xref: /linux/drivers/gpu/drm/vc4/vc4_kms.c (revision 497e6b37b0099dc415578488287fd84fb74433eb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13 
14 #include <linux/clk.h>
15 
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_gem_framebuffer_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23 
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26 
27 #define HVS_NUM_CHANNELS 3
28 
29 struct vc4_ctm_state {
30 	struct drm_private_state base;
31 	struct drm_color_ctm *ctm;
32 	int fifo;
33 };
34 
35 static struct vc4_ctm_state *
36 to_vc4_ctm_state(const struct drm_private_state *priv)
37 {
38 	return container_of(priv, struct vc4_ctm_state, base);
39 }
40 
41 struct vc4_hvs_state {
42 	struct drm_private_state base;
43 	unsigned long core_clock_rate;
44 
45 	struct {
46 		unsigned in_use: 1;
47 		unsigned long fifo_load;
48 		struct drm_crtc_commit *pending_commit;
49 	} fifo_state[HVS_NUM_CHANNELS];
50 };
51 
52 static struct vc4_hvs_state *
53 to_vc4_hvs_state(const struct drm_private_state *priv)
54 {
55 	return container_of(priv, struct vc4_hvs_state, base);
56 }
57 
58 struct vc4_load_tracker_state {
59 	struct drm_private_state base;
60 	u64 hvs_load;
61 	u64 membus_load;
62 };
63 
64 static struct vc4_load_tracker_state *
65 to_vc4_load_tracker_state(const struct drm_private_state *priv)
66 {
67 	return container_of(priv, struct vc4_load_tracker_state, base);
68 }
69 
70 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
71 					       struct drm_private_obj *manager)
72 {
73 	struct drm_device *dev = state->dev;
74 	struct vc4_dev *vc4 = to_vc4_dev(dev);
75 	struct drm_private_state *priv_state;
76 	int ret;
77 
78 	ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
79 	if (ret)
80 		return ERR_PTR(ret);
81 
82 	priv_state = drm_atomic_get_private_obj_state(state, manager);
83 	if (IS_ERR(priv_state))
84 		return ERR_CAST(priv_state);
85 
86 	return to_vc4_ctm_state(priv_state);
87 }
88 
89 static struct drm_private_state *
90 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
91 {
92 	struct vc4_ctm_state *state;
93 
94 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
95 	if (!state)
96 		return NULL;
97 
98 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
99 
100 	return &state->base;
101 }
102 
103 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
104 				  struct drm_private_state *state)
105 {
106 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
107 
108 	kfree(ctm_state);
109 }
110 
111 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
112 	.atomic_duplicate_state = vc4_ctm_duplicate_state,
113 	.atomic_destroy_state = vc4_ctm_destroy_state,
114 };
115 
116 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
117 {
118 	struct vc4_dev *vc4 = to_vc4_dev(dev);
119 
120 	drm_atomic_private_obj_fini(&vc4->ctm_manager);
121 }
122 
123 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
124 {
125 	struct vc4_ctm_state *ctm_state;
126 
127 	drm_modeset_lock_init(&vc4->ctm_state_lock);
128 
129 	ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
130 	if (!ctm_state)
131 		return -ENOMEM;
132 
133 	drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
134 				    &vc4_ctm_state_funcs);
135 
136 	return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
137 }
138 
139 /* Converts a DRM S31.32 value to the HW S0.9 format. */
140 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
141 {
142 	u16 r;
143 
144 	/* Sign bit. */
145 	r = in & BIT_ULL(63) ? BIT(9) : 0;
146 
147 	if ((in & GENMASK_ULL(62, 32)) > 0) {
148 		/* We have zero integer bits so we can only saturate here. */
149 		r |= GENMASK(8, 0);
150 	} else {
151 		/* Otherwise take the 9 most important fractional bits. */
152 		r |= (in >> 23) & GENMASK(8, 0);
153 	}
154 
155 	return r;
156 }
157 
158 static void
159 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
160 {
161 	struct vc4_hvs *hvs = vc4->hvs;
162 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
163 	struct drm_color_ctm *ctm = ctm_state->ctm;
164 
165 	if (ctm_state->fifo) {
166 		HVS_WRITE(SCALER_OLEDCOEF2,
167 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
168 					SCALER_OLEDCOEF2_R_TO_R) |
169 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
170 					SCALER_OLEDCOEF2_R_TO_G) |
171 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
172 					SCALER_OLEDCOEF2_R_TO_B));
173 		HVS_WRITE(SCALER_OLEDCOEF1,
174 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
175 					SCALER_OLEDCOEF1_G_TO_R) |
176 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
177 					SCALER_OLEDCOEF1_G_TO_G) |
178 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
179 					SCALER_OLEDCOEF1_G_TO_B));
180 		HVS_WRITE(SCALER_OLEDCOEF0,
181 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
182 					SCALER_OLEDCOEF0_B_TO_R) |
183 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
184 					SCALER_OLEDCOEF0_B_TO_G) |
185 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
186 					SCALER_OLEDCOEF0_B_TO_B));
187 	}
188 
189 	HVS_WRITE(SCALER_OLEDOFFS,
190 		  VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
191 }
192 
193 static struct vc4_hvs_state *
194 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
195 {
196 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
197 	struct drm_private_state *priv_state;
198 
199 	priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
200 	if (!priv_state)
201 		return ERR_PTR(-EINVAL);
202 
203 	return to_vc4_hvs_state(priv_state);
204 }
205 
206 static struct vc4_hvs_state *
207 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
208 {
209 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
210 	struct drm_private_state *priv_state;
211 
212 	priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
213 	if (!priv_state)
214 		return ERR_PTR(-EINVAL);
215 
216 	return to_vc4_hvs_state(priv_state);
217 }
218 
219 static struct vc4_hvs_state *
220 vc4_hvs_get_global_state(struct drm_atomic_state *state)
221 {
222 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
223 	struct drm_private_state *priv_state;
224 
225 	priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
226 	if (IS_ERR(priv_state))
227 		return ERR_CAST(priv_state);
228 
229 	return to_vc4_hvs_state(priv_state);
230 }
231 
232 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
233 				     struct drm_atomic_state *state)
234 {
235 	struct vc4_hvs *hvs = vc4->hvs;
236 	struct drm_crtc_state *crtc_state;
237 	struct drm_crtc *crtc;
238 	unsigned int i;
239 
240 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
241 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
242 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
243 		u32 dispctrl;
244 		u32 dsp3_mux;
245 
246 		if (!crtc_state->active)
247 			continue;
248 
249 		if (vc4_state->assigned_channel != 2)
250 			continue;
251 
252 		/*
253 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
254 		 * FIFO X'.
255 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
256 		 *
257 		 * DSP3 is connected to FIFO2 unless the transposer is
258 		 * enabled. In this case, FIFO 2 is directly accessed by the
259 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
260 		 * route.
261 		 */
262 		if (vc4_crtc->feeds_txp)
263 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
264 		else
265 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
266 
267 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
268 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
269 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
270 	}
271 }
272 
273 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
274 				     struct drm_atomic_state *state)
275 {
276 	struct vc4_hvs *hvs = vc4->hvs;
277 	struct drm_crtc_state *crtc_state;
278 	struct drm_crtc *crtc;
279 	unsigned char mux;
280 	unsigned int i;
281 	u32 reg;
282 
283 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
284 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
285 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
286 		unsigned int channel = vc4_state->assigned_channel;
287 
288 		if (!vc4_state->update_muxing)
289 			continue;
290 
291 		switch (vc4_crtc->data->hvs_output) {
292 		case 2:
293 			drm_WARN_ON(&vc4->base,
294 				    VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
295 						  SCALER_DISPCTRL_DSP3_MUX) == channel);
296 
297 			mux = (channel == 2) ? 0 : 1;
298 			reg = HVS_READ(SCALER_DISPECTRL);
299 			HVS_WRITE(SCALER_DISPECTRL,
300 				  (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
301 				  VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
302 			break;
303 
304 		case 3:
305 			if (channel == VC4_HVS_CHANNEL_DISABLED)
306 				mux = 3;
307 			else
308 				mux = channel;
309 
310 			reg = HVS_READ(SCALER_DISPCTRL);
311 			HVS_WRITE(SCALER_DISPCTRL,
312 				  (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
313 				  VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
314 			break;
315 
316 		case 4:
317 			if (channel == VC4_HVS_CHANNEL_DISABLED)
318 				mux = 3;
319 			else
320 				mux = channel;
321 
322 			reg = HVS_READ(SCALER_DISPEOLN);
323 			HVS_WRITE(SCALER_DISPEOLN,
324 				  (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
325 				  VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
326 
327 			break;
328 
329 		case 5:
330 			if (channel == VC4_HVS_CHANNEL_DISABLED)
331 				mux = 3;
332 			else
333 				mux = channel;
334 
335 			reg = HVS_READ(SCALER_DISPDITHER);
336 			HVS_WRITE(SCALER_DISPDITHER,
337 				  (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
338 				  VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
339 			break;
340 
341 		default:
342 			break;
343 		}
344 	}
345 }
346 
347 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
348 {
349 	struct drm_device *dev = state->dev;
350 	struct vc4_dev *vc4 = to_vc4_dev(dev);
351 	struct vc4_hvs *hvs = vc4->hvs;
352 	struct drm_crtc_state *new_crtc_state;
353 	struct vc4_hvs_state *new_hvs_state;
354 	struct drm_crtc *crtc;
355 	struct vc4_hvs_state *old_hvs_state;
356 	unsigned int channel;
357 	int i;
358 
359 	old_hvs_state = vc4_hvs_get_old_global_state(state);
360 	if (WARN_ON(IS_ERR(old_hvs_state)))
361 		return;
362 
363 	new_hvs_state = vc4_hvs_get_new_global_state(state);
364 	if (WARN_ON(IS_ERR(new_hvs_state)))
365 		return;
366 
367 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
368 		struct vc4_crtc_state *vc4_crtc_state;
369 
370 		if (!new_crtc_state->commit)
371 			continue;
372 
373 		vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
374 		vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
375 	}
376 
377 	for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
378 		struct drm_crtc_commit *commit;
379 		int ret;
380 
381 		if (!old_hvs_state->fifo_state[channel].in_use)
382 			continue;
383 
384 		commit = old_hvs_state->fifo_state[channel].pending_commit;
385 		if (!commit)
386 			continue;
387 
388 		ret = drm_crtc_commit_wait(commit);
389 		if (ret)
390 			drm_err(dev, "Timed out waiting for commit\n");
391 
392 		drm_crtc_commit_put(commit);
393 		old_hvs_state->fifo_state[channel].pending_commit = NULL;
394 	}
395 
396 	if (vc4->is_vc5) {
397 		unsigned long state_rate = max(old_hvs_state->core_clock_rate,
398 					       new_hvs_state->core_clock_rate);
399 		unsigned long core_rate = clamp_t(unsigned long, state_rate,
400 						  500000000, hvs->max_core_rate);
401 
402 		drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
403 
404 		/*
405 		 * Do a temporary request on the core clock during the
406 		 * modeset.
407 		 */
408 		WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
409 	}
410 
411 	drm_atomic_helper_commit_modeset_disables(dev, state);
412 
413 	vc4_ctm_commit(vc4, state);
414 
415 	if (vc4->is_vc5)
416 		vc5_hvs_pv_muxing_commit(vc4, state);
417 	else
418 		vc4_hvs_pv_muxing_commit(vc4, state);
419 
420 	drm_atomic_helper_commit_planes(dev, state,
421 					DRM_PLANE_COMMIT_ACTIVE_ONLY);
422 
423 	drm_atomic_helper_commit_modeset_enables(dev, state);
424 
425 	drm_atomic_helper_fake_vblank(state);
426 
427 	drm_atomic_helper_commit_hw_done(state);
428 
429 	drm_atomic_helper_wait_for_flip_done(dev, state);
430 
431 	drm_atomic_helper_cleanup_planes(dev, state);
432 
433 	if (vc4->is_vc5) {
434 		unsigned long core_rate = min_t(unsigned long,
435 						hvs->max_core_rate,
436 						new_hvs_state->core_clock_rate);
437 
438 		drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
439 
440 		/*
441 		 * Request a clock rate based on the current HVS
442 		 * requirements.
443 		 */
444 		WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
445 
446 		drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
447 			clk_get_rate(hvs->core_clk));
448 	}
449 }
450 
451 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
452 {
453 	struct drm_crtc_state *crtc_state;
454 	struct vc4_hvs_state *hvs_state;
455 	struct drm_crtc *crtc;
456 	unsigned int i;
457 
458 	hvs_state = vc4_hvs_get_new_global_state(state);
459 	if (WARN_ON(IS_ERR(hvs_state)))
460 		return PTR_ERR(hvs_state);
461 
462 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
463 		struct vc4_crtc_state *vc4_crtc_state =
464 			to_vc4_crtc_state(crtc_state);
465 		unsigned int channel =
466 			vc4_crtc_state->assigned_channel;
467 
468 		if (channel == VC4_HVS_CHANNEL_DISABLED)
469 			continue;
470 
471 		if (!hvs_state->fifo_state[channel].in_use)
472 			continue;
473 
474 		hvs_state->fifo_state[channel].pending_commit =
475 			drm_crtc_commit_get(crtc_state->commit);
476 	}
477 
478 	return 0;
479 }
480 
481 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
482 					     struct drm_file *file_priv,
483 					     const struct drm_mode_fb_cmd2 *mode_cmd)
484 {
485 	struct vc4_dev *vc4 = to_vc4_dev(dev);
486 	struct drm_mode_fb_cmd2 mode_cmd_local;
487 
488 	if (WARN_ON_ONCE(vc4->is_vc5))
489 		return ERR_PTR(-ENODEV);
490 
491 	/* If the user didn't specify a modifier, use the
492 	 * vc4_set_tiling_ioctl() state for the BO.
493 	 */
494 	if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
495 		struct drm_gem_object *gem_obj;
496 		struct vc4_bo *bo;
497 
498 		gem_obj = drm_gem_object_lookup(file_priv,
499 						mode_cmd->handles[0]);
500 		if (!gem_obj) {
501 			DRM_DEBUG("Failed to look up GEM BO %d\n",
502 				  mode_cmd->handles[0]);
503 			return ERR_PTR(-ENOENT);
504 		}
505 		bo = to_vc4_bo(gem_obj);
506 
507 		mode_cmd_local = *mode_cmd;
508 
509 		if (bo->t_format) {
510 			mode_cmd_local.modifier[0] =
511 				DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
512 		} else {
513 			mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
514 		}
515 
516 		drm_gem_object_put(gem_obj);
517 
518 		mode_cmd = &mode_cmd_local;
519 	}
520 
521 	return drm_gem_fb_create(dev, file_priv, mode_cmd);
522 }
523 
524 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
525  * at a time and the HW only supports S0.9 scalars. To account for the latter,
526  * we don't allow userland to set a CTM that we have no hope of approximating.
527  */
528 static int
529 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
530 {
531 	struct vc4_dev *vc4 = to_vc4_dev(dev);
532 	struct vc4_ctm_state *ctm_state = NULL;
533 	struct drm_crtc *crtc;
534 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
535 	struct drm_color_ctm *ctm;
536 	int i;
537 
538 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
539 		/* CTM is being disabled. */
540 		if (!new_crtc_state->ctm && old_crtc_state->ctm) {
541 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
542 			if (IS_ERR(ctm_state))
543 				return PTR_ERR(ctm_state);
544 			ctm_state->fifo = 0;
545 		}
546 	}
547 
548 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
549 		if (new_crtc_state->ctm == old_crtc_state->ctm)
550 			continue;
551 
552 		if (!ctm_state) {
553 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
554 			if (IS_ERR(ctm_state))
555 				return PTR_ERR(ctm_state);
556 		}
557 
558 		/* CTM is being enabled or the matrix changed. */
559 		if (new_crtc_state->ctm) {
560 			struct vc4_crtc_state *vc4_crtc_state =
561 				to_vc4_crtc_state(new_crtc_state);
562 
563 			/* fifo is 1-based since 0 disables CTM. */
564 			int fifo = vc4_crtc_state->assigned_channel + 1;
565 
566 			/* Check userland isn't trying to turn on CTM for more
567 			 * than one CRTC at a time.
568 			 */
569 			if (ctm_state->fifo && ctm_state->fifo != fifo) {
570 				DRM_DEBUG_DRIVER("Too many CTM configured\n");
571 				return -EINVAL;
572 			}
573 
574 			/* Check we can approximate the specified CTM.
575 			 * We disallow scalars |c| > 1.0 since the HW has
576 			 * no integer bits.
577 			 */
578 			ctm = new_crtc_state->ctm->data;
579 			for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
580 				u64 val = ctm->matrix[i];
581 
582 				val &= ~BIT_ULL(63);
583 				if (val > BIT_ULL(32))
584 					return -EINVAL;
585 			}
586 
587 			ctm_state->fifo = fifo;
588 			ctm_state->ctm = ctm;
589 		}
590 	}
591 
592 	return 0;
593 }
594 
595 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
596 {
597 	struct drm_plane_state *old_plane_state, *new_plane_state;
598 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
599 	struct vc4_load_tracker_state *load_state;
600 	struct drm_private_state *priv_state;
601 	struct drm_plane *plane;
602 	int i;
603 
604 	priv_state = drm_atomic_get_private_obj_state(state,
605 						      &vc4->load_tracker);
606 	if (IS_ERR(priv_state))
607 		return PTR_ERR(priv_state);
608 
609 	load_state = to_vc4_load_tracker_state(priv_state);
610 	for_each_oldnew_plane_in_state(state, plane, old_plane_state,
611 				       new_plane_state, i) {
612 		struct vc4_plane_state *vc4_plane_state;
613 
614 		if (old_plane_state->fb && old_plane_state->crtc) {
615 			vc4_plane_state = to_vc4_plane_state(old_plane_state);
616 			load_state->membus_load -= vc4_plane_state->membus_load;
617 			load_state->hvs_load -= vc4_plane_state->hvs_load;
618 		}
619 
620 		if (new_plane_state->fb && new_plane_state->crtc) {
621 			vc4_plane_state = to_vc4_plane_state(new_plane_state);
622 			load_state->membus_load += vc4_plane_state->membus_load;
623 			load_state->hvs_load += vc4_plane_state->hvs_load;
624 		}
625 	}
626 
627 	/* Don't check the load when the tracker is disabled. */
628 	if (!vc4->load_tracker_enabled)
629 		return 0;
630 
631 	/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
632 	 * the system work when other blocks are accessing the memory.
633 	 */
634 	if (load_state->membus_load > SZ_1G + SZ_512M)
635 		return -ENOSPC;
636 
637 	/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
638 	 * consider the maximum number of cycles is 240M.
639 	 */
640 	if (load_state->hvs_load > 240000000ULL)
641 		return -ENOSPC;
642 
643 	return 0;
644 }
645 
646 static struct drm_private_state *
647 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
648 {
649 	struct vc4_load_tracker_state *state;
650 
651 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
652 	if (!state)
653 		return NULL;
654 
655 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
656 
657 	return &state->base;
658 }
659 
660 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
661 					   struct drm_private_state *state)
662 {
663 	struct vc4_load_tracker_state *load_state;
664 
665 	load_state = to_vc4_load_tracker_state(state);
666 	kfree(load_state);
667 }
668 
669 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
670 	.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
671 	.atomic_destroy_state = vc4_load_tracker_destroy_state,
672 };
673 
674 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
675 {
676 	struct vc4_dev *vc4 = to_vc4_dev(dev);
677 
678 	drm_atomic_private_obj_fini(&vc4->load_tracker);
679 }
680 
681 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
682 {
683 	struct vc4_load_tracker_state *load_state;
684 
685 	load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
686 	if (!load_state)
687 		return -ENOMEM;
688 
689 	drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
690 				    &load_state->base,
691 				    &vc4_load_tracker_state_funcs);
692 
693 	return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
694 }
695 
696 static struct drm_private_state *
697 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
698 {
699 	struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
700 	struct vc4_hvs_state *state;
701 	unsigned int i;
702 
703 	state = kzalloc(sizeof(*state), GFP_KERNEL);
704 	if (!state)
705 		return NULL;
706 
707 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
708 
709 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
710 		state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
711 		state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
712 	}
713 
714 	state->core_clock_rate = old_state->core_clock_rate;
715 
716 	return &state->base;
717 }
718 
719 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
720 					   struct drm_private_state *state)
721 {
722 	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
723 	unsigned int i;
724 
725 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
726 		if (!hvs_state->fifo_state[i].pending_commit)
727 			continue;
728 
729 		drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
730 	}
731 
732 	kfree(hvs_state);
733 }
734 
735 static void vc4_hvs_channels_print_state(struct drm_printer *p,
736 					 const struct drm_private_state *state)
737 {
738 	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
739 	unsigned int i;
740 
741 	drm_printf(p, "HVS State\n");
742 	drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
743 
744 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
745 		drm_printf(p, "\tChannel %d\n", i);
746 		drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
747 		drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
748 	}
749 }
750 
751 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
752 	.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
753 	.atomic_destroy_state = vc4_hvs_channels_destroy_state,
754 	.atomic_print_state = vc4_hvs_channels_print_state,
755 };
756 
757 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
758 {
759 	struct vc4_dev *vc4 = to_vc4_dev(dev);
760 
761 	drm_atomic_private_obj_fini(&vc4->hvs_channels);
762 }
763 
764 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
765 {
766 	struct vc4_hvs_state *state;
767 
768 	state = kzalloc(sizeof(*state), GFP_KERNEL);
769 	if (!state)
770 		return -ENOMEM;
771 
772 	drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
773 				    &state->base,
774 				    &vc4_hvs_state_funcs);
775 
776 	return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
777 }
778 
779 /*
780  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
781  * the TXP (and therefore all the CRTCs found on that platform).
782  *
783  * The naive (and our initial) implementation would just iterate over
784  * all the active CRTCs, try to find a suitable FIFO, and then remove it
785  * from the pool of available FIFOs. However, there are a few corner
786  * cases that need to be considered:
787  *
788  * - When running in a dual-display setup (so with two CRTCs involved),
789  *   we can update the state of a single CRTC (for example by changing
790  *   its mode using xrandr under X11) without affecting the other. In
791  *   this case, the other CRTC wouldn't be in the state at all, so we
792  *   need to consider all the running CRTCs in the DRM device to assign
793  *   a FIFO, not just the one in the state.
794  *
795  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
796  *   enabled CRTCs to pull their CRTC state into the global state, since
797  *   a page flip would start considering their vblank to complete. Since
798  *   we don't have a guarantee that they are actually active, that
799  *   vblank might never happen, and shouldn't even be considered if we
800  *   want to do a page flip on a single CRTC. That can be tested by
801  *   doing a modetest -v first on HDMI1 and then on HDMI0.
802  *
803  * - Since we need the pixelvalve to be disabled and enabled back when
804  *   the FIFO is changed, we should keep the FIFO assigned for as long
805  *   as the CRTC is enabled, only considering it free again once that
806  *   CRTC has been disabled. This can be tested by booting X11 on a
807  *   single display, and changing the resolution down and then back up.
808  */
809 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
810 				      struct drm_atomic_state *state)
811 {
812 	struct vc4_hvs_state *hvs_new_state;
813 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
814 	struct drm_crtc *crtc;
815 	unsigned int unassigned_channels = 0;
816 	unsigned int i;
817 
818 	hvs_new_state = vc4_hvs_get_global_state(state);
819 	if (IS_ERR(hvs_new_state))
820 		return PTR_ERR(hvs_new_state);
821 
822 	for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
823 		if (!hvs_new_state->fifo_state[i].in_use)
824 			unassigned_channels |= BIT(i);
825 
826 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
827 		struct vc4_crtc_state *old_vc4_crtc_state =
828 			to_vc4_crtc_state(old_crtc_state);
829 		struct vc4_crtc_state *new_vc4_crtc_state =
830 			to_vc4_crtc_state(new_crtc_state);
831 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
832 		unsigned int matching_channels;
833 		unsigned int channel;
834 
835 		drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
836 
837 		/* Nothing to do here, let's skip it */
838 		if (old_crtc_state->enable == new_crtc_state->enable) {
839 			if (new_crtc_state->enable)
840 				drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
841 					crtc->name, new_vc4_crtc_state->assigned_channel);
842 			else
843 				drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
844 
845 			continue;
846 		}
847 
848 		/* Muxing will need to be modified, mark it as such */
849 		new_vc4_crtc_state->update_muxing = true;
850 
851 		/* If we're disabling our CRTC, we put back our channel */
852 		if (!new_crtc_state->enable) {
853 			channel = old_vc4_crtc_state->assigned_channel;
854 
855 			drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
856 				crtc->name, channel);
857 
858 			hvs_new_state->fifo_state[channel].in_use = false;
859 			new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
860 			continue;
861 		}
862 
863 		/*
864 		 * The problem we have to solve here is that we have
865 		 * up to 7 encoders, connected to up to 6 CRTCs.
866 		 *
867 		 * Those CRTCs, depending on the instance, can be
868 		 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
869 		 * the change the muxing between FIFOs and outputs in
870 		 * the HVS accordingly.
871 		 *
872 		 * It would be pretty hard to come up with an
873 		 * algorithm that would generically solve
874 		 * this. However, the current routing trees we support
875 		 * allow us to simplify a bit the problem.
876 		 *
877 		 * Indeed, with the current supported layouts, if we
878 		 * try to assign in the ascending crtc index order the
879 		 * FIFOs, we can't fall into the situation where an
880 		 * earlier CRTC that had multiple routes is assigned
881 		 * one that was the only option for a later CRTC.
882 		 *
883 		 * If the layout changes and doesn't give us that in
884 		 * the future, we will need to have something smarter,
885 		 * but it works so far.
886 		 */
887 		matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
888 		if (!matching_channels)
889 			return -EINVAL;
890 
891 		channel = ffs(matching_channels) - 1;
892 
893 		drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
894 		new_vc4_crtc_state->assigned_channel = channel;
895 		unassigned_channels &= ~BIT(channel);
896 		hvs_new_state->fifo_state[channel].in_use = true;
897 	}
898 
899 	return 0;
900 }
901 
902 static int
903 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
904 {
905 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
906 	struct drm_private_state *priv_state;
907 	struct vc4_hvs_state *hvs_new_state;
908 	struct vc4_load_tracker_state *load_state;
909 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
910 	struct drm_crtc *crtc;
911 	unsigned int num_outputs;
912 	unsigned long pixel_rate;
913 	unsigned long cob_rate;
914 	unsigned int i;
915 
916 	priv_state = drm_atomic_get_private_obj_state(state,
917 						      &vc4->load_tracker);
918 	if (IS_ERR(priv_state))
919 		return PTR_ERR(priv_state);
920 
921 	load_state = to_vc4_load_tracker_state(priv_state);
922 
923 	hvs_new_state = vc4_hvs_get_global_state(state);
924 	if (IS_ERR(hvs_new_state))
925 		return PTR_ERR(hvs_new_state);
926 
927 	for_each_oldnew_crtc_in_state(state, crtc,
928 				      old_crtc_state,
929 				      new_crtc_state,
930 				      i) {
931 		if (old_crtc_state->active) {
932 			struct vc4_crtc_state *old_vc4_state =
933 				to_vc4_crtc_state(old_crtc_state);
934 			unsigned int channel = old_vc4_state->assigned_channel;
935 
936 			hvs_new_state->fifo_state[channel].fifo_load = 0;
937 		}
938 
939 		if (new_crtc_state->active) {
940 			struct vc4_crtc_state *new_vc4_state =
941 				to_vc4_crtc_state(new_crtc_state);
942 			unsigned int channel = new_vc4_state->assigned_channel;
943 
944 			hvs_new_state->fifo_state[channel].fifo_load =
945 				new_vc4_state->hvs_load;
946 		}
947 	}
948 
949 	cob_rate = 0;
950 	num_outputs = 0;
951 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
952 		if (!hvs_new_state->fifo_state[i].in_use)
953 			continue;
954 
955 		num_outputs++;
956 		cob_rate = max_t(unsigned long,
957 				 hvs_new_state->fifo_state[i].fifo_load,
958 				 cob_rate);
959 	}
960 
961 	pixel_rate = load_state->hvs_load;
962 	if (num_outputs > 1) {
963 		pixel_rate = (pixel_rate * 40) / 100;
964 	} else {
965 		pixel_rate = (pixel_rate * 60) / 100;
966 	}
967 
968 	hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
969 
970 	return 0;
971 }
972 
973 
974 static int
975 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
976 {
977 	int ret;
978 
979 	ret = vc4_pv_muxing_atomic_check(dev, state);
980 	if (ret)
981 		return ret;
982 
983 	ret = vc4_ctm_atomic_check(dev, state);
984 	if (ret < 0)
985 		return ret;
986 
987 	ret = drm_atomic_helper_check(dev, state);
988 	if (ret)
989 		return ret;
990 
991 	ret = vc4_load_tracker_atomic_check(state);
992 	if (ret)
993 		return ret;
994 
995 	return vc4_core_clock_atomic_check(state);
996 }
997 
998 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
999 	.atomic_commit_setup	= vc4_atomic_commit_setup,
1000 	.atomic_commit_tail	= vc4_atomic_commit_tail,
1001 };
1002 
1003 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1004 	.atomic_check = vc4_atomic_check,
1005 	.atomic_commit = drm_atomic_helper_commit,
1006 	.fb_create = vc4_fb_create,
1007 };
1008 
1009 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1010 	.atomic_check = vc4_atomic_check,
1011 	.atomic_commit = drm_atomic_helper_commit,
1012 	.fb_create = drm_gem_fb_create,
1013 };
1014 
1015 int vc4_kms_load(struct drm_device *dev)
1016 {
1017 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1018 	int ret;
1019 
1020 	/*
1021 	 * The limits enforced by the load tracker aren't relevant for
1022 	 * the BCM2711, but the load tracker computations are used for
1023 	 * the core clock rate calculation.
1024 	 */
1025 	if (!vc4->is_vc5) {
1026 		/* Start with the load tracker enabled. Can be
1027 		 * disabled through the debugfs load_tracker file.
1028 		 */
1029 		vc4->load_tracker_enabled = true;
1030 	}
1031 
1032 	/* Set support for vblank irq fast disable, before drm_vblank_init() */
1033 	dev->vblank_disable_immediate = true;
1034 
1035 	ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1036 	if (ret < 0) {
1037 		dev_err(dev->dev, "failed to initialize vblank\n");
1038 		return ret;
1039 	}
1040 
1041 	if (vc4->is_vc5) {
1042 		dev->mode_config.max_width = 7680;
1043 		dev->mode_config.max_height = 7680;
1044 	} else {
1045 		dev->mode_config.max_width = 2048;
1046 		dev->mode_config.max_height = 2048;
1047 	}
1048 
1049 	dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1050 	dev->mode_config.helper_private = &vc4_mode_config_helpers;
1051 	dev->mode_config.preferred_depth = 24;
1052 	dev->mode_config.async_page_flip = true;
1053 
1054 	ret = vc4_ctm_obj_init(vc4);
1055 	if (ret)
1056 		return ret;
1057 
1058 	ret = vc4_load_tracker_obj_init(vc4);
1059 	if (ret)
1060 		return ret;
1061 
1062 	ret = vc4_hvs_channels_obj_init(vc4);
1063 	if (ret)
1064 		return ret;
1065 
1066 	drm_mode_config_reset(dev);
1067 
1068 	drm_kms_helper_poll_init(dev);
1069 
1070 	return 0;
1071 }
1072