1 // SPDX-License-Identifier: GPL-2.0+ 2 3 #include <linux/crc32.h> 4 5 #include <drm/drm_atomic.h> 6 #include <drm/drm_atomic_helper.h> 7 #include <drm/drm_blend.h> 8 #include <drm/drm_fourcc.h> 9 #include <drm/drm_fixed.h> 10 #include <drm/drm_gem_framebuffer_helper.h> 11 #include <drm/drm_print.h> 12 #include <drm/drm_vblank.h> 13 #include <linux/minmax.h> 14 #include <kunit/visibility.h> 15 16 #include "vkms_composer.h" 17 #include "vkms_luts.h" 18 19 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) 20 { 21 u32 new_color; 22 23 new_color = (src * 0xffff + dst * (0xffff - alpha)); 24 25 return DIV_ROUND_CLOSEST(new_color, 0xffff); 26 } 27 28 /** 29 * pre_mul_alpha_blend - alpha blending equation 30 * @stage_buffer: The line with the pixels from src_plane 31 * @output_buffer: A line buffer that receives all the blends output 32 * @x_start: The start offset 33 * @pixel_count: The number of pixels to blend 34 * 35 * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at 36 * [@x_start;@x_start+@pixel_count) in output_buffer. 37 * 38 * The current DRM assumption is that pixel color values have been already 39 * pre-multiplied with the alpha channel values. See more 40 * drm_plane_create_blend_mode_property(). Also, this formula assumes a 41 * completely opaque background. 42 */ 43 static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer, 44 struct line_buffer *output_buffer, int x_start, int pixel_count) 45 { 46 struct pixel_argb_u16 *out = &output_buffer->pixels[x_start]; 47 const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start]; 48 49 for (int i = 0; i < pixel_count; i++) { 50 out[i].a = (u16)0xffff; 51 out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a); 52 out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a); 53 out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a); 54 } 55 } 56 57 58 static void fill_background(const struct pixel_argb_u16 *background_color, 59 struct line_buffer *output_buffer) 60 { 61 for (size_t i = 0; i < output_buffer->n_pixels; i++) 62 output_buffer->pixels[i] = *background_color; 63 } 64 65 // lerp(a, b, t) = a + (b - a) * t 66 VISIBLE_IF_KUNIT u16 lerp_u16(u16 a, u16 b, s64 t) 67 { 68 s64 a_fp = drm_int2fixp(a); 69 s64 b_fp = drm_int2fixp(b); 70 71 s64 delta = drm_fixp_mul(b_fp - a_fp, t); 72 73 return drm_fixp2int_round(a_fp + delta); 74 } 75 EXPORT_SYMBOL_IF_KUNIT(lerp_u16); 76 77 VISIBLE_IF_KUNIT s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) 78 { 79 s64 color_channel_fp = drm_int2fixp(channel_value); 80 81 return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio); 82 } 83 EXPORT_SYMBOL_IF_KUNIT(get_lut_index); 84 85 VISIBLE_IF_KUNIT u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, 86 enum lut_channel channel) 87 { 88 s64 lut_index = get_lut_index(lut, channel_value); 89 u16 *floor_lut_value, *ceil_lut_value; 90 u16 floor_channel_value, ceil_channel_value; 91 92 /* 93 * This checks if `struct drm_color_lut` has any gap added by the compiler 94 * between the struct fields. 95 */ 96 static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4); 97 98 floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; 99 if (drm_fixp2int(lut_index) == (lut->lut_length - 1)) 100 /* We're at the end of the LUT array, use same value for ceil and floor */ 101 ceil_lut_value = floor_lut_value; 102 else 103 ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; 104 105 floor_channel_value = floor_lut_value[channel]; 106 ceil_channel_value = ceil_lut_value[channel]; 107 108 return lerp_u16(floor_channel_value, ceil_channel_value, 109 lut_index & DRM_FIXED_DECIMAL_MASK); 110 } 111 EXPORT_SYMBOL_IF_KUNIT(apply_lut_to_channel_value); 112 113 114 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer) 115 { 116 if (!crtc_state->gamma_lut.base) 117 return; 118 119 if (!crtc_state->gamma_lut.lut_length) 120 return; 121 122 for (size_t x = 0; x < output_buffer->n_pixels; x++) { 123 struct pixel_argb_u16 *pixel = &output_buffer->pixels[x]; 124 125 pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED); 126 pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN); 127 pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE); 128 } 129 } 130 131 VISIBLE_IF_KUNIT void apply_3x4_matrix(struct pixel_argb_s32 *pixel, 132 const struct drm_color_ctm_3x4 *matrix) 133 { 134 s64 rf, gf, bf; 135 s64 r, g, b; 136 137 r = drm_int2fixp(pixel->r); 138 g = drm_int2fixp(pixel->g); 139 b = drm_int2fixp(pixel->b); 140 141 rf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[0]), r) + 142 drm_fixp_mul(drm_sm2fixp(matrix->matrix[1]), g) + 143 drm_fixp_mul(drm_sm2fixp(matrix->matrix[2]), b) + 144 drm_sm2fixp(matrix->matrix[3]); 145 146 gf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[4]), r) + 147 drm_fixp_mul(drm_sm2fixp(matrix->matrix[5]), g) + 148 drm_fixp_mul(drm_sm2fixp(matrix->matrix[6]), b) + 149 drm_sm2fixp(matrix->matrix[7]); 150 151 bf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[8]), r) + 152 drm_fixp_mul(drm_sm2fixp(matrix->matrix[9]), g) + 153 drm_fixp_mul(drm_sm2fixp(matrix->matrix[10]), b) + 154 drm_sm2fixp(matrix->matrix[11]); 155 156 pixel->r = drm_fixp2int_round(rf); 157 pixel->g = drm_fixp2int_round(gf); 158 pixel->b = drm_fixp2int_round(bf); 159 } 160 EXPORT_SYMBOL_IF_KUNIT(apply_3x4_matrix); 161 162 static void apply_colorop(struct pixel_argb_s32 *pixel, struct drm_colorop *colorop) 163 { 164 struct drm_colorop_state *colorop_state = colorop->state; 165 struct drm_device *dev = colorop->dev; 166 167 if (colorop->type == DRM_COLOROP_1D_CURVE) { 168 switch (colorop_state->curve_1d_type) { 169 case DRM_COLOROP_1D_CURVE_SRGB_INV_EOTF: 170 pixel->r = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->r, LUT_RED); 171 pixel->g = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->g, LUT_GREEN); 172 pixel->b = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->b, LUT_BLUE); 173 break; 174 case DRM_COLOROP_1D_CURVE_SRGB_EOTF: 175 pixel->r = apply_lut_to_channel_value(&srgb_eotf, pixel->r, LUT_RED); 176 pixel->g = apply_lut_to_channel_value(&srgb_eotf, pixel->g, LUT_GREEN); 177 pixel->b = apply_lut_to_channel_value(&srgb_eotf, pixel->b, LUT_BLUE); 178 break; 179 default: 180 drm_WARN_ONCE(dev, true, 181 "unknown colorop 1D curve type %d\n", 182 colorop_state->curve_1d_type); 183 break; 184 } 185 } else if (colorop->type == DRM_COLOROP_CTM_3X4) { 186 if (colorop_state->data) 187 apply_3x4_matrix(pixel, 188 (struct drm_color_ctm_3x4 *)colorop_state->data->data); 189 } 190 } 191 192 static void pre_blend_color_transform(const struct vkms_plane_state *plane_state, 193 struct line_buffer *output_buffer) 194 { 195 struct pixel_argb_s32 pixel; 196 197 for (size_t x = 0; x < output_buffer->n_pixels; x++) { 198 struct drm_colorop *colorop = plane_state->base.base.color_pipeline; 199 200 /* 201 * Some operations, such as applying a BT709 encoding matrix, 202 * followed by a decoding matrix, require that we preserve 203 * values above 1.0 and below 0.0 until the end of the pipeline. 204 * 205 * Pack the 16-bit UNORM values into s32 to give us head-room to 206 * avoid clipping until we're at the end of the pipeline. Clip 207 * intentionally at the end of the pipeline before packing 208 * UNORM values back into u16. 209 */ 210 pixel.a = output_buffer->pixels[x].a; 211 pixel.r = output_buffer->pixels[x].r; 212 pixel.g = output_buffer->pixels[x].g; 213 pixel.b = output_buffer->pixels[x].b; 214 215 while (colorop) { 216 struct drm_colorop_state *colorop_state; 217 218 colorop_state = colorop->state; 219 220 if (!colorop_state) 221 return; 222 223 if (!colorop_state->bypass) 224 apply_colorop(&pixel, colorop); 225 226 colorop = colorop->next; 227 } 228 229 /* clamp values */ 230 output_buffer->pixels[x].a = clamp_val(pixel.a, 0, 0xffff); 231 output_buffer->pixels[x].r = clamp_val(pixel.r, 0, 0xffff); 232 output_buffer->pixels[x].g = clamp_val(pixel.g, 0, 0xffff); 233 output_buffer->pixels[x].b = clamp_val(pixel.b, 0, 0xffff); 234 } 235 } 236 237 /** 238 * direction_for_rotation() - Get the correct reading direction for a given rotation 239 * 240 * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation. 241 * 242 * This function will use the @rotation setting of a source plane to compute the reading 243 * direction in this plane which correspond to a "left to right writing" in the CRTC. 244 * For example, if the buffer is reflected on X axis, the pixel must be read from right to left 245 * to be written from left to right on the CRTC. 246 */ 247 static enum pixel_read_direction direction_for_rotation(unsigned int rotation) 248 { 249 struct drm_rect tmp_a, tmp_b; 250 int x, y; 251 252 /* 253 * Points A and B are depicted as zero-size rectangles on the CRTC. 254 * The CRTC writing direction is from A to B. The plane reading direction 255 * is discovered by inverse-transforming A and B. 256 * The reading direction is computed by rotating the vector AB (top-left to top-right) in a 257 * 1x1 square. 258 */ 259 260 tmp_a = DRM_RECT_INIT(0, 0, 0, 0); 261 tmp_b = DRM_RECT_INIT(1, 0, 0, 0); 262 drm_rect_rotate_inv(&tmp_a, 1, 1, rotation); 263 drm_rect_rotate_inv(&tmp_b, 1, 1, rotation); 264 265 x = tmp_b.x1 - tmp_a.x1; 266 y = tmp_b.y1 - tmp_a.y1; 267 268 if (x == 1 && y == 0) 269 return READ_LEFT_TO_RIGHT; 270 else if (x == -1 && y == 0) 271 return READ_RIGHT_TO_LEFT; 272 else if (y == 1 && x == 0) 273 return READ_TOP_TO_BOTTOM; 274 else if (y == -1 && x == 0) 275 return READ_BOTTOM_TO_TOP; 276 277 WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction."); 278 return READ_LEFT_TO_RIGHT; 279 } 280 281 /** 282 * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend 283 * process. 284 * 285 * @direction: direction of the reading 286 * @current_plane: current plane blended 287 * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle 288 * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of 289 * pixel_count*1 if @direction is horizontal. 290 * @src_x_start: x start coordinate for the line reading 291 * @src_y_start: y start coordinate for the line reading 292 * @dst_x_start: x coordinate to blend the read line 293 * @pixel_count: number of pixels to blend 294 * 295 * This function is mainly a safety net to avoid reading outside the source buffer. As the 296 * userspace should never ask to read outside the source plane, all the cases covered here should 297 * be dead code. 298 */ 299 static void clamp_line_coordinates(enum pixel_read_direction direction, 300 const struct vkms_plane_state *current_plane, 301 const struct drm_rect *src_line, int *src_x_start, 302 int *src_y_start, int *dst_x_start, int *pixel_count) 303 { 304 /* By default the start points are correct */ 305 *src_x_start = src_line->x1; 306 *src_y_start = src_line->y1; 307 *dst_x_start = current_plane->frame_info->dst.x1; 308 309 /* Get the correct number of pixel to blend, it depends of the direction */ 310 switch (direction) { 311 case READ_LEFT_TO_RIGHT: 312 case READ_RIGHT_TO_LEFT: 313 *pixel_count = drm_rect_width(src_line); 314 break; 315 case READ_BOTTOM_TO_TOP: 316 case READ_TOP_TO_BOTTOM: 317 *pixel_count = drm_rect_height(src_line); 318 break; 319 } 320 321 /* 322 * Clamp the coordinates to avoid reading outside the buffer 323 * 324 * This is mainly a security check to avoid reading outside the buffer, the userspace 325 * should never request to read outside the source buffer. 326 */ 327 switch (direction) { 328 case READ_LEFT_TO_RIGHT: 329 case READ_RIGHT_TO_LEFT: 330 if (*src_x_start < 0) { 331 *pixel_count += *src_x_start; 332 *dst_x_start -= *src_x_start; 333 *src_x_start = 0; 334 } 335 if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width) 336 *pixel_count = max(0, (int)current_plane->frame_info->fb->width - 337 *src_x_start); 338 break; 339 case READ_BOTTOM_TO_TOP: 340 case READ_TOP_TO_BOTTOM: 341 if (*src_y_start < 0) { 342 *pixel_count += *src_y_start; 343 *dst_x_start -= *src_y_start; 344 *src_y_start = 0; 345 } 346 if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height) 347 *pixel_count = max(0, (int)current_plane->frame_info->fb->height - 348 *src_y_start); 349 break; 350 } 351 } 352 353 /** 354 * blend_line() - Blend a line from a plane to the output buffer 355 * 356 * @current_plane: current plane to work on 357 * @y: line to write in the output buffer 358 * @crtc_x_limit: width of the output buffer 359 * @stage_buffer: temporary buffer to convert the pixel line from the source buffer 360 * @output_buffer: buffer to blend the read line into. 361 */ 362 static void blend_line(struct vkms_plane_state *current_plane, int y, 363 int crtc_x_limit, struct line_buffer *stage_buffer, 364 struct line_buffer *output_buffer) 365 { 366 int src_x_start, src_y_start, dst_x_start, pixel_count; 367 struct drm_rect dst_line, tmp_src, src_line; 368 369 /* Avoid rendering useless lines */ 370 if (y < current_plane->frame_info->dst.y1 || 371 y >= current_plane->frame_info->dst.y2) 372 return; 373 374 /* 375 * dst_line is the line to copy. The initial coordinates are inside the 376 * destination framebuffer, and then drm_rect_* helpers are used to 377 * compute the correct position into the source framebuffer. 378 */ 379 dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y, 380 drm_rect_width(¤t_plane->frame_info->dst), 381 1); 382 383 drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src); 384 385 /* 386 * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of 387 * the destination buffer 388 */ 389 dst_line.x1 = max_t(int, dst_line.x1, 0); 390 dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit); 391 /* The destination is completely outside of the crtc. */ 392 if (dst_line.x2 <= dst_line.x1) 393 return; 394 395 src_line = dst_line; 396 397 /* 398 * Transform the coordinate x/y from the crtc to coordinates into 399 * coordinates for the src buffer. 400 * 401 * - Cancel the offset of the dst buffer. 402 * - Invert the rotation. This assumes that 403 * dst = drm_rect_rotate(src, rotation) (dst and src have the 404 * same size, but can be rotated). 405 * - Apply the offset of the source rectangle to the coordinate. 406 */ 407 drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1, 408 -current_plane->frame_info->dst.y1); 409 drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src), 410 drm_rect_height(&tmp_src), 411 current_plane->frame_info->rotation); 412 drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1); 413 414 /* Get the correct reading direction in the source buffer. */ 415 416 enum pixel_read_direction direction = 417 direction_for_rotation(current_plane->frame_info->rotation); 418 419 /* [2]: Compute and clamp the number of pixel to read */ 420 clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start, 421 &dst_x_start, &pixel_count); 422 423 if (pixel_count <= 0) { 424 /* Nothing to read, so avoid multiple function calls */ 425 return; 426 } 427 428 /* 429 * Modify the starting point to take in account the rotation 430 * 431 * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or 432 * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left 433 * corner. 434 */ 435 if (direction == READ_RIGHT_TO_LEFT) { 436 // src_x_start is now the right point 437 src_x_start += pixel_count - 1; 438 } else if (direction == READ_BOTTOM_TO_TOP) { 439 // src_y_start is now the bottom point 440 src_y_start += pixel_count - 1; 441 } 442 443 /* 444 * Perform the conversion and the blending 445 * 446 * Here we know that the read line (x_start, y_start, pixel_count) is 447 * inside the source buffer [2] and we don't write outside the stage 448 * buffer [1]. 449 */ 450 current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction, 451 pixel_count, &stage_buffer->pixels[dst_x_start]); 452 pre_blend_color_transform(current_plane, stage_buffer); 453 pre_mul_alpha_blend(stage_buffer, output_buffer, 454 dst_x_start, pixel_count); 455 } 456 457 /** 458 * blend - blend the pixels from all planes and compute crc 459 * @wb: The writeback frame buffer metadata 460 * @crtc_state: The crtc state 461 * @crc32: The crc output of the final frame 462 * @output_buffer: A buffer of a row that will receive the result of the blend(s) 463 * @stage_buffer: The line with the pixels from plane being blend to the output 464 * @row_size: The size, in bytes, of a single row 465 * 466 * This function blends the pixels (Using the `pre_mul_alpha_blend`) 467 * from all planes, calculates the crc32 of the output from the former step, 468 * and, if necessary, convert and store the output to the writeback buffer. 469 */ 470 static void blend(struct vkms_writeback_job *wb, 471 struct vkms_crtc_state *crtc_state, 472 u32 *crc32, struct line_buffer *stage_buffer, 473 struct line_buffer *output_buffer, size_t row_size) 474 { 475 struct vkms_plane_state **plane = crtc_state->active_planes; 476 u32 n_active_planes = crtc_state->num_active_planes; 477 478 const struct pixel_argb_u16 background_color = { .a = 0xffff }; 479 480 int crtc_y_limit = crtc_state->base.mode.vdisplay; 481 int crtc_x_limit = crtc_state->base.mode.hdisplay; 482 483 /* 484 * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary 485 * complexity to avoid poor blending performance. 486 * 487 * The function pixel_read_line callback is used to read a line, using an efficient 488 * algorithm for a specific format, into the staging buffer. 489 */ 490 for (int y = 0; y < crtc_y_limit; y++) { 491 fill_background(&background_color, output_buffer); 492 493 /* The active planes are composed associatively in z-order. */ 494 for (size_t i = 0; i < n_active_planes; i++) { 495 blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer); 496 } 497 498 apply_lut(crtc_state, output_buffer); 499 500 *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); 501 502 if (wb) 503 vkms_writeback_row(wb, output_buffer, y); 504 } 505 } 506 507 static int check_format_funcs(struct vkms_crtc_state *crtc_state, 508 struct vkms_writeback_job *active_wb) 509 { 510 struct vkms_plane_state **planes = crtc_state->active_planes; 511 u32 n_active_planes = crtc_state->num_active_planes; 512 513 for (size_t i = 0; i < n_active_planes; i++) 514 if (!planes[i]->pixel_read_line) 515 return -1; 516 517 if (active_wb && !active_wb->pixel_write) 518 return -1; 519 520 return 0; 521 } 522 523 static int check_iosys_map(struct vkms_crtc_state *crtc_state) 524 { 525 struct vkms_plane_state **plane_state = crtc_state->active_planes; 526 u32 n_active_planes = crtc_state->num_active_planes; 527 528 for (size_t i = 0; i < n_active_planes; i++) 529 if (iosys_map_is_null(&plane_state[i]->frame_info->map[0])) 530 return -1; 531 532 return 0; 533 } 534 535 static int compose_active_planes(struct vkms_writeback_job *active_wb, 536 struct vkms_crtc_state *crtc_state, 537 u32 *crc32) 538 { 539 size_t line_width, pixel_size = sizeof(struct pixel_argb_u16); 540 struct line_buffer output_buffer, stage_buffer; 541 int ret = 0; 542 543 /* 544 * This check exists so we can call `crc32_le` for the entire line 545 * instead doing it for each channel of each pixel in case 546 * `struct `pixel_argb_u16` had any gap added by the compiler 547 * between the struct fields. 548 */ 549 static_assert(sizeof(struct pixel_argb_u16) == 8); 550 551 if (WARN_ON(check_iosys_map(crtc_state))) 552 return -EINVAL; 553 554 if (WARN_ON(check_format_funcs(crtc_state, active_wb))) 555 return -EINVAL; 556 557 line_width = crtc_state->base.mode.hdisplay; 558 stage_buffer.n_pixels = line_width; 559 output_buffer.n_pixels = line_width; 560 561 stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); 562 if (!stage_buffer.pixels) { 563 DRM_ERROR("Cannot allocate memory for the output line buffer"); 564 return -ENOMEM; 565 } 566 567 output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); 568 if (!output_buffer.pixels) { 569 DRM_ERROR("Cannot allocate memory for intermediate line buffer"); 570 ret = -ENOMEM; 571 goto free_stage_buffer; 572 } 573 574 blend(active_wb, crtc_state, crc32, &stage_buffer, 575 &output_buffer, line_width * pixel_size); 576 577 kvfree(output_buffer.pixels); 578 free_stage_buffer: 579 kvfree(stage_buffer.pixels); 580 581 return ret; 582 } 583 584 /** 585 * vkms_composer_worker - ordered work_struct to compute CRC 586 * 587 * @work: work_struct 588 * 589 * Work handler for composing and computing CRCs. work_struct scheduled in 590 * an ordered workqueue that's periodically scheduled to run by 591 * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail(). 592 */ 593 void vkms_composer_worker(struct work_struct *work) 594 { 595 struct vkms_crtc_state *crtc_state = container_of(work, 596 struct vkms_crtc_state, 597 composer_work); 598 struct drm_crtc *crtc = crtc_state->base.crtc; 599 struct vkms_writeback_job *active_wb = crtc_state->active_writeback; 600 struct vkms_output *out = drm_crtc_to_vkms_output(crtc); 601 bool crc_pending, wb_pending; 602 u64 frame_start, frame_end; 603 u32 crc32 = 0; 604 int ret; 605 606 spin_lock_irq(&out->composer_lock); 607 frame_start = crtc_state->frame_start; 608 frame_end = crtc_state->frame_end; 609 crc_pending = crtc_state->crc_pending; 610 wb_pending = crtc_state->wb_pending; 611 crtc_state->frame_start = 0; 612 crtc_state->frame_end = 0; 613 crtc_state->crc_pending = false; 614 615 if (crtc->state->gamma_lut) { 616 s64 max_lut_index_fp; 617 s64 u16_max_fp = drm_int2fixp(0xffff); 618 619 crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data; 620 crtc_state->gamma_lut.lut_length = 621 crtc->state->gamma_lut->length / sizeof(struct drm_color_lut); 622 max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); 623 crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp, 624 u16_max_fp); 625 626 } else { 627 crtc_state->gamma_lut.base = NULL; 628 } 629 630 spin_unlock_irq(&out->composer_lock); 631 632 /* 633 * We raced with the vblank hrtimer and previous work already computed 634 * the crc, nothing to do. 635 */ 636 if (!crc_pending) 637 return; 638 639 if (wb_pending) 640 ret = compose_active_planes(active_wb, crtc_state, &crc32); 641 else 642 ret = compose_active_planes(NULL, crtc_state, &crc32); 643 644 if (ret) 645 return; 646 647 if (wb_pending) { 648 drm_writeback_signal_completion(&out->wb_connector, 0); 649 spin_lock_irq(&out->composer_lock); 650 crtc_state->wb_pending = false; 651 spin_unlock_irq(&out->composer_lock); 652 } 653 654 /* 655 * The worker can fall behind the vblank hrtimer, make sure we catch up. 656 */ 657 while (frame_start <= frame_end) 658 drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); 659 } 660 661 static const char *const pipe_crc_sources[] = { "auto" }; 662 663 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, 664 size_t *count) 665 { 666 *count = ARRAY_SIZE(pipe_crc_sources); 667 return pipe_crc_sources; 668 } 669 670 static int vkms_crc_parse_source(const char *src_name, bool *enabled) 671 { 672 int ret = 0; 673 674 if (!src_name) { 675 *enabled = false; 676 } else if (strcmp(src_name, "auto") == 0) { 677 *enabled = true; 678 } else { 679 *enabled = false; 680 ret = -EINVAL; 681 } 682 683 return ret; 684 } 685 686 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name, 687 size_t *values_cnt) 688 { 689 bool enabled; 690 691 if (vkms_crc_parse_source(src_name, &enabled) < 0) { 692 DRM_DEBUG_DRIVER("unknown source %s\n", src_name); 693 return -EINVAL; 694 } 695 696 *values_cnt = 1; 697 698 return 0; 699 } 700 701 void vkms_set_composer(struct vkms_output *out, bool enabled) 702 { 703 bool old_enabled; 704 705 if (enabled) 706 drm_crtc_vblank_get(&out->crtc); 707 708 spin_lock_irq(&out->lock); 709 old_enabled = out->composer_enabled; 710 out->composer_enabled = enabled; 711 spin_unlock_irq(&out->lock); 712 713 if (old_enabled) 714 drm_crtc_vblank_put(&out->crtc); 715 } 716 717 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name) 718 { 719 struct vkms_output *out = drm_crtc_to_vkms_output(crtc); 720 bool enabled = false; 721 int ret = 0; 722 723 ret = vkms_crc_parse_source(src_name, &enabled); 724 725 vkms_set_composer(out, enabled); 726 727 return ret; 728 } 729