xref: /linux/drivers/gpu/drm/vc4/vc4_hvs.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26 
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_vblank.h>
30 
31 #include <soc/bcm2835/raspberrypi-firmware.h>
32 
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35 
36 static const struct debugfs_reg32 vc4_hvs_regs[] = {
37 	VC4_REG32(SCALER_DISPCTRL),
38 	VC4_REG32(SCALER_DISPSTAT),
39 	VC4_REG32(SCALER_DISPID),
40 	VC4_REG32(SCALER_DISPECTRL),
41 	VC4_REG32(SCALER_DISPPROF),
42 	VC4_REG32(SCALER_DISPDITHER),
43 	VC4_REG32(SCALER_DISPEOLN),
44 	VC4_REG32(SCALER_DISPLIST0),
45 	VC4_REG32(SCALER_DISPLIST1),
46 	VC4_REG32(SCALER_DISPLIST2),
47 	VC4_REG32(SCALER_DISPLSTAT),
48 	VC4_REG32(SCALER_DISPLACT0),
49 	VC4_REG32(SCALER_DISPLACT1),
50 	VC4_REG32(SCALER_DISPLACT2),
51 	VC4_REG32(SCALER_DISPCTRL0),
52 	VC4_REG32(SCALER_DISPBKGND0),
53 	VC4_REG32(SCALER_DISPSTAT0),
54 	VC4_REG32(SCALER_DISPBASE0),
55 	VC4_REG32(SCALER_DISPCTRL1),
56 	VC4_REG32(SCALER_DISPBKGND1),
57 	VC4_REG32(SCALER_DISPSTAT1),
58 	VC4_REG32(SCALER_DISPBASE1),
59 	VC4_REG32(SCALER_DISPCTRL2),
60 	VC4_REG32(SCALER_DISPBKGND2),
61 	VC4_REG32(SCALER_DISPSTAT2),
62 	VC4_REG32(SCALER_DISPBASE2),
63 	VC4_REG32(SCALER_DISPALPHA2),
64 	VC4_REG32(SCALER_OLEDOFFS),
65 	VC4_REG32(SCALER_OLEDCOEF0),
66 	VC4_REG32(SCALER_OLEDCOEF1),
67 	VC4_REG32(SCALER_OLEDCOEF2),
68 };
69 
70 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
71 {
72 	struct drm_device *drm = &hvs->vc4->base;
73 	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
74 	int idx, i;
75 
76 	if (!drm_dev_enter(drm, &idx))
77 		return;
78 
79 	drm_print_regset32(&p, &hvs->regset);
80 
81 	DRM_INFO("HVS ctx:\n");
82 	for (i = 0; i < 64; i += 4) {
83 		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
84 			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
85 			 readl((u32 __iomem *)hvs->dlist + i + 0),
86 			 readl((u32 __iomem *)hvs->dlist + i + 1),
87 			 readl((u32 __iomem *)hvs->dlist + i + 2),
88 			 readl((u32 __iomem *)hvs->dlist + i + 3));
89 	}
90 
91 	drm_dev_exit(idx);
92 }
93 
94 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
95 {
96 	struct drm_debugfs_entry *entry = m->private;
97 	struct drm_device *dev = entry->dev;
98 	struct vc4_dev *vc4 = to_vc4_dev(dev);
99 	struct drm_printer p = drm_seq_file_printer(m);
100 
101 	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
102 
103 	return 0;
104 }
105 
106 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
107 {
108 	struct drm_debugfs_entry *entry = m->private;
109 	struct drm_device *dev = entry->dev;
110 	struct vc4_dev *vc4 = to_vc4_dev(dev);
111 	struct vc4_hvs *hvs = vc4->hvs;
112 	struct drm_printer p = drm_seq_file_printer(m);
113 	unsigned int dlist_mem_size = hvs->dlist_mem_size;
114 	unsigned int next_entry_start;
115 	unsigned int i, j;
116 	u32 dlist_word, dispstat;
117 
118 	for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
119 		dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
120 					 SCALER_DISPSTATX_MODE);
121 		if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
122 		    dispstat == SCALER_DISPSTATX_MODE_EOF) {
123 			drm_printf(&p, "HVS chan %u disabled\n", i);
124 			continue;
125 		}
126 
127 		drm_printf(&p, "HVS chan %u:\n", i);
128 		next_entry_start = 0;
129 
130 		for (j = HVS_READ(SCALER_DISPLISTX(i)); j < dlist_mem_size; j++) {
131 			dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
132 			drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
133 				   dlist_word);
134 			if (!next_entry_start ||
135 			    next_entry_start == j) {
136 				if (dlist_word & SCALER_CTL0_END)
137 					break;
138 				next_entry_start = j +
139 					VC4_GET_FIELD(dlist_word,
140 						      SCALER_CTL0_SIZE);
141 			}
142 		}
143 	}
144 
145 	return 0;
146 }
147 
148 /* The filter kernel is composed of dwords each containing 3 9-bit
149  * signed integers packed next to each other.
150  */
151 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
152 #define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
153 	((((c0) & 0x1ff) << 0) |				\
154 	 (((c1) & 0x1ff) << 9) |				\
155 	 (((c2) & 0x1ff) << 18))
156 
157 /* The whole filter kernel is arranged as the coefficients 0-16 going
158  * up, then a pad, then 17-31 going down and reversed within the
159  * dwords.  This means that a linear phase kernel (where it's
160  * symmetrical at the boundary between 15 and 16) has the last 5
161  * dwords matching the first 5, but reversed.
162  */
163 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
164 				c9, c10, c11, c12, c13, c14, c15)	\
165 	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
166 	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
167 	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
168 	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
169 	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
170 	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
171 
172 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
173 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
174 
175 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
176  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
177  */
178 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
179 	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
180 				50, 82, 119, 155, 187, 213, 227);
181 
182 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
183 					struct drm_mm_node *space,
184 					const u32 *kernel)
185 {
186 	int ret, i;
187 	u32 __iomem *dst_kernel;
188 
189 	/*
190 	 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
191 	 * here since that function is only called from vc4_hvs_bind().
192 	 */
193 
194 	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
195 	if (ret) {
196 		drm_err(&hvs->vc4->base, "Failed to allocate space for filter kernel: %d\n",
197 			ret);
198 		return ret;
199 	}
200 
201 	dst_kernel = hvs->dlist + space->start;
202 
203 	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
204 		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
205 			writel(kernel[i], &dst_kernel[i]);
206 		else {
207 			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
208 			       &dst_kernel[i]);
209 		}
210 	}
211 
212 	return 0;
213 }
214 
215 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
216 			     struct vc4_crtc *vc4_crtc)
217 {
218 	struct drm_device *drm = &hvs->vc4->base;
219 	struct drm_crtc *crtc = &vc4_crtc->base;
220 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
221 	int idx;
222 	u32 i;
223 
224 	if (!drm_dev_enter(drm, &idx))
225 		return;
226 
227 	if (hvs->vc4->gen != VC4_GEN_4)
228 		goto exit;
229 
230 	/* The LUT memory is laid out with each HVS channel in order,
231 	 * each of which takes 256 writes for R, 256 for G, then 256
232 	 * for B.
233 	 */
234 	HVS_WRITE(SCALER_GAMADDR,
235 		  SCALER_GAMADDR_AUTOINC |
236 		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
237 
238 	for (i = 0; i < crtc->gamma_size; i++)
239 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
240 	for (i = 0; i < crtc->gamma_size; i++)
241 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
242 	for (i = 0; i < crtc->gamma_size; i++)
243 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
244 
245 exit:
246 	drm_dev_exit(idx);
247 }
248 
249 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
250 				     struct vc4_crtc *vc4_crtc)
251 {
252 	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
253 	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
254 	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
255 	u32 i;
256 
257 	for (i = 0; i < length; i++) {
258 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
259 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
260 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
261 	}
262 
263 	vc4_hvs_lut_load(hvs, vc4_crtc);
264 }
265 
266 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
267 {
268 	struct drm_device *drm = &hvs->vc4->base;
269 	u8 field = 0;
270 	int idx;
271 
272 	if (!drm_dev_enter(drm, &idx))
273 		return 0;
274 
275 	switch (fifo) {
276 	case 0:
277 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
278 				      SCALER_DISPSTAT1_FRCNT0);
279 		break;
280 	case 1:
281 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
282 				      SCALER_DISPSTAT1_FRCNT1);
283 		break;
284 	case 2:
285 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
286 				      SCALER_DISPSTAT2_FRCNT2);
287 		break;
288 	}
289 
290 	drm_dev_exit(idx);
291 	return field;
292 }
293 
294 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
295 {
296 	struct vc4_dev *vc4 = hvs->vc4;
297 	u32 reg;
298 	int ret;
299 
300 	switch (vc4->gen) {
301 	case VC4_GEN_4:
302 		return output;
303 
304 	case VC4_GEN_5:
305 		/*
306 		 * NOTE: We should probably use
307 		 * drm_dev_enter()/drm_dev_exit() here, but this
308 		 * function is only used during the DRM device
309 		 * initialization, so we should be fine.
310 		 */
311 
312 		switch (output) {
313 		case 0:
314 			return 0;
315 
316 		case 1:
317 			return 1;
318 
319 		case 2:
320 			reg = HVS_READ(SCALER_DISPECTRL);
321 			ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
322 			if (ret == 0)
323 				return 2;
324 
325 			return 0;
326 
327 		case 3:
328 			reg = HVS_READ(SCALER_DISPCTRL);
329 			ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
330 			if (ret == 3)
331 				return -EPIPE;
332 
333 			return ret;
334 
335 		case 4:
336 			reg = HVS_READ(SCALER_DISPEOLN);
337 			ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
338 			if (ret == 3)
339 				return -EPIPE;
340 
341 			return ret;
342 
343 		case 5:
344 			reg = HVS_READ(SCALER_DISPDITHER);
345 			ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
346 			if (ret == 3)
347 				return -EPIPE;
348 
349 			return ret;
350 
351 		default:
352 			return -EPIPE;
353 		}
354 
355 	default:
356 		return -EPIPE;
357 	}
358 }
359 
360 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
361 				struct drm_display_mode *mode, bool oneshot)
362 {
363 	struct vc4_dev *vc4 = hvs->vc4;
364 	struct drm_device *drm = &vc4->base;
365 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
366 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
367 	unsigned int chan = vc4_crtc_state->assigned_channel;
368 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
369 	u32 dispbkgndx;
370 	u32 dispctrl;
371 	int idx;
372 
373 	if (!drm_dev_enter(drm, &idx))
374 		return -ENODEV;
375 
376 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
377 	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
378 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
379 
380 	/* Turn on the scaler, which will wait for vstart to start
381 	 * compositing.
382 	 * When feeding the transposer, we should operate in oneshot
383 	 * mode.
384 	 */
385 	dispctrl = SCALER_DISPCTRLX_ENABLE;
386 	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
387 
388 	if (vc4->gen == VC4_GEN_4) {
389 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
390 					  SCALER_DISPCTRLX_WIDTH) |
391 			    VC4_SET_FIELD(mode->vdisplay,
392 					  SCALER_DISPCTRLX_HEIGHT) |
393 			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
394 		dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
395 	} else {
396 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
397 					  SCALER5_DISPCTRLX_WIDTH) |
398 			    VC4_SET_FIELD(mode->vdisplay,
399 					  SCALER5_DISPCTRLX_HEIGHT) |
400 			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
401 		dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
402 	}
403 
404 	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
405 
406 	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
407 	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
408 
409 	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
410 		  ((vc4->gen == VC4_GEN_4) ? SCALER_DISPBKGND_GAMMA : 0) |
411 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
412 
413 	/* Reload the LUT, since the SRAMs would have been disabled if
414 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
415 	 */
416 	vc4_hvs_lut_load(hvs, vc4_crtc);
417 
418 	drm_dev_exit(idx);
419 
420 	return 0;
421 }
422 
423 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
424 {
425 	struct drm_device *drm = &hvs->vc4->base;
426 	int idx;
427 
428 	if (!drm_dev_enter(drm, &idx))
429 		return;
430 
431 	if (!(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE))
432 		goto out;
433 
434 	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
435 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
436 
437 	/* Once we leave, the scaler should be disabled and its fifo empty. */
438 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
439 
440 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
441 				   SCALER_DISPSTATX_MODE) !=
442 		     SCALER_DISPSTATX_MODE_DISABLED);
443 
444 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
445 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
446 		     SCALER_DISPSTATX_EMPTY);
447 
448 out:
449 	drm_dev_exit(idx);
450 }
451 
452 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
453 {
454 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
455 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
456 	struct drm_device *dev = crtc->dev;
457 	struct vc4_dev *vc4 = to_vc4_dev(dev);
458 	struct drm_plane *plane;
459 	unsigned long flags;
460 	const struct drm_plane_state *plane_state;
461 	u32 dlist_count = 0;
462 	int ret;
463 
464 	/* The pixelvalve can only feed one encoder (and encoders are
465 	 * 1:1 with connectors.)
466 	 */
467 	if (hweight32(crtc_state->connector_mask) > 1)
468 		return -EINVAL;
469 
470 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
471 		u32 plane_dlist_count = vc4_plane_dlist_size(plane_state);
472 
473 		drm_dbg_driver(dev, "[CRTC:%d:%s] Found [PLANE:%d:%s] with DLIST size: %u\n",
474 			       crtc->base.id, crtc->name,
475 			       plane->base.id, plane->name,
476 			       plane_dlist_count);
477 
478 		dlist_count += plane_dlist_count;
479 	}
480 
481 	dlist_count++; /* Account for SCALER_CTL0_END. */
482 
483 	drm_dbg_driver(dev, "[CRTC:%d:%s] Allocating DLIST block with size: %u\n",
484 		       crtc->base.id, crtc->name, dlist_count);
485 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
486 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
487 				 dlist_count);
488 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
489 	if (ret) {
490 		drm_err(dev, "Failed to allocate DLIST entry: %d\n", ret);
491 		return ret;
492 	}
493 
494 	return 0;
495 }
496 
497 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
498 {
499 	struct drm_device *dev = crtc->dev;
500 	struct vc4_dev *vc4 = to_vc4_dev(dev);
501 	struct vc4_hvs *hvs = vc4->hvs;
502 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
503 	int idx;
504 
505 	if (!drm_dev_enter(dev, &idx))
506 		return;
507 
508 	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
509 		  vc4_state->mm.start);
510 
511 	drm_dev_exit(idx);
512 }
513 
514 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
515 {
516 	struct drm_device *dev = crtc->dev;
517 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
518 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
519 	unsigned long flags;
520 
521 	if (crtc->state->event) {
522 		crtc->state->event->pipe = drm_crtc_index(crtc);
523 
524 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
525 
526 		spin_lock_irqsave(&dev->event_lock, flags);
527 
528 		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
529 			vc4_crtc->event = crtc->state->event;
530 			crtc->state->event = NULL;
531 		}
532 
533 		spin_unlock_irqrestore(&dev->event_lock, flags);
534 	}
535 
536 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
537 	vc4_crtc->current_dlist = vc4_state->mm.start;
538 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
539 }
540 
541 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
542 			  struct drm_atomic_state *state)
543 {
544 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
545 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
546 	unsigned long flags;
547 
548 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
549 	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
550 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
551 }
552 
553 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
554 			   struct drm_atomic_state *state)
555 {
556 	struct drm_device *dev = crtc->dev;
557 	struct vc4_dev *vc4 = to_vc4_dev(dev);
558 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
559 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
560 	bool oneshot = vc4_crtc->feeds_txp;
561 
562 	vc4_hvs_install_dlist(crtc);
563 	vc4_hvs_update_dlist(crtc);
564 	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
565 }
566 
567 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
568 			    struct drm_atomic_state *state)
569 {
570 	struct drm_device *dev = crtc->dev;
571 	struct vc4_dev *vc4 = to_vc4_dev(dev);
572 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
573 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
574 	unsigned int chan = vc4_state->assigned_channel;
575 
576 	vc4_hvs_stop_channel(vc4->hvs, chan);
577 }
578 
579 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
580 			  struct drm_atomic_state *state)
581 {
582 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
583 									 crtc);
584 	struct drm_device *dev = crtc->dev;
585 	struct vc4_dev *vc4 = to_vc4_dev(dev);
586 	struct vc4_hvs *hvs = vc4->hvs;
587 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
588 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
589 	unsigned int channel = vc4_state->assigned_channel;
590 	struct drm_plane *plane;
591 	struct vc4_plane_state *vc4_plane_state;
592 	bool debug_dump_regs = false;
593 	bool enable_bg_fill = false;
594 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
595 	u32 __iomem *dlist_next = dlist_start;
596 	unsigned int zpos = 0;
597 	bool found = false;
598 	int idx;
599 
600 	if (!drm_dev_enter(dev, &idx)) {
601 		vc4_crtc_send_vblank(crtc);
602 		return;
603 	}
604 
605 	if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
606 		goto exit;
607 
608 	if (debug_dump_regs) {
609 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
610 		vc4_hvs_dump_state(hvs);
611 	}
612 
613 	/* Copy all the active planes' dlist contents to the hardware dlist. */
614 	do {
615 		found = false;
616 
617 		drm_atomic_crtc_for_each_plane(plane, crtc) {
618 			if (plane->state->normalized_zpos != zpos)
619 				continue;
620 
621 			/* Is this the first active plane? */
622 			if (dlist_next == dlist_start) {
623 				/* We need to enable background fill when a plane
624 				 * could be alpha blending from the background, i.e.
625 				 * where no other plane is underneath. It suffices to
626 				 * consider the first active plane here since we set
627 				 * needs_bg_fill such that either the first plane
628 				 * already needs it or all planes on top blend from
629 				 * the first or a lower plane.
630 				 */
631 				vc4_plane_state = to_vc4_plane_state(plane->state);
632 				enable_bg_fill = vc4_plane_state->needs_bg_fill;
633 			}
634 
635 			dlist_next += vc4_plane_write_dlist(plane, dlist_next);
636 
637 			found = true;
638 		}
639 
640 		zpos++;
641 	} while (found);
642 
643 	writel(SCALER_CTL0_END, dlist_next);
644 	dlist_next++;
645 
646 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
647 
648 	if (enable_bg_fill)
649 		/* This sets a black background color fill, as is the case
650 		 * with other DRM drivers.
651 		 */
652 		HVS_WRITE(SCALER_DISPBKGNDX(channel),
653 			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
654 			  SCALER_DISPBKGND_FILL);
655 
656 	/* Only update DISPLIST if the CRTC was already running and is not
657 	 * being disabled.
658 	 * vc4_crtc_enable() takes care of updating the dlist just after
659 	 * re-enabling VBLANK interrupts and before enabling the engine.
660 	 * If the CRTC is being disabled, there's no point in updating this
661 	 * information.
662 	 */
663 	if (crtc->state->active && old_state->active) {
664 		vc4_hvs_install_dlist(crtc);
665 		vc4_hvs_update_dlist(crtc);
666 	}
667 
668 	if (crtc->state->color_mgmt_changed) {
669 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
670 
671 		if (crtc->state->gamma_lut) {
672 			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
673 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
674 		} else {
675 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
676 			 * in hardware, which is the same as a linear lut that
677 			 * DRM expects us to use in absence of a user lut.
678 			 */
679 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
680 		}
681 		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
682 	}
683 
684 	if (debug_dump_regs) {
685 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
686 		vc4_hvs_dump_state(hvs);
687 	}
688 
689 exit:
690 	drm_dev_exit(idx);
691 }
692 
693 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
694 {
695 	struct vc4_dev *vc4 = hvs->vc4;
696 	struct drm_device *drm = &vc4->base;
697 	u32 dispctrl;
698 	int idx;
699 
700 	if (!drm_dev_enter(drm, &idx))
701 		return;
702 
703 	dispctrl = HVS_READ(SCALER_DISPCTRL);
704 	dispctrl &= ~((vc4->gen == VC4_GEN_5) ?
705 		      SCALER5_DISPCTRL_DSPEISLUR(channel) :
706 		      SCALER_DISPCTRL_DSPEISLUR(channel));
707 
708 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
709 
710 	drm_dev_exit(idx);
711 }
712 
713 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
714 {
715 	struct vc4_dev *vc4 = hvs->vc4;
716 	struct drm_device *drm = &vc4->base;
717 	u32 dispctrl;
718 	int idx;
719 
720 	if (!drm_dev_enter(drm, &idx))
721 		return;
722 
723 	dispctrl = HVS_READ(SCALER_DISPCTRL);
724 	dispctrl |= ((vc4->gen == VC4_GEN_5) ?
725 		     SCALER5_DISPCTRL_DSPEISLUR(channel) :
726 		     SCALER_DISPCTRL_DSPEISLUR(channel));
727 
728 	HVS_WRITE(SCALER_DISPSTAT,
729 		  SCALER_DISPSTAT_EUFLOW(channel));
730 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
731 
732 	drm_dev_exit(idx);
733 }
734 
735 static void vc4_hvs_report_underrun(struct drm_device *dev)
736 {
737 	struct vc4_dev *vc4 = to_vc4_dev(dev);
738 
739 	atomic_inc(&vc4->underrun);
740 	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
741 }
742 
743 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
744 {
745 	struct drm_device *dev = data;
746 	struct vc4_dev *vc4 = to_vc4_dev(dev);
747 	struct vc4_hvs *hvs = vc4->hvs;
748 	irqreturn_t irqret = IRQ_NONE;
749 	int channel;
750 	u32 control;
751 	u32 status;
752 	u32 dspeislur;
753 
754 	/*
755 	 * NOTE: We don't need to protect the register access using
756 	 * drm_dev_enter() there because the interrupt handler lifetime
757 	 * is tied to the device itself, and not to the DRM device.
758 	 *
759 	 * So when the device will be gone, one of the first thing we
760 	 * will be doing will be to unregister the interrupt handler,
761 	 * and then unregister the DRM device. drm_dev_enter() would
762 	 * thus always succeed if we are here.
763 	 */
764 
765 	status = HVS_READ(SCALER_DISPSTAT);
766 	control = HVS_READ(SCALER_DISPCTRL);
767 
768 	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
769 		dspeislur = (vc4->gen == VC4_GEN_5) ?
770 			SCALER5_DISPCTRL_DSPEISLUR(channel) :
771 			SCALER_DISPCTRL_DSPEISLUR(channel);
772 
773 		/* Interrupt masking is not always honored, so check it here. */
774 		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
775 		    control & dspeislur) {
776 			vc4_hvs_mask_underrun(hvs, channel);
777 			vc4_hvs_report_underrun(dev);
778 
779 			irqret = IRQ_HANDLED;
780 		}
781 	}
782 
783 	/* Clear every per-channel interrupt flag. */
784 	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
785 				   SCALER_DISPSTAT_IRQMASK(1) |
786 				   SCALER_DISPSTAT_IRQMASK(2));
787 
788 	return irqret;
789 }
790 
791 int vc4_hvs_debugfs_init(struct drm_minor *minor)
792 {
793 	struct drm_device *drm = minor->dev;
794 	struct vc4_dev *vc4 = to_vc4_dev(drm);
795 	struct vc4_hvs *hvs = vc4->hvs;
796 
797 	if (!vc4->hvs)
798 		return -ENODEV;
799 
800 	if (vc4->gen == VC4_GEN_4)
801 		debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
802 				    minor->debugfs_root,
803 				    &vc4->load_tracker_enabled);
804 
805 	drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
806 
807 	drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
808 
809 	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
810 
811 	return 0;
812 }
813 
814 struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4,
815 				void __iomem *regs,
816 				struct platform_device *pdev)
817 {
818 	struct drm_device *drm = &vc4->base;
819 	struct vc4_hvs *hvs;
820 
821 	hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
822 	if (!hvs)
823 		return ERR_PTR(-ENOMEM);
824 
825 	hvs->vc4 = vc4;
826 	hvs->regs = regs;
827 	hvs->pdev = pdev;
828 
829 	spin_lock_init(&hvs->mm_lock);
830 
831 	/* Set up the HVS display list memory manager.  We never
832 	 * overwrite the setup from the bootloader (just 128b out of
833 	 * our 16K), since we don't want to scramble the screen when
834 	 * transitioning from the firmware's boot setup to runtime.
835 	 */
836 	hvs->dlist_mem_size = (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END;
837 	drm_mm_init(&hvs->dlist_mm,
838 		    HVS_BOOTLOADER_DLIST_END,
839 		    hvs->dlist_mem_size);
840 
841 	/* Set up the HVS LBM memory manager.  We could have some more
842 	 * complicated data structure that allowed reuse of LBM areas
843 	 * between planes when they don't overlap on the screen, but
844 	 * for now we just allocate globally.
845 	 */
846 	if (vc4->gen == VC4_GEN_4)
847 		/* 48k words of 2x12-bit pixels */
848 		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
849 	else
850 		/* 60k words of 4x12-bit pixels */
851 		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
852 
853 	vc4->hvs = hvs;
854 
855 	return hvs;
856 }
857 
858 static int vc4_hvs_hw_init(struct vc4_hvs *hvs)
859 {
860 	struct vc4_dev *vc4 = hvs->vc4;
861 	u32 dispctrl, reg;
862 
863 	dispctrl = HVS_READ(SCALER_DISPCTRL);
864 	dispctrl |= SCALER_DISPCTRL_ENABLE;
865 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
866 
867 	reg = HVS_READ(SCALER_DISPECTRL);
868 	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
869 	HVS_WRITE(SCALER_DISPECTRL,
870 		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
871 
872 	reg = HVS_READ(SCALER_DISPCTRL);
873 	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
874 	HVS_WRITE(SCALER_DISPCTRL,
875 		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
876 
877 	reg = HVS_READ(SCALER_DISPEOLN);
878 	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
879 	HVS_WRITE(SCALER_DISPEOLN,
880 		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
881 
882 	reg = HVS_READ(SCALER_DISPDITHER);
883 	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
884 	HVS_WRITE(SCALER_DISPDITHER,
885 		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
886 
887 	dispctrl = HVS_READ(SCALER_DISPCTRL);
888 	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
889 		    SCALER_DISPCTRL_DISPEIRQ(1) |
890 		    SCALER_DISPCTRL_DISPEIRQ(2);
891 
892 	if (vc4->gen == VC4_GEN_4)
893 		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
894 			      SCALER_DISPCTRL_SLVWREIRQ |
895 			      SCALER_DISPCTRL_SLVRDEIRQ |
896 			      SCALER_DISPCTRL_DSPEIEOF(0) |
897 			      SCALER_DISPCTRL_DSPEIEOF(1) |
898 			      SCALER_DISPCTRL_DSPEIEOF(2) |
899 			      SCALER_DISPCTRL_DSPEIEOLN(0) |
900 			      SCALER_DISPCTRL_DSPEIEOLN(1) |
901 			      SCALER_DISPCTRL_DSPEIEOLN(2) |
902 			      SCALER_DISPCTRL_DSPEISLUR(0) |
903 			      SCALER_DISPCTRL_DSPEISLUR(1) |
904 			      SCALER_DISPCTRL_DSPEISLUR(2) |
905 			      SCALER_DISPCTRL_SCLEIRQ);
906 	else
907 		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
908 			      SCALER5_DISPCTRL_SLVEIRQ |
909 			      SCALER5_DISPCTRL_DSPEIEOF(0) |
910 			      SCALER5_DISPCTRL_DSPEIEOF(1) |
911 			      SCALER5_DISPCTRL_DSPEIEOF(2) |
912 			      SCALER5_DISPCTRL_DSPEIEOLN(0) |
913 			      SCALER5_DISPCTRL_DSPEIEOLN(1) |
914 			      SCALER5_DISPCTRL_DSPEIEOLN(2) |
915 			      SCALER5_DISPCTRL_DSPEISLUR(0) |
916 			      SCALER5_DISPCTRL_DSPEISLUR(1) |
917 			      SCALER5_DISPCTRL_DSPEISLUR(2) |
918 			      SCALER_DISPCTRL_SCLEIRQ);
919 
920 
921 	/* Set AXI panic mode.
922 	 * VC4 panics when < 2 lines in FIFO.
923 	 * VC5 panics when less than 1 line in the FIFO.
924 	 */
925 	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
926 		      SCALER_DISPCTRL_PANIC1_MASK |
927 		      SCALER_DISPCTRL_PANIC2_MASK);
928 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
929 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
930 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
931 
932 	/* Set AXI panic mode.
933 	 * VC4 panics when < 2 lines in FIFO.
934 	 * VC5 panics when less than 1 line in the FIFO.
935 	 */
936 	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
937 		      SCALER_DISPCTRL_PANIC1_MASK |
938 		      SCALER_DISPCTRL_PANIC2_MASK);
939 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
940 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
941 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
942 
943 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
944 
945 	return 0;
946 }
947 
948 static int vc4_hvs_cob_init(struct vc4_hvs *hvs)
949 {
950 	struct vc4_dev *vc4 = hvs->vc4;
951 	u32 reg, top;
952 
953 	/*
954 	 * Recompute Composite Output Buffer (COB) allocations for the
955 	 * displays
956 	 */
957 	switch (vc4->gen) {
958 	case VC4_GEN_4:
959 		/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
960 		 * The bottom 2048 pixels are full 32bpp RGBA (intended for the
961 		 * TXP composing RGBA to memory), whilst the remainder are only
962 		 * 24bpp RGB.
963 		 *
964 		 * Assign 3 lines to channels 1 & 2, and just over 4 lines to
965 		 * channel 0.
966 		 */
967 		#define VC4_COB_SIZE		20736
968 		#define VC4_COB_LINE_WIDTH	2048
969 		#define VC4_COB_NUM_LINES	3
970 		reg = 0;
971 		top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
972 		reg |= (top - 1) << 16;
973 		HVS_WRITE(SCALER_DISPBASE2, reg);
974 		reg = top;
975 		top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
976 		reg |= (top - 1) << 16;
977 		HVS_WRITE(SCALER_DISPBASE1, reg);
978 		reg = top;
979 		top = VC4_COB_SIZE;
980 		reg |= (top - 1) << 16;
981 		HVS_WRITE(SCALER_DISPBASE0, reg);
982 		break;
983 
984 	case VC4_GEN_5:
985 		/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
986 		 * The bottom 4096 pixels are full RGBA (intended for the TXP
987 		 * composing RGBA to memory), whilst the remainder are only
988 		 * RGB. Addressing is always pixel wide.
989 		 *
990 		 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
991 		 * lines. to channel 0.
992 		 */
993 		#define VC5_COB_SIZE		44416
994 		#define VC5_COB_LINE_WIDTH	4096
995 		#define VC5_COB_NUM_LINES	3
996 		reg = 0;
997 		top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
998 		reg |= top << 16;
999 		HVS_WRITE(SCALER_DISPBASE2, reg);
1000 		top += 16;
1001 		reg = top;
1002 		top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1003 		reg |= top << 16;
1004 		HVS_WRITE(SCALER_DISPBASE1, reg);
1005 		top += 16;
1006 		reg = top;
1007 		top = VC5_COB_SIZE;
1008 		reg |= top << 16;
1009 		HVS_WRITE(SCALER_DISPBASE0, reg);
1010 		break;
1011 
1012 	default:
1013 		return -EINVAL;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
1020 {
1021 	struct platform_device *pdev = to_platform_device(dev);
1022 	struct drm_device *drm = dev_get_drvdata(master);
1023 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1024 	struct vc4_hvs *hvs = NULL;
1025 	void __iomem *regs;
1026 	int ret;
1027 
1028 	regs = vc4_ioremap_regs(pdev, 0);
1029 	if (IS_ERR(regs))
1030 		return PTR_ERR(regs);
1031 
1032 	hvs = __vc4_hvs_alloc(vc4, regs, pdev);
1033 	if (IS_ERR(hvs))
1034 		return PTR_ERR(hvs);
1035 
1036 	hvs->regset.base = hvs->regs;
1037 	hvs->regset.regs = vc4_hvs_regs;
1038 	hvs->regset.nregs = ARRAY_SIZE(vc4_hvs_regs);
1039 
1040 	if (vc4->gen == VC4_GEN_5) {
1041 		struct rpi_firmware *firmware;
1042 		struct device_node *node;
1043 		unsigned int max_rate;
1044 
1045 		node = rpi_firmware_find_node();
1046 		if (!node)
1047 			return -EINVAL;
1048 
1049 		firmware = rpi_firmware_get(node);
1050 		of_node_put(node);
1051 		if (!firmware)
1052 			return -EPROBE_DEFER;
1053 
1054 		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
1055 		if (IS_ERR(hvs->core_clk)) {
1056 			dev_err(&pdev->dev, "Couldn't get core clock\n");
1057 			return PTR_ERR(hvs->core_clk);
1058 		}
1059 
1060 		max_rate = rpi_firmware_clk_get_max_rate(firmware,
1061 							 RPI_FIRMWARE_CORE_CLK_ID);
1062 		rpi_firmware_put(firmware);
1063 		if (max_rate >= 550000000)
1064 			hvs->vc5_hdmi_enable_hdmi_20 = true;
1065 
1066 		if (max_rate >= 600000000)
1067 			hvs->vc5_hdmi_enable_4096by2160 = true;
1068 
1069 		hvs->max_core_rate = max_rate;
1070 
1071 		ret = clk_prepare_enable(hvs->core_clk);
1072 		if (ret) {
1073 			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
1074 			return ret;
1075 		}
1076 	}
1077 
1078 	if (vc4->gen == VC4_GEN_4)
1079 		hvs->dlist = hvs->regs + SCALER_DLIST_START;
1080 	else
1081 		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
1082 
1083 	ret = vc4_hvs_hw_init(hvs);
1084 	if (ret)
1085 		return ret;
1086 
1087 	/* Upload filter kernels.  We only have the one for now, so we
1088 	 * keep it around for the lifetime of the driver.
1089 	 */
1090 	ret = vc4_hvs_upload_linear_kernel(hvs,
1091 					   &hvs->mitchell_netravali_filter,
1092 					   mitchell_netravali_1_3_1_3_kernel);
1093 	if (ret)
1094 		return ret;
1095 
1096 	ret = vc4_hvs_cob_init(hvs);
1097 	if (ret)
1098 		return ret;
1099 
1100 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1101 			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1102 	if (ret)
1103 		return ret;
1104 
1105 	return 0;
1106 }
1107 
1108 static void vc4_hvs_unbind(struct device *dev, struct device *master,
1109 			   void *data)
1110 {
1111 	struct drm_device *drm = dev_get_drvdata(master);
1112 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1113 	struct vc4_hvs *hvs = vc4->hvs;
1114 	struct drm_mm_node *node, *next;
1115 
1116 	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1117 		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1118 
1119 	drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1120 		drm_mm_remove_node(node);
1121 
1122 	drm_mm_takedown(&vc4->hvs->dlist_mm);
1123 
1124 	drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1125 		drm_mm_remove_node(node);
1126 	drm_mm_takedown(&vc4->hvs->lbm_mm);
1127 
1128 	clk_disable_unprepare(hvs->core_clk);
1129 
1130 	vc4->hvs = NULL;
1131 }
1132 
1133 static const struct component_ops vc4_hvs_ops = {
1134 	.bind   = vc4_hvs_bind,
1135 	.unbind = vc4_hvs_unbind,
1136 };
1137 
1138 static int vc4_hvs_dev_probe(struct platform_device *pdev)
1139 {
1140 	return component_add(&pdev->dev, &vc4_hvs_ops);
1141 }
1142 
1143 static void vc4_hvs_dev_remove(struct platform_device *pdev)
1144 {
1145 	component_del(&pdev->dev, &vc4_hvs_ops);
1146 }
1147 
1148 static const struct of_device_id vc4_hvs_dt_match[] = {
1149 	{ .compatible = "brcm,bcm2711-hvs" },
1150 	{ .compatible = "brcm,bcm2835-hvs" },
1151 	{}
1152 };
1153 
1154 struct platform_driver vc4_hvs_driver = {
1155 	.probe = vc4_hvs_dev_probe,
1156 	.remove_new = vc4_hvs_dev_remove,
1157 	.driver = {
1158 		.name = "vc4_hvs",
1159 		.of_match_table = vc4_hvs_dt_match,
1160 	},
1161 };
1162