct drm_atomic_state *state)
837 {
838 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
839 									   plane);
840 	struct drm_crtc_state *crtc_state = NULL;
841 	struct drm_framebuffer *new_fb = new_state->fb;
842 	int ret;
843 
844 	if (new_state->crtc)
845 		crtc_state = drm_atomic_get_new_crtc_state(state,
846 							   new_state->crtc);
847 
848 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
849 						  DRM_PLANE_NO_SCALING,
850 						  DRM_PLANE_NO_SCALING,
851 						  false, true);
852 
853 	if (!ret && new_fb) {
854 		struct drm_crtc *crtc = new_state->crtc;
855 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
856 
857 		vmw_connector_state_to_vcs(du->connector.state);
858 	}
859 
860 
861 	return ret;
862 }
863 
864 
865 /**
866  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
867  *
868  * @plane: cursor plane
869  * @state: info on the new plane state
870  *
871  * This is a chance to fail if the new cursor state does not fit
872  * our requirements.
873  *
874  * Returns 0 on success
875  */
876 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
877 				     struct drm_atomic_state *state)
878 {
879 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
880 									   plane);
881 	int ret = 0;
882 	struct drm_crtc_state *crtc_state = NULL;
883 	struct vmw_surface *surface = NULL;
884 	struct drm_framebuffer *fb = new_state->fb;
885 
886 	if (new_state->crtc)
887 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
888 							   new_state->crtc);
889 
890 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
891 						  DRM_PLANE_NO_SCALING,
892 						  DRM_PLANE_NO_SCALING,
893 						  true, true);
894 	if (ret)
895 		return ret;
896 
897 	/* Turning off */
898 	if (!fb)
899 		return 0;
900 
901 	/* A lot of the code assumes this */
902 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
903 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
904 			  new_state->crtc_w, new_state->crtc_h);
905 		return -EINVAL;
906 	}
907 
908 	if (!vmw_framebuffer_to_vfb(fb)->bo) {
909 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
910 
911 		WARN_ON(!surface);
912 
913 		if (!surface ||
914 		    (!surface->snooper.image && !surface->res.guest_memory_bo)) {
915 			DRM_ERROR("surface not suitable for cursor\n");
916 			return -EINVAL;
917 		}
918 	}
919 
920 	return 0;
921 }
922 
923 
924 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
925 			     struct drm_atomic_state *state)
926 {
927 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
928 									 crtc);
929 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
930 	int connector_mask = drm_connector_mask(&du->connector);
931 	bool has_primary = new_state->plane_mask &
932 			   drm_plane_mask(crtc->primary);
933 
934 	/* We always want to have an active plane with an active CRTC */
935 	if (has_primary != new_state->enable)
936 		return -EINVAL;
937 
938 
939 	if (new_state->connector_mask != connector_mask &&
940 	    new_state->connector_mask != 0) {
941 		DRM_ERROR("Invalid connectors configuration\n");
942 		return -EINVAL;
943 	}
944 
945 	/*
946 	 * Our virtual device does not have a dot clock, so use the logical
947 	 * clock value as the dot clock.
948 	 */
949 	if (new_state->mode.crtc_clock == 0)
950 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
951 
952 	return 0;
953 }
954 
955 
956 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
957 			      struct drm_atomic_state *state)
958 {
959 }
960 
961 
962 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
963 			      struct drm_atomic_state *state)
964 {
965 }
966 
967 
968 /**
969  * vmw_du_crtc_duplicate_state - duplicate crtc state
970  * @crtc: DRM crtc
971  *
972  * Allocates and returns a copy of the crtc state (both common and
973  * vmw-specific) for the specified crtc.
974  *
975  * Returns: The newly allocated crtc state, or NULL on failure.
976  */
977 struct drm_crtc_state *
978 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
979 {
980 	struct drm_crtc_state *state;
981 	struct vmw_crtc_state *vcs;
982 
983 	if (WARN_ON(!crtc->state))
984 		return NULL;
985 
986 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
987 
988 	if (!vcs)
989 		return NULL;
990 
991 	state = &vcs->base;
992 
993 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
994 
995 	return state;
996 }
997 
998 
999 /**
1000  * vmw_du_crtc_reset - creates a blank vmw crtc state
1001  * @crtc: DRM crtc
1002  *
1003  * Resets the atomic state for @crtc by freeing the state pointer (which
1004  * might be NULL, e.g. at driver load time) and allocating a new empty state
1005  * object.
1006  */
1007 void vmw_du_crtc_reset(struct drm_crtc *crtc)
1008 {
1009 	struct vmw_crtc_state *vcs;
1010 
1011 
1012 	if (crtc->state) {
1013 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1014 
1015 		kfree(vmw_crtc_state_to_vcs(crtc->state));
1016 	}
1017 
1018 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
1019 
1020 	if (!vcs) {
1021 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
1022 		return;
1023 	}
1024 
1025 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
1026 }
1027 
1028 
1029 /**
1030  * vmw_du_crtc_destroy_state - destroy crtc state
1031  * @crtc: DRM crtc
1032  * @state: state object to destroy
1033  *
1034  * Destroys the crtc state (both common and vmw-specific) for the
1035  * specified plane.
1036  */
1037 void
1038 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
1039 			  struct drm_crtc_state *state)
1040 {
1041 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1042 }
1043 
1044 
1045 /**
1046  * vmw_du_plane_duplicate_state - duplicate plane state
1047  * @plane: drm plane
1048  *
1049  * Allocates and returns a copy of the plane state (both common and
1050  * vmw-specific) for the specified plane.
1051  *
1052  * Returns: The newly allocated plane state, or NULL on failure.
1053  */
1054 struct drm_plane_state *
1055 vmw_du_plane_duplicate_state(struct drm_plane *plane)
1056 {
1057 	struct drm_plane_state *state;
1058 	struct vmw_plane_state *vps;
1059 
1060 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
1061 
1062 	if (!vps)
1063 		return NULL;
1064 
1065 	vps->pinned = 0;
1066 	vps->cpp = 0;
1067 
1068 	memset(&vps->cursor, 0, sizeof(vps->cursor));
1069 
1070 	/* Each ref counted resource needs to be acquired again */
1071 	if (vps->surf)
1072 		(void) vmw_surface_reference(vps->surf);
1073 
1074 	if (vps->bo)
1075 		(void) vmw_bo_reference(vps->bo);
1076 
1077 	state = &vps->base;
1078 
1079 	__drm_atomic_helper_plane_duplicate_state(plane, state);
1080 
1081 	return state;
1082 }
1083 
1084 
1085 /**
1086  * vmw_du_plane_reset - creates a blank vmw plane state
1087  * @plane: drm plane
1088  *
1089  * Resets the atomic state for @plane by freeing the state pointer (which might
1090  * be NULL, e.g. at driver load time) and allocating a new empty state object.
1091  */
1092 void vmw_du_plane_reset(struct drm_plane *plane)
1093 {
1094 	struct vmw_plane_state *vps;
1095 
1096 	if (plane->state)
1097 		vmw_du_plane_destroy_state(plane, plane->state);
1098 
1099 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
1100 
1101 	if (!vps) {
1102 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
1103 		return;
1104 	}
1105 
1106 	__drm_atomic_helper_plane_reset(plane, &vps->base);
1107 }
1108 
1109 
1110 /**
1111  * vmw_du_plane_destroy_state - destroy plane state
1112  * @plane: DRM plane
1113  * @state: state object to destroy
1114  *
1115  * Destroys the plane state (both common and vmw-specific) for the
1116  * specified plane.
1117  */
1118 void
1119 vmw_du_plane_destroy_state(struct drm_plane *plane,
1120 			   struct drm_plane_state *state)
1121 {
1122 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
1123 
1124 	/* Should have been freed by cleanup_fb */
1125 	if (vps->surf)
1126 		vmw_surface_unreference(&vps->surf);
1127 
1128 	if (vps->bo)
1129 		vmw_bo_unreference(&vps->bo);
1130 
1131 	drm_atomic_helper_plane_destroy_state(plane, state);
1132 }
1133 
1134 
1135 /**
1136  * vmw_du_connector_duplicate_state - duplicate connector state
1137  * @connector: DRM connector
1138  *
1139  * Allocates and returns a copy of the connector state (both common and
1140  * vmw-specific) for the specified connector.
1141  *
1142  * Returns: The newly allocated connector state, or NULL on failure.
1143  */
1144 struct drm_connector_state *
1145 vmw_du_connector_duplicate_state(struct drm_connector *connector)
1146 {
1147 	struct drm_connector_state *state;
1148 	struct vmw_connector_state *vcs;
1149 
1150 	if (WARN_ON(!connector->state))
1151 		return NULL;
1152 
1153 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
1154 
1155 	if (!vcs)
1156 		return NULL;
1157 
1158 	state = &vcs->base;
1159 
1160 	__drm_atomic_helper_connector_duplicate_state(connector, state);
1161 
1162 	return state;
1163 }
1164 
1165 
1166 /**
1167  * vmw_du_connector_reset - creates a blank vmw connector state
1168  * @connector: DRM connector
1169  *
1170  * Resets the atomic state for @connector by freeing the state pointer (which
1171  * might be NULL, e.g. at driver load time) and allocating a new empty state
1172  * object.
1173  */
1174 void vmw_du_connector_reset(struct drm_connector *connector)
1175 {
1176 	struct vmw_connector_state *vcs;
1177 
1178 
1179 	if (connector->state) {
1180 		__drm_atomic_helper_connector_destroy_state(connector->state);
1181 
1182 		kfree(vmw_connector_state_to_vcs(connector->state));
1183 	}
1184 
1185 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
1186 
1187 	if (!vcs) {
1188 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
1189 		return;
1190 	}
1191 
1192 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
1193 }
1194 
1195 
1196 /**
1197  * vmw_du_connector_destroy_state - destroy connector state
1198  * @connector: DRM connector
1199  * @state: state object to destroy
1200  *
1201  * Destroys the connector state (both common and vmw-specific) for the
1202  * specified plane.
1203  */
1204 void
1205 vmw_du_connector_destroy_state(struct drm_connector *connector,
1206 			  struct drm_connector_state *state)
1207 {
1208 	drm_atomic_helper_connector_destroy_state(connector, state);
1209 }
1210 /*
1211  * Generic framebuffer code
1212  */
1213 
1214 /*
1215  * Surface framebuffer code
1216  */
1217 
1218 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
1219 {
1220 	struct vmw_framebuffer_surface *vfbs =
1221 		vmw_framebuffer_to_vfbs(framebuffer);
1222 
1223 	drm_framebuffer_cleanup(framebuffer);
1224 	vmw_surface_unreference(&vfbs->surface);
1225 
1226 	kfree(vfbs);
1227 }
1228 
1229 /**
1230  * vmw_kms_readback - Perform a readback from the screen system to
1231  * a buffer-object backed framebuffer.
1232  *
1233  * @dev_priv: Pointer to the device private structure.
1234  * @file_priv: Pointer to a struct drm_file identifying the caller.
1235  * Must be set to NULL if @user_fence_rep is NULL.
1236  * @vfb: Pointer to the buffer-object backed framebuffer.
1237  * @user_fence_rep: User-space provided structure for fence information.
1238  * Must be set to non-NULL if @file_priv is non-NULL.
1239  * @vclips: Array of clip rects.
1240  * @num_clips: Number of clip rects in @vclips.
1241  *
1242  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
1243  * interrupted.
1244  */
1245 int vmw_kms_readback(struct vmw_private *dev_priv,
1246 		     struct drm_file *file_priv,
1247 		     struct vmw_framebuffer *vfb,
1248 		     struct drm_vmw_fence_rep __user *user_fence_rep,
1249 		     struct drm_vmw_rect *vclips,
1250 		     uint32_t num_clips)
1251 {
1252 	switch (dev_priv->active_display_unit) {
1253 	case vmw_du_screen_object:
1254 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
1255 					    user_fence_rep, vclips, num_clips,
1256 					    NULL);
1257 	case vmw_du_screen_target:
1258 		return vmw_kms_stdu_readback(dev_priv, file_priv, vfb,
1259 					     user_fence_rep, NULL, vclips, num_clips,
1260 					     1, NULL);
1261 	default:
1262 		WARN_ONCE(true,
1263 			  "Readback called with invalid display system.\n");
1264 }
1265 
1266 	return -ENOSYS;
1267 }
1268 
1269 
1270 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
1271 	.destroy = vmw_framebuffer_surface_destroy,
1272 	.dirty = drm_atomic_helper_dirtyfb,
1273 };
1274 
1275 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
1276 					   struct vmw_surface *surface,
1277 					   struct vmw_framebuffer **out,
1278 					   const struct drm_mode_fb_cmd2
1279 					   *mode_cmd,
1280 					   bool is_bo_proxy)
1281 
1282 {
1283 	struct drm_device *dev = &dev_priv->drm;
1284 	struct vmw_framebuffer_surface *vfbs;
1285 	enum SVGA3dSurfaceFormat format;
1286 	int ret;
1287 
1288 	/* 3D is only supported on HWv8 and newer hosts */
1289 	if (dev_priv->active_display_unit == vmw_du_legacy)
1290 		return -ENOSYS;
1291 
1292 	/*
1293 	 * Sanity checks.
1294 	 */
1295 
1296 	if (!drm_any_plane_has_format(&dev_priv->drm,
1297 				      mode_cmd->pixel_format,
1298 				      mode_cmd->modifier[0])) {
1299 		drm_dbg(&dev_priv->drm,
1300 			"unsupported pixel format %p4cc / modifier 0x%llx\n",
1301 			&mode_cmd->pixel_format, mode_cmd->modifier[0]);
1302 		return -EINVAL;
1303 	}
1304 
1305 	/* Surface must be marked as a scanout. */
1306 	if (unlikely(!surface->metadata.scanout))
1307 		return -EINVAL;
1308 
1309 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
1310 		     surface->metadata.num_sizes != 1 ||
1311 		     surface->metadata.base_size.width < mode_cmd->width ||
1312 		     surface->metadata.base_size.height < mode_cmd->height ||
1313 		     surface->metadata.base_size.depth != 1)) {
1314 		DRM_ERROR("Incompatible surface dimensions "
1315 			  "for requested mode.\n");
1316 		return -EINVAL;
1317 	}
1318 
1319 	switch (mode_cmd->pixel_format) {
1320 	case DRM_FORMAT_ARGB8888:
1321 		format = SVGA3D_A8R8G8B8;
1322 		break;
1323 	case DRM_FORMAT_XRGB8888:
1324 		format = SVGA3D_X8R8G8B8;
1325 		break;
1326 	case DRM_FORMAT_RGB565:
1327 		format = SVGA3D_R5G6B5;
1328 		break;
1329 	case DRM_FORMAT_XRGB1555:
1330 		format = SVGA3D_A1R5G5B5;
1331 		break;
1332 	default:
1333 		DRM_ERROR("Invalid pixel format: %p4cc\n",
1334 			  &mode_cmd->pixel_format);
1335 		return -EINVAL;
1336 	}
1337 
1338 	/*
1339 	 * For DX, surface format validation is done when surface->scanout
1340 	 * is set.
1341 	 */
1342 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
1343 		DRM_ERROR("Invalid surface format for requested mode.\n");
1344 		return -EINVAL;
1345 	}
1346 
1347 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1348 	if (!vfbs) {
1349 		ret = -ENOMEM;
1350 		goto out_err1;
1351 	}
1352 
1353 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1354 	vfbs->surface = vmw_surface_reference(surface);
1355 	vfbs->base.user_handle = mode_cmd->handles[0];
1356 	vfbs->is_bo_proxy = is_bo_proxy;
1357 
1358 	*out = &vfbs->base;
1359 
1360 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1361 				   &vmw_framebuffer_surface_funcs);
1362 	if (ret)
1363 		goto out_err2;
1364 
1365 	return 0;
1366 
1367 out_err2:
1368 	vmw_surface_unreference(&surface);
1369 	kfree(vfbs);
1370 out_err1:
1371 	return ret;
1372 }
1373 
1374 /*
1375  * Buffer-object framebuffer code
1376  */
1377 
1378 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb,
1379 					    struct drm_file *file_priv,
1380 					    unsigned int *handle)
1381 {
1382 	struct vmw_framebuffer_bo *vfbd =
1383 			vmw_framebuffer_to_vfbd(fb);
1384 
1385 	return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle);
1386 }
1387 
1388 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1389 {
1390 	struct vmw_framebuffer_bo *vfbd =
1391 		vmw_framebuffer_to_vfbd(framebuffer);
1392 
1393 	drm_framebuffer_cleanup(framebuffer);
1394 	vmw_bo_unreference(&vfbd->buffer);
1395 
1396 	kfree(vfbd);
1397 }
1398 
1399 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1400 	.create_handle = vmw_framebuffer_bo_create_handle,
1401 	.destroy = vmw_framebuffer_bo_destroy,
1402 	.dirty = drm_atomic_helper_dirtyfb,
1403 };
1404 
1405 /**
1406  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1407  *
1408  * @dev: DRM device
1409  * @mode_cmd: parameters for the new surface
1410  * @bo_mob: MOB backing the buffer object
1411  * @srf_out: newly created surface
1412  *
1413  * When the content FB is a buffer object, we create a surface as a proxy to the
1414  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1415  * This is a more efficient approach
1416  *
1417  * RETURNS:
1418  * 0 on success, error code otherwise
1419  */
1420 static int vmw_create_bo_proxy(struct drm_device *dev,
1421 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1422 			       struct vmw_bo *bo_mob,
1423 			       struct vmw_surface **srf_out)
1424 {
1425 	struct vmw_surface_metadata metadata = {0};
1426 	uint32_t format;
1427 	struct vmw_resource *res;
1428 	unsigned int bytes_pp;
1429 	int ret;
1430 
1431 	switch (mode_cmd->pixel_format) {
1432 	case DRM_FORMAT_ARGB8888:
1433 	case DRM_FORMAT_XRGB8888:
1434 		format = SVGA3D_X8R8G8B8;
1435 		bytes_pp = 4;
1436 		break;
1437 
1438 	case DRM_FORMAT_RGB565:
1439 	case DRM_FORMAT_XRGB1555:
1440 		format = SVGA3D_R5G6B5;
1441 		bytes_pp = 2;
1442 		break;
1443 
1444 	case 8:
1445 		format = SVGA3D_P8;
1446 		bytes_pp = 1;
1447 		break;
1448 
1449 	default:
1450 		DRM_ERROR("Invalid framebuffer format %p4cc\n",
1451 			  &mode_cmd->pixel_format);
1452 		return -EINVAL;
1453 	}
1454 
1455 	metadata.format = format;
1456 	metadata.mip_levels[0] = 1;
1457 	metadata.num_sizes = 1;
1458 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1459 	metadata.base_size.height =  mode_cmd->height;
1460 	metadata.base_size.depth = 1;
1461 	metadata.scanout = true;
1462 
1463 	ret = vmw_gb_surface_define(vmw_priv(dev), &metadata, srf_out);
1464 	if (ret) {
1465 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1466 		return ret;
1467 	}
1468 
1469 	res = &(*srf_out)->res;
1470 
1471 	/* Reserve and switch the backing mob. */
1472 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1473 	(void) vmw_resource_reserve(res, false, true);
1474 	vmw_bo_unreference(&res->guest_memory_bo);
1475 	res->guest_memory_bo = vmw_bo_reference(bo_mob);
1476 	res->guest_memory_offset = 0;
1477 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1478 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1479 
1480 	return 0;
1481 }
1482 
1483 
1484 
1485 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1486 				      struct vmw_bo *bo,
1487 				      struct vmw_framebuffer **out,
1488 				      const struct drm_mode_fb_cmd2
1489 				      *mode_cmd)
1490 
1491 {
1492 	struct drm_device *dev = &dev_priv->drm;
1493 	struct vmw_framebuffer_bo *vfbd;
1494 	unsigned int requested_size;
1495 	int ret;
1496 
1497 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1498 	if (unlikely(requested_size > bo->tbo.base.size)) {
1499 		DRM_ERROR("Screen buffer object size is too small "
1500 			  "for requested mode.\n");
1501 		return -EINVAL;
1502 	}
1503 
1504 	if (!drm_any_plane_has_format(&dev_priv->drm,
1505 				      mode_cmd->pixel_format,
1506 				      mode_cmd->modifier[0])) {
1507 		drm_dbg(&dev_priv->drm,
1508 			"unsupported pixel format %p4cc / modifier 0x%llx\n",
1509 			&mode_cmd->pixel_format, mode_cmd->modifier[0]);
1510 		return -EINVAL;
1511 	}
1512 
1513 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1514 	if (!vfbd) {
1515 		ret = -ENOMEM;
1516 		goto out_err1;
1517 	}
1518 
1519 	vfbd->base.base.obj[0] = &bo->tbo.base;
1520 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1521 	vfbd->base.bo = true;
1522 	vfbd->buffer = vmw_bo_reference(bo);
1523 	vfbd->base.user_handle = mode_cmd->handles[0];
1524 	*out = &vfbd->base;
1525 
1526 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1527 				   &vmw_framebuffer_bo_funcs);
1528 	if (ret)
1529 		goto out_err2;
1530 
1531 	return 0;
1532 
1533 out_err2:
1534 	vmw_bo_unreference(&bo);
1535 	kfree(vfbd);
1536 out_err1:
1537 	return ret;
1538 }
1539 
1540 
1541 /**
1542  * vmw_kms_srf_ok - check if a surface can be created
1543  *
1544  * @dev_priv: Pointer to device private struct.
1545  * @width: requested width
1546  * @height: requested height
1547  *
1548  * Surfaces need to be less than texture size
1549  */
1550 static bool
1551 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1552 {
1553 	if (width  > dev_priv->texture_max_width ||
1554 	    height > dev_priv->texture_max_height)
1555 		return false;
1556 
1557 	return true;
1558 }
1559 
1560 /**
1561  * vmw_kms_new_framebuffer - Create a new framebuffer.
1562  *
1563  * @dev_priv: Pointer to device private struct.
1564  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1565  * Either @bo or @surface must be NULL.
1566  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1567  * Either @bo or @surface must be NULL.
1568  * @only_2d: No presents will occur to this buffer object based framebuffer.
1569  * This helps the code to do some important optimizations.
1570  * @mode_cmd: Frame-buffer metadata.
1571  */
1572 struct vmw_framebuffer *
1573 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1574 			struct vmw_bo *bo,
1575 			struct vmw_surface *surface,
1576 			bool only_2d,
1577 			const struct drm_mode_fb_cmd2 *mode_cmd)
1578 {
1579 	struct vmw_framebuffer *vfb = NULL;
1580 	bool is_bo_proxy = false;
1581 	int ret;
1582 
1583 	/*
1584 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1585 	 * therefore, wrap the buffer object in a surface so we can use the
1586 	 * SurfaceCopy command.
1587 	 */
1588 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1589 	    bo && only_2d &&
1590 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1591 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1592 		ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd,
1593 					  bo, &surface);
1594 		if (ret)
1595 			return ERR_PTR(ret);
1596 
1597 		is_bo_proxy = true;
1598 	}
1599 
1600 	/* Create the new framebuffer depending one what we have */
1601 	if (surface) {
1602 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1603 						      mode_cmd,
1604 						      is_bo_proxy);
1605 		/*
1606 		 * vmw_create_bo_proxy() adds a reference that is no longer
1607 		 * needed
1608 		 */
1609 		if (is_bo_proxy)
1610 			vmw_surface_unreference(&surface);
1611 	} else if (bo) {
1612 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1613 						 mode_cmd);
1614 	} else {
1615 		BUG();
1616 	}
1617 
1618 	if (ret)
1619 		return ERR_PTR(ret);
1620 
1621 	return vfb;
1622 }
1623 
1624 /*
1625  * Generic Kernel modesetting functions
1626  */
1627 
1628 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1629 						 struct drm_file *file_priv,
1630 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1631 {
1632 	struct vmw_private *dev_priv = vmw_priv(dev);
1633 	struct vmw_framebuffer *vfb = NULL;
1634 	struct vmw_surface *surface = NULL;
1635 	struct vmw_bo *bo = NULL;
1636 	int ret;
1637 
1638 	/* returns either a bo or surface */
1639 	ret = vmw_user_lookup_handle(dev_priv, file_priv,
1640 				     mode_cmd->handles[0],
1641 				     &surface, &bo);
1642 	if (ret) {
1643 		DRM_ERROR("Invalid buffer object handle %u (0x%x).\n",
1644 			  mode_cmd->handles[0], mode_cmd->handles[0]);
1645 		goto err_out;
1646 	}
1647 
1648 
1649 	if (!bo &&
1650 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1651 		DRM_ERROR("Surface size cannot exceed %dx%d\n",
1652 			dev_priv->texture_max_width,
1653 			dev_priv->texture_max_height);
1654 		goto err_out;
1655 	}
1656 
1657 
1658 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1659 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1660 				      mode_cmd);
1661 	if (IS_ERR(vfb)) {
1662 		ret = PTR_ERR(vfb);
1663 		goto err_out;
1664 	}
1665 
1666 err_out:
1667 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1668 	if (bo) {
1669 		vmw_bo_unreference(&bo);
1670 		drm_gem_object_put(&bo->tbo.base);
1671 	}
1672 	if (surface)
1673 		vmw_surface_unreference(&surface);
1674 
1675 	if (ret) {
1676 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1677 		return ERR_PTR(ret);
1678 	}
1679 
1680 	return &vfb->base;
1681 }
1682 
1683 /**
1684  * vmw_kms_check_display_memory - Validates display memory required for a
1685  * topology
1686  * @dev: DRM device
1687  * @num_rects: number of drm_rect in rects
1688  * @rects: array of drm_rect representing the topology to validate indexed by
1689  * crtc index.
1690  *
1691  * Returns:
1692  * 0 on success otherwise negative error code
1693  */
1694 static int vmw_kms_check_display_memory(struct drm_device *dev,
1695 					uint32_t num_rects,
1696 					struct drm_rect *rects)
1697 {
1698 	struct vmw_private *dev_priv = vmw_priv(dev);
1699 	struct drm_rect bounding_box = {0};
1700 	u64 total_pixels = 0, pixel_mem, bb_mem;
1701 	int i;
1702 
1703 	for (i = 0; i < num_rects; i++) {
1704 		/*
1705 		 * For STDU only individual screen (screen target) is limited by
1706 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1707 		 */
1708 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1709 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1710 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1711 			VMW_DEBUG_KMS("Screen size not supported.\n");
1712 			return -EINVAL;
1713 		}
1714 
1715 		/* Bounding box upper left is at (0,0). */
1716 		if (rects[i].x2 > bounding_box.x2)
1717 			bounding_box.x2 = rects[i].x2;
1718 
1719 		if (rects[i].y2 > bounding_box.y2)
1720 			bounding_box.y2 = rects[i].y2;
1721 
1722 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1723 			(u64) drm_rect_height(&rects[i]);
1724 	}
1725 
1726 	/* Virtual svga device primary limits are always in 32-bpp. */
1727 	pixel_mem = total_pixels * 4;
1728 
1729 	/*
1730 	 * For HV10 and below prim_bb_mem is vram size. When
1731 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1732 	 * limit on primary bounding box
1733 	 */
1734 	if (pixel_mem > dev_priv->max_primary_mem) {
1735 		VMW_DEBUG_KMS("Combined output size too large.\n");
1736 		return -EINVAL;
1737 	}
1738 
1739 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1740 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1741 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1742 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1743 
1744 		if (bb_mem > dev_priv->max_primary_mem) {
1745 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1746 			return -EINVAL;
1747 		}
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 /**
1754  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1755  * crtc mutex
1756  * @state: The atomic state pointer containing the new atomic state
1757  * @crtc: The crtc
1758  *
1759  * This function returns the new crtc state if it's part of the state update.
1760  * Otherwise returns the current crtc state. It also makes sure that the
1761  * crtc mutex is locked.
1762  *
1763  * Returns: A valid crtc state pointer or NULL. It may also return a
1764  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1765  */
1766 static struct drm_crtc_state *
1767 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1768 {
1769 	struct drm_crtc_state *crtc_state;
1770 
1771 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1772 	if (crtc_state) {
1773 		lockdep_assert_held(&crtc->mutex.mutex.base);
1774 	} else {
1775 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1776 
1777 		if (ret != 0 && ret != -EALREADY)
1778 			return ERR_PTR(ret);
1779 
1780 		crtc_state = crtc->state;
1781 	}
1782 
1783 	return crtc_state;
1784 }
1785 
1786 /**
1787  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1788  * from the same fb after the new state is committed.
1789  * @dev: The drm_device.
1790  * @state: The new state to be checked.
1791  *
1792  * Returns:
1793  *   Zero on success,
1794  *   -EINVAL on invalid state,
1795  *   -EDEADLK if modeset locking needs to be rerun.
1796  */
1797 static int vmw_kms_check_implicit(struct drm_device *dev,
1798 				  struct drm_atomic_state *state)
1799 {
1800 	struct drm_framebuffer *implicit_fb = NULL;
1801 	struct drm_crtc *crtc;
1802 	struct drm_crtc_state *crtc_state;
1803 	struct drm_plane_state *plane_state;
1804 
1805 	drm_for_each_crtc(crtc, dev) {
1806 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1807 
1808 		if (!du->is_implicit)
1809 			continue;
1810 
1811 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1812 		if (IS_ERR(crtc_state))
1813 			return PTR_ERR(crtc_state);
1814 
1815 		if (!crtc_state || !crtc_state->enable)
1816 			continue;
1817 
1818 		/*
1819 		 * Can't move primary planes across crtcs, so this is OK.
1820 		 * It also means we don't need to take the plane mutex.
1821 		 */
1822 		plane_state = du->primary.state;
1823 		if (plane_state->crtc != crtc)
1824 			continue;
1825 
1826 		if (!implicit_fb)
1827 			implicit_fb = plane_state->fb;
1828 		else if (implicit_fb != plane_state->fb)
1829 			return -EINVAL;
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 /**
1836  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1837  * @dev: DRM device
1838  * @state: the driver state object
1839  *
1840  * Returns:
1841  * 0 on success otherwise negative error code
1842  */
1843 static int vmw_kms_check_topology(struct drm_device *dev,
1844 				  struct drm_atomic_state *state)
1845 {
1846 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1847 	struct drm_rect *rects;
1848 	struct drm_crtc *crtc;
1849 	uint32_t i;
1850 	int ret = 0;
1851 
1852 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1853 			GFP_KERNEL);
1854 	if (!rects)
1855 		return -ENOMEM;
1856 
1857 	drm_for_each_crtc(crtc, dev) {
1858 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1859 		struct drm_crtc_state *crtc_state;
1860 
1861 		i = drm_crtc_index(crtc);
1862 
1863 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1864 		if (IS_ERR(crtc_state)) {
1865 			ret = PTR_ERR(crtc_state);
1866 			goto clean;
1867 		}
1868 
1869 		if (!crtc_state)
1870 			continue;
1871 
1872 		if (crtc_state->enable) {
1873 			rects[i].x1 = du->gui_x;
1874 			rects[i].y1 = du->gui_y;
1875 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1876 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1877 		} else {
1878 			rects[i].x1 = 0;
1879 			rects[i].y1 = 0;
1880 			rects[i].x2 = 0;
1881 			rects[i].y2 = 0;
1882 		}
1883 	}
1884 
1885 	/* Determine change to topology due to new atomic state */
1886 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1887 				      new_crtc_state, i) {
1888 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1889 		struct drm_connector *connector;
1890 		struct drm_connector_state *conn_state;
1891 		struct vmw_connector_state *vmw_conn_state;
1892 
1893 		if (!du->pref_active && new_crtc_state->enable) {
1894 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1895 			ret = -EINVAL;
1896 			goto clean;
1897 		}
1898 
1899 		/*
1900 		 * For vmwgfx each crtc has only one connector attached and it
1901 		 * is not changed so don't really need to check the
1902 		 * crtc->connector_mask and iterate over it.
1903 		 */
1904 		connector = &du->connector;
1905 		conn_state = drm_atomic_get_connector_state(state, connector);
1906 		if (IS_ERR(conn_state)) {
1907 			ret = PTR_ERR(conn_state);
1908 			goto clean;
1909 		}
1910 
1911 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1912 		vmw_conn_state->gui_x = du->gui_x;
1913 		vmw_conn_state->gui_y = du->gui_y;
1914 	}
1915 
1916 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1917 					   rects);
1918 
1919 clean:
1920 	kfree(rects);
1921 	return ret;
1922 }
1923 
1924 /**
1925  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1926  *
1927  * @dev: DRM device
1928  * @state: the driver state object
1929  *
1930  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1931  * us to assign a value to mode->crtc_clock so that
1932  * drm_calc_timestamping_constants() won't throw an error message
1933  *
1934  * Returns:
1935  * Zero for success or -errno
1936  */
1937 static int
1938 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1939 			     struct drm_atomic_state *state)
1940 {
1941 	struct drm_crtc *crtc;
1942 	struct drm_crtc_state *crtc_state;
1943 	bool need_modeset = false;
1944 	int i, ret;
1945 
1946 	ret = drm_atomic_helper_check(dev, state);
1947 	if (ret)
1948 		return ret;
1949 
1950 	ret = vmw_kms_check_implicit(dev, state);
1951 	if (ret) {
1952 		VMW_DEBUG_KMS("Invalid implicit state\n");
1953 		return ret;
1954 	}
1955 
1956 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1957 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1958 			need_modeset = true;
1959 	}
1960 
1961 	if (need_modeset)
1962 		return vmw_kms_check_topology(dev, state);
1963 
1964 	return ret;
1965 }
1966 
1967 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1968 	.fb_create = vmw_kms_fb_create,
1969 	.atomic_check = vmw_kms_atomic_check_modeset,
1970 	.atomic_commit = drm_atomic_helper_commit,
1971 };
1972 
1973 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1974 				   struct drm_file *file_priv,
1975 				   struct vmw_framebuffer *vfb,
1976 				   struct vmw_surface *surface,
1977 				   uint32_t sid,
1978 				   int32_t destX, int32_t destY,
1979 				   struct drm_vmw_rect *clips,
1980 				   uint32_t num_clips)
1981 {
1982 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1983 					    &surface->res, destX, destY,
1984 					    num_clips, 1, NULL, NULL);
1985 }
1986 
1987 
1988 int vmw_kms_present(struct vmw_private *dev_priv,
1989 		    struct drm_file *file_priv,
1990 		    struct vmw_framebuffer *vfb,
1991 		    struct vmw_surface *surface,
1992 		    uint32_t sid,
1993 		    int32_t destX, int32_t destY,
1994 		    struct drm_vmw_rect *clips,
1995 		    uint32_t num_clips)
1996 {
1997 	int ret;
1998 
1999 	switch (dev_priv->active_display_unit) {
2000 	case vmw_du_screen_target:
2001 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
2002 						 &surface->res, destX, destY,
2003 						 num_clips, 1, NULL, NULL);
2004 		break;
2005 	case vmw_du_screen_object:
2006 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
2007 					      sid, destX, destY, clips,
2008 					      num_clips);
2009 		break;
2010 	default:
2011 		WARN_ONCE(true,
2012 			  "Present called with invalid display system.\n");
2013 		ret = -ENOSYS;
2014 		break;
2015 	}
2016 	if (ret)
2017 		return ret;
2018 
2019 	vmw_cmd_flush(dev_priv, false);
2020 
2021 	return 0;
2022 }
2023 
2024 static void
2025 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
2026 {
2027 	if (dev_priv->hotplug_mode_update_property)
2028 		return;
2029 
2030 	dev_priv->hotplug_mode_update_property =
2031 		drm_property_create_range(&dev_priv->drm,
2032 					  DRM_MODE_PROP_IMMUTABLE,
2033 					  "hotplug_mode_update", 0, 1);
2034 }
2035 
2036 int vmw_kms_init(struct vmw_private *dev_priv)
2037 {
2038 	struct drm_device *dev = &dev_priv->drm;
2039 	int ret;
2040 	static const char *display_unit_names[] = {
2041 		"Invalid",
2042 		"Legacy",
2043 		"Screen Object",
2044 		"Screen Target",
2045 		"Invalid (max)"
2046 	};
2047 
2048 	drm_mode_config_init(dev);
2049 	dev->mode_config.funcs = &vmw_kms_funcs;
2050 	dev->mode_config.min_width = 1;
2051 	dev->mode_config.min_height = 1;
2052 	dev->mode_config.max_width = dev_priv->texture_max_width;
2053 	dev->mode_config.max_height = dev_priv->texture_max_height;
2054 	dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32;
2055 
2056 	drm_mode_create_suggested_offset_properties(dev);
2057 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
2058 
2059 	ret = vmw_kms_stdu_init_display(dev_priv);
2060 	if (ret) {
2061 		ret = vmw_kms_sou_init_display(dev_priv);
2062 		if (ret) /* Fallback */
2063 			ret = vmw_kms_ldu_init_display(dev_priv);
2064 	}
2065 	BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1));
2066 	drm_info(&dev_priv->drm, "%s display unit initialized\n",
2067 		 display_unit_names[dev_priv->active_display_unit]);
2068 
2069 	return ret;
2070 }
2071 
2072 int vmw_kms_close(struct vmw_private *dev_priv)
2073 {
2074 	int ret = 0;
2075 
2076 	/*
2077 	 * Docs says we should take the lock before calling this function
2078 	 * but since it destroys encoders and our destructor calls
2079 	 * drm_encoder_cleanup which takes the lock we deadlock.
2080 	 */
2081 	drm_mode_config_cleanup(&dev_priv->drm);
2082 	if (dev_priv->active_display_unit == vmw_du_legacy)
2083 		ret = vmw_kms_ldu_close_display(dev_priv);
2084 
2085 	return ret;
2086 }
2087 
2088 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
2089 				struct drm_file *file_priv)
2090 {
2091 	struct drm_vmw_cursor_bypass_arg *arg = data;
2092 	struct vmw_display_unit *du;
2093 	struct drm_crtc *crtc;
2094 	int ret = 0;
2095 
2096 	mutex_lock(&dev->mode_config.mutex);
2097 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
2098 
2099 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2100 			du = vmw_crtc_to_du(crtc);
2101 			du->hotspot_x = arg->xhot;
2102 			du->hotspot_y = arg->yhot;
2103 		}
2104 
2105 		mutex_unlock(&dev->mode_config.mutex);
2106 		return 0;
2107 	}
2108 
2109 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
2110 	if (!crtc) {
2111 		ret = -ENOENT;
2112 		goto out;
2113 	}
2114 
2115 	du = vmw_crtc_to_du(crtc);
2116 
2117 	du->hotspot_x = arg->xhot;
2118 	du->hotspot_y = arg->yhot;
2119 
2120 out:
2121 	mutex_unlock(&dev->mode_config.mutex);
2122 
2123 	return ret;
2124 }
2125 
2126 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
2127 			unsigned width, unsigned height, unsigned pitch,
2128 			unsigned bpp, unsigned depth)
2129 {
2130 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
2131 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
2132 	else if (vmw_fifo_have_pitchlock(vmw_priv))
2133 		vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch);
2134 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
2135 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
2136 	if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0)
2137 		vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
2138 
2139 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
2140 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
2141 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
2142 		return -EINVAL;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
2149 				uint32_t pitch,
2150 				uint32_t height)
2151 {
2152 	return ((u64) pitch * (u64) height) < (u64)
2153 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
2154 		 dev_priv->max_primary_mem : dev_priv->vram_size);
2155 }
2156 
2157 /**
2158  * vmw_du_update_layout - Update the display unit with topology from resolution
2159  * plugin and generate DRM uevent
2160  * @dev_priv: device private
2161  * @num_rects: number of drm_rect in rects
2162  * @rects: toplogy to update
2163  */
2164 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2165 				unsigned int num_rects, struct drm_rect *rects)
2166 {
2167 	struct drm_device *dev = &dev_priv->drm;
2168 	struct vmw_display_unit *du;
2169 	struct drm_connector *con;
2170 	struct drm_connector_list_iter conn_iter;
2171 	struct drm_modeset_acquire_ctx ctx;
2172 	struct drm_crtc *crtc;
2173 	int ret;
2174 
2175 	/* Currently gui_x/y is protected with the crtc mutex */
2176 	mutex_lock(&dev->mode_config.mutex);
2177 	drm_modeset_acquire_init(&ctx, 0);
2178 retry:
2179 	drm_for_each_crtc(crtc, dev) {
2180 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
2181 		if (ret < 0) {
2182 			if (ret == -EDEADLK) {
2183 				drm_modeset_backoff(&ctx);
2184 				goto retry;
2185 		}
2186 			goto out_fini;
2187 		}
2188 	}
2189 
2190 	drm_connector_list_iter_begin(dev, &conn_iter);
2191 	drm_for_each_connector_iter(con, &conn_iter) {
2192 		du = vmw_connector_to_du(con);
2193 		if (num_rects > du->unit) {
2194 			du->pref_width = drm_rect_width(&rects[du->unit]);
2195 			du->pref_height = drm_rect_height(&rects[du->unit]);
2196 			du->pref_active = true;
2197 			du->gui_x = rects[du->unit].x1;
2198 			du->gui_y = rects[du->unit].y1;
2199 		} else {
2200 			du->pref_width  = VMWGFX_MIN_INITIAL_WIDTH;
2201 			du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT;
2202 			du->pref_active = false;
2203 			du->gui_x = 0;
2204 			du->gui_y = 0;
2205 		}
2206 	}
2207 	drm_connector_list_iter_end(&conn_iter);
2208 
2209 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2210 		du = vmw_connector_to_du(con);
2211 		if (num_rects > du->unit) {
2212 			drm_object_property_set_value
2213 			  (&con->base, dev->mode_config.suggested_x_property,
2214 			   du->gui_x);
2215 			drm_object_property_set_value
2216 			  (&con->base, dev->mode_config.suggested_y_property,
2217 			   du->gui_y);
2218 		} else {
2219 			drm_object_property_set_value
2220 			  (&con->base, dev->mode_config.suggested_x_property,
2221 			   0);
2222 			drm_object_property_set_value
2223 			  (&con->base, dev->mode_config.suggested_y_property,
2224 			   0);
2225 		}
2226 		con->status = vmw_du_connector_detect(con, true);
2227 	}
2228 out_fini:
2229 	drm_modeset_drop_locks(&ctx);
2230 	drm_modeset_acquire_fini(&ctx);
2231 	mutex_unlock(&dev->mode_config.mutex);
2232 
2233 	drm_sysfs_hotplug_event(dev);
2234 
2235 	return 0;
2236 }
2237 
2238 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2239 			  u16 *r, u16 *g, u16 *b,
2240 			  uint32_t size,
2241 			  struct drm_modeset_acquire_ctx *ctx)
2242 {
2243 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2244 	int i;
2245 
2246 	for (i = 0; i < size; i++) {
2247 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2248 			  r[i], g[i], b[i]);
2249 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2250 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2251 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2258 {
2259 	return 0;
2260 }
2261 
2262 enum drm_connector_status
2263 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2264 {
2265 	uint32_t num_displays;
2266 	struct drm_device *dev = connector->dev;
2267 	struct vmw_private *dev_priv = vmw_priv(dev);
2268 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2269 
2270 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2271 
2272 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2273 		 du->pref_active) ?
2274 		connector_status_connected : connector_status_disconnected);
2275 }
2276 
2277 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2278 	/* 640x480@60Hz */
2279 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2280 		   752, 800, 0, 480, 489, 492, 525, 0,
2281 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2282 	/* 800x600@60Hz */
2283 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2284 		   968, 1056, 0, 600, 601, 605, 628, 0,
2285 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2286 	/* 1024x768@60Hz */
2287 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2288 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2289 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2290 	/* 1152x864@75Hz */
2291 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2292 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2293 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2294 	/* 1280x720@60Hz */
2295 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74500, 1280, 1344,
2296 		   1472, 1664, 0, 720, 723, 728, 748, 0,
2297 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2298 	/* 1280x768@60Hz */
2299 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2300 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2301 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2302 	/* 1280x800@60Hz */
2303 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2304 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2305 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2306 	/* 1280x960@60Hz */
2307 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2308 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2309 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2310 	/* 1280x1024@60Hz */
2311 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2312 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2313 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2314 	/* 1360x768@60Hz */
2315 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2316 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2317 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2318 	/* 1440x1050@60Hz */
2319 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2320 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2321 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2322 	/* 1440x900@60Hz */
2323 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2324 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2325 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2326 	/* 1600x1200@60Hz */
2327 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2328 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2330 	/* 1680x1050@60Hz */
2331 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2332 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2333 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2334 	/* 1792x1344@60Hz */
2335 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2336 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2337 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2338 	/* 1853x1392@60Hz */
2339 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2340 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2341 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2342 	/* 1920x1080@60Hz */
2343 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 173000, 1920, 2048,
2344 		   2248, 2576, 0, 1080, 1083, 1088, 1120, 0,
2345 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2346 	/* 1920x1200@60Hz */
2347 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2348 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2349 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2350 	/* 1920x1440@60Hz */
2351 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2352 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2353 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2354 	/* 2560x1440@60Hz */
2355 	{ DRM_MODE("2560x1440", DRM_MODE_TYPE_DRIVER, 241500, 2560, 2608,
2356 		   2640, 2720, 0, 1440, 1443, 1448, 1481, 0,
2357 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2358 	/* 2560x1600@60Hz */
2359 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2360 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2361 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2362 	/* 2880x1800@60Hz */
2363 	{ DRM_MODE("2880x1800", DRM_MODE_TYPE_DRIVER, 337500, 2880, 2928,
2364 		   2960, 3040, 0, 1800, 1803, 1809, 1852, 0,
2365 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2366 	/* 3840x2160@60Hz */
2367 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 533000, 3840, 3888,
2368 		   3920, 4000, 0, 2160, 2163, 2168, 2222, 0,
2369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2370 	/* 3840x2400@60Hz */
2371 	{ DRM_MODE("3840x2400", DRM_MODE_TYPE_DRIVER, 592250, 3840, 3888,
2372 		   3920, 4000, 0, 2400, 2403, 2409, 2469, 0,
2373 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2374 	/* Terminate */
2375 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2376 };
2377 
2378 /**
2379  * vmw_guess_mode_timing - Provide fake timings for a
2380  * 60Hz vrefresh mode.
2381  *
2382  * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay
2383  * members filled in.
2384  */
2385 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2386 {
2387 	mode->hsync_start = mode->hdisplay + 50;
2388 	mode->hsync_end = mode->hsync_start + 50;
2389 	mode->htotal = mode->hsync_end + 50;
2390 
2391 	mode->vsync_start = mode->vdisplay + 50;
2392 	mode->vsync_end = mode->vsync_start + 50;
2393 	mode->vtotal = mode->vsync_end + 50;
2394 
2395 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2396 }
2397 
2398 
2399 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2400 				uint32_t max_width, uint32_t max_height)
2401 {
2402 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2403 	struct drm_device *dev = connector->dev;
2404 	struct vmw_private *dev_priv = vmw_priv(dev);
2405 	struct drm_display_mode *mode = NULL;
2406 	struct drm_display_mode *bmode;
2407 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2408 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2409 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2410 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2411 	};
2412 	int i;
2413 	u32 assumed_bpp = 4;
2414 
2415 	if (dev_priv->assume_16bpp)
2416 		assumed_bpp = 2;
2417 
2418 	max_width  = min(max_width,  dev_priv->texture_max_width);
2419 	max_height = min(max_height, dev_priv->texture_max_height);
2420 
2421 	/*
2422 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2423 	 * HEIGHT registers.
2424 	 */
2425 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2426 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2427 		max_height = min(max_height, dev_priv->stdu_max_height);
2428 	}
2429 
2430 	/* Add preferred mode */
2431 	mode = drm_mode_duplicate(dev, &prefmode);
2432 	if (!mode)
2433 		return 0;
2434 	mode->hdisplay = du->pref_width;
2435 	mode->vdisplay = du->pref_height;
2436 	vmw_guess_mode_timing(mode);
2437 	drm_mode_set_name(mode);
2438 
2439 	if (vmw_kms_validate_mode_vram(dev_priv,
2440 					mode->hdisplay * assumed_bpp,
2441 					mode->vdisplay)) {
2442 		drm_mode_probed_add(connector, mode);
2443 	} else {
2444 		drm_mode_destroy(dev, mode);
2445 		mode = NULL;
2446 	}
2447 
2448 	if (du->pref_mode) {
2449 		list_del_init(&du->pref_mode->head);
2450 		drm_mode_destroy(dev, du->pref_mode);
2451 	}
2452 
2453 	/* mode might be null here, this is intended */
2454 	du->pref_mode = mode;
2455 
2456 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2457 		bmode = &vmw_kms_connector_builtin[i];
2458 		if (bmode->hdisplay > max_width ||
2459 		    bmode->vdisplay > max_height)
2460 			continue;
2461 
2462 		if (!vmw_kms_validate_mode_vram(dev_priv,
2463 						bmode->hdisplay * assumed_bpp,
2464 						bmode->vdisplay))
2465 			continue;
2466 
2467 		mode = drm_mode_duplicate(dev, bmode);
2468 		if (!mode)
2469 			return 0;
2470 
2471 		drm_mode_probed_add(connector, mode);
2472 	}
2473 
2474 	drm_connector_list_update(connector);
2475 	/* Move the prefered mode first, help apps pick the right mode. */
2476 	drm_mode_sort(&connector->modes);
2477 
2478 	return 1;
2479 }
2480 
2481 /**
2482  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2483  * @dev: drm device for the ioctl
2484  * @data: data pointer for the ioctl
2485  * @file_priv: drm file for the ioctl call
2486  *
2487  * Update preferred topology of display unit as per ioctl request. The topology
2488  * is expressed as array of drm_vmw_rect.
2489  * e.g.
2490  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2491  *
2492  * NOTE:
2493  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2494  * device limit on topology, x + w and y + h (lower right) cannot be greater
2495  * than INT_MAX. So topology beyond these limits will return with error.
2496  *
2497  * Returns:
2498  * Zero on success, negative errno on failure.
2499  */
2500 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2501 				struct drm_file *file_priv)
2502 {
2503 	struct vmw_private *dev_priv = vmw_priv(dev);
2504 	struct drm_mode_config *mode_config = &dev->mode_config;
2505 	struct drm_vmw_update_layout_arg *arg =
2506 		(struct drm_vmw_update_layout_arg *)data;
2507 	void __user *user_rects;
2508 	struct drm_vmw_rect *rects;
2509 	struct drm_rect *drm_rects;
2510 	unsigned rects_size;
2511 	int ret, i;
2512 
2513 	if (!arg->num_outputs) {
2514 		struct drm_rect def_rect = {0, 0,
2515 					    VMWGFX_MIN_INITIAL_WIDTH,
2516 					    VMWGFX_MIN_INITIAL_HEIGHT};
2517 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2518 		return 0;
2519 	}
2520 
2521 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2522 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2523 			GFP_KERNEL);
2524 	if (unlikely(!rects))
2525 		return -ENOMEM;
2526 
2527 	user_rects = (void __user *)(unsigned long)arg->rects;
2528 	ret = copy_from_user(rects, user_rects, rects_size);
2529 	if (unlikely(ret != 0)) {
2530 		DRM_ERROR("Failed to get rects.\n");
2531 		ret = -EFAULT;
2532 		goto out_free;
2533 	}
2534 
2535 	drm_rects = (struct drm_rect *)rects;
2536 
2537 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2538 	for (i = 0; i < arg->num_outputs; i++) {
2539 		struct drm_vmw_rect curr_rect;
2540 
2541 		/* Verify user-space for overflow as kernel use drm_rect */
2542 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2543 		    (rects[i].y + rects[i].h > INT_MAX)) {
2544 			ret = -ERANGE;
2545 			goto out_free;
2546 		}
2547 
2548 		curr_rect = rects[i];
2549 		drm_rects[i].x1 = curr_rect.x;
2550 		drm_rects[i].y1 = curr_rect.y;
2551 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2552 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2553 
2554 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2555 			      drm_rects[i].x1, drm_rects[i].y1,
2556 			      drm_rects[i].x2, drm_rects[i].y2);
2557 
2558 		/*
2559 		 * Currently this check is limiting the topology within
2560 		 * mode_config->max (which actually is max texture size
2561 		 * supported by virtual device). This limit is here to address
2562 		 * window managers that create a big framebuffer for whole
2563 		 * topology.
2564 		 */
2565 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2566 		    drm_rects[i].x2 > mode_config->max_width ||
2567 		    drm_rects[i].y2 > mode_config->max_height) {
2568 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2569 				      drm_rects[i].x1, drm_rects[i].y1,
2570 				      drm_rects[i].x2, drm_rects[i].y2);
2571 			ret = -EINVAL;
2572 			goto out_free;
2573 		}
2574 	}
2575 
2576 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2577 
2578 	if (ret == 0)
2579 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2580 
2581 out_free:
2582 	kfree(rects);
2583 	return ret;
2584 }
2585 
2586 /**
2587  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2588  * on a set of cliprects and a set of display units.
2589  *
2590  * @dev_priv: Pointer to a device private structure.
2591  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2592  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2593  * Cliprects are given in framebuffer coordinates.
2594  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2595  * be NULL. Cliprects are given in source coordinates.
2596  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2597  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2598  * @num_clips: Number of cliprects in the @clips or @vclips array.
2599  * @increment: Integer with which to increment the clip counter when looping.
2600  * Used to skip a predetermined number of clip rects.
2601  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2602  */
2603 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2604 			 struct vmw_framebuffer *framebuffer,
2605 			 const struct drm_clip_rect *clips,
2606 			 const struct drm_vmw_rect *vclips,
2607 			 s32 dest_x, s32 dest_y,
2608 			 int num_clips,
2609 			 int increment,
2610 			 struct vmw_kms_dirty *dirty)
2611 {
2612 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2613 	struct drm_crtc *crtc;
2614 	u32 num_units = 0;
2615 	u32 i, k;
2616 
2617 	dirty->dev_priv = dev_priv;
2618 
2619 	/* If crtc is passed, no need to iterate over other display units */
2620 	if (dirty->crtc) {
2621 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2622 	} else {
2623 		list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list,
2624 				    head) {
2625 			struct drm_plane *plane = crtc->primary;
2626 
2627 			if (plane->state->fb == &framebuffer->base)
2628 				units[num_units++] = vmw_crtc_to_du(crtc);
2629 		}
2630 	}
2631 
2632 	for (k = 0; k < num_units; k++) {
2633 		struct vmw_display_unit *unit = units[k];
2634 		s32 crtc_x = unit->crtc.x;
2635 		s32 crtc_y = unit->crtc.y;
2636 		s32 crtc_width = unit->crtc.mode.hdisplay;
2637 		s32 crtc_height = unit->crtc.mode.vdisplay;
2638 		const struct drm_clip_rect *clips_ptr = clips;
2639 		const struct drm_vmw_rect *vclips_ptr = vclips;
2640 
2641 		dirty->unit = unit;
2642 		if (dirty->fifo_reserve_size > 0) {
2643 			dirty->cmd = VMW_CMD_RESERVE(dev_priv,
2644 						      dirty->fifo_reserve_size);
2645 			if (!dirty->cmd)
2646 				return -ENOMEM;
2647 
2648 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2649 		}
2650 		dirty->num_hits = 0;
2651 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2652 		       vclips_ptr += increment) {
2653 			s32 clip_left;
2654 			s32 clip_top;
2655 
2656 			/*
2657 			 * Select clip array type. Note that integer type
2658 			 * in @clips is unsigned short, whereas in @vclips
2659 			 * it's 32-bit.
2660 			 */
2661 			if (clips) {
2662 				dirty->fb_x = (s32) clips_ptr->x1;
2663 				dirty->fb_y = (s32) clips_ptr->y1;
2664 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2665 					crtc_x;
2666 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2667 					crtc_y;
2668 			} else {
2669 				dirty->fb_x = vclips_ptr->x;
2670 				dirty->fb_y = vclips_ptr->y;
2671 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2672 					dest_x - crtc_x;
2673 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2674 					dest_y - crtc_y;
2675 			}
2676 
2677 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2678 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2679 
2680 			/* Skip this clip if it's outside the crtc region */
2681 			if (dirty->unit_x1 >= crtc_width ||
2682 			    dirty->unit_y1 >= crtc_height ||
2683 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2684 				continue;
2685 
2686 			/* Clip right and bottom to crtc limits */
2687 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2688 					       crtc_width);
2689 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2690 					       crtc_height);
2691 
2692 			/* Clip left and top to crtc limits */
2693 			clip_left = min_t(s32, dirty->unit_x1, 0);
2694 			clip_top = min_t(s32, dirty->unit_y1, 0);
2695 			dirty->unit_x1 -= clip_left;
2696 			dirty->unit_y1 -= clip_top;
2697 			dirty->fb_x -= clip_left;
2698 			dirty->fb_y -= clip_top;
2699 
2700 			dirty->clip(dirty);
2701 		}
2702 
2703 		dirty->fifo_commit(dirty);
2704 	}
2705 
2706 	return 0;
2707 }
2708 
2709 /**
2710  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2711  * cleanup and fencing
2712  * @dev_priv: Pointer to the device-private struct
2713  * @file_priv: Pointer identifying the client when user-space fencing is used
2714  * @ctx: Pointer to the validation context
2715  * @out_fence: If non-NULL, returned refcounted fence-pointer
2716  * @user_fence_rep: If non-NULL, pointer to user-space address area
2717  * in which to copy user-space fence info
2718  */
2719 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2720 				      struct drm_file *file_priv,
2721 				      struct vmw_validation_context *ctx,
2722 				      struct vmw_fence_obj **out_fence,
2723 				      struct drm_vmw_fence_rep __user *
2724 				      user_fence_rep)
2725 {
2726 	struct vmw_fence_obj *fence = NULL;
2727 	uint32_t handle = 0;
2728 	int ret = 0;
2729 
2730 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2731 	    out_fence)
2732 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2733 						 file_priv ? &handle : NULL);
2734 	vmw_validation_done(ctx, fence);
2735 	if (file_priv)
2736 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2737 					    ret, user_fence_rep, fence,
2738 					    handle, -1);
2739 	if (out_fence)
2740 		*out_fence = fence;
2741 	else
2742 		vmw_fence_obj_unreference(&fence);
2743 }
2744 
2745 /**
2746  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2747  * its backing MOB.
2748  *
2749  * @res: Pointer to the surface resource
2750  * @clips: Clip rects in framebuffer (surface) space.
2751  * @num_clips: Number of clips in @clips.
2752  * @increment: Integer with which to increment the clip counter when looping.
2753  * Used to skip a predetermined number of clip rects.
2754  *
2755  * This function makes sure the proxy surface is updated from its backing MOB
2756  * using the region given by @clips. The surface resource @res and its backing
2757  * MOB needs to be reserved and validated on call.
2758  */
2759 int vmw_kms_update_proxy(struct vmw_resource *res,
2760 			 const struct drm_clip_rect *clips,
2761 			 unsigned num_clips,
2762 			 int increment)
2763 {
2764 	struct vmw_private *dev_priv = res->dev_priv;
2765 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2766 	struct {
2767 		SVGA3dCmdHeader header;
2768 		SVGA3dCmdUpdateGBImage body;
2769 	} *cmd;
2770 	SVGA3dBox *box;
2771 	size_t copy_size = 0;
2772 	int i;
2773 
2774 	if (!clips)
2775 		return 0;
2776 
2777 	cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2778 	if (!cmd)
2779 		return -ENOMEM;
2780 
2781 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2782 		box = &cmd->body.box;
2783 
2784 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2785 		cmd->header.size = sizeof(cmd->body);
2786 		cmd->body.image.sid = res->id;
2787 		cmd->body.image.face = 0;
2788 		cmd->body.image.mipmap = 0;
2789 
2790 		if (clips->x1 > size->width || clips->x2 > size->width ||
2791 		    clips->y1 > size->height || clips->y2 > size->height) {
2792 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2793 			return -EINVAL;
2794 		}
2795 
2796 		box->x = clips->x1;
2797 		box->y = clips->y1;
2798 		box->z = 0;
2799 		box->w = clips->x2 - clips->x1;
2800 		box->h = clips->y2 - clips->y1;
2801 		box->d = 1;
2802 
2803 		copy_size += sizeof(*cmd);
2804 	}
2805 
2806 	vmw_cmd_commit(dev_priv, copy_size);
2807 
2808 	return 0;
2809 }
2810 
2811 /**
2812  * vmw_kms_create_implicit_placement_property - Set up the implicit placement
2813  * property.
2814  *
2815  * @dev_priv: Pointer to a device private struct.
2816  *
2817  * Sets up the implicit placement property unless it's already set up.
2818  */
2819 void
2820 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2821 {
2822 	if (dev_priv->implicit_placement_property)
2823 		return;
2824 
2825 	dev_priv->implicit_placement_property =
2826 		drm_property_create_range(&dev_priv->drm,
2827 					  DRM_MODE_PROP_IMMUTABLE,
2828 					  "implicit_placement", 0, 1);
2829 }
2830 
2831 /**
2832  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2833  *
2834  * @dev: Pointer to the drm device
2835  * Return: 0 on success. Negative error code on failure.
2836  */
2837 int vmw_kms_suspend(struct drm_device *dev)
2838 {
2839 	struct vmw_private *dev_priv = vmw_priv(dev);
2840 
2841 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2842 	if (IS_ERR(dev_priv->suspend_state)) {
2843 		int ret = PTR_ERR(dev_priv->suspend_state);
2844 
2845 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2846 		dev_priv->suspend_state = NULL;
2847 
2848 		return ret;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 
2855 /**
2856  * vmw_kms_resume - Re-enable modesetting and restore state
2857  *
2858  * @dev: Pointer to the drm device
2859  * Return: 0 on success. Negative error code on failure.
2860  *
2861  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2862  * to call this function without a previous vmw_kms_suspend().
2863  */
2864 int vmw_kms_resume(struct drm_device *dev)
2865 {
2866 	struct vmw_private *dev_priv = vmw_priv(dev);
2867 	int ret;
2868 
2869 	if (WARN_ON(!dev_priv->suspend_state))
2870 		return 0;
2871 
2872 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2873 	dev_priv->suspend_state = NULL;
2874 
2875 	return ret;
2876 }
2877 
2878 /**
2879  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2880  *
2881  * @dev: Pointer to the drm device
2882  */
2883 void vmw_kms_lost_device(struct drm_device *dev)
2884 {
2885 	drm_atomic_helper_shutdown(dev);
2886 }
2887 
2888 /**
2889  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2890  * @update: The closure structure.
2891  *
2892  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2893  * update on display unit.
2894  *
2895  * Return: 0 on success or a negative error code on failure.
2896  */
2897 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2898 {
2899 	struct drm_plane_state *state = update->plane->state;
2900 	struct drm_plane_state *old_state = update->old_state;
2901 	struct drm_atomic_helper_damage_iter iter;
2902 	struct drm_rect clip;
2903 	struct drm_rect bb;
2904 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2905 	uint32_t reserved_size = 0;
2906 	uint32_t submit_size = 0;
2907 	uint32_t curr_size = 0;
2908 	uint32_t num_hits = 0;
2909 	void *cmd_start;
2910 	char *cmd_next;
2911 	int ret;
2912 
2913 	/*
2914 	 * Iterate in advance to check if really need plane update and find the
2915 	 * number of clips that actually are in plane src for fifo allocation.
2916 	 */
2917 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2918 	drm_atomic_for_each_plane_damage(&iter, &clip)
2919 		num_hits++;
2920 
2921 	if (num_hits == 0)
2922 		return 0;
2923 
2924 	if (update->vfb->bo) {
2925 		struct vmw_framebuffer_bo *vfbbo =
2926 			container_of(update->vfb, typeof(*vfbbo), base);
2927 
2928 		/*
2929 		 * For screen targets we want a mappable bo, for everything else we want
2930 		 * accelerated i.e. host backed (vram or gmr) bo. If the display unit
2931 		 * is not screen target then mob's shouldn't be available.
2932 		 */
2933 		if (update->dev_priv->active_display_unit == vmw_du_screen_target) {
2934 			vmw_bo_placement_set(vfbbo->buffer,
2935 					     VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR,
2936 					     VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR);
2937 		} else {
2938 			WARN_ON(update->dev_priv->has_mob);
2939 			vmw_bo_placement_set_default_accelerated(vfbbo->buffer);
2940 		}
2941 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer);
2942 	} else {
2943 		struct vmw_framebuffer_surface *vfbs =
2944 			container_of(update->vfb, typeof(*vfbs), base);
2945 
2946 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2947 						  0, VMW_RES_DIRTY_NONE, NULL,
2948 						  NULL);
2949 	}
2950 
2951 	if (ret)
2952 		return ret;
2953 
2954 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2955 	if (ret)
2956 		goto out_unref;
2957 
2958 	reserved_size = update->calc_fifo_size(update, num_hits);
2959 	cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size);
2960 	if (!cmd_start) {
2961 		ret = -ENOMEM;
2962 		goto out_revert;
2963 	}
2964 
2965 	cmd_next = cmd_start;
2966 
2967 	if (update->post_prepare) {
2968 		curr_size = update->post_prepare(update, cmd_next);
2969 		cmd_next += curr_size;
2970 		submit_size += curr_size;
2971 	}
2972 
2973 	if (update->pre_clip) {
2974 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2975 		cmd_next += curr_size;
2976 		submit_size += curr_size;
2977 	}
2978 
2979 	bb.x1 = INT_MAX;
2980 	bb.y1 = INT_MAX;
2981 	bb.x2 = INT_MIN;
2982 	bb.y2 = INT_MIN;
2983 
2984 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2985 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2986 		uint32_t fb_x = clip.x1;
2987 		uint32_t fb_y = clip.y1;
2988 
2989 		vmw_du_translate_to_crtc(state, &clip);
2990 		if (update->clip) {
2991 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2992 						 fb_y);
2993 			cmd_next += curr_size;
2994 			submit_size += curr_size;
2995 		}
2996 		bb.x1 = min_t(int, bb.x1, clip.x1);
2997 		bb.y1 = min_t(int, bb.y1, clip.y1);
2998 		bb.x2 = max_t(int, bb.x2, clip.x2);
2999 		bb.y2 = max_t(int, bb.y2, clip.y2);
3000 	}
3001 
3002 	curr_size = update->post_clip(update, cmd_next, &bb);
3003 	submit_size += curr_size;
3004 
3005 	if (reserved_size < submit_size)
3006 		submit_size = 0;
3007 
3008 	vmw_cmd_commit(update->dev_priv, submit_size);
3009 
3010 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
3011 					 update->out_fence, NULL);
3012 	return ret;
3013 
3014 out_revert:
3015 	vmw_validation_revert(&val_ctx);
3016 
3017 out_unref:
3018 	vmw_validation_unref_lists(&val_ctx);
3019 	return ret;
3020 }
3021