xref: /linux/drivers/gpu/drm/vkms/vkms_formats.c (revision daa2be74b1b2302004945b2a5e32424e177cc7da)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <linux/kernel.h>
4 #include <linux/minmax.h>
5 
6 #include <drm/drm_blend.h>
7 #include <drm/drm_rect.h>
8 #include <drm/drm_fixed.h>
9 
10 #include "vkms_formats.h"
11 
12 static size_t pixel_offset(const struct vkms_frame_info *frame_info, int x, int y)
13 {
14 	return frame_info->offset + (y * frame_info->pitch)
15 				  + (x * frame_info->cpp);
16 }
17 
18 /*
19  * packed_pixels_addr - Get the pointer to pixel of a given pair of coordinates
20  *
21  * @frame_info: Buffer metadata
22  * @x: The x(width) coordinate of the 2D buffer
23  * @y: The y(Heigth) coordinate of the 2D buffer
24  *
25  * Takes the information stored in the frame_info, a pair of coordinates, and
26  * returns the address of the first color channel.
27  * This function assumes the channels are packed together, i.e. a color channel
28  * comes immediately after another in the memory. And therefore, this function
29  * doesn't work for YUV with chroma subsampling (e.g. YUV420 and NV21).
30  */
31 static void *packed_pixels_addr(const struct vkms_frame_info *frame_info,
32 				int x, int y)
33 {
34 	size_t offset = pixel_offset(frame_info, x, y);
35 
36 	return (u8 *)frame_info->map[0].vaddr + offset;
37 }
38 
39 static void *get_packed_src_addr(const struct vkms_frame_info *frame_info, int y)
40 {
41 	int x_src = frame_info->src.x1 >> 16;
42 	int y_src = y - frame_info->rotated.y1 + (frame_info->src.y1 >> 16);
43 
44 	return packed_pixels_addr(frame_info, x_src, y_src);
45 }
46 
47 static int get_x_position(const struct vkms_frame_info *frame_info, int limit, int x)
48 {
49 	if (frame_info->rotation & (DRM_MODE_REFLECT_X | DRM_MODE_ROTATE_270))
50 		return limit - x - 1;
51 	return x;
52 }
53 
54 static void ARGB8888_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
55 {
56 	/*
57 	 * The 257 is the "conversion ratio". This number is obtained by the
58 	 * (2^16 - 1) / (2^8 - 1) division. Which, in this case, tries to get
59 	 * the best color value in a pixel format with more possibilities.
60 	 * A similar idea applies to others RGB color conversions.
61 	 */
62 	out_pixel->a = (u16)src_pixels[3] * 257;
63 	out_pixel->r = (u16)src_pixels[2] * 257;
64 	out_pixel->g = (u16)src_pixels[1] * 257;
65 	out_pixel->b = (u16)src_pixels[0] * 257;
66 }
67 
68 static void XRGB8888_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
69 {
70 	out_pixel->a = (u16)0xffff;
71 	out_pixel->r = (u16)src_pixels[2] * 257;
72 	out_pixel->g = (u16)src_pixels[1] * 257;
73 	out_pixel->b = (u16)src_pixels[0] * 257;
74 }
75 
76 static void ARGB16161616_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
77 {
78 	u16 *pixels = (u16 *)src_pixels;
79 
80 	out_pixel->a = le16_to_cpu(pixels[3]);
81 	out_pixel->r = le16_to_cpu(pixels[2]);
82 	out_pixel->g = le16_to_cpu(pixels[1]);
83 	out_pixel->b = le16_to_cpu(pixels[0]);
84 }
85 
86 static void XRGB16161616_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
87 {
88 	u16 *pixels = (u16 *)src_pixels;
89 
90 	out_pixel->a = (u16)0xffff;
91 	out_pixel->r = le16_to_cpu(pixels[2]);
92 	out_pixel->g = le16_to_cpu(pixels[1]);
93 	out_pixel->b = le16_to_cpu(pixels[0]);
94 }
95 
96 static void RGB565_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel)
97 {
98 	u16 *pixels = (u16 *)src_pixels;
99 
100 	s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31));
101 	s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63));
102 
103 	u16 rgb_565 = le16_to_cpu(*pixels);
104 	s64 fp_r = drm_int2fixp((rgb_565 >> 11) & 0x1f);
105 	s64 fp_g = drm_int2fixp((rgb_565 >> 5) & 0x3f);
106 	s64 fp_b = drm_int2fixp(rgb_565 & 0x1f);
107 
108 	out_pixel->a = (u16)0xffff;
109 	out_pixel->r = drm_fixp2int_round(drm_fixp_mul(fp_r, fp_rb_ratio));
110 	out_pixel->g = drm_fixp2int_round(drm_fixp_mul(fp_g, fp_g_ratio));
111 	out_pixel->b = drm_fixp2int_round(drm_fixp_mul(fp_b, fp_rb_ratio));
112 }
113 
114 /**
115  * vkms_compose_row - compose a single row of a plane
116  * @stage_buffer: output line with the composed pixels
117  * @plane: state of the plane that is being composed
118  * @y: y coordinate of the row
119  *
120  * This function composes a single row of a plane. It gets the source pixels
121  * through the y coordinate (see get_packed_src_addr()) and goes linearly
122  * through the source pixel, reading the pixels and converting it to
123  * ARGB16161616 (see the pixel_read() callback). For rotate-90 and rotate-270,
124  * the source pixels are not traversed linearly. The source pixels are queried
125  * on each iteration in order to traverse the pixels vertically.
126  */
127 void vkms_compose_row(struct line_buffer *stage_buffer, struct vkms_plane_state *plane, int y)
128 {
129 	struct pixel_argb_u16 *out_pixels = stage_buffer->pixels;
130 	struct vkms_frame_info *frame_info = plane->frame_info;
131 	u8 *src_pixels = get_packed_src_addr(frame_info, y);
132 	int limit = min_t(size_t, drm_rect_width(&frame_info->dst), stage_buffer->n_pixels);
133 
134 	for (size_t x = 0; x < limit; x++, src_pixels += frame_info->cpp) {
135 		int x_pos = get_x_position(frame_info, limit, x);
136 
137 		if (drm_rotation_90_or_270(frame_info->rotation))
138 			src_pixels = get_packed_src_addr(frame_info, x + frame_info->rotated.y1)
139 				+ frame_info->cpp * y;
140 
141 		plane->pixel_read(src_pixels, &out_pixels[x_pos]);
142 	}
143 }
144 
145 /*
146  * The following  functions take an line of argb_u16 pixels from the
147  * src_buffer, convert them to a specific format, and store them in the
148  * destination.
149  *
150  * They are used in the `compose_active_planes` to convert and store a line
151  * from the src_buffer to the writeback buffer.
152  */
153 static void argb_u16_to_ARGB8888(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
154 {
155 	/*
156 	 * This sequence below is important because the format's byte order is
157 	 * in little-endian. In the case of the ARGB8888 the memory is
158 	 * organized this way:
159 	 *
160 	 * | Addr     | = blue channel
161 	 * | Addr + 1 | = green channel
162 	 * | Addr + 2 | = Red channel
163 	 * | Addr + 3 | = Alpha channel
164 	 */
165 	dst_pixels[3] = DIV_ROUND_CLOSEST(in_pixel->a, 257);
166 	dst_pixels[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257);
167 	dst_pixels[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257);
168 	dst_pixels[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257);
169 }
170 
171 static void argb_u16_to_XRGB8888(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
172 {
173 	dst_pixels[3] = 0xff;
174 	dst_pixels[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257);
175 	dst_pixels[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257);
176 	dst_pixels[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257);
177 }
178 
179 static void argb_u16_to_ARGB16161616(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
180 {
181 	u16 *pixels = (u16 *)dst_pixels;
182 
183 	pixels[3] = cpu_to_le16(in_pixel->a);
184 	pixels[2] = cpu_to_le16(in_pixel->r);
185 	pixels[1] = cpu_to_le16(in_pixel->g);
186 	pixels[0] = cpu_to_le16(in_pixel->b);
187 }
188 
189 static void argb_u16_to_XRGB16161616(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
190 {
191 	u16 *pixels = (u16 *)dst_pixels;
192 
193 	pixels[3] = 0xffff;
194 	pixels[2] = cpu_to_le16(in_pixel->r);
195 	pixels[1] = cpu_to_le16(in_pixel->g);
196 	pixels[0] = cpu_to_le16(in_pixel->b);
197 }
198 
199 static void argb_u16_to_RGB565(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel)
200 {
201 	u16 *pixels = (u16 *)dst_pixels;
202 
203 	s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31));
204 	s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63));
205 
206 	s64 fp_r = drm_int2fixp(in_pixel->r);
207 	s64 fp_g = drm_int2fixp(in_pixel->g);
208 	s64 fp_b = drm_int2fixp(in_pixel->b);
209 
210 	u16 r = drm_fixp2int(drm_fixp_div(fp_r, fp_rb_ratio));
211 	u16 g = drm_fixp2int(drm_fixp_div(fp_g, fp_g_ratio));
212 	u16 b = drm_fixp2int(drm_fixp_div(fp_b, fp_rb_ratio));
213 
214 	*pixels = cpu_to_le16(r << 11 | g << 5 | b);
215 }
216 
217 void vkms_writeback_row(struct vkms_writeback_job *wb,
218 			const struct line_buffer *src_buffer, int y)
219 {
220 	struct vkms_frame_info *frame_info = &wb->wb_frame_info;
221 	int x_dst = frame_info->dst.x1;
222 	u8 *dst_pixels = packed_pixels_addr(frame_info, x_dst, y);
223 	struct pixel_argb_u16 *in_pixels = src_buffer->pixels;
224 	int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst), src_buffer->n_pixels);
225 
226 	for (size_t x = 0; x < x_limit; x++, dst_pixels += frame_info->cpp)
227 		wb->pixel_write(dst_pixels, &in_pixels[x]);
228 }
229 
230 void *get_pixel_conversion_function(u32 format)
231 {
232 	switch (format) {
233 	case DRM_FORMAT_ARGB8888:
234 		return &ARGB8888_to_argb_u16;
235 	case DRM_FORMAT_XRGB8888:
236 		return &XRGB8888_to_argb_u16;
237 	case DRM_FORMAT_ARGB16161616:
238 		return &ARGB16161616_to_argb_u16;
239 	case DRM_FORMAT_XRGB16161616:
240 		return &XRGB16161616_to_argb_u16;
241 	case DRM_FORMAT_RGB565:
242 		return &RGB565_to_argb_u16;
243 	default:
244 		return NULL;
245 	}
246 }
247 
248 void *get_pixel_write_function(u32 format)
249 {
250 	switch (format) {
251 	case DRM_FORMAT_ARGB8888:
252 		return &argb_u16_to_ARGB8888;
253 	case DRM_FORMAT_XRGB8888:
254 		return &argb_u16_to_XRGB8888;
255 	case DRM_FORMAT_ARGB16161616:
256 		return &argb_u16_to_ARGB16161616;
257 	case DRM_FORMAT_XRGB16161616:
258 		return &argb_u16_to_XRGB16161616;
259 	case DRM_FORMAT_RGB565:
260 		return &argb_u16_to_RGB565;
261 	default:
262 		return NULL;
263 	}
264 }
265