xref: /linux/drivers/gpu/drm/vc4/vc4_hdmi.c (revision c156ef573efe4230ef3dc1ff2ec0038fe0eb217f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  * Copyright (c) 2014 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 /**
10  * DOC: VC4 Falcon HDMI module
11  *
12  * The HDMI core has a state machine and a PHY.  On BCM2835, most of
13  * the unit operates off of the HSM clock from CPRMAN.  It also
14  * internally uses the PLLH_PIX clock for the PHY.
15  *
16  * HDMI infoframes are kept within a small packet ram, where each
17  * packet can be individually enabled for including in a frame.
18  *
19  * HDMI audio is implemented entirely within the HDMI IP block.  A
20  * register in the HDMI encoder takes SPDIF frames from the DMA engine
21  * and transfers them over an internal MAI (multi-channel audio
22  * interconnect) bus to the encoder side for insertion into the video
23  * blank regions.
24  *
25  * The driver's HDMI encoder does not yet support power management.
26  * The HDMI encoder's power domain and the HSM/pixel clocks are kept
27  * continuously running, and only the HDMI logic and packet ram are
28  * powered off/on at disable/enable time.
29  *
30  * The driver does not yet support CEC control, though the HDMI
31  * encoder block has CEC support.
32  */
33 
34 #include <drm/display/drm_hdmi_helper.h>
35 #include <drm/display/drm_hdmi_state_helper.h>
36 #include <drm/display/drm_scdc_helper.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_drv.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_probe_helper.h>
41 #include <drm/drm_simple_kms_helper.h>
42 #include <linux/clk.h>
43 #include <linux/component.h>
44 #include <linux/gpio/consumer.h>
45 #include <linux/i2c.h>
46 #include <linux/of.h>
47 #include <linux/of_address.h>
48 #include <linux/pm_runtime.h>
49 #include <linux/rational.h>
50 #include <linux/reset.h>
51 #include <sound/dmaengine_pcm.h>
52 #include <sound/hdmi-codec.h>
53 #include <sound/pcm_drm_eld.h>
54 #include <sound/pcm_params.h>
55 #include <sound/soc.h>
56 #include "media/cec.h"
57 #include "vc4_drv.h"
58 #include "vc4_hdmi.h"
59 #include "vc4_hdmi_regs.h"
60 #include "vc4_regs.h"
61 
62 #define VC5_HDMI_HORZA_HFP_SHIFT		16
63 #define VC5_HDMI_HORZA_HFP_MASK			VC4_MASK(28, 16)
64 #define VC5_HDMI_HORZA_VPOS			BIT(15)
65 #define VC5_HDMI_HORZA_HPOS			BIT(14)
66 #define VC5_HDMI_HORZA_HAP_SHIFT		0
67 #define VC5_HDMI_HORZA_HAP_MASK			VC4_MASK(13, 0)
68 
69 #define VC5_HDMI_HORZB_HBP_SHIFT		16
70 #define VC5_HDMI_HORZB_HBP_MASK			VC4_MASK(26, 16)
71 #define VC5_HDMI_HORZB_HSP_SHIFT		0
72 #define VC5_HDMI_HORZB_HSP_MASK			VC4_MASK(10, 0)
73 
74 #define VC5_HDMI_VERTA_VSP_SHIFT		24
75 #define VC5_HDMI_VERTA_VSP_MASK			VC4_MASK(28, 24)
76 #define VC5_HDMI_VERTA_VFP_SHIFT		16
77 #define VC5_HDMI_VERTA_VFP_MASK			VC4_MASK(22, 16)
78 #define VC5_HDMI_VERTA_VAL_SHIFT		0
79 #define VC5_HDMI_VERTA_VAL_MASK			VC4_MASK(12, 0)
80 
81 #define VC5_HDMI_VERTB_VSPO_SHIFT		16
82 #define VC5_HDMI_VERTB_VSPO_MASK		VC4_MASK(29, 16)
83 
84 #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT	0
85 #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK	VC4_MASK(3, 0)
86 #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT	0
87 #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK	VC4_MASK(3, 0)
88 
89 #define VC5_HDMI_SCRAMBLER_CTL_ENABLE		BIT(0)
90 
91 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT	8
92 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK	VC4_MASK(10, 8)
93 
94 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT		0
95 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK		VC4_MASK(3, 0)
96 
97 #define VC5_HDMI_GCP_CONFIG_GCP_ENABLE		BIT(31)
98 
99 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT	8
100 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK	VC4_MASK(15, 8)
101 
102 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK	VC4_MASK(7, 0)
103 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_SET_AVMUTE	BIT(0)
104 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE	BIT(4)
105 
106 # define VC4_HD_M_SW_RST			BIT(2)
107 # define VC4_HD_M_ENABLE			BIT(0)
108 
109 #define HSM_MIN_CLOCK_FREQ	120000000
110 #define CEC_CLOCK_FREQ 40000
111 
112 #define HDMI_14_MAX_TMDS_CLK   (340 * 1000 * 1000)
113 
114 static bool vc4_hdmi_supports_scrambling(struct vc4_hdmi *vc4_hdmi)
115 {
116 	struct drm_display_info *display = &vc4_hdmi->connector.display_info;
117 
118 	lockdep_assert_held(&vc4_hdmi->mutex);
119 
120 	if (!display->is_hdmi)
121 		return false;
122 
123 	if (!display->hdmi.scdc.supported ||
124 	    !display->hdmi.scdc.scrambling.supported)
125 		return false;
126 
127 	return true;
128 }
129 
130 static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode,
131 					   unsigned int bpc,
132 					   enum hdmi_colorspace fmt)
133 {
134 	unsigned long long clock = drm_hdmi_compute_mode_clock(mode, bpc, fmt);
135 
136 	return clock > HDMI_14_MAX_TMDS_CLK;
137 }
138 
139 static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused)
140 {
141 	struct drm_debugfs_entry *entry = m->private;
142 	struct vc4_hdmi *vc4_hdmi = entry->file.data;
143 	struct drm_device *drm = vc4_hdmi->connector.dev;
144 	struct drm_printer p = drm_seq_file_printer(m);
145 	int idx;
146 
147 	if (!drm_dev_enter(drm, &idx))
148 		return -ENODEV;
149 
150 	WARN_ON(pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev));
151 
152 	drm_print_regset32(&p, &vc4_hdmi->hdmi_regset);
153 	drm_print_regset32(&p, &vc4_hdmi->hd_regset);
154 	drm_print_regset32(&p, &vc4_hdmi->cec_regset);
155 	drm_print_regset32(&p, &vc4_hdmi->csc_regset);
156 	drm_print_regset32(&p, &vc4_hdmi->dvp_regset);
157 	drm_print_regset32(&p, &vc4_hdmi->phy_regset);
158 	drm_print_regset32(&p, &vc4_hdmi->ram_regset);
159 	drm_print_regset32(&p, &vc4_hdmi->rm_regset);
160 
161 	pm_runtime_put(&vc4_hdmi->pdev->dev);
162 
163 	drm_dev_exit(idx);
164 
165 	return 0;
166 }
167 
168 static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
169 {
170 	struct drm_device *drm = vc4_hdmi->connector.dev;
171 	unsigned long flags;
172 	int idx;
173 
174 	/*
175 	 * We can be called by our bind callback, when the
176 	 * connector->dev pointer might not be initialised yet.
177 	 */
178 	if (drm && !drm_dev_enter(drm, &idx))
179 		return;
180 
181 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
182 
183 	HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST);
184 	udelay(1);
185 	HDMI_WRITE(HDMI_M_CTL, 0);
186 
187 	HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE);
188 
189 	HDMI_WRITE(HDMI_SW_RESET_CONTROL,
190 		   VC4_HDMI_SW_RESET_HDMI |
191 		   VC4_HDMI_SW_RESET_FORMAT_DETECT);
192 
193 	HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0);
194 
195 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
196 
197 	if (drm)
198 		drm_dev_exit(idx);
199 }
200 
201 static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
202 {
203 	struct drm_device *drm = vc4_hdmi->connector.dev;
204 	unsigned long flags;
205 	int idx;
206 
207 	/*
208 	 * We can be called by our bind callback, when the
209 	 * connector->dev pointer might not be initialised yet.
210 	 */
211 	if (drm && !drm_dev_enter(drm, &idx))
212 		return;
213 
214 	reset_control_reset(vc4_hdmi->reset);
215 
216 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
217 
218 	HDMI_WRITE(HDMI_DVP_CTL, 0);
219 
220 	HDMI_WRITE(HDMI_CLOCK_STOP,
221 		   HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL);
222 
223 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
224 
225 	if (drm)
226 		drm_dev_exit(idx);
227 }
228 
229 #ifdef CONFIG_DRM_VC4_HDMI_CEC
230 static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi)
231 {
232 	struct drm_device *drm = vc4_hdmi->connector.dev;
233 	unsigned long cec_rate;
234 	unsigned long flags;
235 	u16 clk_cnt;
236 	u32 value;
237 	int idx;
238 
239 	/*
240 	 * This function is called by our runtime_resume implementation
241 	 * and thus at bind time, when we haven't registered our
242 	 * connector yet and thus don't have a pointer to the DRM
243 	 * device.
244 	 */
245 	if (drm && !drm_dev_enter(drm, &idx))
246 		return;
247 
248 	cec_rate = clk_get_rate(vc4_hdmi->cec_clock);
249 
250 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
251 
252 	value = HDMI_READ(HDMI_CEC_CNTRL_1);
253 	value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK;
254 
255 	/*
256 	 * Set the clock divider: the hsm_clock rate and this divider
257 	 * setting will give a 40 kHz CEC clock.
258 	 */
259 	clk_cnt = cec_rate / CEC_CLOCK_FREQ;
260 	value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT;
261 	HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
262 
263 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
264 
265 	if (drm)
266 		drm_dev_exit(idx);
267 }
268 #else
269 static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {}
270 #endif
271 
272 static int reset_pipe(struct drm_crtc *crtc,
273 			struct drm_modeset_acquire_ctx *ctx)
274 {
275 	struct drm_atomic_state *state;
276 	struct drm_crtc_state *crtc_state;
277 	int ret;
278 
279 	state = drm_atomic_state_alloc(crtc->dev);
280 	if (!state)
281 		return -ENOMEM;
282 
283 	state->acquire_ctx = ctx;
284 
285 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
286 	if (IS_ERR(crtc_state)) {
287 		ret = PTR_ERR(crtc_state);
288 		goto out;
289 	}
290 
291 	crtc_state->connectors_changed = true;
292 
293 	ret = drm_atomic_commit(state);
294 out:
295 	drm_atomic_state_put(state);
296 
297 	return ret;
298 }
299 
300 static int vc4_hdmi_reset_link(struct drm_connector *connector,
301 			       struct drm_modeset_acquire_ctx *ctx)
302 {
303 	struct drm_device *drm;
304 	struct vc4_hdmi *vc4_hdmi;
305 	struct drm_connector_state *conn_state;
306 	struct drm_crtc_state *crtc_state;
307 	struct drm_crtc *crtc;
308 	bool scrambling_needed;
309 	u8 config;
310 	int ret;
311 
312 	if (!connector)
313 		return 0;
314 
315 	drm = connector->dev;
316 	ret = drm_modeset_lock(&drm->mode_config.connection_mutex, ctx);
317 	if (ret)
318 		return ret;
319 
320 	conn_state = connector->state;
321 	crtc = conn_state->crtc;
322 	if (!crtc)
323 		return 0;
324 
325 	ret = drm_modeset_lock(&crtc->mutex, ctx);
326 	if (ret)
327 		return ret;
328 
329 	crtc_state = crtc->state;
330 	if (!crtc_state->active)
331 		return 0;
332 
333 	vc4_hdmi = connector_to_vc4_hdmi(connector);
334 	mutex_lock(&vc4_hdmi->mutex);
335 
336 	if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) {
337 		mutex_unlock(&vc4_hdmi->mutex);
338 		return 0;
339 	}
340 
341 	scrambling_needed = vc4_hdmi_mode_needs_scrambling(&vc4_hdmi->saved_adjusted_mode,
342 							   vc4_hdmi->output_bpc,
343 							   vc4_hdmi->output_format);
344 	if (!scrambling_needed) {
345 		mutex_unlock(&vc4_hdmi->mutex);
346 		return 0;
347 	}
348 
349 	if (conn_state->commit &&
350 	    !try_wait_for_completion(&conn_state->commit->hw_done)) {
351 		mutex_unlock(&vc4_hdmi->mutex);
352 		return 0;
353 	}
354 
355 	ret = drm_scdc_readb(connector->ddc, SCDC_TMDS_CONFIG, &config);
356 	if (ret < 0) {
357 		drm_err(drm, "Failed to read TMDS config: %d\n", ret);
358 		mutex_unlock(&vc4_hdmi->mutex);
359 		return 0;
360 	}
361 
362 	if (!!(config & SCDC_SCRAMBLING_ENABLE) == scrambling_needed) {
363 		mutex_unlock(&vc4_hdmi->mutex);
364 		return 0;
365 	}
366 
367 	mutex_unlock(&vc4_hdmi->mutex);
368 
369 	/*
370 	 * HDMI 2.0 says that one should not send scrambled data
371 	 * prior to configuring the sink scrambling, and that
372 	 * TMDS clock/data transmission should be suspended when
373 	 * changing the TMDS clock rate in the sink. So let's
374 	 * just do a full modeset here, even though some sinks
375 	 * would be perfectly happy if were to just reconfigure
376 	 * the SCDC settings on the fly.
377 	 */
378 	return reset_pipe(crtc, ctx);
379 }
380 
381 static void vc4_hdmi_handle_hotplug(struct vc4_hdmi *vc4_hdmi,
382 				    struct drm_modeset_acquire_ctx *ctx,
383 				    enum drm_connector_status status)
384 {
385 	struct drm_connector *connector = &vc4_hdmi->connector;
386 	const struct drm_edid *drm_edid;
387 	int ret;
388 
389 	/*
390 	 * NOTE: This function should really be called with vc4_hdmi->mutex
391 	 * held, but doing so results in reentrancy issues since
392 	 * cec_s_phys_addr() might call .adap_enable, which leads to that
393 	 * funtion being called with our mutex held.
394 	 *
395 	 * A similar situation occurs with vc4_hdmi_reset_link() that
396 	 * will call into our KMS hooks if the scrambling was enabled.
397 	 *
398 	 * Concurrency isn't an issue at the moment since we don't share
399 	 * any state with any of the other frameworks so we can ignore
400 	 * the lock for now.
401 	 */
402 
403 	if (status == connector_status_disconnected) {
404 		cec_phys_addr_invalidate(vc4_hdmi->cec_adap);
405 		return;
406 	}
407 
408 	drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc);
409 
410 	drm_edid_connector_update(connector, drm_edid);
411 	cec_s_phys_addr(vc4_hdmi->cec_adap,
412 			connector->display_info.source_physical_address, false);
413 
414 	if (!drm_edid)
415 		return;
416 
417 	drm_edid_free(drm_edid);
418 
419 	for (;;) {
420 		ret = vc4_hdmi_reset_link(connector, ctx);
421 		if (ret == -EDEADLK) {
422 			drm_modeset_backoff(ctx);
423 			continue;
424 		}
425 
426 		break;
427 	}
428 }
429 
430 static int vc4_hdmi_connector_detect_ctx(struct drm_connector *connector,
431 					 struct drm_modeset_acquire_ctx *ctx,
432 					 bool force)
433 {
434 	struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
435 	enum drm_connector_status status = connector_status_disconnected;
436 	int ret;
437 
438 	/*
439 	 * NOTE: This function should really take vc4_hdmi->mutex, but
440 	 * doing so results in reentrancy issues since
441 	 * vc4_hdmi_handle_hotplug() can call into other functions that
442 	 * would take the mutex while it's held here.
443 	 *
444 	 * Concurrency isn't an issue at the moment since we don't share
445 	 * any state with any of the other frameworks so we can ignore
446 	 * the lock for now.
447 	 */
448 
449 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
450 	if (ret) {
451 		drm_err_once(connector->dev, "Failed to retain HDMI power domain: %d\n",
452 			     ret);
453 		return connector_status_unknown;
454 	}
455 
456 	if (vc4_hdmi->hpd_gpio) {
457 		if (gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio))
458 			status = connector_status_connected;
459 	} else {
460 		if (vc4_hdmi->variant->hp_detect &&
461 		    vc4_hdmi->variant->hp_detect(vc4_hdmi))
462 			status = connector_status_connected;
463 	}
464 
465 	vc4_hdmi_handle_hotplug(vc4_hdmi, ctx, status);
466 	pm_runtime_put(&vc4_hdmi->pdev->dev);
467 
468 	return status;
469 }
470 
471 static int vc4_hdmi_connector_get_modes(struct drm_connector *connector)
472 {
473 	struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
474 	struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
475 	const struct drm_edid *drm_edid;
476 	int ret = 0;
477 
478 	/*
479 	 * NOTE: This function should really take vc4_hdmi->mutex, but doing so
480 	 * results in reentrancy issues since cec_s_phys_addr() might call
481 	 * .adap_enable, which leads to that funtion being called with our mutex
482 	 * held.
483 	 *
484 	 * Concurrency isn't an issue at the moment since we don't share
485 	 * any state with any of the other frameworks so we can ignore
486 	 * the lock for now.
487 	 */
488 
489 	drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc);
490 	drm_edid_connector_update(connector, drm_edid);
491 	cec_s_phys_addr(vc4_hdmi->cec_adap,
492 			connector->display_info.source_physical_address, false);
493 	if (!drm_edid)
494 		return 0;
495 
496 	ret = drm_edid_connector_add_modes(connector);
497 	drm_edid_free(drm_edid);
498 
499 	if (!vc4->hvs->vc5_hdmi_enable_hdmi_20) {
500 		struct drm_device *drm = connector->dev;
501 		const struct drm_display_mode *mode;
502 
503 		list_for_each_entry(mode, &connector->probed_modes, head) {
504 			if (vc4_hdmi_mode_needs_scrambling(mode, 8, HDMI_COLORSPACE_RGB)) {
505 				drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz.");
506 				drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60.");
507 			}
508 		}
509 	}
510 
511 	return ret;
512 }
513 
514 static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector,
515 					   struct drm_atomic_state *state)
516 {
517 	struct drm_connector_state *old_state =
518 		drm_atomic_get_old_connector_state(state, connector);
519 	struct drm_connector_state *new_state =
520 		drm_atomic_get_new_connector_state(state, connector);
521 	struct drm_crtc *crtc = new_state->crtc;
522 
523 	if (!crtc)
524 		return 0;
525 
526 	if (old_state->tv.margins.left != new_state->tv.margins.left ||
527 	    old_state->tv.margins.right != new_state->tv.margins.right ||
528 	    old_state->tv.margins.top != new_state->tv.margins.top ||
529 	    old_state->tv.margins.bottom != new_state->tv.margins.bottom) {
530 		struct drm_crtc_state *crtc_state;
531 		int ret;
532 
533 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
534 		if (IS_ERR(crtc_state))
535 			return PTR_ERR(crtc_state);
536 
537 		/*
538 		 * Strictly speaking, we should be calling
539 		 * drm_atomic_helper_check_planes() after our call to
540 		 * drm_atomic_add_affected_planes(). However, the
541 		 * connector atomic_check is called as part of
542 		 * drm_atomic_helper_check_modeset() that already
543 		 * happens before a call to
544 		 * drm_atomic_helper_check_planes() in
545 		 * drm_atomic_helper_check().
546 		 */
547 		ret = drm_atomic_add_affected_planes(state, crtc);
548 		if (ret)
549 			return ret;
550 	}
551 
552 	if (old_state->colorspace != new_state->colorspace) {
553 		struct drm_crtc_state *crtc_state;
554 
555 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
556 		if (IS_ERR(crtc_state))
557 			return PTR_ERR(crtc_state);
558 
559 		crtc_state->mode_changed = true;
560 	}
561 
562 	return drm_atomic_helper_connector_hdmi_check(connector, state);
563 }
564 
565 static void vc4_hdmi_connector_reset(struct drm_connector *connector)
566 {
567 	drm_atomic_helper_connector_reset(connector);
568 	__drm_atomic_helper_connector_hdmi_reset(connector, connector->state);
569 	drm_atomic_helper_connector_tv_margins_reset(connector);
570 }
571 
572 static const struct drm_connector_funcs vc4_hdmi_connector_funcs = {
573 	.fill_modes = drm_helper_probe_single_connector_modes,
574 	.reset = vc4_hdmi_connector_reset,
575 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
576 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
577 };
578 
579 static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = {
580 	.detect_ctx = vc4_hdmi_connector_detect_ctx,
581 	.get_modes = vc4_hdmi_connector_get_modes,
582 	.atomic_check = vc4_hdmi_connector_atomic_check,
583 	.mode_valid = drm_hdmi_connector_mode_valid,
584 };
585 
586 static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs;
587 
588 static int vc4_hdmi_connector_init(struct drm_device *dev,
589 				   struct vc4_hdmi *vc4_hdmi)
590 {
591 	struct drm_connector *connector = &vc4_hdmi->connector;
592 	struct drm_encoder *encoder = &vc4_hdmi->encoder.base;
593 	unsigned int max_bpc = 8;
594 	int ret;
595 
596 	if (vc4_hdmi->variant->supports_hdr)
597 		max_bpc = 12;
598 
599 	ret = drmm_connector_hdmi_init(dev, connector,
600 				       "Broadcom", "Videocore",
601 				       &vc4_hdmi_connector_funcs,
602 				       &vc4_hdmi_hdmi_connector_funcs,
603 				       DRM_MODE_CONNECTOR_HDMIA,
604 				       vc4_hdmi->ddc,
605 				       BIT(HDMI_COLORSPACE_RGB) |
606 				       BIT(HDMI_COLORSPACE_YUV422) |
607 				       BIT(HDMI_COLORSPACE_YUV444),
608 				       max_bpc);
609 	if (ret)
610 		return ret;
611 
612 	drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs);
613 
614 	/*
615 	 * Some of the properties below require access to state, like bpc.
616 	 * Allocate some default initial connector state with our reset helper.
617 	 */
618 	if (connector->funcs->reset)
619 		connector->funcs->reset(connector);
620 
621 	/* Create and attach TV margin props to this connector. */
622 	ret = drm_mode_create_tv_margin_properties(dev);
623 	if (ret)
624 		return ret;
625 
626 	ret = drm_mode_create_hdmi_colorspace_property(connector, 0);
627 	if (ret)
628 		return ret;
629 
630 	drm_connector_attach_colorspace_property(connector);
631 	drm_connector_attach_tv_margin_properties(connector);
632 
633 	connector->polled = (DRM_CONNECTOR_POLL_CONNECT |
634 			     DRM_CONNECTOR_POLL_DISCONNECT);
635 
636 	connector->interlace_allowed = 1;
637 	connector->doublescan_allowed = 0;
638 	connector->stereo_allowed = 1;
639 
640 	ret = drm_connector_attach_broadcast_rgb_property(connector);
641 	if (ret)
642 		return ret;
643 
644 	drm_connector_attach_encoder(connector, encoder);
645 
646 	return 0;
647 }
648 
649 static int vc4_hdmi_stop_packet(struct vc4_hdmi *vc4_hdmi,
650 				enum hdmi_infoframe_type type,
651 				bool poll)
652 {
653 	struct drm_device *drm = vc4_hdmi->connector.dev;
654 	u32 packet_id = type - 0x80;
655 	unsigned long flags;
656 	int ret = 0;
657 	int idx;
658 
659 	if (!drm_dev_enter(drm, &idx))
660 		return -ENODEV;
661 
662 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
663 	HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
664 		   HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id));
665 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
666 
667 	if (poll) {
668 		ret = wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) &
669 				 BIT(packet_id)), 100);
670 	}
671 
672 	drm_dev_exit(idx);
673 	return ret;
674 }
675 
676 static int vc4_hdmi_write_infoframe(struct drm_connector *connector,
677 				    enum hdmi_infoframe_type type,
678 				    const u8 *infoframe, size_t len)
679 {
680 	struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
681 	struct drm_device *drm = connector->dev;
682 	u32 packet_id = type - 0x80;
683 	const struct vc4_hdmi_register *ram_packet_start =
684 		&vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START];
685 	u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id;
686 	u32 packet_reg_next = ram_packet_start->offset +
687 		VC4_HDMI_PACKET_STRIDE * (packet_id + 1);
688 	void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi,
689 						       ram_packet_start->reg);
690 	uint8_t buffer[VC4_HDMI_PACKET_STRIDE] = {};
691 	unsigned long flags;
692 	ssize_t i;
693 	int ret;
694 	int idx;
695 
696 	if (!drm_dev_enter(drm, &idx))
697 		return 0;
698 
699 	if (len > sizeof(buffer)) {
700 		ret = -ENOMEM;
701 		goto out;
702 	}
703 
704 	memcpy(buffer, infoframe, len);
705 
706 	WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
707 		    VC4_HDMI_RAM_PACKET_ENABLE),
708 		  "Packet RAM has to be on to store the packet.");
709 
710 	ret = vc4_hdmi_stop_packet(vc4_hdmi, type, true);
711 	if (ret) {
712 		drm_err(drm, "Failed to wait for infoframe to go idle: %d\n", ret);
713 		goto out;
714 	}
715 
716 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
717 
718 	for (i = 0; i < len; i += 7) {
719 		writel(buffer[i + 0] << 0 |
720 		       buffer[i + 1] << 8 |
721 		       buffer[i + 2] << 16,
722 		       base + packet_reg);
723 		packet_reg += 4;
724 
725 		writel(buffer[i + 3] << 0 |
726 		       buffer[i + 4] << 8 |
727 		       buffer[i + 5] << 16 |
728 		       buffer[i + 6] << 24,
729 		       base + packet_reg);
730 		packet_reg += 4;
731 	}
732 
733 	/*
734 	 * clear remainder of packet ram as it's included in the
735 	 * infoframe and triggers a checksum error on hdmi analyser
736 	 */
737 	for (; packet_reg < packet_reg_next; packet_reg += 4)
738 		writel(0, base + packet_reg);
739 
740 	HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
741 		   HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id));
742 
743 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
744 
745 	ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) &
746 			BIT(packet_id)), 100);
747 	if (ret)
748 		drm_err(drm, "Failed to wait for infoframe to start: %d\n", ret);
749 
750 out:
751 	drm_dev_exit(idx);
752 	return ret;
753 }
754 
755 #define SCRAMBLING_POLLING_DELAY_MS	1000
756 
757 static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder)
758 {
759 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
760 	struct drm_connector *connector = &vc4_hdmi->connector;
761 	struct drm_device *drm = connector->dev;
762 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
763 	unsigned long flags;
764 	int idx;
765 
766 	lockdep_assert_held(&vc4_hdmi->mutex);
767 
768 	if (!vc4_hdmi_supports_scrambling(vc4_hdmi))
769 		return;
770 
771 	if (!vc4_hdmi_mode_needs_scrambling(mode,
772 					    vc4_hdmi->output_bpc,
773 					    vc4_hdmi->output_format))
774 		return;
775 
776 	if (!drm_dev_enter(drm, &idx))
777 		return;
778 
779 	drm_scdc_set_high_tmds_clock_ratio(connector, true);
780 	drm_scdc_set_scrambling(connector, true);
781 
782 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
783 	HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) |
784 		   VC5_HDMI_SCRAMBLER_CTL_ENABLE);
785 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
786 
787 	drm_dev_exit(idx);
788 
789 	vc4_hdmi->scdc_enabled = true;
790 
791 	queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
792 			   msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
793 }
794 
795 static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder)
796 {
797 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
798 	struct drm_connector *connector = &vc4_hdmi->connector;
799 	struct drm_device *drm = connector->dev;
800 	unsigned long flags;
801 	int idx;
802 
803 	lockdep_assert_held(&vc4_hdmi->mutex);
804 
805 	if (!vc4_hdmi->scdc_enabled)
806 		return;
807 
808 	vc4_hdmi->scdc_enabled = false;
809 
810 	if (delayed_work_pending(&vc4_hdmi->scrambling_work))
811 		cancel_delayed_work_sync(&vc4_hdmi->scrambling_work);
812 
813 	if (!drm_dev_enter(drm, &idx))
814 		return;
815 
816 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
817 	HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) &
818 		   ~VC5_HDMI_SCRAMBLER_CTL_ENABLE);
819 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
820 
821 	drm_scdc_set_scrambling(connector, false);
822 	drm_scdc_set_high_tmds_clock_ratio(connector, false);
823 
824 	drm_dev_exit(idx);
825 }
826 
827 static void vc4_hdmi_scrambling_wq(struct work_struct *work)
828 {
829 	struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work),
830 						 struct vc4_hdmi,
831 						 scrambling_work);
832 	struct drm_connector *connector = &vc4_hdmi->connector;
833 
834 	if (drm_scdc_get_scrambling_status(connector))
835 		return;
836 
837 	drm_scdc_set_high_tmds_clock_ratio(connector, true);
838 	drm_scdc_set_scrambling(connector, true);
839 
840 	queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
841 			   msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
842 }
843 
844 static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder,
845 					       struct drm_atomic_state *state)
846 {
847 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
848 	struct drm_device *drm = vc4_hdmi->connector.dev;
849 	struct vc4_dev *vc4 = to_vc4_dev(drm);
850 	unsigned long flags;
851 	int idx;
852 
853 	mutex_lock(&vc4_hdmi->mutex);
854 
855 	vc4_hdmi->packet_ram_enabled = false;
856 
857 	if (!drm_dev_enter(drm, &idx))
858 		goto out;
859 
860 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
861 
862 	HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0);
863 
864 	HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB);
865 
866 	if (vc4->gen >= VC4_GEN_6_C)
867 		HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) |
868 			   VC4_HD_VID_CTL_BLANKPIX);
869 
870 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
871 
872 	mdelay(1);
873 
874 	/*
875 	 * TODO: This should work on BCM2712, but doesn't for some
876 	 * reason and result in a system lockup.
877 	 */
878 	if (vc4->gen < VC4_GEN_6_C) {
879 		spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
880 		HDMI_WRITE(HDMI_VID_CTL,
881 			   HDMI_READ(HDMI_VID_CTL) &
882 			   ~VC4_HD_VID_CTL_ENABLE);
883 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
884 	}
885 
886 	vc4_hdmi_disable_scrambling(encoder);
887 
888 	drm_dev_exit(idx);
889 
890 out:
891 	mutex_unlock(&vc4_hdmi->mutex);
892 }
893 
894 static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder,
895 						 struct drm_atomic_state *state)
896 {
897 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
898 	struct drm_device *drm = vc4_hdmi->connector.dev;
899 	unsigned long flags;
900 	int ret;
901 	int idx;
902 
903 	mutex_lock(&vc4_hdmi->mutex);
904 
905 	if (!drm_dev_enter(drm, &idx))
906 		goto out;
907 
908 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
909 	HDMI_WRITE(HDMI_VID_CTL,
910 		   HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX);
911 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
912 
913 	if (vc4_hdmi->variant->phy_disable)
914 		vc4_hdmi->variant->phy_disable(vc4_hdmi);
915 
916 	clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock);
917 	clk_disable_unprepare(vc4_hdmi->pixel_clock);
918 
919 	ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
920 	if (ret < 0)
921 		drm_err(drm, "Failed to release power domain: %d\n", ret);
922 
923 	drm_dev_exit(idx);
924 
925 out:
926 	mutex_unlock(&vc4_hdmi->mutex);
927 }
928 
929 static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
930 			       struct drm_connector_state *state,
931 			       const struct drm_display_mode *mode)
932 {
933 	struct drm_device *drm = vc4_hdmi->connector.dev;
934 	unsigned long flags;
935 	u32 csc_ctl;
936 	int idx;
937 
938 	if (!drm_dev_enter(drm, &idx))
939 		return;
940 
941 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
942 
943 	csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR,
944 				VC4_HD_CSC_CTL_ORDER);
945 
946 	if (state->hdmi.is_limited_range) {
947 		/* CEA VICs other than #1 requre limited range RGB
948 		 * output unless overridden by an AVI infoframe.
949 		 * Apply a colorspace conversion to squash 0-255 down
950 		 * to 16-235.  The matrix here is:
951 		 *
952 		 * [ 0      0      0.8594 16]
953 		 * [ 0      0.8594 0      16]
954 		 * [ 0.8594 0      0      16]
955 		 * [ 0      0      0       1]
956 		 */
957 		csc_ctl |= VC4_HD_CSC_CTL_ENABLE;
958 		csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC;
959 		csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
960 					 VC4_HD_CSC_CTL_MODE);
961 
962 		HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000);
963 		HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0);
964 		HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000);
965 		HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000);
966 		HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0);
967 		HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000);
968 	}
969 
970 	/* The RGB order applies even when CSC is disabled. */
971 	HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
972 
973 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
974 
975 	drm_dev_exit(idx);
976 }
977 
978 /*
979  * Matrices for (internal) RGB to RGB output.
980  *
981  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
982  */
983 static const u16 vc5_hdmi_csc_full_rgb_to_rgb[2][3][4] = {
984 	{
985 		/*
986 		 * Full range - unity
987 		 *
988 		 * [ 1      0      0      0]
989 		 * [ 0      1      0      0]
990 		 * [ 0      0      1      0]
991 		 */
992 		{ 0x2000, 0x0000, 0x0000, 0x0000 },
993 		{ 0x0000, 0x2000, 0x0000, 0x0000 },
994 		{ 0x0000, 0x0000, 0x2000, 0x0000 },
995 	},
996 	{
997 		/*
998 		 * Limited range
999 		 *
1000 		 * CEA VICs other than #1 require limited range RGB
1001 		 * output unless overridden by an AVI infoframe. Apply a
1002 		 * colorspace conversion to squash 0-255 down to 16-235.
1003 		 * The matrix here is:
1004 		 *
1005 		 * [ 0.8594 0      0      16]
1006 		 * [ 0      0.8594 0      16]
1007 		 * [ 0      0      0.8594 16]
1008 		 */
1009 		{ 0x1b80, 0x0000, 0x0000, 0x0400 },
1010 		{ 0x0000, 0x1b80, 0x0000, 0x0400 },
1011 		{ 0x0000, 0x0000, 0x1b80, 0x0400 },
1012 	},
1013 };
1014 
1015 /*
1016  * Conversion between Full Range RGB and YUV using the BT.601 Colorspace
1017  *
1018  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
1019  */
1020 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt601[2][3][4] = {
1021 	{
1022 		/*
1023 		 * Full Range
1024 		 *
1025 		 * [  0.299000  0.587000  0.114000  0   ]
1026 		 * [ -0.168736 -0.331264  0.500000  128 ]
1027 		 * [  0.500000 -0.418688 -0.081312  128 ]
1028 		 */
1029 		{ 0x0991, 0x12c9, 0x03a6, 0x0000 },
1030 		{ 0xfa9b, 0xf567, 0x1000, 0x2000 },
1031 		{ 0x1000, 0xf29b, 0xfd67, 0x2000 },
1032 	},
1033 	{
1034 		/* Limited Range
1035 		 *
1036 		 * [  0.255785  0.502160  0.097523  16  ]
1037 		 * [ -0.147644 -0.289856  0.437500  128 ]
1038 		 * [  0.437500 -0.366352 -0.071148  128 ]
1039 		 */
1040 		{ 0x082f, 0x1012, 0x031f, 0x0400 },
1041 		{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
1042 		{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
1043 	},
1044 };
1045 
1046 /*
1047  * Conversion between Full Range RGB and YUV using the BT.709 Colorspace
1048  *
1049  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
1050  */
1051 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt709[2][3][4] = {
1052 	{
1053 		/*
1054 		 * Full Range
1055 		 *
1056 		 * [  0.212600  0.715200  0.072200  0   ]
1057 		 * [ -0.114572 -0.385428  0.500000  128 ]
1058 		 * [  0.500000 -0.454153 -0.045847  128 ]
1059 		 */
1060 		{ 0x06ce, 0x16e3, 0x024f, 0x0000 },
1061 		{ 0xfc56, 0xf3ac, 0x1000, 0x2000 },
1062 		{ 0x1000, 0xf179, 0xfe89, 0x2000 },
1063 	},
1064 	{
1065 		/*
1066 		 * Limited Range
1067 		 *
1068 		 * [  0.181906  0.611804  0.061758  16  ]
1069 		 * [ -0.100268 -0.337232  0.437500  128 ]
1070 		 * [  0.437500 -0.397386 -0.040114  128 ]
1071 		 */
1072 		{ 0x05d2, 0x1394, 0x01fa, 0x0400 },
1073 		{ 0xfccc, 0xf536, 0x0e00, 0x2000 },
1074 		{ 0x0e00, 0xf34a, 0xfeb8, 0x2000 },
1075 	},
1076 };
1077 
1078 /*
1079  * Conversion between Full Range RGB and YUV using the BT.2020 Colorspace
1080  *
1081  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
1082  */
1083 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt2020[2][3][4] = {
1084 	{
1085 		/*
1086 		 * Full Range
1087 		 *
1088 		 * [  0.262700  0.678000  0.059300  0   ]
1089 		 * [ -0.139630 -0.360370  0.500000  128 ]
1090 		 * [  0.500000 -0.459786 -0.040214  128 ]
1091 		 */
1092 		{ 0x0868, 0x15b2, 0x01e6, 0x0000 },
1093 		{ 0xfb89, 0xf479, 0x1000, 0x2000 },
1094 		{ 0x1000, 0xf14a, 0xfeb8, 0x2000 },
1095 	},
1096 	{
1097 		/* Limited Range
1098 		 *
1099 		 * [  0.224732  0.580008  0.050729  16  ]
1100 		 * [ -0.122176 -0.315324  0.437500  128 ]
1101 		 * [  0.437500 -0.402312 -0.035188  128 ]
1102 		 */
1103 		{ 0x082f, 0x1012, 0x031f, 0x0400 },
1104 		{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
1105 		{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
1106 	},
1107 };
1108 
1109 static void vc5_hdmi_set_csc_coeffs(struct vc4_hdmi *vc4_hdmi,
1110 				    const u16 coeffs[3][4])
1111 {
1112 	lockdep_assert_held(&vc4_hdmi->hw_lock);
1113 
1114 	HDMI_WRITE(HDMI_CSC_12_11, (coeffs[0][1] << 16) | coeffs[0][0]);
1115 	HDMI_WRITE(HDMI_CSC_14_13, (coeffs[0][3] << 16) | coeffs[0][2]);
1116 	HDMI_WRITE(HDMI_CSC_22_21, (coeffs[1][1] << 16) | coeffs[1][0]);
1117 	HDMI_WRITE(HDMI_CSC_24_23, (coeffs[1][3] << 16) | coeffs[1][2]);
1118 	HDMI_WRITE(HDMI_CSC_32_31, (coeffs[2][1] << 16) | coeffs[2][0]);
1119 	HDMI_WRITE(HDMI_CSC_34_33, (coeffs[2][3] << 16) | coeffs[2][2]);
1120 }
1121 
1122 static void vc5_hdmi_set_csc_coeffs_swap(struct vc4_hdmi *vc4_hdmi,
1123 					 const u16 coeffs[3][4])
1124 {
1125 	lockdep_assert_held(&vc4_hdmi->hw_lock);
1126 
1127 	/* YUV444 needs the CSC matrices using the channels in a different order */
1128 	HDMI_WRITE(HDMI_CSC_12_11, (coeffs[1][1] << 16) | coeffs[1][0]);
1129 	HDMI_WRITE(HDMI_CSC_14_13, (coeffs[1][3] << 16) | coeffs[1][2]);
1130 	HDMI_WRITE(HDMI_CSC_22_21, (coeffs[2][1] << 16) | coeffs[2][0]);
1131 	HDMI_WRITE(HDMI_CSC_24_23, (coeffs[2][3] << 16) | coeffs[2][2]);
1132 	HDMI_WRITE(HDMI_CSC_32_31, (coeffs[0][1] << 16) | coeffs[0][0]);
1133 	HDMI_WRITE(HDMI_CSC_34_33, (coeffs[0][3] << 16) | coeffs[0][2]);
1134 }
1135 
1136 static const u16
1137 (*vc5_hdmi_find_yuv_csc_coeffs(struct vc4_hdmi *vc4_hdmi, u32 colorspace, bool limited))[4]
1138 {
1139 	switch (colorspace) {
1140 	case DRM_MODE_COLORIMETRY_SMPTE_170M_YCC:
1141 	case DRM_MODE_COLORIMETRY_XVYCC_601:
1142 	case DRM_MODE_COLORIMETRY_SYCC_601:
1143 	case DRM_MODE_COLORIMETRY_OPYCC_601:
1144 	case DRM_MODE_COLORIMETRY_BT601_YCC:
1145 		return vc5_hdmi_csc_full_rgb_to_yuv_bt601[limited];
1146 
1147 	default:
1148 	case DRM_MODE_COLORIMETRY_NO_DATA:
1149 	case DRM_MODE_COLORIMETRY_BT709_YCC:
1150 	case DRM_MODE_COLORIMETRY_XVYCC_709:
1151 	case DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED:
1152 	case DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT:
1153 		return vc5_hdmi_csc_full_rgb_to_yuv_bt709[limited];
1154 
1155 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
1156 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
1157 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
1158 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
1159 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
1160 		return vc5_hdmi_csc_full_rgb_to_yuv_bt2020[limited];
1161 	}
1162 }
1163 
1164 static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
1165 			       struct drm_connector_state *state,
1166 			       const struct drm_display_mode *mode)
1167 {
1168 	struct drm_device *drm = vc4_hdmi->connector.dev;
1169 	unsigned int lim_range = state->hdmi.is_limited_range ? 1 : 0;
1170 	unsigned long flags;
1171 	const u16 (*csc)[4];
1172 	u32 if_cfg = 0;
1173 	u32 if_xbar = 0x543210;
1174 	u32 csc_chan_ctl = 0;
1175 	u32 csc_ctl = VC5_MT_CP_CSC_CTL_ENABLE | VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
1176 							       VC5_MT_CP_CSC_CTL_MODE);
1177 	int idx;
1178 
1179 	if (!drm_dev_enter(drm, &idx))
1180 		return;
1181 
1182 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1183 
1184 	switch (state->hdmi.output_format) {
1185 	case HDMI_COLORSPACE_YUV444:
1186 		csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
1187 
1188 		vc5_hdmi_set_csc_coeffs_swap(vc4_hdmi, csc);
1189 		break;
1190 
1191 	case HDMI_COLORSPACE_YUV422:
1192 		csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
1193 
1194 		csc_ctl |= VC4_SET_FIELD(VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422_STANDARD,
1195 					 VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422) |
1196 			VC5_MT_CP_CSC_CTL_USE_444_TO_422 |
1197 			VC5_MT_CP_CSC_CTL_USE_RNG_SUPPRESSION;
1198 
1199 		csc_chan_ctl |= VC4_SET_FIELD(VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP_LEGACY_STYLE,
1200 					      VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP);
1201 
1202 		if_cfg |= VC4_SET_FIELD(VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422_FORMAT_422_LEGACY,
1203 					VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422);
1204 
1205 		vc5_hdmi_set_csc_coeffs(vc4_hdmi, csc);
1206 		break;
1207 
1208 	case HDMI_COLORSPACE_RGB:
1209 		if_xbar = 0x354021;
1210 
1211 		vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_rgb[lim_range]);
1212 		break;
1213 
1214 	default:
1215 		break;
1216 	}
1217 
1218 	HDMI_WRITE(HDMI_VEC_INTERFACE_CFG, if_cfg);
1219 	HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, if_xbar);
1220 	HDMI_WRITE(HDMI_CSC_CHANNEL_CTL, csc_chan_ctl);
1221 	HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
1222 
1223 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1224 
1225 	drm_dev_exit(idx);
1226 }
1227 
1228 static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
1229 				 struct drm_connector_state *state,
1230 				 const struct drm_display_mode *mode)
1231 {
1232 	struct drm_device *drm = vc4_hdmi->connector.dev;
1233 	bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
1234 	bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
1235 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
1236 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
1237 	u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
1238 				   VC4_HDMI_VERTA_VSP) |
1239 		     VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
1240 				   VC4_HDMI_VERTA_VFP) |
1241 		     VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL));
1242 	u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
1243 		     VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
1244 				   interlaced,
1245 				   VC4_HDMI_VERTB_VBP));
1246 	u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
1247 			  VC4_SET_FIELD(mode->crtc_vtotal -
1248 					mode->crtc_vsync_end,
1249 					VC4_HDMI_VERTB_VBP));
1250 	unsigned long flags;
1251 	u32 reg;
1252 	int idx;
1253 
1254 	if (!drm_dev_enter(drm, &idx))
1255 		return;
1256 
1257 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1258 
1259 	HDMI_WRITE(HDMI_HORZA,
1260 		   (vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) |
1261 		   (hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) |
1262 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep,
1263 				 VC4_HDMI_HORZA_HAP));
1264 
1265 	HDMI_WRITE(HDMI_HORZB,
1266 		   VC4_SET_FIELD((mode->htotal -
1267 				  mode->hsync_end) * pixel_rep,
1268 				 VC4_HDMI_HORZB_HBP) |
1269 		   VC4_SET_FIELD((mode->hsync_end -
1270 				  mode->hsync_start) * pixel_rep,
1271 				 VC4_HDMI_HORZB_HSP) |
1272 		   VC4_SET_FIELD((mode->hsync_start -
1273 				  mode->hdisplay) * pixel_rep,
1274 				 VC4_HDMI_HORZB_HFP));
1275 
1276 	HDMI_WRITE(HDMI_VERTA0, verta);
1277 	HDMI_WRITE(HDMI_VERTA1, verta);
1278 
1279 	HDMI_WRITE(HDMI_VERTB0, vertb_even);
1280 	HDMI_WRITE(HDMI_VERTB1, vertb);
1281 
1282 	reg = HDMI_READ(HDMI_MISC_CONTROL);
1283 	reg &= ~VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
1284 	reg |= VC4_SET_FIELD(pixel_rep - 1, VC4_HDMI_MISC_CONTROL_PIXEL_REP);
1285 	HDMI_WRITE(HDMI_MISC_CONTROL, reg);
1286 
1287 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1288 
1289 	drm_dev_exit(idx);
1290 }
1291 
1292 static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
1293 				 struct drm_connector_state *state,
1294 				 const struct drm_display_mode *mode)
1295 {
1296 	struct drm_device *drm = vc4_hdmi->connector.dev;
1297 	bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
1298 	bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
1299 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
1300 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
1301 	u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
1302 				   VC5_HDMI_VERTA_VSP) |
1303 		     VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
1304 				   VC5_HDMI_VERTA_VFP) |
1305 		     VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL));
1306 	u32 vertb = (VC4_SET_FIELD(mode->htotal >> (2 - pixel_rep),
1307 				   VC5_HDMI_VERTB_VSPO) |
1308 		     VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
1309 				   interlaced,
1310 				   VC4_HDMI_VERTB_VBP));
1311 	u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
1312 			  VC4_SET_FIELD(mode->crtc_vtotal -
1313 					mode->crtc_vsync_end,
1314 					VC4_HDMI_VERTB_VBP));
1315 	unsigned long flags;
1316 	unsigned char gcp;
1317 	u32 reg;
1318 	int idx;
1319 
1320 	if (!drm_dev_enter(drm, &idx))
1321 		return;
1322 
1323 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1324 
1325 	HDMI_WRITE(HDMI_HORZA,
1326 		   (vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) |
1327 		   (hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) |
1328 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep,
1329 				 VC5_HDMI_HORZA_HAP) |
1330 		   VC4_SET_FIELD((mode->hsync_start -
1331 				  mode->hdisplay) * pixel_rep,
1332 				 VC5_HDMI_HORZA_HFP));
1333 
1334 	HDMI_WRITE(HDMI_HORZB,
1335 		   VC4_SET_FIELD((mode->htotal -
1336 				  mode->hsync_end) * pixel_rep,
1337 				 VC5_HDMI_HORZB_HBP) |
1338 		   VC4_SET_FIELD((mode->hsync_end -
1339 				  mode->hsync_start) * pixel_rep,
1340 				 VC5_HDMI_HORZB_HSP));
1341 
1342 	HDMI_WRITE(HDMI_VERTA0, verta);
1343 	HDMI_WRITE(HDMI_VERTA1, verta);
1344 
1345 	HDMI_WRITE(HDMI_VERTB0, vertb_even);
1346 	HDMI_WRITE(HDMI_VERTB1, vertb);
1347 
1348 	switch (state->hdmi.output_bpc) {
1349 	case 12:
1350 		gcp = 6;
1351 		break;
1352 	case 10:
1353 		gcp = 5;
1354 		break;
1355 	case 8:
1356 	default:
1357 		gcp = 0;
1358 		break;
1359 	}
1360 
1361 	/*
1362 	 * YCC422 is always 36-bit and not considered deep colour so
1363 	 * doesn't signal in GCP.
1364 	 */
1365 	if (state->hdmi.output_format == HDMI_COLORSPACE_YUV422) {
1366 		gcp = 0;
1367 	}
1368 
1369 	reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1);
1370 	reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK |
1371 		 VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK);
1372 	reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) |
1373 	       VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH);
1374 	HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg);
1375 
1376 	reg = HDMI_READ(HDMI_GCP_WORD_1);
1377 	reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK;
1378 	reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1);
1379 	reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK;
1380 	reg |= VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE;
1381 	HDMI_WRITE(HDMI_GCP_WORD_1, reg);
1382 
1383 	reg = HDMI_READ(HDMI_GCP_CONFIG);
1384 	reg |= VC5_HDMI_GCP_CONFIG_GCP_ENABLE;
1385 	HDMI_WRITE(HDMI_GCP_CONFIG, reg);
1386 
1387 	reg = HDMI_READ(HDMI_MISC_CONTROL);
1388 	reg &= ~VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
1389 	reg |= VC4_SET_FIELD(pixel_rep - 1, VC5_HDMI_MISC_CONTROL_PIXEL_REP);
1390 	HDMI_WRITE(HDMI_MISC_CONTROL, reg);
1391 
1392 	HDMI_WRITE(HDMI_CLOCK_STOP, 0);
1393 
1394 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1395 
1396 	drm_dev_exit(idx);
1397 }
1398 
1399 static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi)
1400 {
1401 	struct drm_device *drm = vc4_hdmi->connector.dev;
1402 	unsigned long flags;
1403 	u32 drift;
1404 	int ret;
1405 	int idx;
1406 
1407 	if (!drm_dev_enter(drm, &idx))
1408 		return;
1409 
1410 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1411 
1412 	drift = HDMI_READ(HDMI_FIFO_CTL);
1413 	drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK;
1414 
1415 	HDMI_WRITE(HDMI_FIFO_CTL,
1416 		   drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
1417 	HDMI_WRITE(HDMI_FIFO_CTL,
1418 		   drift | VC4_HDMI_FIFO_CTL_RECENTER);
1419 
1420 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1421 
1422 	usleep_range(1000, 1100);
1423 
1424 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1425 
1426 	HDMI_WRITE(HDMI_FIFO_CTL,
1427 		   drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
1428 	HDMI_WRITE(HDMI_FIFO_CTL,
1429 		   drift | VC4_HDMI_FIFO_CTL_RECENTER);
1430 
1431 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1432 
1433 	ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) &
1434 		       VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1);
1435 	WARN_ONCE(ret, "Timeout waiting for "
1436 		  "VC4_HDMI_FIFO_CTL_RECENTER_DONE");
1437 
1438 	drm_dev_exit(idx);
1439 }
1440 
1441 static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder,
1442 						struct drm_atomic_state *state)
1443 {
1444 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1445 	struct drm_device *drm = vc4_hdmi->connector.dev;
1446 	struct drm_connector *connector = &vc4_hdmi->connector;
1447 	struct drm_connector_state *conn_state =
1448 		drm_atomic_get_new_connector_state(state, connector);
1449 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1450 	unsigned long long tmds_char_rate = conn_state->hdmi.tmds_char_rate;
1451 	unsigned long bvb_rate, hsm_rate;
1452 	unsigned long flags;
1453 	int ret;
1454 	int idx;
1455 
1456 	mutex_lock(&vc4_hdmi->mutex);
1457 
1458 	if (!drm_dev_enter(drm, &idx))
1459 		goto out;
1460 
1461 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
1462 	if (ret < 0) {
1463 		drm_err(drm, "Failed to retain power domain: %d\n", ret);
1464 		goto err_dev_exit;
1465 	}
1466 
1467 	/*
1468 	 * As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must
1469 	 * be faster than pixel clock, infinitesimally faster, tested in
1470 	 * simulation. Otherwise, exact value is unimportant for HDMI
1471 	 * operation." This conflicts with bcm2835's vc4 documentation, which
1472 	 * states HSM's clock has to be at least 108% of the pixel clock.
1473 	 *
1474 	 * Real life tests reveal that vc4's firmware statement holds up, and
1475 	 * users are able to use pixel clocks closer to HSM's, namely for
1476 	 * 1920x1200@60Hz. So it was decided to have leave a 1% margin between
1477 	 * both clocks. Which, for RPi0-3 implies a maximum pixel clock of
1478 	 * 162MHz.
1479 	 *
1480 	 * Additionally, the AXI clock needs to be at least 25% of
1481 	 * pixel clock, but HSM ends up being the limiting factor.
1482 	 */
1483 	hsm_rate = max_t(unsigned long,
1484 			 HSM_MIN_CLOCK_FREQ,
1485 			 div_u64(tmds_char_rate, 100) * 101);
1486 	ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate);
1487 	if (ret) {
1488 		drm_err(drm, "Failed to set HSM clock rate: %d\n", ret);
1489 		goto err_put_runtime_pm;
1490 	}
1491 
1492 	ret = clk_set_rate(vc4_hdmi->pixel_clock, tmds_char_rate);
1493 	if (ret) {
1494 		drm_err(drm, "Failed to set pixel clock rate: %d\n", ret);
1495 		goto err_put_runtime_pm;
1496 	}
1497 
1498 	ret = clk_prepare_enable(vc4_hdmi->pixel_clock);
1499 	if (ret) {
1500 		drm_err(drm, "Failed to turn on pixel clock: %d\n", ret);
1501 		goto err_put_runtime_pm;
1502 	}
1503 
1504 	vc4_hdmi_cec_update_clk_div(vc4_hdmi);
1505 
1506 	if (tmds_char_rate > 297000000)
1507 		bvb_rate = 300000000;
1508 	else if (tmds_char_rate > 148500000)
1509 		bvb_rate = 150000000;
1510 	else
1511 		bvb_rate = 75000000;
1512 
1513 	ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate);
1514 	if (ret) {
1515 		drm_err(drm, "Failed to set pixel bvb clock rate: %d\n", ret);
1516 		goto err_disable_pixel_clock;
1517 	}
1518 
1519 	ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
1520 	if (ret) {
1521 		drm_err(drm, "Failed to turn on pixel bvb clock: %d\n", ret);
1522 		goto err_disable_pixel_clock;
1523 	}
1524 
1525 	if (vc4_hdmi->variant->phy_init)
1526 		vc4_hdmi->variant->phy_init(vc4_hdmi, conn_state);
1527 
1528 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1529 
1530 	HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
1531 		   HDMI_READ(HDMI_SCHEDULER_CONTROL) |
1532 		   VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT |
1533 		   VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS);
1534 
1535 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1536 
1537 	if (vc4_hdmi->variant->set_timings)
1538 		vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode);
1539 
1540 	drm_dev_exit(idx);
1541 
1542 	mutex_unlock(&vc4_hdmi->mutex);
1543 
1544 	return;
1545 
1546 err_disable_pixel_clock:
1547 	clk_disable_unprepare(vc4_hdmi->pixel_clock);
1548 err_put_runtime_pm:
1549 	pm_runtime_put(&vc4_hdmi->pdev->dev);
1550 err_dev_exit:
1551 	drm_dev_exit(idx);
1552 out:
1553 	mutex_unlock(&vc4_hdmi->mutex);
1554 	return;
1555 }
1556 
1557 static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder,
1558 					     struct drm_atomic_state *state)
1559 {
1560 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1561 	struct drm_device *drm = vc4_hdmi->connector.dev;
1562 	struct drm_connector *connector = &vc4_hdmi->connector;
1563 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1564 	struct drm_connector_state *conn_state =
1565 		drm_atomic_get_new_connector_state(state, connector);
1566 	unsigned long flags;
1567 	int idx;
1568 
1569 	mutex_lock(&vc4_hdmi->mutex);
1570 
1571 	if (!drm_dev_enter(drm, &idx))
1572 		goto out;
1573 
1574 	if (vc4_hdmi->variant->csc_setup)
1575 		vc4_hdmi->variant->csc_setup(vc4_hdmi, conn_state, mode);
1576 
1577 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1578 	HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N);
1579 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1580 
1581 	drm_dev_exit(idx);
1582 
1583 out:
1584 	mutex_unlock(&vc4_hdmi->mutex);
1585 }
1586 
1587 static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder,
1588 					      struct drm_atomic_state *state)
1589 {
1590 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1591 	struct drm_connector *connector = &vc4_hdmi->connector;
1592 	struct drm_device *drm = connector->dev;
1593 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1594 	struct drm_display_info *display = &vc4_hdmi->connector.display_info;
1595 	bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
1596 	bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
1597 	unsigned long flags;
1598 	int ret;
1599 	int idx;
1600 
1601 	mutex_lock(&vc4_hdmi->mutex);
1602 
1603 	if (!drm_dev_enter(drm, &idx))
1604 		goto out;
1605 
1606 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1607 
1608 	HDMI_WRITE(HDMI_VID_CTL,
1609 		   (HDMI_READ(HDMI_VID_CTL) &
1610 			~(VC4_HD_VID_CTL_VSYNC_LOW | VC4_HD_VID_CTL_HSYNC_LOW)) |
1611 		   VC4_HD_VID_CTL_ENABLE |
1612 		   VC4_HD_VID_CTL_CLRRGB |
1613 		   VC4_HD_VID_CTL_UNDERFLOW_ENABLE |
1614 		   VC4_HD_VID_CTL_FRAME_COUNTER_RESET |
1615 		   VC4_HD_VID_CTL_BLANK_INSERT_EN |
1616 		   (vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) |
1617 		   (hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW));
1618 
1619 	HDMI_WRITE(HDMI_VID_CTL,
1620 		   HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX);
1621 
1622 	if (display->is_hdmi) {
1623 		HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
1624 			   HDMI_READ(HDMI_SCHEDULER_CONTROL) |
1625 			   VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
1626 
1627 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1628 
1629 		ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1630 			       VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000);
1631 		WARN_ONCE(ret, "Timeout waiting for "
1632 			  "VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
1633 	} else {
1634 		HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
1635 			   HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
1636 			   ~(VC4_HDMI_RAM_PACKET_ENABLE));
1637 		HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
1638 			   HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1639 			   ~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
1640 
1641 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1642 
1643 		ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1644 				 VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000);
1645 		WARN_ONCE(ret, "Timeout waiting for "
1646 			  "!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
1647 	}
1648 
1649 	if (display->is_hdmi) {
1650 		spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1651 
1652 		WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1653 			  VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE));
1654 
1655 		HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
1656 			   VC4_HDMI_RAM_PACKET_ENABLE);
1657 
1658 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1659 		vc4_hdmi->packet_ram_enabled = true;
1660 
1661 		drm_atomic_helper_connector_hdmi_update_infoframes(connector, state);
1662 	}
1663 
1664 	vc4_hdmi_recenter_fifo(vc4_hdmi);
1665 	vc4_hdmi_enable_scrambling(encoder);
1666 
1667 	drm_dev_exit(idx);
1668 
1669 out:
1670 	mutex_unlock(&vc4_hdmi->mutex);
1671 }
1672 
1673 static void vc4_hdmi_encoder_atomic_mode_set(struct drm_encoder *encoder,
1674 					     struct drm_crtc_state *crtc_state,
1675 					     struct drm_connector_state *conn_state)
1676 {
1677 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1678 
1679 	mutex_lock(&vc4_hdmi->mutex);
1680 	drm_mode_copy(&vc4_hdmi->saved_adjusted_mode,
1681 		      &crtc_state->adjusted_mode);
1682 	vc4_hdmi->output_bpc = conn_state->hdmi.output_bpc;
1683 	vc4_hdmi->output_format = conn_state->hdmi.output_format;
1684 	mutex_unlock(&vc4_hdmi->mutex);
1685 }
1686 
1687 static enum drm_mode_status
1688 vc4_hdmi_connector_clock_valid(const struct drm_connector *connector,
1689 			       const struct drm_display_mode *mode,
1690 			       unsigned long long clock)
1691 {
1692 	const struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
1693 	struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
1694 
1695 	if (clock > vc4_hdmi->variant->max_pixel_clock)
1696 		return MODE_CLOCK_HIGH;
1697 
1698 	if (!vc4->hvs->vc5_hdmi_enable_hdmi_20 && clock > HDMI_14_MAX_TMDS_CLK)
1699 		return MODE_CLOCK_HIGH;
1700 
1701 	/* 4096x2160@60 is not reliable without overclocking core */
1702 	if (!vc4->hvs->vc5_hdmi_enable_4096by2160 &&
1703 	    mode->hdisplay > 3840 && mode->vdisplay >= 2160 &&
1704 	    drm_mode_vrefresh(mode) >= 50)
1705 		return MODE_CLOCK_HIGH;
1706 
1707 	return MODE_OK;
1708 }
1709 
1710 static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs = {
1711 	.tmds_char_rate_valid	= vc4_hdmi_connector_clock_valid,
1712 	.write_infoframe	= vc4_hdmi_write_infoframe,
1713 };
1714 
1715 #define WIFI_2_4GHz_CH1_MIN_FREQ	2400000000ULL
1716 #define WIFI_2_4GHz_CH1_MAX_FREQ	2422000000ULL
1717 
1718 static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
1719 					 struct drm_crtc_state *crtc_state,
1720 					 struct drm_connector_state *conn_state)
1721 {
1722 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1723 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
1724 	unsigned long long tmds_char_rate = mode->clock * 1000;
1725 	unsigned long long tmds_bit_rate;
1726 
1727 	if (vc4_hdmi->variant->unsupported_odd_h_timings) {
1728 		if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1729 			/* Only try to fixup DBLCLK modes to get 480i and 576i
1730 			 * working.
1731 			 * A generic solution for all modes with odd horizontal
1732 			 * timing values seems impossible based on trying to
1733 			 * solve it for 1366x768 monitors.
1734 			 */
1735 			if ((mode->hsync_start - mode->hdisplay) & 1)
1736 				mode->hsync_start--;
1737 			if ((mode->hsync_end - mode->hsync_start) & 1)
1738 				mode->hsync_end--;
1739 		}
1740 
1741 		/* Now check whether we still have odd values remaining */
1742 		if ((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
1743 		    (mode->hsync_end % 2) || (mode->htotal % 2))
1744 			return -EINVAL;
1745 	}
1746 
1747 	/*
1748 	 * The 1440p@60 pixel rate is in the same range than the first
1749 	 * WiFi channel (between 2.4GHz and 2.422GHz with 22MHz
1750 	 * bandwidth). Slightly lower the frequency to bring it out of
1751 	 * the WiFi range.
1752 	 */
1753 	tmds_bit_rate = tmds_char_rate * 10;
1754 	if (vc4_hdmi->disable_wifi_frequencies &&
1755 	    (tmds_bit_rate >= WIFI_2_4GHz_CH1_MIN_FREQ &&
1756 	     tmds_bit_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) {
1757 		mode->clock = 238560;
1758 		tmds_char_rate = mode->clock * 1000;
1759 	}
1760 
1761 	return 0;
1762 }
1763 
1764 static enum drm_mode_status
1765 vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder,
1766 			    const struct drm_display_mode *mode)
1767 {
1768 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1769 
1770 	if (vc4_hdmi->variant->unsupported_odd_h_timings &&
1771 	    !(mode->flags & DRM_MODE_FLAG_DBLCLK) &&
1772 	    ((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
1773 	     (mode->hsync_end % 2) || (mode->htotal % 2)))
1774 		return MODE_H_ILLEGAL;
1775 
1776 	return MODE_OK;
1777 }
1778 
1779 static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = {
1780 	.atomic_check = vc4_hdmi_encoder_atomic_check,
1781 	.atomic_mode_set = vc4_hdmi_encoder_atomic_mode_set,
1782 	.mode_valid = vc4_hdmi_encoder_mode_valid,
1783 };
1784 
1785 static int vc4_hdmi_late_register(struct drm_encoder *encoder)
1786 {
1787 	struct drm_device *drm = encoder->dev;
1788 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1789 	const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
1790 
1791 	drm_debugfs_add_file(drm, variant->debugfs_name,
1792 			     vc4_hdmi_debugfs_regs, vc4_hdmi);
1793 
1794 	return 0;
1795 }
1796 
1797 static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = {
1798 	.late_register = vc4_hdmi_late_register,
1799 };
1800 
1801 static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
1802 {
1803 	int i;
1804 	u32 channel_map = 0;
1805 
1806 	for (i = 0; i < 8; i++) {
1807 		if (channel_mask & BIT(i))
1808 			channel_map |= i << (3 * i);
1809 	}
1810 	return channel_map;
1811 }
1812 
1813 static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
1814 {
1815 	int i;
1816 	u32 channel_map = 0;
1817 
1818 	for (i = 0; i < 8; i++) {
1819 		if (channel_mask & BIT(i))
1820 			channel_map |= i << (4 * i);
1821 	}
1822 	return channel_map;
1823 }
1824 
1825 static bool vc5_hdmi_hp_detect(struct vc4_hdmi *vc4_hdmi)
1826 {
1827 	struct drm_device *drm = vc4_hdmi->connector.dev;
1828 	unsigned long flags;
1829 	u32 hotplug;
1830 	int idx;
1831 
1832 	if (!drm_dev_enter(drm, &idx))
1833 		return false;
1834 
1835 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1836 	hotplug = HDMI_READ(HDMI_HOTPLUG);
1837 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1838 
1839 	drm_dev_exit(idx);
1840 
1841 	return !!(hotplug & VC4_HDMI_HOTPLUG_CONNECTED);
1842 }
1843 
1844 /* HDMI audio codec callbacks */
1845 static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi,
1846 					 unsigned int samplerate)
1847 {
1848 	struct drm_device *drm = vc4_hdmi->connector.dev;
1849 	u32 hsm_clock;
1850 	unsigned long flags;
1851 	unsigned long n, m;
1852 	int idx;
1853 
1854 	if (!drm_dev_enter(drm, &idx))
1855 		return;
1856 
1857 	hsm_clock = clk_get_rate(vc4_hdmi->audio_clock);
1858 	rational_best_approximation(hsm_clock, samplerate,
1859 				    VC4_HD_MAI_SMP_N_MASK >>
1860 				    VC4_HD_MAI_SMP_N_SHIFT,
1861 				    (VC4_HD_MAI_SMP_M_MASK >>
1862 				     VC4_HD_MAI_SMP_M_SHIFT) + 1,
1863 				    &n, &m);
1864 
1865 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1866 	HDMI_WRITE(HDMI_MAI_SMP,
1867 		   VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) |
1868 		   VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M));
1869 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1870 
1871 	drm_dev_exit(idx);
1872 }
1873 
1874 static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate)
1875 {
1876 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1877 	u32 n, cts;
1878 	u64 tmp;
1879 
1880 	lockdep_assert_held(&vc4_hdmi->mutex);
1881 	lockdep_assert_held(&vc4_hdmi->hw_lock);
1882 
1883 	n = 128 * samplerate / 1000;
1884 	tmp = (u64)(mode->clock * 1000) * n;
1885 	do_div(tmp, 128 * samplerate);
1886 	cts = tmp;
1887 
1888 	HDMI_WRITE(HDMI_CRP_CFG,
1889 		   VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN |
1890 		   VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N));
1891 
1892 	/*
1893 	 * We could get slightly more accurate clocks in some cases by
1894 	 * providing a CTS_1 value.  The two CTS values are alternated
1895 	 * between based on the period fields
1896 	 */
1897 	HDMI_WRITE(HDMI_CTS_0, cts);
1898 	HDMI_WRITE(HDMI_CTS_1, cts);
1899 }
1900 
1901 static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai)
1902 {
1903 	struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai);
1904 
1905 	return snd_soc_card_get_drvdata(card);
1906 }
1907 
1908 static bool vc4_hdmi_audio_can_stream(struct vc4_hdmi *vc4_hdmi)
1909 {
1910 	struct drm_display_info *display = &vc4_hdmi->connector.display_info;
1911 
1912 	lockdep_assert_held(&vc4_hdmi->mutex);
1913 
1914 	/*
1915 	 * If the encoder is currently in DVI mode, treat the codec DAI
1916 	 * as missing.
1917 	 */
1918 	if (!display->is_hdmi)
1919 		return false;
1920 
1921 	return true;
1922 }
1923 
1924 static int vc4_hdmi_audio_startup(struct device *dev, void *data)
1925 {
1926 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
1927 	struct drm_device *drm = vc4_hdmi->connector.dev;
1928 	unsigned long flags;
1929 	int ret = 0;
1930 	int idx;
1931 
1932 	mutex_lock(&vc4_hdmi->mutex);
1933 
1934 	if (!drm_dev_enter(drm, &idx)) {
1935 		ret = -ENODEV;
1936 		goto out;
1937 	}
1938 
1939 	if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
1940 		ret = -ENOTSUPP;
1941 		goto out_dev_exit;
1942 	}
1943 
1944 	vc4_hdmi->audio.streaming = true;
1945 
1946 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1947 	HDMI_WRITE(HDMI_MAI_CTL,
1948 		   VC4_HD_MAI_CTL_RESET |
1949 		   VC4_HD_MAI_CTL_FLUSH |
1950 		   VC4_HD_MAI_CTL_DLATE |
1951 		   VC4_HD_MAI_CTL_ERRORE |
1952 		   VC4_HD_MAI_CTL_ERRORF);
1953 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1954 
1955 	if (vc4_hdmi->variant->phy_rng_enable)
1956 		vc4_hdmi->variant->phy_rng_enable(vc4_hdmi);
1957 
1958 out_dev_exit:
1959 	drm_dev_exit(idx);
1960 out:
1961 	mutex_unlock(&vc4_hdmi->mutex);
1962 
1963 	return ret;
1964 }
1965 
1966 static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi)
1967 {
1968 	struct device *dev = &vc4_hdmi->pdev->dev;
1969 	unsigned long flags;
1970 	int ret;
1971 
1972 	lockdep_assert_held(&vc4_hdmi->mutex);
1973 
1974 	vc4_hdmi->audio.streaming = false;
1975 	ret = vc4_hdmi_stop_packet(vc4_hdmi, HDMI_INFOFRAME_TYPE_AUDIO, false);
1976 	if (ret)
1977 		dev_err(dev, "Failed to stop audio infoframe: %d\n", ret);
1978 
1979 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1980 
1981 	HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET);
1982 	HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF);
1983 	HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH);
1984 
1985 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1986 }
1987 
1988 static void vc4_hdmi_audio_shutdown(struct device *dev, void *data)
1989 {
1990 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
1991 	struct drm_device *drm = vc4_hdmi->connector.dev;
1992 	unsigned long flags;
1993 	int idx;
1994 
1995 	mutex_lock(&vc4_hdmi->mutex);
1996 
1997 	if (!drm_dev_enter(drm, &idx))
1998 		goto out;
1999 
2000 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2001 
2002 	HDMI_WRITE(HDMI_MAI_CTL,
2003 		   VC4_HD_MAI_CTL_DLATE |
2004 		   VC4_HD_MAI_CTL_ERRORE |
2005 		   VC4_HD_MAI_CTL_ERRORF);
2006 
2007 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2008 
2009 	if (vc4_hdmi->variant->phy_rng_disable)
2010 		vc4_hdmi->variant->phy_rng_disable(vc4_hdmi);
2011 
2012 	vc4_hdmi->audio.streaming = false;
2013 	vc4_hdmi_audio_reset(vc4_hdmi);
2014 
2015 	drm_dev_exit(idx);
2016 
2017 out:
2018 	mutex_unlock(&vc4_hdmi->mutex);
2019 }
2020 
2021 static int sample_rate_to_mai_fmt(int samplerate)
2022 {
2023 	switch (samplerate) {
2024 	case 8000:
2025 		return VC4_HDMI_MAI_SAMPLE_RATE_8000;
2026 	case 11025:
2027 		return VC4_HDMI_MAI_SAMPLE_RATE_11025;
2028 	case 12000:
2029 		return VC4_HDMI_MAI_SAMPLE_RATE_12000;
2030 	case 16000:
2031 		return VC4_HDMI_MAI_SAMPLE_RATE_16000;
2032 	case 22050:
2033 		return VC4_HDMI_MAI_SAMPLE_RATE_22050;
2034 	case 24000:
2035 		return VC4_HDMI_MAI_SAMPLE_RATE_24000;
2036 	case 32000:
2037 		return VC4_HDMI_MAI_SAMPLE_RATE_32000;
2038 	case 44100:
2039 		return VC4_HDMI_MAI_SAMPLE_RATE_44100;
2040 	case 48000:
2041 		return VC4_HDMI_MAI_SAMPLE_RATE_48000;
2042 	case 64000:
2043 		return VC4_HDMI_MAI_SAMPLE_RATE_64000;
2044 	case 88200:
2045 		return VC4_HDMI_MAI_SAMPLE_RATE_88200;
2046 	case 96000:
2047 		return VC4_HDMI_MAI_SAMPLE_RATE_96000;
2048 	case 128000:
2049 		return VC4_HDMI_MAI_SAMPLE_RATE_128000;
2050 	case 176400:
2051 		return VC4_HDMI_MAI_SAMPLE_RATE_176400;
2052 	case 192000:
2053 		return VC4_HDMI_MAI_SAMPLE_RATE_192000;
2054 	default:
2055 		return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED;
2056 	}
2057 }
2058 
2059 /* HDMI audio codec callbacks */
2060 static int vc4_hdmi_audio_prepare(struct device *dev, void *data,
2061 				  struct hdmi_codec_daifmt *daifmt,
2062 				  struct hdmi_codec_params *params)
2063 {
2064 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
2065 	struct drm_device *drm = vc4_hdmi->connector.dev;
2066 	struct drm_connector *connector = &vc4_hdmi->connector;
2067 	struct vc4_dev *vc4 = to_vc4_dev(drm);
2068 	unsigned int sample_rate = params->sample_rate;
2069 	unsigned int channels = params->channels;
2070 	unsigned long flags;
2071 	u32 audio_packet_config, channel_mask;
2072 	u32 channel_map;
2073 	u32 mai_audio_format;
2074 	u32 mai_sample_rate;
2075 	int ret = 0;
2076 	int idx;
2077 
2078 	dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__,
2079 		sample_rate, params->sample_width, channels);
2080 
2081 	mutex_lock(&vc4_hdmi->mutex);
2082 
2083 	if (!drm_dev_enter(drm, &idx)) {
2084 		ret = -ENODEV;
2085 		goto out;
2086 	}
2087 
2088 	if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
2089 		ret = -EINVAL;
2090 		goto out_dev_exit;
2091 	}
2092 
2093 	vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate);
2094 
2095 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2096 	HDMI_WRITE(HDMI_MAI_CTL,
2097 		   VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) |
2098 		   VC4_HD_MAI_CTL_WHOLSMP |
2099 		   VC4_HD_MAI_CTL_CHALIGN |
2100 		   VC4_HD_MAI_CTL_ENABLE);
2101 
2102 	mai_sample_rate = sample_rate_to_mai_fmt(sample_rate);
2103 	if (params->iec.status[0] & IEC958_AES0_NONAUDIO &&
2104 	    params->channels == 8)
2105 		mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR;
2106 	else
2107 		mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM;
2108 	HDMI_WRITE(HDMI_MAI_FMT,
2109 		   VC4_SET_FIELD(mai_sample_rate,
2110 				 VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) |
2111 		   VC4_SET_FIELD(mai_audio_format,
2112 				 VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT));
2113 
2114 	/* The B frame identifier should match the value used by alsa-lib (8) */
2115 	audio_packet_config =
2116 		VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT |
2117 		VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS |
2118 		VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER);
2119 
2120 	channel_mask = GENMASK(channels - 1, 0);
2121 	audio_packet_config |= VC4_SET_FIELD(channel_mask,
2122 					     VC4_HDMI_AUDIO_PACKET_CEA_MASK);
2123 
2124 	/* Set the MAI threshold */
2125 	switch (vc4->gen) {
2126 	case VC4_GEN_6_D:
2127 		HDMI_WRITE(HDMI_MAI_THR,
2128 			   VC4_SET_FIELD(0x10, VC6_D_HD_MAI_THR_PANICHIGH) |
2129 			   VC4_SET_FIELD(0x10, VC6_D_HD_MAI_THR_PANICLOW) |
2130 			   VC4_SET_FIELD(0x1c, VC6_D_HD_MAI_THR_DREQHIGH) |
2131 			   VC4_SET_FIELD(0x1c, VC6_D_HD_MAI_THR_DREQLOW));
2132 		break;
2133 	case VC4_GEN_6_C:
2134 	case VC4_GEN_5:
2135 		HDMI_WRITE(HDMI_MAI_THR,
2136 			   VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICHIGH) |
2137 			   VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICLOW) |
2138 			   VC4_SET_FIELD(0x1c, VC4_HD_MAI_THR_DREQHIGH) |
2139 			   VC4_SET_FIELD(0x1c, VC4_HD_MAI_THR_DREQLOW));
2140 		break;
2141 	case VC4_GEN_4:
2142 		HDMI_WRITE(HDMI_MAI_THR,
2143 			   VC4_SET_FIELD(0x8, VC4_HD_MAI_THR_PANICHIGH) |
2144 			   VC4_SET_FIELD(0x8, VC4_HD_MAI_THR_PANICLOW) |
2145 			   VC4_SET_FIELD(0x6, VC4_HD_MAI_THR_DREQHIGH) |
2146 			   VC4_SET_FIELD(0x8, VC4_HD_MAI_THR_DREQLOW));
2147 		break;
2148 	default:
2149 		drm_err(drm, "Unknown VC4 generation: %d", vc4->gen);
2150 		break;
2151 	}
2152 
2153 	HDMI_WRITE(HDMI_MAI_CONFIG,
2154 		   VC4_HDMI_MAI_CONFIG_BIT_REVERSE |
2155 		   VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE |
2156 		   VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK));
2157 
2158 	channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask);
2159 	HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map);
2160 	HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config);
2161 
2162 	vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate);
2163 
2164 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2165 
2166 	ret = drm_atomic_helper_connector_hdmi_update_audio_infoframe(connector,
2167 								      &params->cea);
2168 	if (ret)
2169 		goto out_dev_exit;
2170 
2171 out_dev_exit:
2172 	drm_dev_exit(idx);
2173 out:
2174 	mutex_unlock(&vc4_hdmi->mutex);
2175 
2176 	return ret;
2177 }
2178 
2179 static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = {
2180 	.name = "vc4-hdmi-cpu-dai-component",
2181 	.legacy_dai_naming = 1,
2182 };
2183 
2184 static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai)
2185 {
2186 	struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
2187 
2188 	snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL);
2189 
2190 	return 0;
2191 }
2192 
2193 static const struct snd_soc_dai_ops vc4_snd_dai_ops = {
2194 	.probe  = vc4_hdmi_audio_cpu_dai_probe,
2195 };
2196 
2197 static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = {
2198 	.name = "vc4-hdmi-cpu-dai",
2199 	.ops = &vc4_snd_dai_ops,
2200 	.playback = {
2201 		.stream_name = "Playback",
2202 		.channels_min = 1,
2203 		.channels_max = 8,
2204 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2205 			 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2206 			 SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2207 			 SNDRV_PCM_RATE_192000,
2208 		.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
2209 	},
2210 };
2211 
2212 static const struct snd_dmaengine_pcm_config pcm_conf = {
2213 	.chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx",
2214 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
2215 };
2216 
2217 static int vc4_hdmi_audio_get_eld(struct device *dev, void *data,
2218 				  uint8_t *buf, size_t len)
2219 {
2220 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
2221 	struct drm_connector *connector = &vc4_hdmi->connector;
2222 
2223 	mutex_lock(&connector->eld_mutex);
2224 	memcpy(buf, connector->eld, min(sizeof(connector->eld), len));
2225 	mutex_unlock(&connector->eld_mutex);
2226 
2227 	return 0;
2228 }
2229 
2230 static const struct hdmi_codec_ops vc4_hdmi_codec_ops = {
2231 	.get_eld = vc4_hdmi_audio_get_eld,
2232 	.prepare = vc4_hdmi_audio_prepare,
2233 	.audio_shutdown = vc4_hdmi_audio_shutdown,
2234 	.audio_startup = vc4_hdmi_audio_startup,
2235 };
2236 
2237 static struct hdmi_codec_pdata vc4_hdmi_codec_pdata = {
2238 	.ops = &vc4_hdmi_codec_ops,
2239 	.max_i2s_channels = 8,
2240 	.i2s = 1,
2241 };
2242 
2243 static void vc4_hdmi_audio_codec_release(void *ptr)
2244 {
2245 	struct vc4_hdmi *vc4_hdmi = ptr;
2246 
2247 	platform_device_unregister(vc4_hdmi->audio.codec_pdev);
2248 	vc4_hdmi->audio.codec_pdev = NULL;
2249 }
2250 
2251 static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi)
2252 {
2253 	const struct vc4_hdmi_register *mai_data =
2254 		&vc4_hdmi->variant->registers[HDMI_MAI_DATA];
2255 	struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link;
2256 	struct snd_soc_card *card = &vc4_hdmi->audio.card;
2257 	struct device *dev = &vc4_hdmi->pdev->dev;
2258 	struct platform_device *codec_pdev;
2259 	const __be32 *addr;
2260 	int index, len;
2261 	int ret;
2262 
2263 	/*
2264 	 * ASoC makes it a bit hard to retrieve a pointer to the
2265 	 * vc4_hdmi structure. Registering the card will overwrite our
2266 	 * device drvdata with a pointer to the snd_soc_card structure,
2267 	 * which can then be used to retrieve whatever drvdata we want
2268 	 * to associate.
2269 	 *
2270 	 * However, that doesn't fly in the case where we wouldn't
2271 	 * register an ASoC card (because of an old DT that is missing
2272 	 * the dmas properties for example), then the card isn't
2273 	 * registered and the device drvdata wouldn't be set.
2274 	 *
2275 	 * We can deal with both cases by making sure a snd_soc_card
2276 	 * pointer and a vc4_hdmi structure are pointing to the same
2277 	 * memory address, so we can treat them indistinctly without any
2278 	 * issue.
2279 	 */
2280 	BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0);
2281 	BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0);
2282 
2283 	if (!of_find_property(dev->of_node, "dmas", &len) || !len) {
2284 		dev_warn(dev,
2285 			 "'dmas' DT property is missing or empty, no HDMI audio\n");
2286 		return 0;
2287 	}
2288 
2289 	if (mai_data->reg != VC4_HD) {
2290 		WARN_ONCE(true, "MAI isn't in the HD block\n");
2291 		return -EINVAL;
2292 	}
2293 
2294 	/*
2295 	 * Get the physical address of VC4_HD_MAI_DATA. We need to retrieve
2296 	 * the bus address specified in the DT, because the physical address
2297 	 * (the one returned by platform_get_resource()) is not appropriate
2298 	 * for DMA transfers.
2299 	 * This VC/MMU should probably be exposed to avoid this kind of hacks.
2300 	 */
2301 	index = of_property_match_string(dev->of_node, "reg-names", "hd");
2302 	/* Before BCM2711, we don't have a named register range */
2303 	if (index < 0)
2304 		index = 1;
2305 
2306 	addr = of_get_address(dev->of_node, index, NULL, NULL);
2307 	if (!addr)
2308 		return -EINVAL;
2309 
2310 	vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset;
2311 	vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2312 	vc4_hdmi->audio.dma_data.maxburst = 2;
2313 
2314 	/*
2315 	 * NOTE: Strictly speaking, we should probably use a DRM-managed
2316 	 * registration there to avoid removing all the audio components
2317 	 * by the time the driver doesn't have any user anymore.
2318 	 *
2319 	 * However, the ASoC core uses a number of devm_kzalloc calls
2320 	 * when registering, even when using non-device-managed
2321 	 * functions (such as in snd_soc_register_component()).
2322 	 *
2323 	 * If we call snd_soc_unregister_component() in a DRM-managed
2324 	 * action, the device-managed actions have already been executed
2325 	 * and thus we would access memory that has been freed.
2326 	 *
2327 	 * Using device-managed hooks here probably leaves us open to a
2328 	 * bunch of issues if userspace still has a handle on the ALSA
2329 	 * device when the device is removed. However, this is mitigated
2330 	 * by the use of drm_dev_enter()/drm_dev_exit() in the audio
2331 	 * path to prevent the access to the device resources if it
2332 	 * isn't there anymore.
2333 	 *
2334 	 * Then, the vc4_hdmi structure is DRM-managed and thus only
2335 	 * freed whenever the last user has closed the DRM device file.
2336 	 * It should thus outlive ALSA in most situations.
2337 	 */
2338 	ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0);
2339 	if (ret) {
2340 		dev_err(dev, "Could not register PCM component: %d\n", ret);
2341 		return ret;
2342 	}
2343 
2344 	ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp,
2345 					      &vc4_hdmi_audio_cpu_dai_drv, 1);
2346 	if (ret) {
2347 		dev_err(dev, "Could not register CPU DAI: %d\n", ret);
2348 		return ret;
2349 	}
2350 
2351 	codec_pdev = platform_device_register_data(dev, HDMI_CODEC_DRV_NAME,
2352 						   PLATFORM_DEVID_AUTO,
2353 						   &vc4_hdmi_codec_pdata,
2354 						   sizeof(vc4_hdmi_codec_pdata));
2355 	if (IS_ERR(codec_pdev)) {
2356 		dev_err(dev, "Couldn't register the HDMI codec: %ld\n", PTR_ERR(codec_pdev));
2357 		return PTR_ERR(codec_pdev);
2358 	}
2359 	vc4_hdmi->audio.codec_pdev = codec_pdev;
2360 
2361 	ret = devm_add_action_or_reset(dev, vc4_hdmi_audio_codec_release, vc4_hdmi);
2362 	if (ret)
2363 		return ret;
2364 
2365 	dai_link->cpus		= &vc4_hdmi->audio.cpu;
2366 	dai_link->codecs	= &vc4_hdmi->audio.codec;
2367 	dai_link->platforms	= &vc4_hdmi->audio.platform;
2368 
2369 	dai_link->num_cpus	= 1;
2370 	dai_link->num_codecs	= 1;
2371 	dai_link->num_platforms	= 1;
2372 
2373 	dai_link->name = "MAI";
2374 	dai_link->stream_name = "MAI PCM";
2375 	dai_link->codecs->dai_name = "i2s-hifi";
2376 	dai_link->cpus->dai_name = dev_name(dev);
2377 	dai_link->codecs->name = dev_name(&codec_pdev->dev);
2378 	dai_link->platforms->name = dev_name(dev);
2379 
2380 	card->dai_link = dai_link;
2381 	card->num_links = 1;
2382 	card->name = vc4_hdmi->variant->card_name;
2383 	card->driver_name = "vc4-hdmi";
2384 	card->dev = dev;
2385 	card->owner = THIS_MODULE;
2386 
2387 	/*
2388 	 * Be careful, snd_soc_register_card() calls dev_set_drvdata() and
2389 	 * stores a pointer to the snd card object in dev->driver_data. This
2390 	 * means we cannot use it for something else. The hdmi back-pointer is
2391 	 * now stored in card->drvdata and should be retrieved with
2392 	 * snd_soc_card_get_drvdata() if needed.
2393 	 */
2394 	snd_soc_card_set_drvdata(card, vc4_hdmi);
2395 	ret = devm_snd_soc_register_card(dev, card);
2396 	if (ret)
2397 		dev_err_probe(dev, ret, "Could not register sound card\n");
2398 
2399 	return ret;
2400 
2401 }
2402 
2403 static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv)
2404 {
2405 	struct vc4_hdmi *vc4_hdmi = priv;
2406 	struct drm_connector *connector = &vc4_hdmi->connector;
2407 	struct drm_device *dev = connector->dev;
2408 
2409 	if (dev && dev->registered)
2410 		drm_connector_helper_hpd_irq_event(connector);
2411 
2412 	return IRQ_HANDLED;
2413 }
2414 
2415 static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi)
2416 {
2417 	struct drm_connector *connector = &vc4_hdmi->connector;
2418 	struct platform_device *pdev = vc4_hdmi->pdev;
2419 	int ret;
2420 
2421 	if (vc4_hdmi->variant->external_irq_controller) {
2422 		unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected");
2423 		unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed");
2424 
2425 		ret = devm_request_threaded_irq(&pdev->dev, hpd_con,
2426 						NULL,
2427 						vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
2428 						"vc4 hdmi hpd connected", vc4_hdmi);
2429 		if (ret)
2430 			return ret;
2431 
2432 		ret = devm_request_threaded_irq(&pdev->dev, hpd_rm,
2433 						NULL,
2434 						vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
2435 						"vc4 hdmi hpd disconnected", vc4_hdmi);
2436 		if (ret)
2437 			return ret;
2438 
2439 		connector->polled = DRM_CONNECTOR_POLL_HPD;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 #ifdef CONFIG_DRM_VC4_HDMI_CEC
2446 static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv)
2447 {
2448 	struct vc4_hdmi *vc4_hdmi = priv;
2449 
2450 	if (vc4_hdmi->cec_rx_msg.len)
2451 		cec_received_msg(vc4_hdmi->cec_adap,
2452 				 &vc4_hdmi->cec_rx_msg);
2453 
2454 	return IRQ_HANDLED;
2455 }
2456 
2457 static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv)
2458 {
2459 	struct vc4_hdmi *vc4_hdmi = priv;
2460 
2461 	if (vc4_hdmi->cec_tx_ok) {
2462 		cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK,
2463 				  0, 0, 0, 0);
2464 	} else {
2465 		/*
2466 		 * This CEC implementation makes 1 retry, so if we
2467 		 * get a NACK, then that means it made 2 attempts.
2468 		 */
2469 		cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK,
2470 				  0, 2, 0, 0);
2471 	}
2472 	return IRQ_HANDLED;
2473 }
2474 
2475 static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv)
2476 {
2477 	struct vc4_hdmi *vc4_hdmi = priv;
2478 	irqreturn_t ret;
2479 
2480 	if (vc4_hdmi->cec_irq_was_rx)
2481 		ret = vc4_cec_irq_handler_rx_thread(irq, priv);
2482 	else
2483 		ret = vc4_cec_irq_handler_tx_thread(irq, priv);
2484 
2485 	return ret;
2486 }
2487 
2488 static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1)
2489 {
2490 	struct drm_device *dev = vc4_hdmi->connector.dev;
2491 	struct cec_msg *msg = &vc4_hdmi->cec_rx_msg;
2492 	unsigned int i;
2493 
2494 	lockdep_assert_held(&vc4_hdmi->hw_lock);
2495 
2496 	msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >>
2497 					VC4_HDMI_CEC_REC_WRD_CNT_SHIFT);
2498 
2499 	if (msg->len > 16) {
2500 		drm_err(dev, "Attempting to read too much data (%d)\n", msg->len);
2501 		return;
2502 	}
2503 
2504 	for (i = 0; i < msg->len; i += 4) {
2505 		u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2));
2506 
2507 		msg->msg[i] = val & 0xff;
2508 		msg->msg[i + 1] = (val >> 8) & 0xff;
2509 		msg->msg[i + 2] = (val >> 16) & 0xff;
2510 		msg->msg[i + 3] = (val >> 24) & 0xff;
2511 	}
2512 }
2513 
2514 static irqreturn_t vc4_cec_irq_handler_tx_bare_locked(struct vc4_hdmi *vc4_hdmi)
2515 {
2516 	u32 cntrl1;
2517 
2518 	/*
2519 	 * We don't need to protect the register access using
2520 	 * drm_dev_enter() there because the interrupt handler lifetime
2521 	 * is tied to the device itself, and not to the DRM device.
2522 	 *
2523 	 * So when the device will be gone, one of the first thing we
2524 	 * will be doing will be to unregister the interrupt handler,
2525 	 * and then unregister the DRM device. drm_dev_enter() would
2526 	 * thus always succeed if we are here.
2527 	 */
2528 
2529 	lockdep_assert_held(&vc4_hdmi->hw_lock);
2530 
2531 	cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
2532 	vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD;
2533 	cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
2534 	HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
2535 
2536 	return IRQ_WAKE_THREAD;
2537 }
2538 
2539 static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv)
2540 {
2541 	struct vc4_hdmi *vc4_hdmi = priv;
2542 	irqreturn_t ret;
2543 
2544 	spin_lock(&vc4_hdmi->hw_lock);
2545 	ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
2546 	spin_unlock(&vc4_hdmi->hw_lock);
2547 
2548 	return ret;
2549 }
2550 
2551 static irqreturn_t vc4_cec_irq_handler_rx_bare_locked(struct vc4_hdmi *vc4_hdmi)
2552 {
2553 	u32 cntrl1;
2554 
2555 	lockdep_assert_held(&vc4_hdmi->hw_lock);
2556 
2557 	/*
2558 	 * We don't need to protect the register access using
2559 	 * drm_dev_enter() there because the interrupt handler lifetime
2560 	 * is tied to the device itself, and not to the DRM device.
2561 	 *
2562 	 * So when the device will be gone, one of the first thing we
2563 	 * will be doing will be to unregister the interrupt handler,
2564 	 * and then unregister the DRM device. drm_dev_enter() would
2565 	 * thus always succeed if we are here.
2566 	 */
2567 
2568 	vc4_hdmi->cec_rx_msg.len = 0;
2569 	cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
2570 	vc4_cec_read_msg(vc4_hdmi, cntrl1);
2571 	cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
2572 	HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
2573 	cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
2574 
2575 	HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
2576 
2577 	return IRQ_WAKE_THREAD;
2578 }
2579 
2580 static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv)
2581 {
2582 	struct vc4_hdmi *vc4_hdmi = priv;
2583 	irqreturn_t ret;
2584 
2585 	spin_lock(&vc4_hdmi->hw_lock);
2586 	ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
2587 	spin_unlock(&vc4_hdmi->hw_lock);
2588 
2589 	return ret;
2590 }
2591 
2592 static irqreturn_t vc4_cec_irq_handler(int irq, void *priv)
2593 {
2594 	struct vc4_hdmi *vc4_hdmi = priv;
2595 	u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS);
2596 	irqreturn_t ret;
2597 	u32 cntrl5;
2598 
2599 	/*
2600 	 * We don't need to protect the register access using
2601 	 * drm_dev_enter() there because the interrupt handler lifetime
2602 	 * is tied to the device itself, and not to the DRM device.
2603 	 *
2604 	 * So when the device will be gone, one of the first thing we
2605 	 * will be doing will be to unregister the interrupt handler,
2606 	 * and then unregister the DRM device. drm_dev_enter() would
2607 	 * thus always succeed if we are here.
2608 	 */
2609 
2610 	if (!(stat & VC4_HDMI_CPU_CEC))
2611 		return IRQ_NONE;
2612 
2613 	spin_lock(&vc4_hdmi->hw_lock);
2614 	cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5);
2615 	vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT;
2616 	if (vc4_hdmi->cec_irq_was_rx)
2617 		ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
2618 	else
2619 		ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
2620 
2621 	HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC);
2622 	spin_unlock(&vc4_hdmi->hw_lock);
2623 
2624 	return ret;
2625 }
2626 
2627 static int vc4_hdmi_cec_enable(struct cec_adapter *adap)
2628 {
2629 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2630 	struct drm_device *drm = vc4_hdmi->connector.dev;
2631 	/* clock period in microseconds */
2632 	const u32 usecs = 1000000 / CEC_CLOCK_FREQ;
2633 	unsigned long flags;
2634 	u32 val;
2635 	int ret;
2636 	int idx;
2637 
2638 	if (!drm_dev_enter(drm, &idx))
2639 		/*
2640 		 * We can't return an error code, because the CEC
2641 		 * framework will emit WARN_ON messages at unbind
2642 		 * otherwise.
2643 		 */
2644 		return 0;
2645 
2646 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
2647 	if (ret) {
2648 		drm_dev_exit(idx);
2649 		return ret;
2650 	}
2651 
2652 	mutex_lock(&vc4_hdmi->mutex);
2653 
2654 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2655 
2656 	val = HDMI_READ(HDMI_CEC_CNTRL_5);
2657 	val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET |
2658 		 VC4_HDMI_CEC_CNT_TO_4700_US_MASK |
2659 		 VC4_HDMI_CEC_CNT_TO_4500_US_MASK);
2660 	val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) |
2661 	       ((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT);
2662 
2663 	HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
2664 		   VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
2665 	HDMI_WRITE(HDMI_CEC_CNTRL_5, val);
2666 	HDMI_WRITE(HDMI_CEC_CNTRL_2,
2667 		   ((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) |
2668 		   ((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) |
2669 		   ((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) |
2670 		   ((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) |
2671 		   ((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT));
2672 	HDMI_WRITE(HDMI_CEC_CNTRL_3,
2673 		   ((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) |
2674 		   ((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) |
2675 		   ((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) |
2676 		   ((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT));
2677 	HDMI_WRITE(HDMI_CEC_CNTRL_4,
2678 		   ((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) |
2679 		   ((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) |
2680 		   ((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) |
2681 		   ((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT));
2682 
2683 	if (!vc4_hdmi->variant->external_irq_controller)
2684 		HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC);
2685 
2686 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2687 
2688 	mutex_unlock(&vc4_hdmi->mutex);
2689 	drm_dev_exit(idx);
2690 
2691 	return 0;
2692 }
2693 
2694 static int vc4_hdmi_cec_disable(struct cec_adapter *adap)
2695 {
2696 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2697 	struct drm_device *drm = vc4_hdmi->connector.dev;
2698 	unsigned long flags;
2699 	int idx;
2700 
2701 	if (!drm_dev_enter(drm, &idx))
2702 		/*
2703 		 * We can't return an error code, because the CEC
2704 		 * framework will emit WARN_ON messages at unbind
2705 		 * otherwise.
2706 		 */
2707 		return 0;
2708 
2709 	mutex_lock(&vc4_hdmi->mutex);
2710 
2711 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2712 
2713 	if (!vc4_hdmi->variant->external_irq_controller)
2714 		HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC);
2715 
2716 	HDMI_WRITE(HDMI_CEC_CNTRL_5, HDMI_READ(HDMI_CEC_CNTRL_5) |
2717 		   VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
2718 
2719 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2720 
2721 	mutex_unlock(&vc4_hdmi->mutex);
2722 
2723 	pm_runtime_put(&vc4_hdmi->pdev->dev);
2724 
2725 	drm_dev_exit(idx);
2726 
2727 	return 0;
2728 }
2729 
2730 static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable)
2731 {
2732 	if (enable)
2733 		return vc4_hdmi_cec_enable(adap);
2734 	else
2735 		return vc4_hdmi_cec_disable(adap);
2736 }
2737 
2738 static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
2739 {
2740 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2741 	struct drm_device *drm = vc4_hdmi->connector.dev;
2742 	unsigned long flags;
2743 	int idx;
2744 
2745 	if (!drm_dev_enter(drm, &idx))
2746 		/*
2747 		 * We can't return an error code, because the CEC
2748 		 * framework will emit WARN_ON messages at unbind
2749 		 * otherwise.
2750 		 */
2751 		return 0;
2752 
2753 	mutex_lock(&vc4_hdmi->mutex);
2754 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2755 	HDMI_WRITE(HDMI_CEC_CNTRL_1,
2756 		   (HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) |
2757 		   (log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT);
2758 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2759 	mutex_unlock(&vc4_hdmi->mutex);
2760 
2761 	drm_dev_exit(idx);
2762 
2763 	return 0;
2764 }
2765 
2766 static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2767 				      u32 signal_free_time, struct cec_msg *msg)
2768 {
2769 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2770 	struct drm_device *dev = vc4_hdmi->connector.dev;
2771 	unsigned long flags;
2772 	u32 val;
2773 	unsigned int i;
2774 	int idx;
2775 
2776 	if (!drm_dev_enter(dev, &idx))
2777 		return -ENODEV;
2778 
2779 	if (msg->len > 16) {
2780 		drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len);
2781 		drm_dev_exit(idx);
2782 		return -ENOMEM;
2783 	}
2784 
2785 	mutex_lock(&vc4_hdmi->mutex);
2786 
2787 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2788 
2789 	for (i = 0; i < msg->len; i += 4)
2790 		HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2),
2791 			   (msg->msg[i]) |
2792 			   (msg->msg[i + 1] << 8) |
2793 			   (msg->msg[i + 2] << 16) |
2794 			   (msg->msg[i + 3] << 24));
2795 
2796 	val = HDMI_READ(HDMI_CEC_CNTRL_1);
2797 	val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
2798 	HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
2799 	val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK;
2800 	val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT;
2801 	val |= VC4_HDMI_CEC_START_XMIT_BEGIN;
2802 
2803 	HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
2804 
2805 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2806 	mutex_unlock(&vc4_hdmi->mutex);
2807 	drm_dev_exit(idx);
2808 
2809 	return 0;
2810 }
2811 
2812 static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = {
2813 	.adap_enable = vc4_hdmi_cec_adap_enable,
2814 	.adap_log_addr = vc4_hdmi_cec_adap_log_addr,
2815 	.adap_transmit = vc4_hdmi_cec_adap_transmit,
2816 };
2817 
2818 static void vc4_hdmi_cec_release(void *ptr)
2819 {
2820 	struct vc4_hdmi *vc4_hdmi = ptr;
2821 
2822 	cec_unregister_adapter(vc4_hdmi->cec_adap);
2823 	vc4_hdmi->cec_adap = NULL;
2824 }
2825 
2826 static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
2827 {
2828 	struct cec_connector_info conn_info;
2829 	struct platform_device *pdev = vc4_hdmi->pdev;
2830 	struct device *dev = &pdev->dev;
2831 	int ret;
2832 
2833 	if (!of_property_present(dev->of_node, "interrupts")) {
2834 		dev_warn(dev, "'interrupts' DT property is missing, no CEC\n");
2835 		return 0;
2836 	}
2837 
2838 	vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops,
2839 						  vc4_hdmi,
2840 						  vc4_hdmi->variant->card_name,
2841 						  CEC_CAP_DEFAULTS |
2842 						  CEC_CAP_CONNECTOR_INFO, 1);
2843 	ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap);
2844 	if (ret < 0)
2845 		return ret;
2846 
2847 	cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector);
2848 	cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info);
2849 
2850 	if (vc4_hdmi->variant->external_irq_controller) {
2851 		ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-rx"),
2852 						vc4_cec_irq_handler_rx_bare,
2853 						vc4_cec_irq_handler_rx_thread, 0,
2854 						"vc4 hdmi cec rx", vc4_hdmi);
2855 		if (ret)
2856 			goto err_delete_cec_adap;
2857 
2858 		ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-tx"),
2859 						vc4_cec_irq_handler_tx_bare,
2860 						vc4_cec_irq_handler_tx_thread, 0,
2861 						"vc4 hdmi cec tx", vc4_hdmi);
2862 		if (ret)
2863 			goto err_delete_cec_adap;
2864 	} else {
2865 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
2866 						vc4_cec_irq_handler,
2867 						vc4_cec_irq_handler_thread, 0,
2868 						"vc4 hdmi cec", vc4_hdmi);
2869 		if (ret)
2870 			goto err_delete_cec_adap;
2871 	}
2872 
2873 	ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev);
2874 	if (ret < 0)
2875 		goto err_delete_cec_adap;
2876 
2877 	/*
2878 	 * NOTE: Strictly speaking, we should probably use a DRM-managed
2879 	 * registration there to avoid removing the CEC adapter by the
2880 	 * time the DRM driver doesn't have any user anymore.
2881 	 *
2882 	 * However, the CEC framework already cleans up the CEC adapter
2883 	 * only when the last user has closed its file descriptor, so we
2884 	 * don't need to handle it in DRM.
2885 	 *
2886 	 * By the time the device-managed hook is executed, we will give
2887 	 * up our reference to the CEC adapter and therefore don't
2888 	 * really care when it's actually freed.
2889 	 *
2890 	 * There's still a problematic sequence: if we unregister our
2891 	 * CEC adapter, but the userspace keeps a handle on the CEC
2892 	 * adapter but not the DRM device for some reason. In such a
2893 	 * case, our vc4_hdmi structure will be freed, but the
2894 	 * cec_adapter structure will have a dangling pointer to what
2895 	 * used to be our HDMI controller. If we get a CEC call at that
2896 	 * moment, we could end up with a use-after-free. Fortunately,
2897 	 * the CEC framework already handles this too, by calling
2898 	 * cec_is_registered() in cec_ioctl() and cec_poll().
2899 	 */
2900 	ret = devm_add_action_or_reset(dev, vc4_hdmi_cec_release, vc4_hdmi);
2901 	if (ret)
2902 		return ret;
2903 
2904 	return 0;
2905 
2906 err_delete_cec_adap:
2907 	cec_delete_adapter(vc4_hdmi->cec_adap);
2908 
2909 	return ret;
2910 }
2911 #else
2912 static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
2913 {
2914 	return 0;
2915 }
2916 #endif
2917 
2918 static void vc4_hdmi_free_regset(struct drm_device *drm, void *ptr)
2919 {
2920 	struct debugfs_reg32 *regs = ptr;
2921 
2922 	kfree(regs);
2923 }
2924 
2925 static int vc4_hdmi_build_regset(struct drm_device *drm,
2926 				 struct vc4_hdmi *vc4_hdmi,
2927 				 struct debugfs_regset32 *regset,
2928 				 enum vc4_hdmi_regs reg)
2929 {
2930 	const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
2931 	struct debugfs_reg32 *regs, *new_regs;
2932 	unsigned int count = 0;
2933 	unsigned int i;
2934 	int ret;
2935 
2936 	regs = kcalloc(variant->num_registers, sizeof(*regs),
2937 		       GFP_KERNEL);
2938 	if (!regs)
2939 		return -ENOMEM;
2940 
2941 	for (i = 0; i < variant->num_registers; i++) {
2942 		const struct vc4_hdmi_register *field =	&variant->registers[i];
2943 
2944 		if (field->reg != reg)
2945 			continue;
2946 
2947 		regs[count].name = field->name;
2948 		regs[count].offset = field->offset;
2949 		count++;
2950 	}
2951 
2952 	new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL);
2953 	if (!new_regs)
2954 		return -ENOMEM;
2955 
2956 	regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg);
2957 	regset->regs = new_regs;
2958 	regset->nregs = count;
2959 
2960 	ret = drmm_add_action_or_reset(drm, vc4_hdmi_free_regset, new_regs);
2961 	if (ret)
2962 		return ret;
2963 
2964 	return 0;
2965 }
2966 
2967 static int vc4_hdmi_init_resources(struct drm_device *drm,
2968 				   struct vc4_hdmi *vc4_hdmi)
2969 {
2970 	struct platform_device *pdev = vc4_hdmi->pdev;
2971 	struct device *dev = &pdev->dev;
2972 	int ret;
2973 
2974 	vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0);
2975 	if (IS_ERR(vc4_hdmi->hdmicore_regs))
2976 		return PTR_ERR(vc4_hdmi->hdmicore_regs);
2977 
2978 	vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1);
2979 	if (IS_ERR(vc4_hdmi->hd_regs))
2980 		return PTR_ERR(vc4_hdmi->hd_regs);
2981 
2982 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
2983 	if (ret)
2984 		return ret;
2985 
2986 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
2987 	if (ret)
2988 		return ret;
2989 
2990 	vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel");
2991 	if (IS_ERR(vc4_hdmi->pixel_clock)) {
2992 		ret = PTR_ERR(vc4_hdmi->pixel_clock);
2993 		if (ret != -EPROBE_DEFER)
2994 			drm_err(drm, "Failed to get pixel clock\n");
2995 		return ret;
2996 	}
2997 
2998 	vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
2999 	if (IS_ERR(vc4_hdmi->hsm_clock)) {
3000 		drm_err(drm, "Failed to get HDMI state machine clock\n");
3001 		return PTR_ERR(vc4_hdmi->hsm_clock);
3002 	}
3003 	vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock;
3004 	vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock;
3005 
3006 	return 0;
3007 }
3008 
3009 static int vc5_hdmi_init_resources(struct drm_device *drm,
3010 				   struct vc4_hdmi *vc4_hdmi)
3011 {
3012 	struct platform_device *pdev = vc4_hdmi->pdev;
3013 	struct device *dev = &pdev->dev;
3014 	struct resource *res;
3015 	int ret;
3016 
3017 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi");
3018 	if (!res)
3019 		return -ENODEV;
3020 
3021 	vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start,
3022 					       resource_size(res));
3023 	if (!vc4_hdmi->hdmicore_regs)
3024 		return -ENOMEM;
3025 
3026 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd");
3027 	if (!res)
3028 		return -ENODEV;
3029 
3030 	vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res));
3031 	if (!vc4_hdmi->hd_regs)
3032 		return -ENOMEM;
3033 
3034 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec");
3035 	if (!res)
3036 		return -ENODEV;
3037 
3038 	vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res));
3039 	if (!vc4_hdmi->cec_regs)
3040 		return -ENOMEM;
3041 
3042 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc");
3043 	if (!res)
3044 		return -ENODEV;
3045 
3046 	vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res));
3047 	if (!vc4_hdmi->csc_regs)
3048 		return -ENOMEM;
3049 
3050 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp");
3051 	if (!res)
3052 		return -ENODEV;
3053 
3054 	vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res));
3055 	if (!vc4_hdmi->dvp_regs)
3056 		return -ENOMEM;
3057 
3058 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
3059 	if (!res)
3060 		return -ENODEV;
3061 
3062 	vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res));
3063 	if (!vc4_hdmi->phy_regs)
3064 		return -ENOMEM;
3065 
3066 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet");
3067 	if (!res)
3068 		return -ENODEV;
3069 
3070 	vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res));
3071 	if (!vc4_hdmi->ram_regs)
3072 		return -ENOMEM;
3073 
3074 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm");
3075 	if (!res)
3076 		return -ENODEV;
3077 
3078 	vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res));
3079 	if (!vc4_hdmi->rm_regs)
3080 		return -ENOMEM;
3081 
3082 	vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
3083 	if (IS_ERR(vc4_hdmi->hsm_clock)) {
3084 		drm_err(drm, "Failed to get HDMI state machine clock\n");
3085 		return PTR_ERR(vc4_hdmi->hsm_clock);
3086 	}
3087 
3088 	vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb");
3089 	if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) {
3090 		drm_err(drm, "Failed to get pixel bvb clock\n");
3091 		return PTR_ERR(vc4_hdmi->pixel_bvb_clock);
3092 	}
3093 
3094 	vc4_hdmi->audio_clock = devm_clk_get(dev, "audio");
3095 	if (IS_ERR(vc4_hdmi->audio_clock)) {
3096 		drm_err(drm, "Failed to get audio clock\n");
3097 		return PTR_ERR(vc4_hdmi->audio_clock);
3098 	}
3099 
3100 	vc4_hdmi->cec_clock = devm_clk_get(dev, "cec");
3101 	if (IS_ERR(vc4_hdmi->cec_clock)) {
3102 		drm_err(drm, "Failed to get CEC clock\n");
3103 		return PTR_ERR(vc4_hdmi->cec_clock);
3104 	}
3105 
3106 	vc4_hdmi->reset = devm_reset_control_get(dev, NULL);
3107 	if (IS_ERR(vc4_hdmi->reset)) {
3108 		drm_err(drm, "Failed to get HDMI reset line\n");
3109 		return PTR_ERR(vc4_hdmi->reset);
3110 	}
3111 
3112 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
3113 	if (ret)
3114 		return ret;
3115 
3116 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
3117 	if (ret)
3118 		return ret;
3119 
3120 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->cec_regset, VC5_CEC);
3121 	if (ret)
3122 		return ret;
3123 
3124 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->csc_regset, VC5_CSC);
3125 	if (ret)
3126 		return ret;
3127 
3128 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->dvp_regset, VC5_DVP);
3129 	if (ret)
3130 		return ret;
3131 
3132 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->phy_regset, VC5_PHY);
3133 	if (ret)
3134 		return ret;
3135 
3136 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->ram_regset, VC5_RAM);
3137 	if (ret)
3138 		return ret;
3139 
3140 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->rm_regset, VC5_RM);
3141 	if (ret)
3142 		return ret;
3143 
3144 	return 0;
3145 }
3146 
3147 static int vc4_hdmi_runtime_suspend(struct device *dev)
3148 {
3149 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
3150 
3151 	clk_disable_unprepare(vc4_hdmi->audio_clock);
3152 	clk_disable_unprepare(vc4_hdmi->hsm_clock);
3153 
3154 	return 0;
3155 }
3156 
3157 static int vc4_hdmi_runtime_resume(struct device *dev)
3158 {
3159 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
3160 	unsigned long __maybe_unused flags;
3161 	u32 __maybe_unused value;
3162 	unsigned long rate;
3163 	int ret;
3164 
3165 	ret = clk_prepare_enable(vc4_hdmi->hsm_clock);
3166 	if (ret)
3167 		return ret;
3168 
3169 	/*
3170 	 * Whenever the RaspberryPi boots without an HDMI monitor
3171 	 * plugged in, the firmware won't have initialized the HSM clock
3172 	 * rate and it will be reported as 0.
3173 	 *
3174 	 * If we try to access a register of the controller in such a
3175 	 * case, it will lead to a silent CPU stall. Let's make sure we
3176 	 * prevent such a case.
3177 	 */
3178 	rate = clk_get_rate(vc4_hdmi->hsm_clock);
3179 	if (!rate) {
3180 		ret = -EINVAL;
3181 		goto err_disable_clk;
3182 	}
3183 
3184 	ret = clk_prepare_enable(vc4_hdmi->audio_clock);
3185 	if (ret)
3186 		goto err_disable_clk;
3187 
3188 	if (vc4_hdmi->variant->reset)
3189 		vc4_hdmi->variant->reset(vc4_hdmi);
3190 
3191 #ifdef CONFIG_DRM_VC4_HDMI_CEC
3192 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
3193 	value = HDMI_READ(HDMI_CEC_CNTRL_1);
3194 	/* Set the logical address to Unregistered */
3195 	value |= VC4_HDMI_CEC_ADDR_MASK;
3196 	HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
3197 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
3198 
3199 	vc4_hdmi_cec_update_clk_div(vc4_hdmi);
3200 
3201 	if (!vc4_hdmi->variant->external_irq_controller) {
3202 		spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
3203 		HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff);
3204 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
3205 	}
3206 #endif
3207 
3208 	return 0;
3209 
3210 err_disable_clk:
3211 	clk_disable_unprepare(vc4_hdmi->hsm_clock);
3212 	return ret;
3213 }
3214 
3215 static void vc4_hdmi_put_ddc_device(void *ptr)
3216 {
3217 	struct vc4_hdmi *vc4_hdmi = ptr;
3218 
3219 	put_device(&vc4_hdmi->ddc->dev);
3220 }
3221 
3222 static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data)
3223 {
3224 	const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev);
3225 	struct platform_device *pdev = to_platform_device(dev);
3226 	struct drm_device *drm = dev_get_drvdata(master);
3227 	struct vc4_hdmi *vc4_hdmi;
3228 	struct drm_encoder *encoder;
3229 	struct device_node *ddc_node;
3230 	int ret;
3231 
3232 	vc4_hdmi = drmm_kzalloc(drm, sizeof(*vc4_hdmi), GFP_KERNEL);
3233 	if (!vc4_hdmi)
3234 		return -ENOMEM;
3235 
3236 	ret = drmm_mutex_init(drm, &vc4_hdmi->mutex);
3237 	if (ret)
3238 		return ret;
3239 
3240 	spin_lock_init(&vc4_hdmi->hw_lock);
3241 	INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq);
3242 
3243 	dev_set_drvdata(dev, vc4_hdmi);
3244 	encoder = &vc4_hdmi->encoder.base;
3245 	vc4_hdmi->encoder.type = variant->encoder_type;
3246 	vc4_hdmi->encoder.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure;
3247 	vc4_hdmi->encoder.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable;
3248 	vc4_hdmi->encoder.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable;
3249 	vc4_hdmi->encoder.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable;
3250 	vc4_hdmi->encoder.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown;
3251 	vc4_hdmi->pdev = pdev;
3252 	vc4_hdmi->variant = variant;
3253 
3254 	/*
3255 	 * Since we don't know the state of the controller and its
3256 	 * display (if any), let's assume it's always enabled.
3257 	 * vc4_hdmi_disable_scrambling() will thus run at boot, make
3258 	 * sure it's disabled, and avoid any inconsistency.
3259 	 */
3260 	if (variant->max_pixel_clock > HDMI_14_MAX_TMDS_CLK)
3261 		vc4_hdmi->scdc_enabled = true;
3262 
3263 	ret = variant->init_resources(drm, vc4_hdmi);
3264 	if (ret)
3265 		return ret;
3266 
3267 	ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
3268 	if (!ddc_node) {
3269 		drm_err(drm, "Failed to find ddc node in device tree\n");
3270 		return -ENODEV;
3271 	}
3272 
3273 	vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node);
3274 	of_node_put(ddc_node);
3275 	if (!vc4_hdmi->ddc) {
3276 		drm_err(drm, "Failed to get ddc i2c adapter by node\n");
3277 		return -EPROBE_DEFER;
3278 	}
3279 
3280 	ret = devm_add_action_or_reset(dev, vc4_hdmi_put_ddc_device, vc4_hdmi);
3281 	if (ret)
3282 		return ret;
3283 
3284 	/* Only use the GPIO HPD pin if present in the DT, otherwise
3285 	 * we'll use the HDMI core's register.
3286 	 */
3287 	vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN);
3288 	if (IS_ERR(vc4_hdmi->hpd_gpio)) {
3289 		return PTR_ERR(vc4_hdmi->hpd_gpio);
3290 	}
3291 
3292 	vc4_hdmi->disable_wifi_frequencies =
3293 		of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence");
3294 
3295 	ret = devm_pm_runtime_enable(dev);
3296 	if (ret)
3297 		return ret;
3298 
3299 	/*
3300 	 *  We need to have the device powered up at this point to call
3301 	 *  our reset hook and for the CEC init.
3302 	 */
3303 	ret = pm_runtime_resume_and_get(dev);
3304 	if (ret)
3305 		return ret;
3306 
3307 	if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") ||
3308 	     of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1") ||
3309 	     of_device_is_compatible(dev->of_node, "brcm,bcm2712-hdmi0") ||
3310 	     of_device_is_compatible(dev->of_node, "brcm,bcm2712-hdmi1")) &&
3311 	    HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) {
3312 		clk_prepare_enable(vc4_hdmi->pixel_clock);
3313 		clk_prepare_enable(vc4_hdmi->hsm_clock);
3314 		clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
3315 	}
3316 
3317 	ret = drmm_encoder_init(drm, encoder,
3318 				&vc4_hdmi_encoder_funcs,
3319 				DRM_MODE_ENCODER_TMDS,
3320 				NULL);
3321 	if (ret)
3322 		goto err_put_runtime_pm;
3323 
3324 	drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs);
3325 
3326 	ret = vc4_hdmi_connector_init(drm, vc4_hdmi);
3327 	if (ret)
3328 		goto err_put_runtime_pm;
3329 
3330 	ret = vc4_hdmi_hotplug_init(vc4_hdmi);
3331 	if (ret)
3332 		goto err_put_runtime_pm;
3333 
3334 	ret = vc4_hdmi_cec_init(vc4_hdmi);
3335 	if (ret)
3336 		goto err_put_runtime_pm;
3337 
3338 	ret = vc4_hdmi_audio_init(vc4_hdmi);
3339 	if (ret)
3340 		goto err_put_runtime_pm;
3341 
3342 	pm_runtime_put_sync(dev);
3343 
3344 	return 0;
3345 
3346 err_put_runtime_pm:
3347 	pm_runtime_put_sync(dev);
3348 
3349 	return ret;
3350 }
3351 
3352 static const struct component_ops vc4_hdmi_ops = {
3353 	.bind   = vc4_hdmi_bind,
3354 };
3355 
3356 static int vc4_hdmi_dev_probe(struct platform_device *pdev)
3357 {
3358 	return component_add(&pdev->dev, &vc4_hdmi_ops);
3359 }
3360 
3361 static void vc4_hdmi_dev_remove(struct platform_device *pdev)
3362 {
3363 	component_del(&pdev->dev, &vc4_hdmi_ops);
3364 }
3365 
3366 static const struct vc4_hdmi_variant bcm2835_variant = {
3367 	.encoder_type		= VC4_ENCODER_TYPE_HDMI0,
3368 	.debugfs_name		= "hdmi_regs",
3369 	.card_name		= "vc4-hdmi",
3370 	.max_pixel_clock	= 162000000,
3371 	.registers		= vc4_hdmi_fields,
3372 	.num_registers		= ARRAY_SIZE(vc4_hdmi_fields),
3373 
3374 	.init_resources		= vc4_hdmi_init_resources,
3375 	.csc_setup		= vc4_hdmi_csc_setup,
3376 	.reset			= vc4_hdmi_reset,
3377 	.set_timings		= vc4_hdmi_set_timings,
3378 	.phy_init		= vc4_hdmi_phy_init,
3379 	.phy_disable		= vc4_hdmi_phy_disable,
3380 	.phy_rng_enable		= vc4_hdmi_phy_rng_enable,
3381 	.phy_rng_disable	= vc4_hdmi_phy_rng_disable,
3382 	.channel_map		= vc4_hdmi_channel_map,
3383 	.supports_hdr		= false,
3384 };
3385 
3386 static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = {
3387 	.encoder_type		= VC4_ENCODER_TYPE_HDMI0,
3388 	.debugfs_name		= "hdmi0_regs",
3389 	.card_name		= "vc4-hdmi-0",
3390 	.max_pixel_clock	= 600000000,
3391 	.registers		= vc5_hdmi_hdmi0_fields,
3392 	.num_registers		= ARRAY_SIZE(vc5_hdmi_hdmi0_fields),
3393 	.phy_lane_mapping	= {
3394 		PHY_LANE_0,
3395 		PHY_LANE_1,
3396 		PHY_LANE_2,
3397 		PHY_LANE_CK,
3398 	},
3399 	.unsupported_odd_h_timings	= true,
3400 	.external_irq_controller	= true,
3401 
3402 	.init_resources		= vc5_hdmi_init_resources,
3403 	.csc_setup		= vc5_hdmi_csc_setup,
3404 	.reset			= vc5_hdmi_reset,
3405 	.set_timings		= vc5_hdmi_set_timings,
3406 	.phy_init		= vc5_hdmi_phy_init,
3407 	.phy_disable		= vc5_hdmi_phy_disable,
3408 	.phy_rng_enable		= vc5_hdmi_phy_rng_enable,
3409 	.phy_rng_disable	= vc5_hdmi_phy_rng_disable,
3410 	.channel_map		= vc5_hdmi_channel_map,
3411 	.supports_hdr		= true,
3412 	.hp_detect		= vc5_hdmi_hp_detect,
3413 };
3414 
3415 static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = {
3416 	.encoder_type		= VC4_ENCODER_TYPE_HDMI1,
3417 	.debugfs_name		= "hdmi1_regs",
3418 	.card_name		= "vc4-hdmi-1",
3419 	.max_pixel_clock	= HDMI_14_MAX_TMDS_CLK,
3420 	.registers		= vc5_hdmi_hdmi1_fields,
3421 	.num_registers		= ARRAY_SIZE(vc5_hdmi_hdmi1_fields),
3422 	.phy_lane_mapping	= {
3423 		PHY_LANE_1,
3424 		PHY_LANE_0,
3425 		PHY_LANE_CK,
3426 		PHY_LANE_2,
3427 	},
3428 	.unsupported_odd_h_timings	= true,
3429 	.external_irq_controller	= true,
3430 
3431 	.init_resources		= vc5_hdmi_init_resources,
3432 	.csc_setup		= vc5_hdmi_csc_setup,
3433 	.reset			= vc5_hdmi_reset,
3434 	.set_timings		= vc5_hdmi_set_timings,
3435 	.phy_init		= vc5_hdmi_phy_init,
3436 	.phy_disable		= vc5_hdmi_phy_disable,
3437 	.phy_rng_enable		= vc5_hdmi_phy_rng_enable,
3438 	.phy_rng_disable	= vc5_hdmi_phy_rng_disable,
3439 	.channel_map		= vc5_hdmi_channel_map,
3440 	.supports_hdr		= true,
3441 	.hp_detect		= vc5_hdmi_hp_detect,
3442 };
3443 
3444 static const struct vc4_hdmi_variant bcm2712_hdmi0_variant = {
3445 	.encoder_type		= VC4_ENCODER_TYPE_HDMI0,
3446 	.debugfs_name		= "hdmi0_regs",
3447 	.card_name		= "vc4-hdmi-0",
3448 	.max_pixel_clock	= 600000000,
3449 	.registers		= vc6_hdmi_hdmi0_fields,
3450 	.num_registers		= ARRAY_SIZE(vc6_hdmi_hdmi0_fields),
3451 	.phy_lane_mapping	= {
3452 		PHY_LANE_0,
3453 		PHY_LANE_1,
3454 		PHY_LANE_2,
3455 		PHY_LANE_CK,
3456 	},
3457 	.unsupported_odd_h_timings	= false,
3458 	.external_irq_controller	= true,
3459 
3460 	.init_resources		= vc5_hdmi_init_resources,
3461 	.csc_setup		= vc5_hdmi_csc_setup,
3462 	.reset			= vc5_hdmi_reset,
3463 	.set_timings		= vc5_hdmi_set_timings,
3464 	.phy_init		= vc6_hdmi_phy_init,
3465 	.phy_disable		= vc6_hdmi_phy_disable,
3466 	.channel_map		= vc5_hdmi_channel_map,
3467 	.supports_hdr		= true,
3468 	.hp_detect		= vc5_hdmi_hp_detect,
3469 };
3470 
3471 static const struct vc4_hdmi_variant bcm2712_hdmi1_variant = {
3472 	.encoder_type		= VC4_ENCODER_TYPE_HDMI1,
3473 	.debugfs_name		= "hdmi1_regs",
3474 	.card_name		= "vc4-hdmi-1",
3475 	.max_pixel_clock	= 600000000,
3476 	.registers		= vc6_hdmi_hdmi1_fields,
3477 	.num_registers		= ARRAY_SIZE(vc6_hdmi_hdmi1_fields),
3478 	.phy_lane_mapping	= {
3479 		PHY_LANE_0,
3480 		PHY_LANE_1,
3481 		PHY_LANE_2,
3482 		PHY_LANE_CK,
3483 	},
3484 	.unsupported_odd_h_timings	= false,
3485 	.external_irq_controller	= true,
3486 
3487 	.init_resources		= vc5_hdmi_init_resources,
3488 	.csc_setup		= vc5_hdmi_csc_setup,
3489 	.reset			= vc5_hdmi_reset,
3490 	.set_timings		= vc5_hdmi_set_timings,
3491 	.phy_init		= vc6_hdmi_phy_init,
3492 	.phy_disable		= vc6_hdmi_phy_disable,
3493 	.channel_map		= vc5_hdmi_channel_map,
3494 	.supports_hdr		= true,
3495 	.hp_detect		= vc5_hdmi_hp_detect,
3496 };
3497 
3498 static const struct of_device_id vc4_hdmi_dt_match[] = {
3499 	{ .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant },
3500 	{ .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant },
3501 	{ .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant },
3502 	{ .compatible = "brcm,bcm2712-hdmi0", .data = &bcm2712_hdmi0_variant },
3503 	{ .compatible = "brcm,bcm2712-hdmi1", .data = &bcm2712_hdmi1_variant },
3504 	{}
3505 };
3506 
3507 static const struct dev_pm_ops vc4_hdmi_pm_ops = {
3508 	SET_RUNTIME_PM_OPS(vc4_hdmi_runtime_suspend,
3509 			   vc4_hdmi_runtime_resume,
3510 			   NULL)
3511 };
3512 
3513 struct platform_driver vc4_hdmi_driver = {
3514 	.probe = vc4_hdmi_dev_probe,
3515 	.remove = vc4_hdmi_dev_remove,
3516 	.driver = {
3517 		.name = "vc4_hdmi",
3518 		.of_match_table = vc4_hdmi_dt_match,
3519 		.pm = &vc4_hdmi_pm_ops,
3520 	},
3521 };
3522