1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 HVS module. 8 * 9 * The Hardware Video Scaler (HVS) is the piece of hardware that does 10 * translation, scaling, colorspace conversion, and compositing of 11 * pixels stored in framebuffers into a FIFO of pixels going out to 12 * the Pixel Valve (CRTC). It operates at the system clock rate (the 13 * system audio clock gate, specifically), which is much higher than 14 * the pixel clock rate. 15 * 16 * There is a single global HVS, with multiple output FIFOs that can 17 * be consumed by the PVs. This file just manages the resources for 18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for 19 * each CRTC. 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/clk.h> 24 #include <linux/component.h> 25 #include <linux/platform_device.h> 26 27 #include <drm/drm_atomic_helper.h> 28 #include <drm/drm_drv.h> 29 #include <drm/drm_print.h> 30 #include <drm/drm_vblank.h> 31 32 #include <soc/bcm2835/raspberrypi-firmware.h> 33 34 #include "vc4_drv.h" 35 #include "vc4_regs.h" 36 37 static const struct debugfs_reg32 vc4_hvs_regs[] = { 38 VC4_REG32(SCALER_DISPCTRL), 39 VC4_REG32(SCALER_DISPSTAT), 40 VC4_REG32(SCALER_DISPID), 41 VC4_REG32(SCALER_DISPECTRL), 42 VC4_REG32(SCALER_DISPPROF), 43 VC4_REG32(SCALER_DISPDITHER), 44 VC4_REG32(SCALER_DISPEOLN), 45 VC4_REG32(SCALER_DISPLIST0), 46 VC4_REG32(SCALER_DISPLIST1), 47 VC4_REG32(SCALER_DISPLIST2), 48 VC4_REG32(SCALER_DISPLSTAT), 49 VC4_REG32(SCALER_DISPLACT0), 50 VC4_REG32(SCALER_DISPLACT1), 51 VC4_REG32(SCALER_DISPLACT2), 52 VC4_REG32(SCALER_DISPCTRL0), 53 VC4_REG32(SCALER_DISPBKGND0), 54 VC4_REG32(SCALER_DISPSTAT0), 55 VC4_REG32(SCALER_DISPBASE0), 56 VC4_REG32(SCALER_DISPCTRL1), 57 VC4_REG32(SCALER_DISPBKGND1), 58 VC4_REG32(SCALER_DISPSTAT1), 59 VC4_REG32(SCALER_DISPBASE1), 60 VC4_REG32(SCALER_DISPCTRL2), 61 VC4_REG32(SCALER_DISPBKGND2), 62 VC4_REG32(SCALER_DISPSTAT2), 63 VC4_REG32(SCALER_DISPBASE2), 64 VC4_REG32(SCALER_DISPALPHA2), 65 VC4_REG32(SCALER_OLEDOFFS), 66 VC4_REG32(SCALER_OLEDCOEF0), 67 VC4_REG32(SCALER_OLEDCOEF1), 68 VC4_REG32(SCALER_OLEDCOEF2), 69 }; 70 71 static const struct debugfs_reg32 vc6_hvs_regs[] = { 72 VC4_REG32(SCALER6_VERSION), 73 VC4_REG32(SCALER6_CXM_SIZE), 74 VC4_REG32(SCALER6_LBM_SIZE), 75 VC4_REG32(SCALER6_UBM_SIZE), 76 VC4_REG32(SCALER6_COBA_SIZE), 77 VC4_REG32(SCALER6_COB_SIZE), 78 VC4_REG32(SCALER6_CONTROL), 79 VC4_REG32(SCALER6_FETCHER_STATUS), 80 VC4_REG32(SCALER6_FETCH_STATUS), 81 VC4_REG32(SCALER6_HANDLE_ERROR), 82 VC4_REG32(SCALER6_DISP0_CTRL0), 83 VC4_REG32(SCALER6_DISP0_CTRL1), 84 VC4_REG32(SCALER6_DISP0_BGND), 85 VC4_REG32(SCALER6_DISP0_LPTRS), 86 VC4_REG32(SCALER6_DISP0_COB), 87 VC4_REG32(SCALER6_DISP0_STATUS), 88 VC4_REG32(SCALER6_DISP0_DL), 89 VC4_REG32(SCALER6_DISP0_RUN), 90 VC4_REG32(SCALER6_DISP1_CTRL0), 91 VC4_REG32(SCALER6_DISP1_CTRL1), 92 VC4_REG32(SCALER6_DISP1_BGND), 93 VC4_REG32(SCALER6_DISP1_LPTRS), 94 VC4_REG32(SCALER6_DISP1_COB), 95 VC4_REG32(SCALER6_DISP1_STATUS), 96 VC4_REG32(SCALER6_DISP1_DL), 97 VC4_REG32(SCALER6_DISP1_RUN), 98 VC4_REG32(SCALER6_DISP2_CTRL0), 99 VC4_REG32(SCALER6_DISP2_CTRL1), 100 VC4_REG32(SCALER6_DISP2_BGND), 101 VC4_REG32(SCALER6_DISP2_LPTRS), 102 VC4_REG32(SCALER6_DISP2_COB), 103 VC4_REG32(SCALER6_DISP2_STATUS), 104 VC4_REG32(SCALER6_DISP2_DL), 105 VC4_REG32(SCALER6_DISP2_RUN), 106 VC4_REG32(SCALER6_EOLN), 107 VC4_REG32(SCALER6_DL_STATUS), 108 VC4_REG32(SCALER6_BFG_MISC), 109 VC4_REG32(SCALER6_QOS0), 110 VC4_REG32(SCALER6_PROF0), 111 VC4_REG32(SCALER6_QOS1), 112 VC4_REG32(SCALER6_PROF1), 113 VC4_REG32(SCALER6_QOS2), 114 VC4_REG32(SCALER6_PROF2), 115 VC4_REG32(SCALER6_PRI_MAP0), 116 VC4_REG32(SCALER6_PRI_MAP1), 117 VC4_REG32(SCALER6_HISTCTRL), 118 VC4_REG32(SCALER6_HISTBIN0), 119 VC4_REG32(SCALER6_HISTBIN1), 120 VC4_REG32(SCALER6_HISTBIN2), 121 VC4_REG32(SCALER6_HISTBIN3), 122 VC4_REG32(SCALER6_HISTBIN4), 123 VC4_REG32(SCALER6_HISTBIN5), 124 VC4_REG32(SCALER6_HISTBIN6), 125 VC4_REG32(SCALER6_HISTBIN7), 126 VC4_REG32(SCALER6_HDR_CFG_REMAP), 127 VC4_REG32(SCALER6_COL_SPACE), 128 VC4_REG32(SCALER6_HVS_ID), 129 VC4_REG32(SCALER6_CFC1), 130 VC4_REG32(SCALER6_DISP_UPM_ISO0), 131 VC4_REG32(SCALER6_DISP_UPM_ISO1), 132 VC4_REG32(SCALER6_DISP_UPM_ISO2), 133 VC4_REG32(SCALER6_DISP_LBM_ISO0), 134 VC4_REG32(SCALER6_DISP_LBM_ISO1), 135 VC4_REG32(SCALER6_DISP_LBM_ISO2), 136 VC4_REG32(SCALER6_DISP_COB_ISO0), 137 VC4_REG32(SCALER6_DISP_COB_ISO1), 138 VC4_REG32(SCALER6_DISP_COB_ISO2), 139 VC4_REG32(SCALER6_BAD_COB), 140 VC4_REG32(SCALER6_BAD_LBM), 141 VC4_REG32(SCALER6_BAD_UPM), 142 VC4_REG32(SCALER6_BAD_AXI), 143 }; 144 145 static const struct debugfs_reg32 vc6_d_hvs_regs[] = { 146 VC4_REG32(SCALER6D_VERSION), 147 VC4_REG32(SCALER6D_CXM_SIZE), 148 VC4_REG32(SCALER6D_LBM_SIZE), 149 VC4_REG32(SCALER6D_UBM_SIZE), 150 VC4_REG32(SCALER6D_COBA_SIZE), 151 VC4_REG32(SCALER6D_COB_SIZE), 152 VC4_REG32(SCALER6D_CONTROL), 153 VC4_REG32(SCALER6D_FETCHER_STATUS), 154 VC4_REG32(SCALER6D_FETCH_STATUS), 155 VC4_REG32(SCALER6D_HANDLE_ERROR), 156 VC4_REG32(SCALER6D_DISP0_CTRL0), 157 VC4_REG32(SCALER6D_DISP0_CTRL1), 158 VC4_REG32(SCALER6D_DISP0_BGND0), 159 VC4_REG32(SCALER6D_DISP0_BGND1), 160 VC4_REG32(SCALER6D_DISP0_LPTRS), 161 VC4_REG32(SCALER6D_DISP0_COB), 162 VC4_REG32(SCALER6D_DISP0_STATUS), 163 VC4_REG32(SCALER6D_DISP0_DL), 164 VC4_REG32(SCALER6D_DISP0_RUN), 165 VC4_REG32(SCALER6D_DISP1_CTRL0), 166 VC4_REG32(SCALER6D_DISP1_CTRL1), 167 VC4_REG32(SCALER6D_DISP1_BGND0), 168 VC4_REG32(SCALER6D_DISP1_BGND1), 169 VC4_REG32(SCALER6D_DISP1_LPTRS), 170 VC4_REG32(SCALER6D_DISP1_COB), 171 VC4_REG32(SCALER6D_DISP1_STATUS), 172 VC4_REG32(SCALER6D_DISP1_DL), 173 VC4_REG32(SCALER6D_DISP1_RUN), 174 VC4_REG32(SCALER6D_DISP2_CTRL0), 175 VC4_REG32(SCALER6D_DISP2_CTRL1), 176 VC4_REG32(SCALER6D_DISP2_BGND0), 177 VC4_REG32(SCALER6D_DISP2_BGND1), 178 VC4_REG32(SCALER6D_DISP2_LPTRS), 179 VC4_REG32(SCALER6D_DISP2_COB), 180 VC4_REG32(SCALER6D_DISP2_STATUS), 181 VC4_REG32(SCALER6D_DISP2_DL), 182 VC4_REG32(SCALER6D_DISP2_RUN), 183 VC4_REG32(SCALER6D_EOLN), 184 VC4_REG32(SCALER6D_DL_STATUS), 185 VC4_REG32(SCALER6D_QOS0), 186 VC4_REG32(SCALER6D_PROF0), 187 VC4_REG32(SCALER6D_QOS1), 188 VC4_REG32(SCALER6D_PROF1), 189 VC4_REG32(SCALER6D_QOS2), 190 VC4_REG32(SCALER6D_PROF2), 191 VC4_REG32(SCALER6D_PRI_MAP0), 192 VC4_REG32(SCALER6D_PRI_MAP1), 193 VC4_REG32(SCALER6D_HISTCTRL), 194 VC4_REG32(SCALER6D_HISTBIN0), 195 VC4_REG32(SCALER6D_HISTBIN1), 196 VC4_REG32(SCALER6D_HISTBIN2), 197 VC4_REG32(SCALER6D_HISTBIN3), 198 VC4_REG32(SCALER6D_HISTBIN4), 199 VC4_REG32(SCALER6D_HISTBIN5), 200 VC4_REG32(SCALER6D_HISTBIN6), 201 VC4_REG32(SCALER6D_HISTBIN7), 202 VC4_REG32(SCALER6D_HVS_ID), 203 }; 204 205 void vc4_hvs_dump_state(struct vc4_hvs *hvs) 206 { 207 struct drm_device *drm = &hvs->vc4->base; 208 struct drm_printer p = drm_info_printer(&hvs->pdev->dev); 209 int idx, i; 210 211 if (!drm_dev_enter(drm, &idx)) 212 return; 213 214 drm_print_regset32(&p, &hvs->regset); 215 216 DRM_INFO("HVS ctx:\n"); 217 for (i = 0; i < 64; i += 4) { 218 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n", 219 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D", 220 readl((u32 __iomem *)hvs->dlist + i + 0), 221 readl((u32 __iomem *)hvs->dlist + i + 1), 222 readl((u32 __iomem *)hvs->dlist + i + 2), 223 readl((u32 __iomem *)hvs->dlist + i + 3)); 224 } 225 226 drm_dev_exit(idx); 227 } 228 229 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data) 230 { 231 struct drm_debugfs_entry *entry = m->private; 232 struct drm_device *dev = entry->dev; 233 struct vc4_dev *vc4 = to_vc4_dev(dev); 234 struct drm_printer p = drm_seq_file_printer(m); 235 236 drm_printf(&p, "%d\n", atomic_read(&vc4->underrun)); 237 238 return 0; 239 } 240 241 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data) 242 { 243 struct drm_debugfs_entry *entry = m->private; 244 struct drm_device *dev = entry->dev; 245 struct vc4_dev *vc4 = to_vc4_dev(dev); 246 struct vc4_hvs *hvs = vc4->hvs; 247 struct drm_printer p = drm_seq_file_printer(m); 248 unsigned int dlist_mem_size = hvs->dlist_mem_size; 249 unsigned int next_entry_start; 250 unsigned int i, j; 251 u32 dlist_word, dispstat; 252 253 for (i = 0; i < SCALER_CHANNELS_COUNT; i++) { 254 dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)), 255 SCALER_DISPSTATX_MODE); 256 if (dispstat == SCALER_DISPSTATX_MODE_DISABLED || 257 dispstat == SCALER_DISPSTATX_MODE_EOF) { 258 drm_printf(&p, "HVS chan %u disabled\n", i); 259 continue; 260 } 261 262 drm_printf(&p, "HVS chan %u:\n", i); 263 next_entry_start = 0; 264 265 for (j = HVS_READ(SCALER_DISPLISTX(i)); j < dlist_mem_size; j++) { 266 dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j); 267 drm_printf(&p, "dlist: %02d: 0x%08x\n", j, 268 dlist_word); 269 if (!next_entry_start || 270 next_entry_start == j) { 271 if (dlist_word & SCALER_CTL0_END) 272 break; 273 next_entry_start = j + 274 VC4_GET_FIELD(dlist_word, 275 SCALER_CTL0_SIZE); 276 } 277 } 278 } 279 280 return 0; 281 } 282 283 static int vc6_hvs_debugfs_dlist(struct seq_file *m, void *data) 284 { 285 struct drm_info_node *node = m->private; 286 struct drm_device *dev = node->minor->dev; 287 struct vc4_dev *vc4 = to_vc4_dev(dev); 288 struct vc4_hvs *hvs = vc4->hvs; 289 struct drm_printer p = drm_seq_file_printer(m); 290 unsigned int dlist_mem_size = hvs->dlist_mem_size; 291 unsigned int next_entry_start; 292 unsigned int i; 293 294 for (i = 0; i < SCALER_CHANNELS_COUNT; i++) { 295 unsigned int active_dlist, dispstat; 296 unsigned int j; 297 298 dispstat = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_STATUS(i)), 299 SCALER6_DISPX_STATUS_MODE); 300 if (dispstat == SCALER6_DISPX_STATUS_MODE_DISABLED || 301 dispstat == SCALER6_DISPX_STATUS_MODE_EOF) { 302 drm_printf(&p, "HVS chan %u disabled\n", i); 303 continue; 304 } 305 306 drm_printf(&p, "HVS chan %u:\n", i); 307 308 active_dlist = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_DL(i)), 309 SCALER6_DISPX_DL_LACT); 310 next_entry_start = 0; 311 312 for (j = active_dlist; j < dlist_mem_size; j++) { 313 u32 dlist_word; 314 315 dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j); 316 drm_printf(&p, "dlist: %02d: 0x%08x\n", j, 317 dlist_word); 318 if (!next_entry_start || 319 next_entry_start == j) { 320 if (dlist_word & SCALER_CTL0_END) 321 break; 322 next_entry_start = j + 323 VC4_GET_FIELD(dlist_word, 324 SCALER_CTL0_SIZE); 325 } 326 } 327 } 328 329 return 0; 330 } 331 332 static int vc6_hvs_debugfs_upm_allocs(struct seq_file *m, void *data) 333 { 334 struct drm_debugfs_entry *entry = m->private; 335 struct drm_device *dev = entry->dev; 336 struct vc4_dev *vc4 = to_vc4_dev(dev); 337 struct vc4_hvs *hvs = vc4->hvs; 338 struct drm_printer p = drm_seq_file_printer(m); 339 struct vc4_upm_refcounts *refcount; 340 unsigned int i; 341 342 drm_printf(&p, "UPM Handles:\n"); 343 for (i = 1; i <= VC4_NUM_UPM_HANDLES; i++) { 344 refcount = &hvs->upm_refcounts[i]; 345 drm_printf(&p, "handle %u: refcount %u, size %zu [%08llx + %08llx]\n", 346 i, refcount_read(&refcount->refcount), refcount->size, 347 refcount->upm.start, refcount->upm.size); 348 } 349 350 return 0; 351 } 352 353 /* The filter kernel is composed of dwords each containing 3 9-bit 354 * signed integers packed next to each other. 355 */ 356 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff) 357 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \ 358 ((((c0) & 0x1ff) << 0) | \ 359 (((c1) & 0x1ff) << 9) | \ 360 (((c2) & 0x1ff) << 18)) 361 362 /* The whole filter kernel is arranged as the coefficients 0-16 going 363 * up, then a pad, then 17-31 going down and reversed within the 364 * dwords. This means that a linear phase kernel (where it's 365 * symmetrical at the boundary between 15 and 16) has the last 5 366 * dwords matching the first 5, but reversed. 367 */ 368 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \ 369 c9, c10, c11, c12, c13, c14, c15) \ 370 {VC4_PPF_FILTER_WORD(c0, c1, c2), \ 371 VC4_PPF_FILTER_WORD(c3, c4, c5), \ 372 VC4_PPF_FILTER_WORD(c6, c7, c8), \ 373 VC4_PPF_FILTER_WORD(c9, c10, c11), \ 374 VC4_PPF_FILTER_WORD(c12, c13, c14), \ 375 VC4_PPF_FILTER_WORD(c15, c15, 0)} 376 377 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6 378 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1) 379 380 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali. 381 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf 382 */ 383 static const u32 mitchell_netravali_1_3_1_3_kernel[] = 384 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18, 385 50, 82, 119, 155, 187, 213, 227); 386 387 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs, 388 struct drm_mm_node *space, 389 const u32 *kernel) 390 { 391 int ret, i; 392 u32 __iomem *dst_kernel; 393 394 /* 395 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit() 396 * here since that function is only called from vc4_hvs_bind(). 397 */ 398 399 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS); 400 if (ret) { 401 drm_err(&hvs->vc4->base, "Failed to allocate space for filter kernel: %d\n", 402 ret); 403 return ret; 404 } 405 406 dst_kernel = hvs->dlist + space->start; 407 408 for (i = 0; i < VC4_KERNEL_DWORDS; i++) { 409 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS) 410 writel(kernel[i], &dst_kernel[i]); 411 else { 412 writel(kernel[VC4_KERNEL_DWORDS - i - 1], 413 &dst_kernel[i]); 414 } 415 } 416 417 return 0; 418 } 419 420 static void vc4_hvs_lut_load(struct vc4_hvs *hvs, 421 struct vc4_crtc *vc4_crtc) 422 { 423 struct vc4_dev *vc4 = hvs->vc4; 424 struct drm_device *drm = &vc4->base; 425 struct drm_crtc *crtc = &vc4_crtc->base; 426 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 427 int idx; 428 u32 i; 429 430 WARN_ON_ONCE(vc4->gen > VC4_GEN_5); 431 432 if (!drm_dev_enter(drm, &idx)) 433 return; 434 435 if (hvs->vc4->gen != VC4_GEN_4) 436 goto exit; 437 438 /* The LUT memory is laid out with each HVS channel in order, 439 * each of which takes 256 writes for R, 256 for G, then 256 440 * for B. 441 */ 442 HVS_WRITE(SCALER_GAMADDR, 443 SCALER_GAMADDR_AUTOINC | 444 (vc4_state->assigned_channel * 3 * crtc->gamma_size)); 445 446 for (i = 0; i < crtc->gamma_size; i++) 447 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 448 for (i = 0; i < crtc->gamma_size; i++) 449 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 450 for (i = 0; i < crtc->gamma_size; i++) 451 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 452 453 exit: 454 drm_dev_exit(idx); 455 } 456 457 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs, 458 struct vc4_crtc *vc4_crtc) 459 { 460 struct drm_crtc_state *crtc_state = vc4_crtc->base.state; 461 struct drm_color_lut *lut = crtc_state->gamma_lut->data; 462 u32 length = drm_color_lut_size(crtc_state->gamma_lut); 463 u32 i; 464 465 for (i = 0; i < length; i++) { 466 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); 467 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); 468 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); 469 } 470 471 vc4_hvs_lut_load(hvs, vc4_crtc); 472 } 473 474 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo) 475 { 476 struct vc4_dev *vc4 = hvs->vc4; 477 struct drm_device *drm = &vc4->base; 478 u8 field = 0; 479 int idx; 480 481 WARN_ON_ONCE(vc4->gen > VC4_GEN_6_D); 482 483 if (!drm_dev_enter(drm, &idx)) 484 return 0; 485 486 switch (vc4->gen) { 487 case VC4_GEN_6_C: 488 case VC4_GEN_6_D: 489 field = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_STATUS(fifo)), 490 SCALER6_DISPX_STATUS_FRCNT); 491 break; 492 case VC4_GEN_5: 493 switch (fifo) { 494 case 0: 495 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1), 496 SCALER5_DISPSTAT1_FRCNT0); 497 break; 498 case 1: 499 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1), 500 SCALER5_DISPSTAT1_FRCNT1); 501 break; 502 case 2: 503 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2), 504 SCALER5_DISPSTAT2_FRCNT2); 505 break; 506 } 507 break; 508 case VC4_GEN_4: 509 switch (fifo) { 510 case 0: 511 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1), 512 SCALER_DISPSTAT1_FRCNT0); 513 break; 514 case 1: 515 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1), 516 SCALER_DISPSTAT1_FRCNT1); 517 break; 518 case 2: 519 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2), 520 SCALER_DISPSTAT2_FRCNT2); 521 break; 522 } 523 break; 524 default: 525 drm_err(drm, "Unknown VC4 generation: %d", vc4->gen); 526 break; 527 } 528 529 drm_dev_exit(idx); 530 return field; 531 } 532 533 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output) 534 { 535 struct vc4_dev *vc4 = hvs->vc4; 536 u32 reg; 537 int ret; 538 539 WARN_ON_ONCE(vc4->gen > VC4_GEN_6_D); 540 541 switch (vc4->gen) { 542 case VC4_GEN_4: 543 return output; 544 545 case VC4_GEN_5: 546 /* 547 * NOTE: We should probably use 548 * drm_dev_enter()/drm_dev_exit() here, but this 549 * function is only used during the DRM device 550 * initialization, so we should be fine. 551 */ 552 553 switch (output) { 554 case 0: 555 return 0; 556 557 case 1: 558 return 1; 559 560 case 2: 561 reg = HVS_READ(SCALER_DISPECTRL); 562 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg); 563 if (ret == 0) 564 return 2; 565 566 return 0; 567 568 case 3: 569 reg = HVS_READ(SCALER_DISPCTRL); 570 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg); 571 if (ret == 3) 572 return -EPIPE; 573 574 return ret; 575 576 case 4: 577 reg = HVS_READ(SCALER_DISPEOLN); 578 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg); 579 if (ret == 3) 580 return -EPIPE; 581 582 return ret; 583 584 case 5: 585 reg = HVS_READ(SCALER_DISPDITHER); 586 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg); 587 if (ret == 3) 588 return -EPIPE; 589 590 return ret; 591 592 default: 593 return -EPIPE; 594 } 595 596 case VC4_GEN_6_C: 597 case VC4_GEN_6_D: 598 switch (output) { 599 case 0: 600 return 0; 601 602 case 2: 603 return 2; 604 605 case 1: 606 case 3: 607 case 4: 608 return 1; 609 610 default: 611 return -EPIPE; 612 } 613 614 default: 615 return -EPIPE; 616 } 617 } 618 619 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc, 620 struct drm_display_mode *mode, bool oneshot) 621 { 622 struct vc4_dev *vc4 = hvs->vc4; 623 struct drm_device *drm = &vc4->base; 624 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 625 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 626 unsigned int chan = vc4_crtc_state->assigned_channel; 627 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 628 u32 dispbkgndx; 629 u32 dispctrl; 630 int idx; 631 632 WARN_ON_ONCE(vc4->gen > VC4_GEN_5); 633 634 if (!drm_dev_enter(drm, &idx)) 635 return -ENODEV; 636 637 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 638 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET); 639 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 640 641 /* Turn on the scaler, which will wait for vstart to start 642 * compositing. 643 * When feeding the transposer, we should operate in oneshot 644 * mode. 645 */ 646 dispctrl = SCALER_DISPCTRLX_ENABLE; 647 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan)); 648 649 if (vc4->gen == VC4_GEN_4) { 650 dispctrl |= VC4_SET_FIELD(mode->hdisplay, 651 SCALER_DISPCTRLX_WIDTH) | 652 VC4_SET_FIELD(mode->vdisplay, 653 SCALER_DISPCTRLX_HEIGHT) | 654 (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0); 655 dispbkgndx |= SCALER_DISPBKGND_AUTOHS; 656 } else { 657 dispctrl |= VC4_SET_FIELD(mode->hdisplay, 658 SCALER5_DISPCTRLX_WIDTH) | 659 VC4_SET_FIELD(mode->vdisplay, 660 SCALER5_DISPCTRLX_HEIGHT) | 661 (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0); 662 dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK; 663 } 664 665 HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl); 666 667 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 668 dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE; 669 670 HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx | 671 ((vc4->gen == VC4_GEN_4) ? SCALER_DISPBKGND_GAMMA : 0) | 672 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 673 674 /* Reload the LUT, since the SRAMs would have been disabled if 675 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 676 */ 677 vc4_hvs_lut_load(hvs, vc4_crtc); 678 679 drm_dev_exit(idx); 680 681 return 0; 682 } 683 684 static int vc6_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc, 685 struct drm_display_mode *mode, bool oneshot) 686 { 687 struct vc4_dev *vc4 = hvs->vc4; 688 struct drm_device *drm = &vc4->base; 689 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 690 unsigned int chan = vc4_crtc_state->assigned_channel; 691 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 692 u32 disp_ctrl1; 693 int idx; 694 695 WARN_ON_ONCE(vc4->gen < VC4_GEN_6_C); 696 697 if (!drm_dev_enter(drm, &idx)) 698 return -ENODEV; 699 700 HVS_WRITE(SCALER6_DISPX_CTRL0(chan), SCALER6_DISPX_CTRL0_RESET); 701 702 disp_ctrl1 = HVS_READ(SCALER6_DISPX_CTRL1(chan)); 703 disp_ctrl1 &= ~SCALER6_DISPX_CTRL1_INTLACE; 704 HVS_WRITE(SCALER6_DISPX_CTRL1(chan), 705 disp_ctrl1 | (interlace ? SCALER6_DISPX_CTRL1_INTLACE : 0)); 706 707 HVS_WRITE(SCALER6_DISPX_CTRL0(chan), 708 SCALER6_DISPX_CTRL0_ENB | 709 VC4_SET_FIELD(mode->hdisplay - 1, 710 SCALER6_DISPX_CTRL0_FWIDTH) | 711 (oneshot ? SCALER6_DISPX_CTRL0_ONESHOT : 0) | 712 VC4_SET_FIELD(mode->vdisplay - 1, 713 SCALER6_DISPX_CTRL0_LINES)); 714 715 drm_dev_exit(idx); 716 717 return 0; 718 } 719 720 static void __vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan) 721 { 722 struct vc4_dev *vc4 = hvs->vc4; 723 struct drm_device *drm = &vc4->base; 724 int idx; 725 726 WARN_ON_ONCE(vc4->gen > VC4_GEN_5); 727 728 if (!drm_dev_enter(drm, &idx)) 729 return; 730 731 if (!(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)) 732 goto out; 733 734 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET); 735 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 736 737 /* Once we leave, the scaler should be disabled and its fifo empty. */ 738 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 739 740 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 741 SCALER_DISPSTATX_MODE) != 742 SCALER_DISPSTATX_MODE_DISABLED); 743 744 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 745 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 746 SCALER_DISPSTATX_EMPTY); 747 748 out: 749 drm_dev_exit(idx); 750 } 751 752 static void __vc6_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan) 753 { 754 struct vc4_dev *vc4 = hvs->vc4; 755 struct drm_device *drm = &vc4->base; 756 int idx; 757 758 WARN_ON_ONCE(vc4->gen < VC4_GEN_6_C); 759 760 if (!drm_dev_enter(drm, &idx)) 761 return; 762 763 if (!(HVS_READ(SCALER6_DISPX_CTRL0(chan)) & SCALER6_DISPX_CTRL0_ENB)) 764 goto out; 765 766 HVS_WRITE(SCALER6_DISPX_CTRL0(chan), 767 HVS_READ(SCALER6_DISPX_CTRL0(chan)) | SCALER6_DISPX_CTRL0_RESET); 768 769 HVS_WRITE(SCALER6_DISPX_CTRL0(chan), 770 HVS_READ(SCALER6_DISPX_CTRL0(chan)) & ~SCALER6_DISPX_CTRL0_ENB); 771 772 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_STATUS(chan)), 773 SCALER6_DISPX_STATUS_MODE) != 774 SCALER6_DISPX_STATUS_MODE_DISABLED); 775 776 out: 777 drm_dev_exit(idx); 778 } 779 780 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan) 781 { 782 struct vc4_dev *vc4 = hvs->vc4; 783 784 if (vc4->gen >= VC4_GEN_6_C) 785 __vc6_hvs_stop_channel(hvs, chan); 786 else 787 __vc4_hvs_stop_channel(hvs, chan); 788 } 789 790 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) 791 { 792 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 793 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 794 struct drm_device *dev = crtc->dev; 795 struct vc4_dev *vc4 = to_vc4_dev(dev); 796 struct drm_plane *plane; 797 unsigned long flags; 798 const struct drm_plane_state *plane_state; 799 u32 dlist_count = 0; 800 int ret; 801 802 /* The pixelvalve can only feed one encoder (and encoders are 803 * 1:1 with connectors.) 804 */ 805 if (hweight32(crtc_state->connector_mask) > 1) 806 return -EINVAL; 807 808 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { 809 u32 plane_dlist_count = vc4_plane_dlist_size(plane_state); 810 811 drm_dbg_driver(dev, "[CRTC:%d:%s] Found [PLANE:%d:%s] with DLIST size: %u\n", 812 crtc->base.id, crtc->name, 813 plane->base.id, plane->name, 814 plane_dlist_count); 815 816 dlist_count += plane_dlist_count; 817 } 818 819 dlist_count++; /* Account for SCALER_CTL0_END. */ 820 821 drm_dbg_driver(dev, "[CRTC:%d:%s] Allocating DLIST block with size: %u\n", 822 crtc->base.id, crtc->name, dlist_count); 823 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 824 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 825 dlist_count); 826 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 827 if (ret) { 828 drm_err(dev, "Failed to allocate DLIST entry: %d\n", ret); 829 return ret; 830 } 831 832 return 0; 833 } 834 835 static void vc4_hvs_install_dlist(struct drm_crtc *crtc) 836 { 837 struct drm_device *dev = crtc->dev; 838 struct vc4_dev *vc4 = to_vc4_dev(dev); 839 struct vc4_hvs *hvs = vc4->hvs; 840 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 841 int idx; 842 843 if (!drm_dev_enter(dev, &idx)) 844 return; 845 846 if (vc4->gen >= VC4_GEN_6_C) 847 HVS_WRITE(SCALER6_DISPX_LPTRS(vc4_state->assigned_channel), 848 VC4_SET_FIELD(vc4_state->mm.start, 849 SCALER6_DISPX_LPTRS_HEADE)); 850 else 851 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), 852 vc4_state->mm.start); 853 854 drm_dev_exit(idx); 855 } 856 857 static void vc4_hvs_update_dlist(struct drm_crtc *crtc) 858 { 859 struct drm_device *dev = crtc->dev; 860 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 861 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 862 unsigned long flags; 863 864 if (crtc->state->event) { 865 crtc->state->event->pipe = drm_crtc_index(crtc); 866 867 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 868 869 spin_lock_irqsave(&dev->event_lock, flags); 870 871 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) { 872 vc4_crtc->event = crtc->state->event; 873 crtc->state->event = NULL; 874 } 875 876 spin_unlock_irqrestore(&dev->event_lock, flags); 877 } 878 879 spin_lock_irqsave(&vc4_crtc->irq_lock, flags); 880 vc4_crtc->current_dlist = vc4_state->mm.start; 881 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags); 882 } 883 884 void vc4_hvs_atomic_begin(struct drm_crtc *crtc, 885 struct drm_atomic_state *state) 886 { 887 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 888 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 889 unsigned long flags; 890 891 spin_lock_irqsave(&vc4_crtc->irq_lock, flags); 892 vc4_crtc->current_hvs_channel = vc4_state->assigned_channel; 893 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags); 894 } 895 896 void vc4_hvs_atomic_enable(struct drm_crtc *crtc, 897 struct drm_atomic_state *state) 898 { 899 struct drm_device *dev = crtc->dev; 900 struct vc4_dev *vc4 = to_vc4_dev(dev); 901 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 902 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 903 bool oneshot = vc4_crtc->feeds_txp; 904 905 vc4_hvs_install_dlist(crtc); 906 vc4_hvs_update_dlist(crtc); 907 908 if (vc4->gen >= VC4_GEN_6_C) 909 vc6_hvs_init_channel(vc4->hvs, crtc, mode, oneshot); 910 else 911 vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot); 912 } 913 914 void vc4_hvs_atomic_disable(struct drm_crtc *crtc, 915 struct drm_atomic_state *state) 916 { 917 struct drm_device *dev = crtc->dev; 918 struct vc4_dev *vc4 = to_vc4_dev(dev); 919 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); 920 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state); 921 unsigned int chan = vc4_state->assigned_channel; 922 923 vc4_hvs_stop_channel(vc4->hvs, chan); 924 } 925 926 void vc4_hvs_atomic_flush(struct drm_crtc *crtc, 927 struct drm_atomic_state *state) 928 { 929 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 930 crtc); 931 struct drm_device *dev = crtc->dev; 932 struct vc4_dev *vc4 = to_vc4_dev(dev); 933 struct vc4_hvs *hvs = vc4->hvs; 934 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 935 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 936 unsigned int channel = vc4_state->assigned_channel; 937 struct drm_plane *plane; 938 struct vc4_plane_state *vc4_plane_state; 939 bool debug_dump_regs = false; 940 bool enable_bg_fill = true; 941 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 942 u32 __iomem *dlist_next = dlist_start; 943 unsigned int zpos = 0; 944 bool found = false; 945 int idx; 946 947 WARN_ON_ONCE(vc4->gen > VC4_GEN_6_D); 948 949 if (!drm_dev_enter(dev, &idx)) { 950 vc4_crtc_send_vblank(crtc); 951 return; 952 } 953 954 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 955 goto exit; 956 957 if (debug_dump_regs) { 958 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 959 vc4_hvs_dump_state(hvs); 960 } 961 962 /* Copy all the active planes' dlist contents to the hardware dlist. */ 963 do { 964 found = false; 965 966 drm_atomic_crtc_for_each_plane(plane, crtc) { 967 if (plane->state->normalized_zpos != zpos) 968 continue; 969 970 /* Is this the first active plane? */ 971 if (dlist_next == dlist_start) { 972 /* We need to enable background fill when a plane 973 * could be alpha blending from the background, i.e. 974 * where no other plane is underneath. It suffices to 975 * consider the first active plane here since we set 976 * needs_bg_fill such that either the first plane 977 * already needs it or all planes on top blend from 978 * the first or a lower plane. 979 */ 980 vc4_plane_state = to_vc4_plane_state(plane->state); 981 enable_bg_fill = vc4_plane_state->needs_bg_fill; 982 } 983 984 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 985 986 found = true; 987 } 988 989 zpos++; 990 } while (found); 991 992 writel(SCALER_CTL0_END, dlist_next); 993 dlist_next++; 994 995 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 996 997 if (vc4->gen >= VC4_GEN_6_C) { 998 /* This sets a black background color fill, as is the case 999 * with other DRM drivers. 1000 */ 1001 if (enable_bg_fill) 1002 HVS_WRITE(SCALER6_DISPX_CTRL1(channel), 1003 HVS_READ(SCALER6_DISPX_CTRL1(channel)) | 1004 SCALER6_DISPX_CTRL1_BGENB); 1005 else 1006 HVS_WRITE(SCALER6_DISPX_CTRL1(channel), 1007 HVS_READ(SCALER6_DISPX_CTRL1(channel)) & 1008 ~SCALER6_DISPX_CTRL1_BGENB); 1009 } else { 1010 /* we can actually run with a lower core clock when background 1011 * fill is enabled on VC4_GEN_5 so leave it enabled always. 1012 */ 1013 HVS_WRITE(SCALER_DISPBKGNDX(channel), 1014 HVS_READ(SCALER_DISPBKGNDX(channel)) | 1015 SCALER_DISPBKGND_FILL); 1016 } 1017 1018 /* Only update DISPLIST if the CRTC was already running and is not 1019 * being disabled. 1020 * vc4_crtc_enable() takes care of updating the dlist just after 1021 * re-enabling VBLANK interrupts and before enabling the engine. 1022 * If the CRTC is being disabled, there's no point in updating this 1023 * information. 1024 */ 1025 if (crtc->state->active && old_state->active) { 1026 vc4_hvs_install_dlist(crtc); 1027 vc4_hvs_update_dlist(crtc); 1028 } 1029 1030 if (crtc->state->color_mgmt_changed) { 1031 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel)); 1032 1033 WARN_ON_ONCE(vc4->gen > VC4_GEN_5); 1034 1035 if (crtc->state->gamma_lut) { 1036 vc4_hvs_update_gamma_lut(hvs, vc4_crtc); 1037 dispbkgndx |= SCALER_DISPBKGND_GAMMA; 1038 } else { 1039 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step 1040 * in hardware, which is the same as a linear lut that 1041 * DRM expects us to use in absence of a user lut. 1042 */ 1043 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 1044 } 1045 HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx); 1046 } 1047 1048 if (debug_dump_regs) { 1049 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 1050 vc4_hvs_dump_state(hvs); 1051 } 1052 1053 exit: 1054 drm_dev_exit(idx); 1055 } 1056 1057 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel) 1058 { 1059 struct vc4_dev *vc4 = hvs->vc4; 1060 struct drm_device *drm = &vc4->base; 1061 u32 dispctrl; 1062 int idx; 1063 1064 WARN_ON(vc4->gen > VC4_GEN_5); 1065 1066 if (!drm_dev_enter(drm, &idx)) 1067 return; 1068 1069 dispctrl = HVS_READ(SCALER_DISPCTRL); 1070 dispctrl &= ~((vc4->gen == VC4_GEN_5) ? 1071 SCALER5_DISPCTRL_DSPEISLUR(channel) : 1072 SCALER_DISPCTRL_DSPEISLUR(channel)); 1073 1074 HVS_WRITE(SCALER_DISPCTRL, dispctrl); 1075 1076 drm_dev_exit(idx); 1077 } 1078 1079 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel) 1080 { 1081 struct vc4_dev *vc4 = hvs->vc4; 1082 struct drm_device *drm = &vc4->base; 1083 u32 dispctrl; 1084 int idx; 1085 1086 WARN_ON(vc4->gen > VC4_GEN_5); 1087 1088 if (!drm_dev_enter(drm, &idx)) 1089 return; 1090 1091 dispctrl = HVS_READ(SCALER_DISPCTRL); 1092 dispctrl |= ((vc4->gen == VC4_GEN_5) ? 1093 SCALER5_DISPCTRL_DSPEISLUR(channel) : 1094 SCALER_DISPCTRL_DSPEISLUR(channel)); 1095 1096 HVS_WRITE(SCALER_DISPSTAT, 1097 SCALER_DISPSTAT_EUFLOW(channel)); 1098 HVS_WRITE(SCALER_DISPCTRL, dispctrl); 1099 1100 drm_dev_exit(idx); 1101 } 1102 1103 static void vc4_hvs_report_underrun(struct drm_device *dev) 1104 { 1105 struct vc4_dev *vc4 = to_vc4_dev(dev); 1106 1107 atomic_inc(&vc4->underrun); 1108 DRM_DEV_ERROR(dev->dev, "HVS underrun\n"); 1109 } 1110 1111 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data) 1112 { 1113 struct drm_device *dev = data; 1114 struct vc4_dev *vc4 = to_vc4_dev(dev); 1115 struct vc4_hvs *hvs = vc4->hvs; 1116 irqreturn_t irqret = IRQ_NONE; 1117 int channel; 1118 u32 control; 1119 u32 status; 1120 u32 dspeislur; 1121 1122 WARN_ON(vc4->gen > VC4_GEN_5); 1123 1124 /* 1125 * NOTE: We don't need to protect the register access using 1126 * drm_dev_enter() there because the interrupt handler lifetime 1127 * is tied to the device itself, and not to the DRM device. 1128 * 1129 * So when the device will be gone, one of the first thing we 1130 * will be doing will be to unregister the interrupt handler, 1131 * and then unregister the DRM device. drm_dev_enter() would 1132 * thus always succeed if we are here. 1133 */ 1134 1135 status = HVS_READ(SCALER_DISPSTAT); 1136 control = HVS_READ(SCALER_DISPCTRL); 1137 1138 for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) { 1139 dspeislur = (vc4->gen == VC4_GEN_5) ? 1140 SCALER5_DISPCTRL_DSPEISLUR(channel) : 1141 SCALER_DISPCTRL_DSPEISLUR(channel); 1142 1143 /* Interrupt masking is not always honored, so check it here. */ 1144 if (status & SCALER_DISPSTAT_EUFLOW(channel) && 1145 control & dspeislur) { 1146 vc4_hvs_mask_underrun(hvs, channel); 1147 vc4_hvs_report_underrun(dev); 1148 1149 irqret = IRQ_HANDLED; 1150 } 1151 } 1152 1153 /* Clear every per-channel interrupt flag. */ 1154 HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) | 1155 SCALER_DISPSTAT_IRQMASK(1) | 1156 SCALER_DISPSTAT_IRQMASK(2)); 1157 1158 return irqret; 1159 } 1160 1161 int vc4_hvs_debugfs_init(struct drm_minor *minor) 1162 { 1163 struct drm_device *drm = minor->dev; 1164 struct vc4_dev *vc4 = to_vc4_dev(drm); 1165 struct vc4_hvs *hvs = vc4->hvs; 1166 1167 if (!vc4->hvs) 1168 return -ENODEV; 1169 1170 if (vc4->gen == VC4_GEN_4) 1171 debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR, 1172 minor->debugfs_root, 1173 &vc4->load_tracker_enabled); 1174 1175 if (vc4->gen >= VC4_GEN_6_C) { 1176 drm_debugfs_add_file(drm, "hvs_dlists", vc6_hvs_debugfs_dlist, NULL); 1177 drm_debugfs_add_file(drm, "hvs_upm", vc6_hvs_debugfs_upm_allocs, NULL); 1178 } else { 1179 drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL); 1180 } 1181 1182 drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL); 1183 1184 vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset); 1185 1186 return 0; 1187 } 1188 1189 struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, 1190 void __iomem *regs, 1191 struct platform_device *pdev) 1192 { 1193 struct drm_device *drm = &vc4->base; 1194 struct vc4_hvs *hvs; 1195 unsigned int dlist_start; 1196 size_t dlist_size; 1197 size_t lbm_size; 1198 unsigned int i; 1199 1200 hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL); 1201 if (!hvs) 1202 return ERR_PTR(-ENOMEM); 1203 1204 hvs->vc4 = vc4; 1205 hvs->regs = regs; 1206 hvs->pdev = pdev; 1207 1208 spin_lock_init(&hvs->mm_lock); 1209 1210 switch (vc4->gen) { 1211 case VC4_GEN_4: 1212 case VC4_GEN_5: 1213 /* Set up the HVS display list memory manager. We never 1214 * overwrite the setup from the bootloader (just 128b 1215 * out of our 16K), since we don't want to scramble the 1216 * screen when transitioning from the firmware's boot 1217 * setup to runtime. 1218 */ 1219 dlist_start = HVS_BOOTLOADER_DLIST_END; 1220 dlist_size = (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END; 1221 break; 1222 1223 case VC4_GEN_6_C: 1224 case VC4_GEN_6_D: 1225 dlist_start = HVS_BOOTLOADER_DLIST_END; 1226 1227 /* 1228 * If we are running a test, it means that we can't 1229 * access a register. Use a plausible size then. 1230 */ 1231 if (!kunit_get_current_test()) 1232 dlist_size = HVS_READ(SCALER6_CXM_SIZE); 1233 else 1234 dlist_size = 4096; 1235 1236 for (i = 0; i < VC4_NUM_UPM_HANDLES; i++) { 1237 refcount_set(&hvs->upm_refcounts[i].refcount, 0); 1238 hvs->upm_refcounts[i].hvs = hvs; 1239 } 1240 1241 break; 1242 1243 default: 1244 drm_err(drm, "Unknown VC4 generation: %d", vc4->gen); 1245 return ERR_PTR(-ENODEV); 1246 } 1247 1248 drm_mm_init(&hvs->dlist_mm, dlist_start, dlist_size); 1249 1250 hvs->dlist_mem_size = dlist_size; 1251 1252 /* Set up the HVS LBM memory manager. We could have some more 1253 * complicated data structure that allowed reuse of LBM areas 1254 * between planes when they don't overlap on the screen, but 1255 * for now we just allocate globally. 1256 */ 1257 1258 switch (vc4->gen) { 1259 case VC4_GEN_4: 1260 /* 48k words of 2x12-bit pixels */ 1261 lbm_size = 48 * SZ_1K; 1262 break; 1263 1264 case VC4_GEN_5: 1265 /* 60k words of 4x12-bit pixels */ 1266 lbm_size = 60 * SZ_1K; 1267 break; 1268 1269 case VC4_GEN_6_C: 1270 case VC4_GEN_6_D: 1271 /* 1272 * If we are running a test, it means that we can't 1273 * access a register. Use a plausible size then. 1274 */ 1275 lbm_size = 1024; 1276 break; 1277 1278 default: 1279 drm_err(drm, "Unknown VC4 generation: %d", vc4->gen); 1280 return ERR_PTR(-ENODEV); 1281 } 1282 1283 drm_mm_init(&hvs->lbm_mm, 0, lbm_size); 1284 1285 if (vc4->gen >= VC4_GEN_6_C) { 1286 ida_init(&hvs->upm_handles); 1287 1288 /* 1289 * NOTE: On BCM2712, the size can also be read through 1290 * the SCALER_UBM_SIZE register. We would need to do a 1291 * register access though, which we can't do with kunit 1292 * that also uses this function to create its mock 1293 * device. 1294 */ 1295 drm_mm_init(&hvs->upm_mm, 0, 1024 * HVS_UBM_WORD_SIZE); 1296 } 1297 1298 1299 vc4->hvs = hvs; 1300 1301 return hvs; 1302 } 1303 1304 static int vc4_hvs_hw_init(struct vc4_hvs *hvs) 1305 { 1306 struct vc4_dev *vc4 = hvs->vc4; 1307 u32 dispctrl, reg; 1308 1309 dispctrl = HVS_READ(SCALER_DISPCTRL); 1310 dispctrl |= SCALER_DISPCTRL_ENABLE; 1311 HVS_WRITE(SCALER_DISPCTRL, dispctrl); 1312 1313 reg = HVS_READ(SCALER_DISPECTRL); 1314 reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK; 1315 HVS_WRITE(SCALER_DISPECTRL, 1316 reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX)); 1317 1318 reg = HVS_READ(SCALER_DISPCTRL); 1319 reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK; 1320 HVS_WRITE(SCALER_DISPCTRL, 1321 reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX)); 1322 1323 reg = HVS_READ(SCALER_DISPEOLN); 1324 reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK; 1325 HVS_WRITE(SCALER_DISPEOLN, 1326 reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX)); 1327 1328 reg = HVS_READ(SCALER_DISPDITHER); 1329 reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK; 1330 HVS_WRITE(SCALER_DISPDITHER, 1331 reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX)); 1332 1333 dispctrl = HVS_READ(SCALER_DISPCTRL); 1334 dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) | 1335 SCALER_DISPCTRL_DISPEIRQ(1) | 1336 SCALER_DISPCTRL_DISPEIRQ(2); 1337 1338 if (vc4->gen == VC4_GEN_4) 1339 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ | 1340 SCALER_DISPCTRL_SLVWREIRQ | 1341 SCALER_DISPCTRL_SLVRDEIRQ | 1342 SCALER_DISPCTRL_DSPEIEOF(0) | 1343 SCALER_DISPCTRL_DSPEIEOF(1) | 1344 SCALER_DISPCTRL_DSPEIEOF(2) | 1345 SCALER_DISPCTRL_DSPEIEOLN(0) | 1346 SCALER_DISPCTRL_DSPEIEOLN(1) | 1347 SCALER_DISPCTRL_DSPEIEOLN(2) | 1348 SCALER_DISPCTRL_DSPEISLUR(0) | 1349 SCALER_DISPCTRL_DSPEISLUR(1) | 1350 SCALER_DISPCTRL_DSPEISLUR(2) | 1351 SCALER_DISPCTRL_SCLEIRQ); 1352 else 1353 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ | 1354 SCALER5_DISPCTRL_SLVEIRQ | 1355 SCALER5_DISPCTRL_DSPEIEOF(0) | 1356 SCALER5_DISPCTRL_DSPEIEOF(1) | 1357 SCALER5_DISPCTRL_DSPEIEOF(2) | 1358 SCALER5_DISPCTRL_DSPEIEOLN(0) | 1359 SCALER5_DISPCTRL_DSPEIEOLN(1) | 1360 SCALER5_DISPCTRL_DSPEIEOLN(2) | 1361 SCALER5_DISPCTRL_DSPEISLUR(0) | 1362 SCALER5_DISPCTRL_DSPEISLUR(1) | 1363 SCALER5_DISPCTRL_DSPEISLUR(2) | 1364 SCALER_DISPCTRL_SCLEIRQ); 1365 1366 1367 /* Set AXI panic mode. 1368 * VC4 panics when < 2 lines in FIFO. 1369 * VC5 panics when less than 1 line in the FIFO. 1370 */ 1371 dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK | 1372 SCALER_DISPCTRL_PANIC1_MASK | 1373 SCALER_DISPCTRL_PANIC2_MASK); 1374 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0); 1375 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1); 1376 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2); 1377 1378 /* Set AXI panic mode. 1379 * VC4 panics when < 2 lines in FIFO. 1380 * VC5 panics when less than 1 line in the FIFO. 1381 */ 1382 dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK | 1383 SCALER_DISPCTRL_PANIC1_MASK | 1384 SCALER_DISPCTRL_PANIC2_MASK); 1385 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0); 1386 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1); 1387 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2); 1388 1389 HVS_WRITE(SCALER_DISPCTRL, dispctrl); 1390 1391 return 0; 1392 } 1393 1394 #define CFC1_N_NL_CSC_CTRL(x) (0xa000 + ((x) * 0x3000)) 1395 #define CFC1_N_MA_CSC_COEFF_C00(x) (0xa008 + ((x) * 0x3000)) 1396 #define CFC1_N_MA_CSC_COEFF_C01(x) (0xa00c + ((x) * 0x3000)) 1397 #define CFC1_N_MA_CSC_COEFF_C02(x) (0xa010 + ((x) * 0x3000)) 1398 #define CFC1_N_MA_CSC_COEFF_C03(x) (0xa014 + ((x) * 0x3000)) 1399 #define CFC1_N_MA_CSC_COEFF_C04(x) (0xa018 + ((x) * 0x3000)) 1400 #define CFC1_N_MA_CSC_COEFF_C10(x) (0xa01c + ((x) * 0x3000)) 1401 #define CFC1_N_MA_CSC_COEFF_C11(x) (0xa020 + ((x) * 0x3000)) 1402 #define CFC1_N_MA_CSC_COEFF_C12(x) (0xa024 + ((x) * 0x3000)) 1403 #define CFC1_N_MA_CSC_COEFF_C13(x) (0xa028 + ((x) * 0x3000)) 1404 #define CFC1_N_MA_CSC_COEFF_C14(x) (0xa02c + ((x) * 0x3000)) 1405 #define CFC1_N_MA_CSC_COEFF_C20(x) (0xa030 + ((x) * 0x3000)) 1406 #define CFC1_N_MA_CSC_COEFF_C21(x) (0xa034 + ((x) * 0x3000)) 1407 #define CFC1_N_MA_CSC_COEFF_C22(x) (0xa038 + ((x) * 0x3000)) 1408 #define CFC1_N_MA_CSC_COEFF_C23(x) (0xa03c + ((x) * 0x3000)) 1409 #define CFC1_N_MA_CSC_COEFF_C24(x) (0xa040 + ((x) * 0x3000)) 1410 1411 #define SCALER_PI_CMP_CSC_RED0(x) (0x200 + ((x) * 0x40)) 1412 #define SCALER_PI_CMP_CSC_RED1(x) (0x204 + ((x) * 0x40)) 1413 #define SCALER_PI_CMP_CSC_RED_CLAMP(x) (0x208 + ((x) * 0x40)) 1414 #define SCALER_PI_CMP_CSC_CFG(x) (0x20c + ((x) * 0x40)) 1415 #define SCALER_PI_CMP_CSC_GREEN0(x) (0x210 + ((x) * 0x40)) 1416 #define SCALER_PI_CMP_CSC_GREEN1(x) (0x214 + ((x) * 0x40)) 1417 #define SCALER_PI_CMP_CSC_GREEN_CLAMP(x) (0x218 + ((x) * 0x40)) 1418 #define SCALER_PI_CMP_CSC_BLUE0(x) (0x220 + ((x) * 0x40)) 1419 #define SCALER_PI_CMP_CSC_BLUE1(x) (0x224 + ((x) * 0x40)) 1420 #define SCALER_PI_CMP_CSC_BLUE_CLAMP(x) (0x228 + ((x) * 0x40)) 1421 1422 /* 4 S2.22 multiplication factors, and 1 S9.15 addititive element for each of 3 1423 * output components 1424 */ 1425 struct vc6_csc_coeff_entry { 1426 u32 csc[3][5]; 1427 }; 1428 1429 static const struct vc6_csc_coeff_entry csc_coeffs[2][3] = { 1430 [DRM_COLOR_YCBCR_LIMITED_RANGE] = { 1431 [DRM_COLOR_YCBCR_BT601] = { 1432 .csc = { 1433 { 0x004A8542, 0x0, 0x0066254A, 0x0, 0xFF908A0D }, 1434 { 0x004A8542, 0xFFE6ED5D, 0xFFCBF856, 0x0, 0x0043C9A3 }, 1435 { 0x004A8542, 0x00811A54, 0x0, 0x0, 0xFF759502 } 1436 } 1437 }, 1438 [DRM_COLOR_YCBCR_BT709] = { 1439 .csc = { 1440 { 0x004A8542, 0x0, 0x0072BC44, 0x0, 0xFF83F312 }, 1441 { 0x004A8542, 0xFFF25A22, 0xFFDDE4D0, 0x0, 0x00267064 }, 1442 { 0x004A8542, 0x00873197, 0x0, 0x0, 0xFF6F7DC0 } 1443 } 1444 }, 1445 [DRM_COLOR_YCBCR_BT2020] = { 1446 .csc = { 1447 { 0x004A8542, 0x0, 0x006B4A17, 0x0, 0xFF8B653F }, 1448 { 0x004A8542, 0xFFF402D9, 0xFFDDE4D0, 0x0, 0x0024C7AE }, 1449 { 0x004A8542, 0x008912CC, 0x0, 0x0, 0xFF6D9C8B } 1450 } 1451 } 1452 }, 1453 [DRM_COLOR_YCBCR_FULL_RANGE] = { 1454 [DRM_COLOR_YCBCR_BT601] = { 1455 .csc = { 1456 { 0x00400000, 0x0, 0x0059BA5E, 0x0, 0xFFA645A1 }, 1457 { 0x00400000, 0xFFE9F9AC, 0xFFD24B97, 0x0, 0x0043BABB }, 1458 { 0x00400000, 0x00716872, 0x0, 0x0, 0xFF8E978D } 1459 } 1460 }, 1461 [DRM_COLOR_YCBCR_BT709] = { 1462 .csc = { 1463 { 0x00400000, 0x0, 0x0064C985, 0x0, 0xFF9B367A }, 1464 { 0x00400000, 0xFFF402E1, 0xFFE20A40, 0x0, 0x0029F2DE }, 1465 { 0x00400000, 0x0076C226, 0x0, 0x0, 0xFF893DD9 } 1466 } 1467 }, 1468 [DRM_COLOR_YCBCR_BT2020] = { 1469 .csc = { 1470 { 0x00400000, 0x0, 0x005E3F14, 0x0, 0xFFA1C0EB }, 1471 { 0x00400000, 0xFFF577F6, 0xFFDB580F, 0x0, 0x002F2FFA }, 1472 { 0x00400000, 0x007868DB, 0x0, 0x0, 0xFF879724 } 1473 } 1474 } 1475 } 1476 }; 1477 1478 static int vc6_hvs_hw_init(struct vc4_hvs *hvs) 1479 { 1480 const struct vc6_csc_coeff_entry *coeffs; 1481 unsigned int i; 1482 1483 HVS_WRITE(SCALER6_CONTROL, 1484 SCALER6_CONTROL_HVS_EN | 1485 VC4_SET_FIELD(8, SCALER6_CONTROL_PF_LINES) | 1486 VC4_SET_FIELD(15, SCALER6_CONTROL_MAX_REQS)); 1487 1488 /* Set HVS arbiter priority to max */ 1489 HVS_WRITE(SCALER6(PRI_MAP0), 0xffffffff); 1490 HVS_WRITE(SCALER6(PRI_MAP1), 0xffffffff); 1491 1492 if (hvs->vc4->gen == VC4_GEN_6_C) { 1493 for (i = 0; i < 6; i++) { 1494 coeffs = &csc_coeffs[i / 3][i % 3]; 1495 1496 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C00(i), coeffs->csc[0][0]); 1497 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C01(i), coeffs->csc[0][1]); 1498 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C02(i), coeffs->csc[0][2]); 1499 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C03(i), coeffs->csc[0][3]); 1500 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C04(i), coeffs->csc[0][4]); 1501 1502 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C10(i), coeffs->csc[1][0]); 1503 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C11(i), coeffs->csc[1][1]); 1504 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C12(i), coeffs->csc[1][2]); 1505 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C13(i), coeffs->csc[1][3]); 1506 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C14(i), coeffs->csc[1][4]); 1507 1508 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C20(i), coeffs->csc[2][0]); 1509 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C21(i), coeffs->csc[2][1]); 1510 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C22(i), coeffs->csc[2][2]); 1511 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C23(i), coeffs->csc[2][3]); 1512 HVS_WRITE(CFC1_N_MA_CSC_COEFF_C24(i), coeffs->csc[2][4]); 1513 1514 HVS_WRITE(CFC1_N_NL_CSC_CTRL(i), BIT(15)); 1515 } 1516 } else { 1517 for (i = 0; i < 8; i++) { 1518 HVS_WRITE(SCALER_PI_CMP_CSC_RED0(i), 0x1f002566); 1519 HVS_WRITE(SCALER_PI_CMP_CSC_RED1(i), 0x3994); 1520 HVS_WRITE(SCALER_PI_CMP_CSC_RED_CLAMP(i), 0xfff00000); 1521 HVS_WRITE(SCALER_PI_CMP_CSC_CFG(i), 0x1); 1522 HVS_WRITE(SCALER_PI_CMP_CSC_GREEN0(i), 0x18002566); 1523 HVS_WRITE(SCALER_PI_CMP_CSC_GREEN1(i), 0xf927eee2); 1524 HVS_WRITE(SCALER_PI_CMP_CSC_GREEN_CLAMP(i), 0xfff00000); 1525 HVS_WRITE(SCALER_PI_CMP_CSC_BLUE0(i), 0x18002566); 1526 HVS_WRITE(SCALER_PI_CMP_CSC_BLUE1(i), 0x43d80000); 1527 HVS_WRITE(SCALER_PI_CMP_CSC_BLUE_CLAMP(i), 0xfff00000); 1528 } 1529 } 1530 1531 return 0; 1532 } 1533 1534 static int vc4_hvs_cob_init(struct vc4_hvs *hvs) 1535 { 1536 struct vc4_dev *vc4 = hvs->vc4; 1537 u32 reg, top, base; 1538 1539 /* 1540 * Recompute Composite Output Buffer (COB) allocations for the 1541 * displays 1542 */ 1543 switch (vc4->gen) { 1544 case VC4_GEN_4: 1545 /* The COB is 20736 pixels, or just over 10 lines at 2048 wide. 1546 * The bottom 2048 pixels are full 32bpp RGBA (intended for the 1547 * TXP composing RGBA to memory), whilst the remainder are only 1548 * 24bpp RGB. 1549 * 1550 * Assign 3 lines to channels 1 & 2, and just over 4 lines to 1551 * channel 0. 1552 */ 1553 #define VC4_COB_SIZE 20736 1554 #define VC4_COB_LINE_WIDTH 2048 1555 #define VC4_COB_NUM_LINES 3 1556 reg = 0; 1557 top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES; 1558 reg |= (top - 1) << 16; 1559 HVS_WRITE(SCALER_DISPBASE2, reg); 1560 reg = top; 1561 top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES; 1562 reg |= (top - 1) << 16; 1563 HVS_WRITE(SCALER_DISPBASE1, reg); 1564 reg = top; 1565 top = VC4_COB_SIZE; 1566 reg |= (top - 1) << 16; 1567 HVS_WRITE(SCALER_DISPBASE0, reg); 1568 break; 1569 1570 case VC4_GEN_5: 1571 /* The COB is 44416 pixels, or 10.8 lines at 4096 wide. 1572 * The bottom 4096 pixels are full RGBA (intended for the TXP 1573 * composing RGBA to memory), whilst the remainder are only 1574 * RGB. Addressing is always pixel wide. 1575 * 1576 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4 1577 * lines. to channel 0. 1578 */ 1579 #define VC5_COB_SIZE 44416 1580 #define VC5_COB_LINE_WIDTH 4096 1581 #define VC5_COB_NUM_LINES 3 1582 reg = 0; 1583 top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES; 1584 reg |= top << 16; 1585 HVS_WRITE(SCALER_DISPBASE2, reg); 1586 top += 16; 1587 reg = top; 1588 top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES; 1589 reg |= top << 16; 1590 HVS_WRITE(SCALER_DISPBASE1, reg); 1591 top += 16; 1592 reg = top; 1593 top = VC5_COB_SIZE; 1594 reg |= top << 16; 1595 HVS_WRITE(SCALER_DISPBASE0, reg); 1596 break; 1597 1598 case VC4_GEN_6_C: 1599 case VC4_GEN_6_D: 1600 #define VC6_COB_LINE_WIDTH 3840 1601 #define VC6_COB_NUM_LINES 4 1602 base = 0; 1603 top = 3840; 1604 1605 HVS_WRITE(SCALER6_DISPX_COB(2), 1606 VC4_SET_FIELD(top, SCALER6_DISPX_COB_TOP) | 1607 VC4_SET_FIELD(base, SCALER6_DISPX_COB_BASE)); 1608 1609 base = top + 16; 1610 top += VC6_COB_LINE_WIDTH * VC6_COB_NUM_LINES; 1611 1612 HVS_WRITE(SCALER6_DISPX_COB(1), 1613 VC4_SET_FIELD(top, SCALER6_DISPX_COB_TOP) | 1614 VC4_SET_FIELD(base, SCALER6_DISPX_COB_BASE)); 1615 1616 base = top + 16; 1617 top += VC6_COB_LINE_WIDTH * VC6_COB_NUM_LINES; 1618 1619 HVS_WRITE(SCALER6_DISPX_COB(0), 1620 VC4_SET_FIELD(top, SCALER6_DISPX_COB_TOP) | 1621 VC4_SET_FIELD(base, SCALER6_DISPX_COB_BASE)); 1622 break; 1623 1624 default: 1625 return -EINVAL; 1626 } 1627 1628 return 0; 1629 } 1630 1631 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data) 1632 { 1633 struct platform_device *pdev = to_platform_device(dev); 1634 struct drm_device *drm = dev_get_drvdata(master); 1635 struct vc4_dev *vc4 = to_vc4_dev(drm); 1636 struct vc4_hvs *hvs = NULL; 1637 void __iomem *regs; 1638 int ret; 1639 1640 regs = vc4_ioremap_regs(pdev, 0); 1641 if (IS_ERR(regs)) 1642 return PTR_ERR(regs); 1643 1644 hvs = __vc4_hvs_alloc(vc4, regs, pdev); 1645 if (IS_ERR(hvs)) 1646 return PTR_ERR(hvs); 1647 1648 hvs->regset.base = hvs->regs; 1649 1650 if (vc4->gen == VC4_GEN_6_C) { 1651 hvs->regset.regs = vc6_hvs_regs; 1652 hvs->regset.nregs = ARRAY_SIZE(vc6_hvs_regs); 1653 1654 if (VC4_GET_FIELD(HVS_READ(SCALER6_VERSION), SCALER6_VERSION) == 1655 SCALER6_VERSION_D0) { 1656 vc4->gen = VC4_GEN_6_D; 1657 hvs->regset.regs = vc6_d_hvs_regs; 1658 hvs->regset.nregs = ARRAY_SIZE(vc6_d_hvs_regs); 1659 } 1660 } else { 1661 hvs->regset.regs = vc4_hvs_regs; 1662 hvs->regset.nregs = ARRAY_SIZE(vc4_hvs_regs); 1663 } 1664 1665 if (vc4->gen >= VC4_GEN_5) { 1666 struct rpi_firmware *firmware; 1667 struct device_node *node; 1668 unsigned int max_rate; 1669 1670 node = rpi_firmware_find_node(); 1671 if (!node) 1672 return -EINVAL; 1673 1674 firmware = rpi_firmware_get(node); 1675 of_node_put(node); 1676 if (!firmware) 1677 return -EPROBE_DEFER; 1678 1679 hvs->core_clk = devm_clk_get(&pdev->dev, 1680 (vc4->gen >= VC4_GEN_6_C) ? "core" : NULL); 1681 if (IS_ERR(hvs->core_clk)) { 1682 dev_err(&pdev->dev, "Couldn't get core clock\n"); 1683 return PTR_ERR(hvs->core_clk); 1684 } 1685 1686 hvs->disp_clk = devm_clk_get(&pdev->dev, 1687 (vc4->gen >= VC4_GEN_6_C) ? "disp" : NULL); 1688 if (IS_ERR(hvs->disp_clk)) { 1689 dev_err(&pdev->dev, "Couldn't get disp clock\n"); 1690 return PTR_ERR(hvs->disp_clk); 1691 } 1692 1693 max_rate = rpi_firmware_clk_get_max_rate(firmware, 1694 RPI_FIRMWARE_CORE_CLK_ID); 1695 rpi_firmware_put(firmware); 1696 if (max_rate >= 550000000) 1697 hvs->vc5_hdmi_enable_hdmi_20 = true; 1698 1699 if (max_rate >= 600000000) 1700 hvs->vc5_hdmi_enable_4096by2160 = true; 1701 1702 hvs->max_core_rate = max_rate; 1703 1704 ret = clk_prepare_enable(hvs->core_clk); 1705 if (ret) { 1706 dev_err(&pdev->dev, "Couldn't enable the core clock\n"); 1707 return ret; 1708 } 1709 1710 ret = clk_prepare_enable(hvs->disp_clk); 1711 if (ret) { 1712 dev_err(&pdev->dev, "Couldn't enable the disp clock\n"); 1713 return ret; 1714 } 1715 } 1716 1717 if (vc4->gen >= VC4_GEN_5) 1718 hvs->dlist = hvs->regs + SCALER5_DLIST_START; 1719 else 1720 hvs->dlist = hvs->regs + SCALER_DLIST_START; 1721 1722 if (vc4->gen >= VC4_GEN_6_C) 1723 ret = vc6_hvs_hw_init(hvs); 1724 else 1725 ret = vc4_hvs_hw_init(hvs); 1726 if (ret) 1727 return ret; 1728 1729 /* Upload filter kernels. We only have the one for now, so we 1730 * keep it around for the lifetime of the driver. 1731 */ 1732 ret = vc4_hvs_upload_linear_kernel(hvs, 1733 &hvs->mitchell_netravali_filter, 1734 mitchell_netravali_1_3_1_3_kernel); 1735 if (ret) 1736 return ret; 1737 1738 ret = vc4_hvs_cob_init(hvs); 1739 if (ret) 1740 return ret; 1741 1742 if (vc4->gen < VC4_GEN_6_C) { 1743 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1744 vc4_hvs_irq_handler, 0, "vc4 hvs", drm); 1745 if (ret) 1746 return ret; 1747 } 1748 1749 return 0; 1750 } 1751 1752 static void vc4_hvs_unbind(struct device *dev, struct device *master, 1753 void *data) 1754 { 1755 struct drm_device *drm = dev_get_drvdata(master); 1756 struct vc4_dev *vc4 = to_vc4_dev(drm); 1757 struct vc4_hvs *hvs = vc4->hvs; 1758 struct drm_mm_node *node, *next; 1759 1760 if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter)) 1761 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter); 1762 1763 drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm) 1764 drm_mm_remove_node(node); 1765 1766 drm_mm_takedown(&vc4->hvs->dlist_mm); 1767 1768 drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm) 1769 drm_mm_remove_node(node); 1770 drm_mm_takedown(&vc4->hvs->lbm_mm); 1771 1772 clk_disable_unprepare(hvs->disp_clk); 1773 clk_disable_unprepare(hvs->core_clk); 1774 1775 vc4->hvs = NULL; 1776 } 1777 1778 static const struct component_ops vc4_hvs_ops = { 1779 .bind = vc4_hvs_bind, 1780 .unbind = vc4_hvs_unbind, 1781 }; 1782 1783 static int vc4_hvs_dev_probe(struct platform_device *pdev) 1784 { 1785 return component_add(&pdev->dev, &vc4_hvs_ops); 1786 } 1787 1788 static void vc4_hvs_dev_remove(struct platform_device *pdev) 1789 { 1790 component_del(&pdev->dev, &vc4_hvs_ops); 1791 } 1792 1793 static const struct of_device_id vc4_hvs_dt_match[] = { 1794 { .compatible = "brcm,bcm2711-hvs" }, 1795 { .compatible = "brcm,bcm2712-hvs" }, 1796 { .compatible = "brcm,bcm2835-hvs" }, 1797 {} 1798 }; 1799 1800 struct platform_driver vc4_hvs_driver = { 1801 .probe = vc4_hvs_dev_probe, 1802 .remove = vc4_hvs_dev_remove, 1803 .driver = { 1804 .name = "vc4_hvs", 1805 .of_match_table = vc4_hvs_dt_match, 1806 }, 1807 }; 1808