xref: /linux/drivers/gpu/drm/vc4/vc4_hvs.c (revision b9a14d54ab2bf0c09409f373a2120de65046178a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26 
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_vblank.h>
30 
31 #include <soc/bcm2835/raspberrypi-firmware.h>
32 
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35 
36 static const struct debugfs_reg32 vc4_hvs_regs[] = {
37 	VC4_REG32(SCALER_DISPCTRL),
38 	VC4_REG32(SCALER_DISPSTAT),
39 	VC4_REG32(SCALER_DISPID),
40 	VC4_REG32(SCALER_DISPECTRL),
41 	VC4_REG32(SCALER_DISPPROF),
42 	VC4_REG32(SCALER_DISPDITHER),
43 	VC4_REG32(SCALER_DISPEOLN),
44 	VC4_REG32(SCALER_DISPLIST0),
45 	VC4_REG32(SCALER_DISPLIST1),
46 	VC4_REG32(SCALER_DISPLIST2),
47 	VC4_REG32(SCALER_DISPLSTAT),
48 	VC4_REG32(SCALER_DISPLACT0),
49 	VC4_REG32(SCALER_DISPLACT1),
50 	VC4_REG32(SCALER_DISPLACT2),
51 	VC4_REG32(SCALER_DISPCTRL0),
52 	VC4_REG32(SCALER_DISPBKGND0),
53 	VC4_REG32(SCALER_DISPSTAT0),
54 	VC4_REG32(SCALER_DISPBASE0),
55 	VC4_REG32(SCALER_DISPCTRL1),
56 	VC4_REG32(SCALER_DISPBKGND1),
57 	VC4_REG32(SCALER_DISPSTAT1),
58 	VC4_REG32(SCALER_DISPBASE1),
59 	VC4_REG32(SCALER_DISPCTRL2),
60 	VC4_REG32(SCALER_DISPBKGND2),
61 	VC4_REG32(SCALER_DISPSTAT2),
62 	VC4_REG32(SCALER_DISPBASE2),
63 	VC4_REG32(SCALER_DISPALPHA2),
64 	VC4_REG32(SCALER_OLEDOFFS),
65 	VC4_REG32(SCALER_OLEDCOEF0),
66 	VC4_REG32(SCALER_OLEDCOEF1),
67 	VC4_REG32(SCALER_OLEDCOEF2),
68 };
69 
70 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
71 {
72 	struct drm_device *drm = &hvs->vc4->base;
73 	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
74 	int idx, i;
75 
76 	if (!drm_dev_enter(drm, &idx))
77 		return;
78 
79 	drm_print_regset32(&p, &hvs->regset);
80 
81 	DRM_INFO("HVS ctx:\n");
82 	for (i = 0; i < 64; i += 4) {
83 		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
84 			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
85 			 readl((u32 __iomem *)hvs->dlist + i + 0),
86 			 readl((u32 __iomem *)hvs->dlist + i + 1),
87 			 readl((u32 __iomem *)hvs->dlist + i + 2),
88 			 readl((u32 __iomem *)hvs->dlist + i + 3));
89 	}
90 
91 	drm_dev_exit(idx);
92 }
93 
94 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
95 {
96 	struct drm_debugfs_entry *entry = m->private;
97 	struct drm_device *dev = entry->dev;
98 	struct vc4_dev *vc4 = to_vc4_dev(dev);
99 	struct drm_printer p = drm_seq_file_printer(m);
100 
101 	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
102 
103 	return 0;
104 }
105 
106 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
107 {
108 	struct drm_debugfs_entry *entry = m->private;
109 	struct drm_device *dev = entry->dev;
110 	struct vc4_dev *vc4 = to_vc4_dev(dev);
111 	struct vc4_hvs *hvs = vc4->hvs;
112 	struct drm_printer p = drm_seq_file_printer(m);
113 	unsigned int dlist_mem_size = hvs->dlist_mem_size;
114 	unsigned int next_entry_start;
115 	unsigned int i, j;
116 	u32 dlist_word, dispstat;
117 
118 	for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
119 		dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
120 					 SCALER_DISPSTATX_MODE);
121 		if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
122 		    dispstat == SCALER_DISPSTATX_MODE_EOF) {
123 			drm_printf(&p, "HVS chan %u disabled\n", i);
124 			continue;
125 		}
126 
127 		drm_printf(&p, "HVS chan %u:\n", i);
128 		next_entry_start = 0;
129 
130 		for (j = HVS_READ(SCALER_DISPLISTX(i)); j < dlist_mem_size; j++) {
131 			dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
132 			drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
133 				   dlist_word);
134 			if (!next_entry_start ||
135 			    next_entry_start == j) {
136 				if (dlist_word & SCALER_CTL0_END)
137 					break;
138 				next_entry_start = j +
139 					VC4_GET_FIELD(dlist_word,
140 						      SCALER_CTL0_SIZE);
141 			}
142 		}
143 	}
144 
145 	return 0;
146 }
147 
148 /* The filter kernel is composed of dwords each containing 3 9-bit
149  * signed integers packed next to each other.
150  */
151 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
152 #define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
153 	((((c0) & 0x1ff) << 0) |				\
154 	 (((c1) & 0x1ff) << 9) |				\
155 	 (((c2) & 0x1ff) << 18))
156 
157 /* The whole filter kernel is arranged as the coefficients 0-16 going
158  * up, then a pad, then 17-31 going down and reversed within the
159  * dwords.  This means that a linear phase kernel (where it's
160  * symmetrical at the boundary between 15 and 16) has the last 5
161  * dwords matching the first 5, but reversed.
162  */
163 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
164 				c9, c10, c11, c12, c13, c14, c15)	\
165 	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
166 	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
167 	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
168 	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
169 	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
170 	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
171 
172 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
173 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
174 
175 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
176  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
177  */
178 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
179 	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
180 				50, 82, 119, 155, 187, 213, 227);
181 
182 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
183 					struct drm_mm_node *space,
184 					const u32 *kernel)
185 {
186 	int ret, i;
187 	u32 __iomem *dst_kernel;
188 
189 	/*
190 	 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
191 	 * here since that function is only called from vc4_hvs_bind().
192 	 */
193 
194 	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
195 	if (ret) {
196 		drm_err(&hvs->vc4->base, "Failed to allocate space for filter kernel: %d\n",
197 			ret);
198 		return ret;
199 	}
200 
201 	dst_kernel = hvs->dlist + space->start;
202 
203 	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
204 		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
205 			writel(kernel[i], &dst_kernel[i]);
206 		else {
207 			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
208 			       &dst_kernel[i]);
209 		}
210 	}
211 
212 	return 0;
213 }
214 
215 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
216 			     struct vc4_crtc *vc4_crtc)
217 {
218 	struct drm_device *drm = &hvs->vc4->base;
219 	struct drm_crtc *crtc = &vc4_crtc->base;
220 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
221 	int idx;
222 	u32 i;
223 
224 	if (!drm_dev_enter(drm, &idx))
225 		return;
226 
227 	if (hvs->vc4->gen == VC4_GEN_4)
228 		return;
229 
230 	/* The LUT memory is laid out with each HVS channel in order,
231 	 * each of which takes 256 writes for R, 256 for G, then 256
232 	 * for B.
233 	 */
234 	HVS_WRITE(SCALER_GAMADDR,
235 		  SCALER_GAMADDR_AUTOINC |
236 		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
237 
238 	for (i = 0; i < crtc->gamma_size; i++)
239 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
240 	for (i = 0; i < crtc->gamma_size; i++)
241 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
242 	for (i = 0; i < crtc->gamma_size; i++)
243 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
244 
245 	drm_dev_exit(idx);
246 }
247 
248 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
249 				     struct vc4_crtc *vc4_crtc)
250 {
251 	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
252 	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
253 	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
254 	u32 i;
255 
256 	for (i = 0; i < length; i++) {
257 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
258 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
259 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
260 	}
261 
262 	vc4_hvs_lut_load(hvs, vc4_crtc);
263 }
264 
265 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
266 {
267 	struct drm_device *drm = &hvs->vc4->base;
268 	u8 field = 0;
269 	int idx;
270 
271 	if (!drm_dev_enter(drm, &idx))
272 		return 0;
273 
274 	switch (fifo) {
275 	case 0:
276 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
277 				      SCALER_DISPSTAT1_FRCNT0);
278 		break;
279 	case 1:
280 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
281 				      SCALER_DISPSTAT1_FRCNT1);
282 		break;
283 	case 2:
284 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
285 				      SCALER_DISPSTAT2_FRCNT2);
286 		break;
287 	}
288 
289 	drm_dev_exit(idx);
290 	return field;
291 }
292 
293 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
294 {
295 	struct vc4_dev *vc4 = hvs->vc4;
296 	u32 reg;
297 	int ret;
298 
299 	switch (vc4->gen) {
300 	case VC4_GEN_4:
301 		return output;
302 
303 	case VC4_GEN_5:
304 		/*
305 		 * NOTE: We should probably use
306 		 * drm_dev_enter()/drm_dev_exit() here, but this
307 		 * function is only used during the DRM device
308 		 * initialization, so we should be fine.
309 		 */
310 
311 		switch (output) {
312 		case 0:
313 			return 0;
314 
315 		case 1:
316 			return 1;
317 
318 		case 2:
319 			reg = HVS_READ(SCALER_DISPECTRL);
320 			ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
321 			if (ret == 0)
322 				return 2;
323 
324 			return 0;
325 
326 		case 3:
327 			reg = HVS_READ(SCALER_DISPCTRL);
328 			ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
329 			if (ret == 3)
330 				return -EPIPE;
331 
332 			return ret;
333 
334 		case 4:
335 			reg = HVS_READ(SCALER_DISPEOLN);
336 			ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
337 			if (ret == 3)
338 				return -EPIPE;
339 
340 			return ret;
341 
342 		case 5:
343 			reg = HVS_READ(SCALER_DISPDITHER);
344 			ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
345 			if (ret == 3)
346 				return -EPIPE;
347 
348 			return ret;
349 
350 		default:
351 			return -EPIPE;
352 		}
353 
354 	default:
355 		return -EPIPE;
356 	}
357 }
358 
359 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
360 				struct drm_display_mode *mode, bool oneshot)
361 {
362 	struct vc4_dev *vc4 = hvs->vc4;
363 	struct drm_device *drm = &vc4->base;
364 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
365 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
366 	unsigned int chan = vc4_crtc_state->assigned_channel;
367 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
368 	u32 dispbkgndx;
369 	u32 dispctrl;
370 	int idx;
371 
372 	if (!drm_dev_enter(drm, &idx))
373 		return -ENODEV;
374 
375 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
376 	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
377 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
378 
379 	/* Turn on the scaler, which will wait for vstart to start
380 	 * compositing.
381 	 * When feeding the transposer, we should operate in oneshot
382 	 * mode.
383 	 */
384 	dispctrl = SCALER_DISPCTRLX_ENABLE;
385 	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
386 
387 	if (vc4->gen == VC4_GEN_4) {
388 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
389 					  SCALER_DISPCTRLX_WIDTH) |
390 			    VC4_SET_FIELD(mode->vdisplay,
391 					  SCALER_DISPCTRLX_HEIGHT) |
392 			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
393 		dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
394 	} else {
395 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
396 					  SCALER5_DISPCTRLX_WIDTH) |
397 			    VC4_SET_FIELD(mode->vdisplay,
398 					  SCALER5_DISPCTRLX_HEIGHT) |
399 			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
400 		dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
401 	}
402 
403 	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
404 
405 	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
406 	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
407 
408 	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
409 		  ((vc4->gen == VC4_GEN_4) ? SCALER_DISPBKGND_GAMMA : 0) |
410 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
411 
412 	/* Reload the LUT, since the SRAMs would have been disabled if
413 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
414 	 */
415 	vc4_hvs_lut_load(hvs, vc4_crtc);
416 
417 	drm_dev_exit(idx);
418 
419 	return 0;
420 }
421 
422 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
423 {
424 	struct drm_device *drm = &hvs->vc4->base;
425 	int idx;
426 
427 	if (!drm_dev_enter(drm, &idx))
428 		return;
429 
430 	if (!(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE))
431 		goto out;
432 
433 	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
434 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
435 
436 	/* Once we leave, the scaler should be disabled and its fifo empty. */
437 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
438 
439 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
440 				   SCALER_DISPSTATX_MODE) !=
441 		     SCALER_DISPSTATX_MODE_DISABLED);
442 
443 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
444 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
445 		     SCALER_DISPSTATX_EMPTY);
446 
447 out:
448 	drm_dev_exit(idx);
449 }
450 
451 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
452 {
453 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
454 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
455 	struct drm_device *dev = crtc->dev;
456 	struct vc4_dev *vc4 = to_vc4_dev(dev);
457 	struct drm_plane *plane;
458 	unsigned long flags;
459 	const struct drm_plane_state *plane_state;
460 	u32 dlist_count = 0;
461 	int ret;
462 
463 	/* The pixelvalve can only feed one encoder (and encoders are
464 	 * 1:1 with connectors.)
465 	 */
466 	if (hweight32(crtc_state->connector_mask) > 1)
467 		return -EINVAL;
468 
469 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
470 		u32 plane_dlist_count = vc4_plane_dlist_size(plane_state);
471 
472 		drm_dbg_driver(dev, "[CRTC:%d:%s] Found [PLANE:%d:%s] with DLIST size: %u\n",
473 			       crtc->base.id, crtc->name,
474 			       plane->base.id, plane->name,
475 			       plane_dlist_count);
476 
477 		dlist_count += plane_dlist_count;
478 	}
479 
480 	dlist_count++; /* Account for SCALER_CTL0_END. */
481 
482 	drm_dbg_driver(dev, "[CRTC:%d:%s] Allocating DLIST block with size: %u\n",
483 		       crtc->base.id, crtc->name, dlist_count);
484 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
485 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
486 				 dlist_count);
487 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
488 	if (ret) {
489 		drm_err(dev, "Failed to allocate DLIST entry: %d\n", ret);
490 		return ret;
491 	}
492 
493 	return 0;
494 }
495 
496 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
497 {
498 	struct drm_device *dev = crtc->dev;
499 	struct vc4_dev *vc4 = to_vc4_dev(dev);
500 	struct vc4_hvs *hvs = vc4->hvs;
501 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
502 	int idx;
503 
504 	if (!drm_dev_enter(dev, &idx))
505 		return;
506 
507 	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
508 		  vc4_state->mm.start);
509 
510 	drm_dev_exit(idx);
511 }
512 
513 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
514 {
515 	struct drm_device *dev = crtc->dev;
516 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
517 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
518 	unsigned long flags;
519 
520 	if (crtc->state->event) {
521 		crtc->state->event->pipe = drm_crtc_index(crtc);
522 
523 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
524 
525 		spin_lock_irqsave(&dev->event_lock, flags);
526 
527 		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
528 			vc4_crtc->event = crtc->state->event;
529 			crtc->state->event = NULL;
530 		}
531 
532 		spin_unlock_irqrestore(&dev->event_lock, flags);
533 	}
534 
535 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
536 	vc4_crtc->current_dlist = vc4_state->mm.start;
537 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
538 }
539 
540 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
541 			  struct drm_atomic_state *state)
542 {
543 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
544 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
548 	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
549 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
550 }
551 
552 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
553 			   struct drm_atomic_state *state)
554 {
555 	struct drm_device *dev = crtc->dev;
556 	struct vc4_dev *vc4 = to_vc4_dev(dev);
557 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
558 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
559 	bool oneshot = vc4_crtc->feeds_txp;
560 
561 	vc4_hvs_install_dlist(crtc);
562 	vc4_hvs_update_dlist(crtc);
563 	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
564 }
565 
566 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
567 			    struct drm_atomic_state *state)
568 {
569 	struct drm_device *dev = crtc->dev;
570 	struct vc4_dev *vc4 = to_vc4_dev(dev);
571 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
572 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
573 	unsigned int chan = vc4_state->assigned_channel;
574 
575 	vc4_hvs_stop_channel(vc4->hvs, chan);
576 }
577 
578 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
579 			  struct drm_atomic_state *state)
580 {
581 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
582 									 crtc);
583 	struct drm_device *dev = crtc->dev;
584 	struct vc4_dev *vc4 = to_vc4_dev(dev);
585 	struct vc4_hvs *hvs = vc4->hvs;
586 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
587 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
588 	unsigned int channel = vc4_state->assigned_channel;
589 	struct drm_plane *plane;
590 	struct vc4_plane_state *vc4_plane_state;
591 	bool debug_dump_regs = false;
592 	bool enable_bg_fill = false;
593 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
594 	u32 __iomem *dlist_next = dlist_start;
595 	unsigned int zpos = 0;
596 	bool found = false;
597 	int idx;
598 
599 	if (!drm_dev_enter(dev, &idx)) {
600 		vc4_crtc_send_vblank(crtc);
601 		return;
602 	}
603 
604 	if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
605 		return;
606 
607 	if (debug_dump_regs) {
608 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
609 		vc4_hvs_dump_state(hvs);
610 	}
611 
612 	/* Copy all the active planes' dlist contents to the hardware dlist. */
613 	do {
614 		found = false;
615 
616 		drm_atomic_crtc_for_each_plane(plane, crtc) {
617 			if (plane->state->normalized_zpos != zpos)
618 				continue;
619 
620 			/* Is this the first active plane? */
621 			if (dlist_next == dlist_start) {
622 				/* We need to enable background fill when a plane
623 				 * could be alpha blending from the background, i.e.
624 				 * where no other plane is underneath. It suffices to
625 				 * consider the first active plane here since we set
626 				 * needs_bg_fill such that either the first plane
627 				 * already needs it or all planes on top blend from
628 				 * the first or a lower plane.
629 				 */
630 				vc4_plane_state = to_vc4_plane_state(plane->state);
631 				enable_bg_fill = vc4_plane_state->needs_bg_fill;
632 			}
633 
634 			dlist_next += vc4_plane_write_dlist(plane, dlist_next);
635 
636 			found = true;
637 		}
638 
639 		zpos++;
640 	} while (found);
641 
642 	writel(SCALER_CTL0_END, dlist_next);
643 	dlist_next++;
644 
645 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
646 
647 	if (enable_bg_fill)
648 		/* This sets a black background color fill, as is the case
649 		 * with other DRM drivers.
650 		 */
651 		HVS_WRITE(SCALER_DISPBKGNDX(channel),
652 			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
653 			  SCALER_DISPBKGND_FILL);
654 
655 	/* Only update DISPLIST if the CRTC was already running and is not
656 	 * being disabled.
657 	 * vc4_crtc_enable() takes care of updating the dlist just after
658 	 * re-enabling VBLANK interrupts and before enabling the engine.
659 	 * If the CRTC is being disabled, there's no point in updating this
660 	 * information.
661 	 */
662 	if (crtc->state->active && old_state->active) {
663 		vc4_hvs_install_dlist(crtc);
664 		vc4_hvs_update_dlist(crtc);
665 	}
666 
667 	if (crtc->state->color_mgmt_changed) {
668 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
669 
670 		if (crtc->state->gamma_lut) {
671 			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
672 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
673 		} else {
674 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
675 			 * in hardware, which is the same as a linear lut that
676 			 * DRM expects us to use in absence of a user lut.
677 			 */
678 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
679 		}
680 		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
681 	}
682 
683 	if (debug_dump_regs) {
684 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
685 		vc4_hvs_dump_state(hvs);
686 	}
687 
688 	drm_dev_exit(idx);
689 }
690 
691 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
692 {
693 	struct vc4_dev *vc4 = hvs->vc4;
694 	struct drm_device *drm = &vc4->base;
695 	u32 dispctrl;
696 	int idx;
697 
698 	if (!drm_dev_enter(drm, &idx))
699 		return;
700 
701 	dispctrl = HVS_READ(SCALER_DISPCTRL);
702 	dispctrl &= ~((vc4->gen == VC4_GEN_5) ?
703 		      SCALER5_DISPCTRL_DSPEISLUR(channel) :
704 		      SCALER_DISPCTRL_DSPEISLUR(channel));
705 
706 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
707 
708 	drm_dev_exit(idx);
709 }
710 
711 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
712 {
713 	struct vc4_dev *vc4 = hvs->vc4;
714 	struct drm_device *drm = &vc4->base;
715 	u32 dispctrl;
716 	int idx;
717 
718 	if (!drm_dev_enter(drm, &idx))
719 		return;
720 
721 	dispctrl = HVS_READ(SCALER_DISPCTRL);
722 	dispctrl |= ((vc4->gen == VC4_GEN_5) ?
723 		     SCALER5_DISPCTRL_DSPEISLUR(channel) :
724 		     SCALER_DISPCTRL_DSPEISLUR(channel));
725 
726 	HVS_WRITE(SCALER_DISPSTAT,
727 		  SCALER_DISPSTAT_EUFLOW(channel));
728 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
729 
730 	drm_dev_exit(idx);
731 }
732 
733 static void vc4_hvs_report_underrun(struct drm_device *dev)
734 {
735 	struct vc4_dev *vc4 = to_vc4_dev(dev);
736 
737 	atomic_inc(&vc4->underrun);
738 	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
739 }
740 
741 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
742 {
743 	struct drm_device *dev = data;
744 	struct vc4_dev *vc4 = to_vc4_dev(dev);
745 	struct vc4_hvs *hvs = vc4->hvs;
746 	irqreturn_t irqret = IRQ_NONE;
747 	int channel;
748 	u32 control;
749 	u32 status;
750 	u32 dspeislur;
751 
752 	/*
753 	 * NOTE: We don't need to protect the register access using
754 	 * drm_dev_enter() there because the interrupt handler lifetime
755 	 * is tied to the device itself, and not to the DRM device.
756 	 *
757 	 * So when the device will be gone, one of the first thing we
758 	 * will be doing will be to unregister the interrupt handler,
759 	 * and then unregister the DRM device. drm_dev_enter() would
760 	 * thus always succeed if we are here.
761 	 */
762 
763 	status = HVS_READ(SCALER_DISPSTAT);
764 	control = HVS_READ(SCALER_DISPCTRL);
765 
766 	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
767 		dspeislur = (vc4->gen == VC4_GEN_5) ?
768 			SCALER5_DISPCTRL_DSPEISLUR(channel) :
769 			SCALER_DISPCTRL_DSPEISLUR(channel);
770 
771 		/* Interrupt masking is not always honored, so check it here. */
772 		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
773 		    control & dspeislur) {
774 			vc4_hvs_mask_underrun(hvs, channel);
775 			vc4_hvs_report_underrun(dev);
776 
777 			irqret = IRQ_HANDLED;
778 		}
779 	}
780 
781 	/* Clear every per-channel interrupt flag. */
782 	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
783 				   SCALER_DISPSTAT_IRQMASK(1) |
784 				   SCALER_DISPSTAT_IRQMASK(2));
785 
786 	return irqret;
787 }
788 
789 int vc4_hvs_debugfs_init(struct drm_minor *minor)
790 {
791 	struct drm_device *drm = minor->dev;
792 	struct vc4_dev *vc4 = to_vc4_dev(drm);
793 	struct vc4_hvs *hvs = vc4->hvs;
794 
795 	if (!vc4->hvs)
796 		return -ENODEV;
797 
798 	if (vc4->gen == VC4_GEN_4)
799 		debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
800 				    minor->debugfs_root,
801 				    &vc4->load_tracker_enabled);
802 
803 	drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
804 
805 	drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
806 
807 	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
808 
809 	return 0;
810 }
811 
812 struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4,
813 				void __iomem *regs,
814 				struct platform_device *pdev)
815 {
816 	struct drm_device *drm = &vc4->base;
817 	struct vc4_hvs *hvs;
818 
819 	hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
820 	if (!hvs)
821 		return ERR_PTR(-ENOMEM);
822 
823 	hvs->vc4 = vc4;
824 	hvs->regs = regs;
825 	hvs->pdev = pdev;
826 
827 	spin_lock_init(&hvs->mm_lock);
828 
829 	/* Set up the HVS display list memory manager.  We never
830 	 * overwrite the setup from the bootloader (just 128b out of
831 	 * our 16K), since we don't want to scramble the screen when
832 	 * transitioning from the firmware's boot setup to runtime.
833 	 */
834 	hvs->dlist_mem_size = (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END;
835 	drm_mm_init(&hvs->dlist_mm,
836 		    HVS_BOOTLOADER_DLIST_END,
837 		    hvs->dlist_mem_size);
838 
839 	/* Set up the HVS LBM memory manager.  We could have some more
840 	 * complicated data structure that allowed reuse of LBM areas
841 	 * between planes when they don't overlap on the screen, but
842 	 * for now we just allocate globally.
843 	 */
844 	if (vc4->gen == VC4_GEN_4)
845 		/* 48k words of 2x12-bit pixels */
846 		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
847 	else
848 		/* 60k words of 4x12-bit pixels */
849 		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
850 
851 	vc4->hvs = hvs;
852 
853 	return hvs;
854 }
855 
856 static int vc4_hvs_hw_init(struct vc4_hvs *hvs)
857 {
858 	struct vc4_dev *vc4 = hvs->vc4;
859 	u32 dispctrl, reg;
860 
861 	dispctrl = HVS_READ(SCALER_DISPCTRL);
862 	dispctrl |= SCALER_DISPCTRL_ENABLE;
863 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
864 
865 	reg = HVS_READ(SCALER_DISPECTRL);
866 	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
867 	HVS_WRITE(SCALER_DISPECTRL,
868 		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
869 
870 	reg = HVS_READ(SCALER_DISPCTRL);
871 	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
872 	HVS_WRITE(SCALER_DISPCTRL,
873 		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
874 
875 	reg = HVS_READ(SCALER_DISPEOLN);
876 	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
877 	HVS_WRITE(SCALER_DISPEOLN,
878 		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
879 
880 	reg = HVS_READ(SCALER_DISPDITHER);
881 	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
882 	HVS_WRITE(SCALER_DISPDITHER,
883 		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
884 
885 	dispctrl = HVS_READ(SCALER_DISPCTRL);
886 	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
887 		    SCALER_DISPCTRL_DISPEIRQ(1) |
888 		    SCALER_DISPCTRL_DISPEIRQ(2);
889 
890 	if (vc4->gen == VC4_GEN_4)
891 		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
892 			      SCALER_DISPCTRL_SLVWREIRQ |
893 			      SCALER_DISPCTRL_SLVRDEIRQ |
894 			      SCALER_DISPCTRL_DSPEIEOF(0) |
895 			      SCALER_DISPCTRL_DSPEIEOF(1) |
896 			      SCALER_DISPCTRL_DSPEIEOF(2) |
897 			      SCALER_DISPCTRL_DSPEIEOLN(0) |
898 			      SCALER_DISPCTRL_DSPEIEOLN(1) |
899 			      SCALER_DISPCTRL_DSPEIEOLN(2) |
900 			      SCALER_DISPCTRL_DSPEISLUR(0) |
901 			      SCALER_DISPCTRL_DSPEISLUR(1) |
902 			      SCALER_DISPCTRL_DSPEISLUR(2) |
903 			      SCALER_DISPCTRL_SCLEIRQ);
904 	else
905 		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
906 			      SCALER5_DISPCTRL_SLVEIRQ |
907 			      SCALER5_DISPCTRL_DSPEIEOF(0) |
908 			      SCALER5_DISPCTRL_DSPEIEOF(1) |
909 			      SCALER5_DISPCTRL_DSPEIEOF(2) |
910 			      SCALER5_DISPCTRL_DSPEIEOLN(0) |
911 			      SCALER5_DISPCTRL_DSPEIEOLN(1) |
912 			      SCALER5_DISPCTRL_DSPEIEOLN(2) |
913 			      SCALER5_DISPCTRL_DSPEISLUR(0) |
914 			      SCALER5_DISPCTRL_DSPEISLUR(1) |
915 			      SCALER5_DISPCTRL_DSPEISLUR(2) |
916 			      SCALER_DISPCTRL_SCLEIRQ);
917 
918 
919 	/* Set AXI panic mode.
920 	 * VC4 panics when < 2 lines in FIFO.
921 	 * VC5 panics when less than 1 line in the FIFO.
922 	 */
923 	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
924 		      SCALER_DISPCTRL_PANIC1_MASK |
925 		      SCALER_DISPCTRL_PANIC2_MASK);
926 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
927 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
928 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
929 
930 	/* Set AXI panic mode.
931 	 * VC4 panics when < 2 lines in FIFO.
932 	 * VC5 panics when less than 1 line in the FIFO.
933 	 */
934 	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
935 		      SCALER_DISPCTRL_PANIC1_MASK |
936 		      SCALER_DISPCTRL_PANIC2_MASK);
937 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
938 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
939 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
940 
941 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
942 
943 	return 0;
944 }
945 
946 static int vc4_hvs_cob_init(struct vc4_hvs *hvs)
947 {
948 	struct vc4_dev *vc4 = hvs->vc4;
949 	u32 reg, top;
950 
951 	/*
952 	 * Recompute Composite Output Buffer (COB) allocations for the
953 	 * displays
954 	 */
955 	switch (vc4->gen) {
956 	case VC4_GEN_4:
957 		/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
958 		 * The bottom 2048 pixels are full 32bpp RGBA (intended for the
959 		 * TXP composing RGBA to memory), whilst the remainder are only
960 		 * 24bpp RGB.
961 		 *
962 		 * Assign 3 lines to channels 1 & 2, and just over 4 lines to
963 		 * channel 0.
964 		 */
965 		#define VC4_COB_SIZE		20736
966 		#define VC4_COB_LINE_WIDTH	2048
967 		#define VC4_COB_NUM_LINES	3
968 		reg = 0;
969 		top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
970 		reg |= (top - 1) << 16;
971 		HVS_WRITE(SCALER_DISPBASE2, reg);
972 		reg = top;
973 		top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
974 		reg |= (top - 1) << 16;
975 		HVS_WRITE(SCALER_DISPBASE1, reg);
976 		reg = top;
977 		top = VC4_COB_SIZE;
978 		reg |= (top - 1) << 16;
979 		HVS_WRITE(SCALER_DISPBASE0, reg);
980 		break;
981 
982 	case VC4_GEN_5:
983 		/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
984 		 * The bottom 4096 pixels are full RGBA (intended for the TXP
985 		 * composing RGBA to memory), whilst the remainder are only
986 		 * RGB. Addressing is always pixel wide.
987 		 *
988 		 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
989 		 * lines. to channel 0.
990 		 */
991 		#define VC5_COB_SIZE		44416
992 		#define VC5_COB_LINE_WIDTH	4096
993 		#define VC5_COB_NUM_LINES	3
994 		reg = 0;
995 		top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
996 		reg |= top << 16;
997 		HVS_WRITE(SCALER_DISPBASE2, reg);
998 		top += 16;
999 		reg = top;
1000 		top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1001 		reg |= top << 16;
1002 		HVS_WRITE(SCALER_DISPBASE1, reg);
1003 		top += 16;
1004 		reg = top;
1005 		top = VC5_COB_SIZE;
1006 		reg |= top << 16;
1007 		HVS_WRITE(SCALER_DISPBASE0, reg);
1008 		break;
1009 
1010 	default:
1011 		return -EINVAL;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
1018 {
1019 	struct platform_device *pdev = to_platform_device(dev);
1020 	struct drm_device *drm = dev_get_drvdata(master);
1021 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1022 	struct vc4_hvs *hvs = NULL;
1023 	void __iomem *regs;
1024 	int ret;
1025 
1026 	regs = vc4_ioremap_regs(pdev, 0);
1027 	if (IS_ERR(regs))
1028 		return PTR_ERR(regs);
1029 
1030 	hvs = __vc4_hvs_alloc(vc4, regs, pdev);
1031 	if (IS_ERR(hvs))
1032 		return PTR_ERR(hvs);
1033 
1034 	hvs->regset.base = hvs->regs;
1035 	hvs->regset.regs = vc4_hvs_regs;
1036 	hvs->regset.nregs = ARRAY_SIZE(vc4_hvs_regs);
1037 
1038 	if (vc4->gen == VC4_GEN_5) {
1039 		struct rpi_firmware *firmware;
1040 		struct device_node *node;
1041 		unsigned int max_rate;
1042 
1043 		node = rpi_firmware_find_node();
1044 		if (!node)
1045 			return -EINVAL;
1046 
1047 		firmware = rpi_firmware_get(node);
1048 		of_node_put(node);
1049 		if (!firmware)
1050 			return -EPROBE_DEFER;
1051 
1052 		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
1053 		if (IS_ERR(hvs->core_clk)) {
1054 			dev_err(&pdev->dev, "Couldn't get core clock\n");
1055 			return PTR_ERR(hvs->core_clk);
1056 		}
1057 
1058 		max_rate = rpi_firmware_clk_get_max_rate(firmware,
1059 							 RPI_FIRMWARE_CORE_CLK_ID);
1060 		rpi_firmware_put(firmware);
1061 		if (max_rate >= 550000000)
1062 			hvs->vc5_hdmi_enable_hdmi_20 = true;
1063 
1064 		if (max_rate >= 600000000)
1065 			hvs->vc5_hdmi_enable_4096by2160 = true;
1066 
1067 		hvs->max_core_rate = max_rate;
1068 
1069 		ret = clk_prepare_enable(hvs->core_clk);
1070 		if (ret) {
1071 			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
1072 			return ret;
1073 		}
1074 	}
1075 
1076 	if (vc4->gen == VC4_GEN_4)
1077 		hvs->dlist = hvs->regs + SCALER_DLIST_START;
1078 	else
1079 		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
1080 
1081 	ret = vc4_hvs_hw_init(hvs);
1082 	if (ret)
1083 		return ret;
1084 
1085 	/* Upload filter kernels.  We only have the one for now, so we
1086 	 * keep it around for the lifetime of the driver.
1087 	 */
1088 	ret = vc4_hvs_upload_linear_kernel(hvs,
1089 					   &hvs->mitchell_netravali_filter,
1090 					   mitchell_netravali_1_3_1_3_kernel);
1091 	if (ret)
1092 		return ret;
1093 
1094 	ret = vc4_hvs_cob_init(hvs);
1095 	if (ret)
1096 		return ret;
1097 
1098 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1099 			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1100 	if (ret)
1101 		return ret;
1102 
1103 	return 0;
1104 }
1105 
1106 static void vc4_hvs_unbind(struct device *dev, struct device *master,
1107 			   void *data)
1108 {
1109 	struct drm_device *drm = dev_get_drvdata(master);
1110 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1111 	struct vc4_hvs *hvs = vc4->hvs;
1112 	struct drm_mm_node *node, *next;
1113 
1114 	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1115 		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1116 
1117 	drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1118 		drm_mm_remove_node(node);
1119 
1120 	drm_mm_takedown(&vc4->hvs->dlist_mm);
1121 
1122 	drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1123 		drm_mm_remove_node(node);
1124 	drm_mm_takedown(&vc4->hvs->lbm_mm);
1125 
1126 	clk_disable_unprepare(hvs->core_clk);
1127 
1128 	vc4->hvs = NULL;
1129 }
1130 
1131 static const struct component_ops vc4_hvs_ops = {
1132 	.bind   = vc4_hvs_bind,
1133 	.unbind = vc4_hvs_unbind,
1134 };
1135 
1136 static int vc4_hvs_dev_probe(struct platform_device *pdev)
1137 {
1138 	return component_add(&pdev->dev, &vc4_hvs_ops);
1139 }
1140 
1141 static void vc4_hvs_dev_remove(struct platform_device *pdev)
1142 {
1143 	component_del(&pdev->dev, &vc4_hvs_ops);
1144 }
1145 
1146 static const struct of_device_id vc4_hvs_dt_match[] = {
1147 	{ .compatible = "brcm,bcm2711-hvs" },
1148 	{ .compatible = "brcm,bcm2835-hvs" },
1149 	{}
1150 };
1151 
1152 struct platform_driver vc4_hvs_driver = {
1153 	.probe = vc4_hvs_dev_probe,
1154 	.remove_new = vc4_hvs_dev_remove,
1155 	.driver = {
1156 		.name = "vc4_hvs",
1157 		.of_match_table = vc4_hvs_dt_match,
1158 	},
1159 };
1160