1 // SPDX-License-Identifier: GPL-2.0+ 2 3 #include <linux/crc32.h> 4 5 #include <drm/drm_atomic.h> 6 #include <drm/drm_atomic_helper.h> 7 #include <drm/drm_blend.h> 8 #include <drm/drm_fourcc.h> 9 #include <drm/drm_fixed.h> 10 #include <drm/drm_gem_framebuffer_helper.h> 11 #include <drm/drm_vblank.h> 12 #include <linux/minmax.h> 13 14 #include "vkms_drv.h" 15 16 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) 17 { 18 u32 new_color; 19 20 new_color = (src * 0xffff + dst * (0xffff - alpha)); 21 22 return DIV_ROUND_CLOSEST(new_color, 0xffff); 23 } 24 25 /** 26 * pre_mul_alpha_blend - alpha blending equation 27 * @stage_buffer: The line with the pixels from src_plane 28 * @output_buffer: A line buffer that receives all the blends output 29 * @x_start: The start offset 30 * @pixel_count: The number of pixels to blend 31 * 32 * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at 33 * [@x_start;@x_start+@pixel_count) in output_buffer. 34 * 35 * The current DRM assumption is that pixel color values have been already 36 * pre-multiplied with the alpha channel values. See more 37 * drm_plane_create_blend_mode_property(). Also, this formula assumes a 38 * completely opaque background. 39 */ 40 static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer, 41 struct line_buffer *output_buffer, int x_start, int pixel_count) 42 { 43 struct pixel_argb_u16 *out = &output_buffer->pixels[x_start]; 44 const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start]; 45 46 for (int i = 0; i < pixel_count; i++) { 47 out[i].a = (u16)0xffff; 48 out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a); 49 out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a); 50 out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a); 51 } 52 } 53 54 55 static void fill_background(const struct pixel_argb_u16 *background_color, 56 struct line_buffer *output_buffer) 57 { 58 for (size_t i = 0; i < output_buffer->n_pixels; i++) 59 output_buffer->pixels[i] = *background_color; 60 } 61 62 // lerp(a, b, t) = a + (b - a) * t 63 static u16 lerp_u16(u16 a, u16 b, s64 t) 64 { 65 s64 a_fp = drm_int2fixp(a); 66 s64 b_fp = drm_int2fixp(b); 67 68 s64 delta = drm_fixp_mul(b_fp - a_fp, t); 69 70 return drm_fixp2int(a_fp + delta); 71 } 72 73 static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) 74 { 75 s64 color_channel_fp = drm_int2fixp(channel_value); 76 77 return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio); 78 } 79 80 /* 81 * This enum is related to the positions of the variables inside 82 * `struct drm_color_lut`, so the order of both needs to be the same. 83 */ 84 enum lut_channel { 85 LUT_RED = 0, 86 LUT_GREEN, 87 LUT_BLUE, 88 LUT_RESERVED 89 }; 90 91 static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, 92 enum lut_channel channel) 93 { 94 s64 lut_index = get_lut_index(lut, channel_value); 95 u16 *floor_lut_value, *ceil_lut_value; 96 u16 floor_channel_value, ceil_channel_value; 97 98 /* 99 * This checks if `struct drm_color_lut` has any gap added by the compiler 100 * between the struct fields. 101 */ 102 static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4); 103 104 floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; 105 if (drm_fixp2int(lut_index) == (lut->lut_length - 1)) 106 /* We're at the end of the LUT array, use same value for ceil and floor */ 107 ceil_lut_value = floor_lut_value; 108 else 109 ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; 110 111 floor_channel_value = floor_lut_value[channel]; 112 ceil_channel_value = ceil_lut_value[channel]; 113 114 return lerp_u16(floor_channel_value, ceil_channel_value, 115 lut_index & DRM_FIXED_DECIMAL_MASK); 116 } 117 118 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer) 119 { 120 if (!crtc_state->gamma_lut.base) 121 return; 122 123 if (!crtc_state->gamma_lut.lut_length) 124 return; 125 126 for (size_t x = 0; x < output_buffer->n_pixels; x++) { 127 struct pixel_argb_u16 *pixel = &output_buffer->pixels[x]; 128 129 pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED); 130 pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN); 131 pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE); 132 } 133 } 134 135 /** 136 * direction_for_rotation() - Get the correct reading direction for a given rotation 137 * 138 * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation. 139 * 140 * This function will use the @rotation setting of a source plane to compute the reading 141 * direction in this plane which correspond to a "left to right writing" in the CRTC. 142 * For example, if the buffer is reflected on X axis, the pixel must be read from right to left 143 * to be written from left to right on the CRTC. 144 */ 145 static enum pixel_read_direction direction_for_rotation(unsigned int rotation) 146 { 147 struct drm_rect tmp_a, tmp_b; 148 int x, y; 149 150 /* 151 * Points A and B are depicted as zero-size rectangles on the CRTC. 152 * The CRTC writing direction is from A to B. The plane reading direction 153 * is discovered by inverse-transforming A and B. 154 * The reading direction is computed by rotating the vector AB (top-left to top-right) in a 155 * 1x1 square. 156 */ 157 158 tmp_a = DRM_RECT_INIT(0, 0, 0, 0); 159 tmp_b = DRM_RECT_INIT(1, 0, 0, 0); 160 drm_rect_rotate_inv(&tmp_a, 1, 1, rotation); 161 drm_rect_rotate_inv(&tmp_b, 1, 1, rotation); 162 163 x = tmp_b.x1 - tmp_a.x1; 164 y = tmp_b.y1 - tmp_a.y1; 165 166 if (x == 1 && y == 0) 167 return READ_LEFT_TO_RIGHT; 168 else if (x == -1 && y == 0) 169 return READ_RIGHT_TO_LEFT; 170 else if (y == 1 && x == 0) 171 return READ_TOP_TO_BOTTOM; 172 else if (y == -1 && x == 0) 173 return READ_BOTTOM_TO_TOP; 174 175 WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction."); 176 return READ_LEFT_TO_RIGHT; 177 } 178 179 /** 180 * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend 181 * process. 182 * 183 * @direction: direction of the reading 184 * @current_plane: current plane blended 185 * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle 186 * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of 187 * pixel_count*1 if @direction is horizontal. 188 * @src_x_start: x start coordinate for the line reading 189 * @src_y_start: y start coordinate for the line reading 190 * @dst_x_start: x coordinate to blend the read line 191 * @pixel_count: number of pixels to blend 192 * 193 * This function is mainly a safety net to avoid reading outside the source buffer. As the 194 * userspace should never ask to read outside the source plane, all the cases covered here should 195 * be dead code. 196 */ 197 static void clamp_line_coordinates(enum pixel_read_direction direction, 198 const struct vkms_plane_state *current_plane, 199 const struct drm_rect *src_line, int *src_x_start, 200 int *src_y_start, int *dst_x_start, int *pixel_count) 201 { 202 /* By default the start points are correct */ 203 *src_x_start = src_line->x1; 204 *src_y_start = src_line->y1; 205 *dst_x_start = current_plane->frame_info->dst.x1; 206 207 /* Get the correct number of pixel to blend, it depends of the direction */ 208 switch (direction) { 209 case READ_LEFT_TO_RIGHT: 210 case READ_RIGHT_TO_LEFT: 211 *pixel_count = drm_rect_width(src_line); 212 break; 213 case READ_BOTTOM_TO_TOP: 214 case READ_TOP_TO_BOTTOM: 215 *pixel_count = drm_rect_height(src_line); 216 break; 217 } 218 219 /* 220 * Clamp the coordinates to avoid reading outside the buffer 221 * 222 * This is mainly a security check to avoid reading outside the buffer, the userspace 223 * should never request to read outside the source buffer. 224 */ 225 switch (direction) { 226 case READ_LEFT_TO_RIGHT: 227 case READ_RIGHT_TO_LEFT: 228 if (*src_x_start < 0) { 229 *pixel_count += *src_x_start; 230 *dst_x_start -= *src_x_start; 231 *src_x_start = 0; 232 } 233 if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width) 234 *pixel_count = max(0, (int)current_plane->frame_info->fb->width - 235 *src_x_start); 236 break; 237 case READ_BOTTOM_TO_TOP: 238 case READ_TOP_TO_BOTTOM: 239 if (*src_y_start < 0) { 240 *pixel_count += *src_y_start; 241 *dst_x_start -= *src_y_start; 242 *src_y_start = 0; 243 } 244 if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height) 245 *pixel_count = max(0, (int)current_plane->frame_info->fb->height - 246 *src_y_start); 247 break; 248 } 249 } 250 251 /** 252 * blend_line() - Blend a line from a plane to the output buffer 253 * 254 * @current_plane: current plane to work on 255 * @y: line to write in the output buffer 256 * @crtc_x_limit: width of the output buffer 257 * @stage_buffer: temporary buffer to convert the pixel line from the source buffer 258 * @output_buffer: buffer to blend the read line into. 259 */ 260 static void blend_line(struct vkms_plane_state *current_plane, int y, 261 int crtc_x_limit, struct line_buffer *stage_buffer, 262 struct line_buffer *output_buffer) 263 { 264 int src_x_start, src_y_start, dst_x_start, pixel_count; 265 struct drm_rect dst_line, tmp_src, src_line; 266 267 /* Avoid rendering useless lines */ 268 if (y < current_plane->frame_info->dst.y1 || 269 y >= current_plane->frame_info->dst.y2) 270 return; 271 272 /* 273 * dst_line is the line to copy. The initial coordinates are inside the 274 * destination framebuffer, and then drm_rect_* helpers are used to 275 * compute the correct position into the source framebuffer. 276 */ 277 dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y, 278 drm_rect_width(¤t_plane->frame_info->dst), 279 1); 280 281 drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src); 282 283 /* 284 * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of 285 * the destination buffer 286 */ 287 dst_line.x1 = max_t(int, dst_line.x1, 0); 288 dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit); 289 /* The destination is completely outside of the crtc. */ 290 if (dst_line.x2 <= dst_line.x1) 291 return; 292 293 src_line = dst_line; 294 295 /* 296 * Transform the coordinate x/y from the crtc to coordinates into 297 * coordinates for the src buffer. 298 * 299 * - Cancel the offset of the dst buffer. 300 * - Invert the rotation. This assumes that 301 * dst = drm_rect_rotate(src, rotation) (dst and src have the 302 * same size, but can be rotated). 303 * - Apply the offset of the source rectangle to the coordinate. 304 */ 305 drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1, 306 -current_plane->frame_info->dst.y1); 307 drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src), 308 drm_rect_height(&tmp_src), 309 current_plane->frame_info->rotation); 310 drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1); 311 312 /* Get the correct reading direction in the source buffer. */ 313 314 enum pixel_read_direction direction = 315 direction_for_rotation(current_plane->frame_info->rotation); 316 317 /* [2]: Compute and clamp the number of pixel to read */ 318 clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start, 319 &dst_x_start, &pixel_count); 320 321 if (pixel_count <= 0) { 322 /* Nothing to read, so avoid multiple function calls */ 323 return; 324 } 325 326 /* 327 * Modify the starting point to take in account the rotation 328 * 329 * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or 330 * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left 331 * corner. 332 */ 333 if (direction == READ_RIGHT_TO_LEFT) { 334 // src_x_start is now the right point 335 src_x_start += pixel_count - 1; 336 } else if (direction == READ_BOTTOM_TO_TOP) { 337 // src_y_start is now the bottom point 338 src_y_start += pixel_count - 1; 339 } 340 341 /* 342 * Perform the conversion and the blending 343 * 344 * Here we know that the read line (x_start, y_start, pixel_count) is 345 * inside the source buffer [2] and we don't write outside the stage 346 * buffer [1]. 347 */ 348 current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction, 349 pixel_count, &stage_buffer->pixels[dst_x_start]); 350 351 pre_mul_alpha_blend(stage_buffer, output_buffer, 352 dst_x_start, pixel_count); 353 } 354 355 /** 356 * blend - blend the pixels from all planes and compute crc 357 * @wb: The writeback frame buffer metadata 358 * @crtc_state: The crtc state 359 * @crc32: The crc output of the final frame 360 * @output_buffer: A buffer of a row that will receive the result of the blend(s) 361 * @stage_buffer: The line with the pixels from plane being blend to the output 362 * @row_size: The size, in bytes, of a single row 363 * 364 * This function blends the pixels (Using the `pre_mul_alpha_blend`) 365 * from all planes, calculates the crc32 of the output from the former step, 366 * and, if necessary, convert and store the output to the writeback buffer. 367 */ 368 static void blend(struct vkms_writeback_job *wb, 369 struct vkms_crtc_state *crtc_state, 370 u32 *crc32, struct line_buffer *stage_buffer, 371 struct line_buffer *output_buffer, size_t row_size) 372 { 373 struct vkms_plane_state **plane = crtc_state->active_planes; 374 u32 n_active_planes = crtc_state->num_active_planes; 375 376 const struct pixel_argb_u16 background_color = { .a = 0xffff }; 377 378 int crtc_y_limit = crtc_state->base.mode.vdisplay; 379 int crtc_x_limit = crtc_state->base.mode.hdisplay; 380 381 /* 382 * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary 383 * complexity to avoid poor blending performance. 384 * 385 * The function pixel_read_line callback is used to read a line, using an efficient 386 * algorithm for a specific format, into the staging buffer. 387 */ 388 for (int y = 0; y < crtc_y_limit; y++) { 389 fill_background(&background_color, output_buffer); 390 391 /* The active planes are composed associatively in z-order. */ 392 for (size_t i = 0; i < n_active_planes; i++) { 393 blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer); 394 } 395 396 apply_lut(crtc_state, output_buffer); 397 398 *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); 399 400 if (wb) 401 vkms_writeback_row(wb, output_buffer, y); 402 } 403 } 404 405 static int check_format_funcs(struct vkms_crtc_state *crtc_state, 406 struct vkms_writeback_job *active_wb) 407 { 408 struct vkms_plane_state **planes = crtc_state->active_planes; 409 u32 n_active_planes = crtc_state->num_active_planes; 410 411 for (size_t i = 0; i < n_active_planes; i++) 412 if (!planes[i]->pixel_read_line) 413 return -1; 414 415 if (active_wb && !active_wb->pixel_write) 416 return -1; 417 418 return 0; 419 } 420 421 static int check_iosys_map(struct vkms_crtc_state *crtc_state) 422 { 423 struct vkms_plane_state **plane_state = crtc_state->active_planes; 424 u32 n_active_planes = crtc_state->num_active_planes; 425 426 for (size_t i = 0; i < n_active_planes; i++) 427 if (iosys_map_is_null(&plane_state[i]->frame_info->map[0])) 428 return -1; 429 430 return 0; 431 } 432 433 static int compose_active_planes(struct vkms_writeback_job *active_wb, 434 struct vkms_crtc_state *crtc_state, 435 u32 *crc32) 436 { 437 size_t line_width, pixel_size = sizeof(struct pixel_argb_u16); 438 struct line_buffer output_buffer, stage_buffer; 439 int ret = 0; 440 441 /* 442 * This check exists so we can call `crc32_le` for the entire line 443 * instead doing it for each channel of each pixel in case 444 * `struct `pixel_argb_u16` had any gap added by the compiler 445 * between the struct fields. 446 */ 447 static_assert(sizeof(struct pixel_argb_u16) == 8); 448 449 if (WARN_ON(check_iosys_map(crtc_state))) 450 return -EINVAL; 451 452 if (WARN_ON(check_format_funcs(crtc_state, active_wb))) 453 return -EINVAL; 454 455 line_width = crtc_state->base.mode.hdisplay; 456 stage_buffer.n_pixels = line_width; 457 output_buffer.n_pixels = line_width; 458 459 stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); 460 if (!stage_buffer.pixels) { 461 DRM_ERROR("Cannot allocate memory for the output line buffer"); 462 return -ENOMEM; 463 } 464 465 output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); 466 if (!output_buffer.pixels) { 467 DRM_ERROR("Cannot allocate memory for intermediate line buffer"); 468 ret = -ENOMEM; 469 goto free_stage_buffer; 470 } 471 472 blend(active_wb, crtc_state, crc32, &stage_buffer, 473 &output_buffer, line_width * pixel_size); 474 475 kvfree(output_buffer.pixels); 476 free_stage_buffer: 477 kvfree(stage_buffer.pixels); 478 479 return ret; 480 } 481 482 /** 483 * vkms_composer_worker - ordered work_struct to compute CRC 484 * 485 * @work: work_struct 486 * 487 * Work handler for composing and computing CRCs. work_struct scheduled in 488 * an ordered workqueue that's periodically scheduled to run by 489 * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail(). 490 */ 491 void vkms_composer_worker(struct work_struct *work) 492 { 493 struct vkms_crtc_state *crtc_state = container_of(work, 494 struct vkms_crtc_state, 495 composer_work); 496 struct drm_crtc *crtc = crtc_state->base.crtc; 497 struct vkms_writeback_job *active_wb = crtc_state->active_writeback; 498 struct vkms_output *out = drm_crtc_to_vkms_output(crtc); 499 bool crc_pending, wb_pending; 500 u64 frame_start, frame_end; 501 u32 crc32 = 0; 502 int ret; 503 504 spin_lock_irq(&out->composer_lock); 505 frame_start = crtc_state->frame_start; 506 frame_end = crtc_state->frame_end; 507 crc_pending = crtc_state->crc_pending; 508 wb_pending = crtc_state->wb_pending; 509 crtc_state->frame_start = 0; 510 crtc_state->frame_end = 0; 511 crtc_state->crc_pending = false; 512 513 if (crtc->state->gamma_lut) { 514 s64 max_lut_index_fp; 515 s64 u16_max_fp = drm_int2fixp(0xffff); 516 517 crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data; 518 crtc_state->gamma_lut.lut_length = 519 crtc->state->gamma_lut->length / sizeof(struct drm_color_lut); 520 max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); 521 crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp, 522 u16_max_fp); 523 524 } else { 525 crtc_state->gamma_lut.base = NULL; 526 } 527 528 spin_unlock_irq(&out->composer_lock); 529 530 /* 531 * We raced with the vblank hrtimer and previous work already computed 532 * the crc, nothing to do. 533 */ 534 if (!crc_pending) 535 return; 536 537 if (wb_pending) 538 ret = compose_active_planes(active_wb, crtc_state, &crc32); 539 else 540 ret = compose_active_planes(NULL, crtc_state, &crc32); 541 542 if (ret) 543 return; 544 545 if (wb_pending) { 546 drm_writeback_signal_completion(&out->wb_connector, 0); 547 spin_lock_irq(&out->composer_lock); 548 crtc_state->wb_pending = false; 549 spin_unlock_irq(&out->composer_lock); 550 } 551 552 /* 553 * The worker can fall behind the vblank hrtimer, make sure we catch up. 554 */ 555 while (frame_start <= frame_end) 556 drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); 557 } 558 559 static const char *const pipe_crc_sources[] = { "auto" }; 560 561 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, 562 size_t *count) 563 { 564 *count = ARRAY_SIZE(pipe_crc_sources); 565 return pipe_crc_sources; 566 } 567 568 static int vkms_crc_parse_source(const char *src_name, bool *enabled) 569 { 570 int ret = 0; 571 572 if (!src_name) { 573 *enabled = false; 574 } else if (strcmp(src_name, "auto") == 0) { 575 *enabled = true; 576 } else { 577 *enabled = false; 578 ret = -EINVAL; 579 } 580 581 return ret; 582 } 583 584 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name, 585 size_t *values_cnt) 586 { 587 bool enabled; 588 589 if (vkms_crc_parse_source(src_name, &enabled) < 0) { 590 DRM_DEBUG_DRIVER("unknown source %s\n", src_name); 591 return -EINVAL; 592 } 593 594 *values_cnt = 1; 595 596 return 0; 597 } 598 599 void vkms_set_composer(struct vkms_output *out, bool enabled) 600 { 601 bool old_enabled; 602 603 if (enabled) 604 drm_crtc_vblank_get(&out->crtc); 605 606 spin_lock_irq(&out->lock); 607 old_enabled = out->composer_enabled; 608 out->composer_enabled = enabled; 609 spin_unlock_irq(&out->lock); 610 611 if (old_enabled) 612 drm_crtc_vblank_put(&out->crtc); 613 } 614 615 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name) 616 { 617 struct vkms_output *out = drm_crtc_to_vkms_output(crtc); 618 bool enabled = false; 619 int ret = 0; 620 621 ret = vkms_crc_parse_source(src_name, &enabled); 622 623 vkms_set_composer(out, enabled); 624 625 return ret; 626 } 627