xref: /linux/drivers/gpu/drm/vc4/vc4_hdmi.c (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  * Copyright (c) 2014 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 /**
10  * DOC: VC4 Falcon HDMI module
11  *
12  * The HDMI core has a state machine and a PHY.  On BCM2835, most of
13  * the unit operates off of the HSM clock from CPRMAN.  It also
14  * internally uses the PLLH_PIX clock for the PHY.
15  *
16  * HDMI infoframes are kept within a small packet ram, where each
17  * packet can be individually enabled for including in a frame.
18  *
19  * HDMI audio is implemented entirely within the HDMI IP block.  A
20  * register in the HDMI encoder takes SPDIF frames from the DMA engine
21  * and transfers them over an internal MAI (multi-channel audio
22  * interconnect) bus to the encoder side for insertion into the video
23  * blank regions.
24  *
25  * The driver's HDMI encoder does not yet support power management.
26  * The HDMI encoder's power domain and the HSM/pixel clocks are kept
27  * continuously running, and only the HDMI logic and packet ram are
28  * powered off/on at disable/enable time.
29  *
30  * The driver does not yet support CEC control, though the HDMI
31  * encoder block has CEC support.
32  */
33 
34 #include <drm/display/drm_hdmi_helper.h>
35 #include <drm/display/drm_hdmi_state_helper.h>
36 #include <drm/display/drm_scdc_helper.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_drv.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_probe_helper.h>
41 #include <drm/drm_simple_kms_helper.h>
42 #include <linux/clk.h>
43 #include <linux/component.h>
44 #include <linux/gpio/consumer.h>
45 #include <linux/i2c.h>
46 #include <linux/of.h>
47 #include <linux/of_address.h>
48 #include <linux/pm_runtime.h>
49 #include <linux/rational.h>
50 #include <linux/reset.h>
51 #include <sound/dmaengine_pcm.h>
52 #include <sound/hdmi-codec.h>
53 #include <sound/pcm_drm_eld.h>
54 #include <sound/pcm_params.h>
55 #include <sound/soc.h>
56 #include "media/cec.h"
57 #include "vc4_drv.h"
58 #include "vc4_hdmi.h"
59 #include "vc4_hdmi_regs.h"
60 #include "vc4_regs.h"
61 
62 #define VC5_HDMI_HORZA_HFP_SHIFT		16
63 #define VC5_HDMI_HORZA_HFP_MASK			VC4_MASK(28, 16)
64 #define VC5_HDMI_HORZA_VPOS			BIT(15)
65 #define VC5_HDMI_HORZA_HPOS			BIT(14)
66 #define VC5_HDMI_HORZA_HAP_SHIFT		0
67 #define VC5_HDMI_HORZA_HAP_MASK			VC4_MASK(13, 0)
68 
69 #define VC5_HDMI_HORZB_HBP_SHIFT		16
70 #define VC5_HDMI_HORZB_HBP_MASK			VC4_MASK(26, 16)
71 #define VC5_HDMI_HORZB_HSP_SHIFT		0
72 #define VC5_HDMI_HORZB_HSP_MASK			VC4_MASK(10, 0)
73 
74 #define VC5_HDMI_VERTA_VSP_SHIFT		24
75 #define VC5_HDMI_VERTA_VSP_MASK			VC4_MASK(28, 24)
76 #define VC5_HDMI_VERTA_VFP_SHIFT		16
77 #define VC5_HDMI_VERTA_VFP_MASK			VC4_MASK(22, 16)
78 #define VC5_HDMI_VERTA_VAL_SHIFT		0
79 #define VC5_HDMI_VERTA_VAL_MASK			VC4_MASK(12, 0)
80 
81 #define VC5_HDMI_VERTB_VSPO_SHIFT		16
82 #define VC5_HDMI_VERTB_VSPO_MASK		VC4_MASK(29, 16)
83 
84 #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT	0
85 #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK	VC4_MASK(3, 0)
86 #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT	0
87 #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK	VC4_MASK(3, 0)
88 
89 #define VC5_HDMI_SCRAMBLER_CTL_ENABLE		BIT(0)
90 
91 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT	8
92 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK	VC4_MASK(10, 8)
93 
94 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT		0
95 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK		VC4_MASK(3, 0)
96 
97 #define VC5_HDMI_GCP_CONFIG_GCP_ENABLE		BIT(31)
98 
99 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT	8
100 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK	VC4_MASK(15, 8)
101 
102 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK	VC4_MASK(7, 0)
103 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_SET_AVMUTE	BIT(0)
104 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE	BIT(4)
105 
106 # define VC4_HD_M_SW_RST			BIT(2)
107 # define VC4_HD_M_ENABLE			BIT(0)
108 
109 #define HSM_MIN_CLOCK_FREQ	120000000
110 #define CEC_CLOCK_FREQ 40000
111 
112 #define HDMI_14_MAX_TMDS_CLK   (340 * 1000 * 1000)
113 
114 static bool vc4_hdmi_supports_scrambling(struct vc4_hdmi *vc4_hdmi)
115 {
116 	struct drm_display_info *display = &vc4_hdmi->connector.display_info;
117 
118 	lockdep_assert_held(&vc4_hdmi->mutex);
119 
120 	if (!display->is_hdmi)
121 		return false;
122 
123 	if (!display->hdmi.scdc.supported ||
124 	    !display->hdmi.scdc.scrambling.supported)
125 		return false;
126 
127 	return true;
128 }
129 
130 static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode,
131 					   unsigned int bpc,
132 					   enum hdmi_colorspace fmt)
133 {
134 	unsigned long long clock = drm_hdmi_compute_mode_clock(mode, bpc, fmt);
135 
136 	return clock > HDMI_14_MAX_TMDS_CLK;
137 }
138 
139 static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused)
140 {
141 	struct drm_debugfs_entry *entry = m->private;
142 	struct vc4_hdmi *vc4_hdmi = entry->file.data;
143 	struct drm_device *drm = vc4_hdmi->connector.dev;
144 	struct drm_printer p = drm_seq_file_printer(m);
145 	int idx;
146 
147 	if (!drm_dev_enter(drm, &idx))
148 		return -ENODEV;
149 
150 	drm_print_regset32(&p, &vc4_hdmi->hdmi_regset);
151 	drm_print_regset32(&p, &vc4_hdmi->hd_regset);
152 	drm_print_regset32(&p, &vc4_hdmi->cec_regset);
153 	drm_print_regset32(&p, &vc4_hdmi->csc_regset);
154 	drm_print_regset32(&p, &vc4_hdmi->dvp_regset);
155 	drm_print_regset32(&p, &vc4_hdmi->phy_regset);
156 	drm_print_regset32(&p, &vc4_hdmi->ram_regset);
157 	drm_print_regset32(&p, &vc4_hdmi->rm_regset);
158 
159 	drm_dev_exit(idx);
160 
161 	return 0;
162 }
163 
164 static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
165 {
166 	struct drm_device *drm = vc4_hdmi->connector.dev;
167 	unsigned long flags;
168 	int idx;
169 
170 	/*
171 	 * We can be called by our bind callback, when the
172 	 * connector->dev pointer might not be initialised yet.
173 	 */
174 	if (drm && !drm_dev_enter(drm, &idx))
175 		return;
176 
177 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
178 
179 	HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST);
180 	udelay(1);
181 	HDMI_WRITE(HDMI_M_CTL, 0);
182 
183 	HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE);
184 
185 	HDMI_WRITE(HDMI_SW_RESET_CONTROL,
186 		   VC4_HDMI_SW_RESET_HDMI |
187 		   VC4_HDMI_SW_RESET_FORMAT_DETECT);
188 
189 	HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0);
190 
191 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
192 
193 	if (drm)
194 		drm_dev_exit(idx);
195 }
196 
197 static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
198 {
199 	struct drm_device *drm = vc4_hdmi->connector.dev;
200 	unsigned long flags;
201 	int idx;
202 
203 	/*
204 	 * We can be called by our bind callback, when the
205 	 * connector->dev pointer might not be initialised yet.
206 	 */
207 	if (drm && !drm_dev_enter(drm, &idx))
208 		return;
209 
210 	reset_control_reset(vc4_hdmi->reset);
211 
212 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
213 
214 	HDMI_WRITE(HDMI_DVP_CTL, 0);
215 
216 	HDMI_WRITE(HDMI_CLOCK_STOP,
217 		   HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL);
218 
219 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
220 
221 	if (drm)
222 		drm_dev_exit(idx);
223 }
224 
225 #ifdef CONFIG_DRM_VC4_HDMI_CEC
226 static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi)
227 {
228 	struct drm_device *drm = vc4_hdmi->connector.dev;
229 	unsigned long cec_rate;
230 	unsigned long flags;
231 	u16 clk_cnt;
232 	u32 value;
233 	int idx;
234 
235 	/*
236 	 * This function is called by our runtime_resume implementation
237 	 * and thus at bind time, when we haven't registered our
238 	 * connector yet and thus don't have a pointer to the DRM
239 	 * device.
240 	 */
241 	if (drm && !drm_dev_enter(drm, &idx))
242 		return;
243 
244 	cec_rate = clk_get_rate(vc4_hdmi->cec_clock);
245 
246 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
247 
248 	value = HDMI_READ(HDMI_CEC_CNTRL_1);
249 	value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK;
250 
251 	/*
252 	 * Set the clock divider: the hsm_clock rate and this divider
253 	 * setting will give a 40 kHz CEC clock.
254 	 */
255 	clk_cnt = cec_rate / CEC_CLOCK_FREQ;
256 	value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT;
257 	HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
258 
259 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
260 
261 	if (drm)
262 		drm_dev_exit(idx);
263 }
264 #else
265 static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {}
266 #endif
267 
268 static int reset_pipe(struct drm_crtc *crtc,
269 			struct drm_modeset_acquire_ctx *ctx)
270 {
271 	struct drm_atomic_state *state;
272 	struct drm_crtc_state *crtc_state;
273 	int ret;
274 
275 	state = drm_atomic_state_alloc(crtc->dev);
276 	if (!state)
277 		return -ENOMEM;
278 
279 	state->acquire_ctx = ctx;
280 
281 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
282 	if (IS_ERR(crtc_state)) {
283 		ret = PTR_ERR(crtc_state);
284 		goto out;
285 	}
286 
287 	crtc_state->connectors_changed = true;
288 
289 	ret = drm_atomic_commit(state);
290 out:
291 	drm_atomic_state_put(state);
292 
293 	return ret;
294 }
295 
296 static int vc4_hdmi_reset_link(struct drm_connector *connector,
297 			       struct drm_modeset_acquire_ctx *ctx)
298 {
299 	struct drm_device *drm;
300 	struct vc4_hdmi *vc4_hdmi;
301 	struct drm_connector_state *conn_state;
302 	struct drm_crtc_state *crtc_state;
303 	struct drm_crtc *crtc;
304 	bool scrambling_needed;
305 	u8 config;
306 	int ret;
307 
308 	if (!connector)
309 		return 0;
310 
311 	drm = connector->dev;
312 	ret = drm_modeset_lock(&drm->mode_config.connection_mutex, ctx);
313 	if (ret)
314 		return ret;
315 
316 	conn_state = connector->state;
317 	crtc = conn_state->crtc;
318 	if (!crtc)
319 		return 0;
320 
321 	ret = drm_modeset_lock(&crtc->mutex, ctx);
322 	if (ret)
323 		return ret;
324 
325 	crtc_state = crtc->state;
326 	if (!crtc_state->active)
327 		return 0;
328 
329 	vc4_hdmi = connector_to_vc4_hdmi(connector);
330 	mutex_lock(&vc4_hdmi->mutex);
331 
332 	if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) {
333 		mutex_unlock(&vc4_hdmi->mutex);
334 		return 0;
335 	}
336 
337 	scrambling_needed = vc4_hdmi_mode_needs_scrambling(&vc4_hdmi->saved_adjusted_mode,
338 							   vc4_hdmi->output_bpc,
339 							   vc4_hdmi->output_format);
340 	if (!scrambling_needed) {
341 		mutex_unlock(&vc4_hdmi->mutex);
342 		return 0;
343 	}
344 
345 	if (conn_state->commit &&
346 	    !try_wait_for_completion(&conn_state->commit->hw_done)) {
347 		mutex_unlock(&vc4_hdmi->mutex);
348 		return 0;
349 	}
350 
351 	ret = drm_scdc_readb(connector->ddc, SCDC_TMDS_CONFIG, &config);
352 	if (ret < 0) {
353 		drm_err(drm, "Failed to read TMDS config: %d\n", ret);
354 		mutex_unlock(&vc4_hdmi->mutex);
355 		return 0;
356 	}
357 
358 	if (!!(config & SCDC_SCRAMBLING_ENABLE) == scrambling_needed) {
359 		mutex_unlock(&vc4_hdmi->mutex);
360 		return 0;
361 	}
362 
363 	mutex_unlock(&vc4_hdmi->mutex);
364 
365 	/*
366 	 * HDMI 2.0 says that one should not send scrambled data
367 	 * prior to configuring the sink scrambling, and that
368 	 * TMDS clock/data transmission should be suspended when
369 	 * changing the TMDS clock rate in the sink. So let's
370 	 * just do a full modeset here, even though some sinks
371 	 * would be perfectly happy if were to just reconfigure
372 	 * the SCDC settings on the fly.
373 	 */
374 	return reset_pipe(crtc, ctx);
375 }
376 
377 static void vc4_hdmi_handle_hotplug(struct vc4_hdmi *vc4_hdmi,
378 				    struct drm_modeset_acquire_ctx *ctx,
379 				    enum drm_connector_status status)
380 {
381 	struct drm_connector *connector = &vc4_hdmi->connector;
382 	const struct drm_edid *drm_edid;
383 	int ret;
384 
385 	/*
386 	 * NOTE: This function should really be called with vc4_hdmi->mutex
387 	 * held, but doing so results in reentrancy issues since
388 	 * cec_s_phys_addr() might call .adap_enable, which leads to that
389 	 * funtion being called with our mutex held.
390 	 *
391 	 * A similar situation occurs with vc4_hdmi_reset_link() that
392 	 * will call into our KMS hooks if the scrambling was enabled.
393 	 *
394 	 * Concurrency isn't an issue at the moment since we don't share
395 	 * any state with any of the other frameworks so we can ignore
396 	 * the lock for now.
397 	 */
398 
399 	if (status == connector_status_disconnected) {
400 		cec_phys_addr_invalidate(vc4_hdmi->cec_adap);
401 		return;
402 	}
403 
404 	drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc);
405 
406 	drm_edid_connector_update(connector, drm_edid);
407 	cec_s_phys_addr(vc4_hdmi->cec_adap,
408 			connector->display_info.source_physical_address, false);
409 
410 	if (!drm_edid)
411 		return;
412 
413 	drm_edid_free(drm_edid);
414 
415 	for (;;) {
416 		ret = vc4_hdmi_reset_link(connector, ctx);
417 		if (ret == -EDEADLK) {
418 			drm_modeset_backoff(ctx);
419 			continue;
420 		}
421 
422 		break;
423 	}
424 }
425 
426 static int vc4_hdmi_connector_detect_ctx(struct drm_connector *connector,
427 					 struct drm_modeset_acquire_ctx *ctx,
428 					 bool force)
429 {
430 	struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
431 	enum drm_connector_status status = connector_status_disconnected;
432 
433 	/*
434 	 * NOTE: This function should really take vc4_hdmi->mutex, but
435 	 * doing so results in reentrancy issues since
436 	 * vc4_hdmi_handle_hotplug() can call into other functions that
437 	 * would take the mutex while it's held here.
438 	 *
439 	 * Concurrency isn't an issue at the moment since we don't share
440 	 * any state with any of the other frameworks so we can ignore
441 	 * the lock for now.
442 	 */
443 
444 	WARN_ON(pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev));
445 
446 	if (vc4_hdmi->hpd_gpio) {
447 		if (gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio))
448 			status = connector_status_connected;
449 	} else {
450 		if (vc4_hdmi->variant->hp_detect &&
451 		    vc4_hdmi->variant->hp_detect(vc4_hdmi))
452 			status = connector_status_connected;
453 	}
454 
455 	vc4_hdmi_handle_hotplug(vc4_hdmi, ctx, status);
456 	pm_runtime_put(&vc4_hdmi->pdev->dev);
457 
458 	return status;
459 }
460 
461 static int vc4_hdmi_connector_get_modes(struct drm_connector *connector)
462 {
463 	struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
464 	struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
465 	const struct drm_edid *drm_edid;
466 	int ret = 0;
467 
468 	/*
469 	 * NOTE: This function should really take vc4_hdmi->mutex, but doing so
470 	 * results in reentrancy issues since cec_s_phys_addr() might call
471 	 * .adap_enable, which leads to that funtion being called with our mutex
472 	 * held.
473 	 *
474 	 * Concurrency isn't an issue at the moment since we don't share
475 	 * any state with any of the other frameworks so we can ignore
476 	 * the lock for now.
477 	 */
478 
479 	drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc);
480 	drm_edid_connector_update(connector, drm_edid);
481 	cec_s_phys_addr(vc4_hdmi->cec_adap,
482 			connector->display_info.source_physical_address, false);
483 	if (!drm_edid)
484 		return 0;
485 
486 	ret = drm_edid_connector_add_modes(connector);
487 	drm_edid_free(drm_edid);
488 
489 	if (!vc4->hvs->vc5_hdmi_enable_hdmi_20) {
490 		struct drm_device *drm = connector->dev;
491 		const struct drm_display_mode *mode;
492 
493 		list_for_each_entry(mode, &connector->probed_modes, head) {
494 			if (vc4_hdmi_mode_needs_scrambling(mode, 8, HDMI_COLORSPACE_RGB)) {
495 				drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz.");
496 				drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60.");
497 			}
498 		}
499 	}
500 
501 	return ret;
502 }
503 
504 static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector,
505 					   struct drm_atomic_state *state)
506 {
507 	struct drm_connector_state *old_state =
508 		drm_atomic_get_old_connector_state(state, connector);
509 	struct drm_connector_state *new_state =
510 		drm_atomic_get_new_connector_state(state, connector);
511 	struct drm_crtc *crtc = new_state->crtc;
512 
513 	if (!crtc)
514 		return 0;
515 
516 	if (old_state->tv.margins.left != new_state->tv.margins.left ||
517 	    old_state->tv.margins.right != new_state->tv.margins.right ||
518 	    old_state->tv.margins.top != new_state->tv.margins.top ||
519 	    old_state->tv.margins.bottom != new_state->tv.margins.bottom) {
520 		struct drm_crtc_state *crtc_state;
521 		int ret;
522 
523 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
524 		if (IS_ERR(crtc_state))
525 			return PTR_ERR(crtc_state);
526 
527 		/*
528 		 * Strictly speaking, we should be calling
529 		 * drm_atomic_helper_check_planes() after our call to
530 		 * drm_atomic_add_affected_planes(). However, the
531 		 * connector atomic_check is called as part of
532 		 * drm_atomic_helper_check_modeset() that already
533 		 * happens before a call to
534 		 * drm_atomic_helper_check_planes() in
535 		 * drm_atomic_helper_check().
536 		 */
537 		ret = drm_atomic_add_affected_planes(state, crtc);
538 		if (ret)
539 			return ret;
540 	}
541 
542 	if (old_state->colorspace != new_state->colorspace) {
543 		struct drm_crtc_state *crtc_state;
544 
545 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
546 		if (IS_ERR(crtc_state))
547 			return PTR_ERR(crtc_state);
548 
549 		crtc_state->mode_changed = true;
550 	}
551 
552 	return drm_atomic_helper_connector_hdmi_check(connector, state);
553 }
554 
555 static void vc4_hdmi_connector_reset(struct drm_connector *connector)
556 {
557 	drm_atomic_helper_connector_reset(connector);
558 	__drm_atomic_helper_connector_hdmi_reset(connector, connector->state);
559 	drm_atomic_helper_connector_tv_margins_reset(connector);
560 }
561 
562 static const struct drm_connector_funcs vc4_hdmi_connector_funcs = {
563 	.fill_modes = drm_helper_probe_single_connector_modes,
564 	.reset = vc4_hdmi_connector_reset,
565 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
566 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
567 };
568 
569 static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = {
570 	.detect_ctx = vc4_hdmi_connector_detect_ctx,
571 	.get_modes = vc4_hdmi_connector_get_modes,
572 	.atomic_check = vc4_hdmi_connector_atomic_check,
573 };
574 
575 static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs;
576 
577 static int vc4_hdmi_connector_init(struct drm_device *dev,
578 				   struct vc4_hdmi *vc4_hdmi)
579 {
580 	struct drm_connector *connector = &vc4_hdmi->connector;
581 	struct drm_encoder *encoder = &vc4_hdmi->encoder.base;
582 	unsigned int max_bpc = 8;
583 	int ret;
584 
585 	if (vc4_hdmi->variant->supports_hdr)
586 		max_bpc = 12;
587 
588 	ret = drmm_connector_hdmi_init(dev, connector,
589 				       "Broadcom", "Videocore",
590 				       &vc4_hdmi_connector_funcs,
591 				       &vc4_hdmi_hdmi_connector_funcs,
592 				       DRM_MODE_CONNECTOR_HDMIA,
593 				       vc4_hdmi->ddc,
594 				       BIT(HDMI_COLORSPACE_RGB) |
595 				       BIT(HDMI_COLORSPACE_YUV422) |
596 				       BIT(HDMI_COLORSPACE_YUV444),
597 				       max_bpc);
598 	if (ret)
599 		return ret;
600 
601 	drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs);
602 
603 	/*
604 	 * Some of the properties below require access to state, like bpc.
605 	 * Allocate some default initial connector state with our reset helper.
606 	 */
607 	if (connector->funcs->reset)
608 		connector->funcs->reset(connector);
609 
610 	/* Create and attach TV margin props to this connector. */
611 	ret = drm_mode_create_tv_margin_properties(dev);
612 	if (ret)
613 		return ret;
614 
615 	ret = drm_mode_create_hdmi_colorspace_property(connector, 0);
616 	if (ret)
617 		return ret;
618 
619 	drm_connector_attach_colorspace_property(connector);
620 	drm_connector_attach_tv_margin_properties(connector);
621 
622 	connector->polled = (DRM_CONNECTOR_POLL_CONNECT |
623 			     DRM_CONNECTOR_POLL_DISCONNECT);
624 
625 	connector->interlace_allowed = 1;
626 	connector->doublescan_allowed = 0;
627 	connector->stereo_allowed = 1;
628 
629 	ret = drm_connector_attach_broadcast_rgb_property(connector);
630 	if (ret)
631 		return ret;
632 
633 	drm_connector_attach_encoder(connector, encoder);
634 
635 	return 0;
636 }
637 
638 static int vc4_hdmi_stop_packet(struct vc4_hdmi *vc4_hdmi,
639 				enum hdmi_infoframe_type type,
640 				bool poll)
641 {
642 	struct drm_device *drm = vc4_hdmi->connector.dev;
643 	u32 packet_id = type - 0x80;
644 	unsigned long flags;
645 	int ret = 0;
646 	int idx;
647 
648 	if (!drm_dev_enter(drm, &idx))
649 		return -ENODEV;
650 
651 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
652 	HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
653 		   HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id));
654 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
655 
656 	if (poll) {
657 		ret = wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) &
658 				 BIT(packet_id)), 100);
659 	}
660 
661 	drm_dev_exit(idx);
662 	return ret;
663 }
664 
665 static int vc4_hdmi_write_infoframe(struct drm_connector *connector,
666 				    enum hdmi_infoframe_type type,
667 				    const u8 *infoframe, size_t len)
668 {
669 	struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
670 	struct drm_device *drm = connector->dev;
671 	u32 packet_id = type - 0x80;
672 	const struct vc4_hdmi_register *ram_packet_start =
673 		&vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START];
674 	u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id;
675 	u32 packet_reg_next = ram_packet_start->offset +
676 		VC4_HDMI_PACKET_STRIDE * (packet_id + 1);
677 	void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi,
678 						       ram_packet_start->reg);
679 	uint8_t buffer[VC4_HDMI_PACKET_STRIDE] = {};
680 	unsigned long flags;
681 	ssize_t i;
682 	int ret;
683 	int idx;
684 
685 	if (!drm_dev_enter(drm, &idx))
686 		return 0;
687 
688 	if (len > sizeof(buffer)) {
689 		ret = -ENOMEM;
690 		goto out;
691 	}
692 
693 	memcpy(buffer, infoframe, len);
694 
695 	WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
696 		    VC4_HDMI_RAM_PACKET_ENABLE),
697 		  "Packet RAM has to be on to store the packet.");
698 
699 	ret = vc4_hdmi_stop_packet(vc4_hdmi, type, true);
700 	if (ret) {
701 		DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret);
702 		goto out;
703 	}
704 
705 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
706 
707 	for (i = 0; i < len; i += 7) {
708 		writel(buffer[i + 0] << 0 |
709 		       buffer[i + 1] << 8 |
710 		       buffer[i + 2] << 16,
711 		       base + packet_reg);
712 		packet_reg += 4;
713 
714 		writel(buffer[i + 3] << 0 |
715 		       buffer[i + 4] << 8 |
716 		       buffer[i + 5] << 16 |
717 		       buffer[i + 6] << 24,
718 		       base + packet_reg);
719 		packet_reg += 4;
720 	}
721 
722 	/*
723 	 * clear remainder of packet ram as it's included in the
724 	 * infoframe and triggers a checksum error on hdmi analyser
725 	 */
726 	for (; packet_reg < packet_reg_next; packet_reg += 4)
727 		writel(0, base + packet_reg);
728 
729 	HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
730 		   HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id));
731 
732 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
733 
734 	ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) &
735 			BIT(packet_id)), 100);
736 	if (ret)
737 		DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret);
738 
739 out:
740 	drm_dev_exit(idx);
741 	return ret;
742 }
743 
744 #define SCRAMBLING_POLLING_DELAY_MS	1000
745 
746 static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder)
747 {
748 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
749 	struct drm_connector *connector = &vc4_hdmi->connector;
750 	struct drm_device *drm = connector->dev;
751 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
752 	unsigned long flags;
753 	int idx;
754 
755 	lockdep_assert_held(&vc4_hdmi->mutex);
756 
757 	if (!vc4_hdmi_supports_scrambling(vc4_hdmi))
758 		return;
759 
760 	if (!vc4_hdmi_mode_needs_scrambling(mode,
761 					    vc4_hdmi->output_bpc,
762 					    vc4_hdmi->output_format))
763 		return;
764 
765 	if (!drm_dev_enter(drm, &idx))
766 		return;
767 
768 	drm_scdc_set_high_tmds_clock_ratio(connector, true);
769 	drm_scdc_set_scrambling(connector, true);
770 
771 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
772 	HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) |
773 		   VC5_HDMI_SCRAMBLER_CTL_ENABLE);
774 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
775 
776 	drm_dev_exit(idx);
777 
778 	vc4_hdmi->scdc_enabled = true;
779 
780 	queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
781 			   msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
782 }
783 
784 static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder)
785 {
786 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
787 	struct drm_connector *connector = &vc4_hdmi->connector;
788 	struct drm_device *drm = connector->dev;
789 	unsigned long flags;
790 	int idx;
791 
792 	lockdep_assert_held(&vc4_hdmi->mutex);
793 
794 	if (!vc4_hdmi->scdc_enabled)
795 		return;
796 
797 	vc4_hdmi->scdc_enabled = false;
798 
799 	if (delayed_work_pending(&vc4_hdmi->scrambling_work))
800 		cancel_delayed_work_sync(&vc4_hdmi->scrambling_work);
801 
802 	if (!drm_dev_enter(drm, &idx))
803 		return;
804 
805 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
806 	HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) &
807 		   ~VC5_HDMI_SCRAMBLER_CTL_ENABLE);
808 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
809 
810 	drm_scdc_set_scrambling(connector, false);
811 	drm_scdc_set_high_tmds_clock_ratio(connector, false);
812 
813 	drm_dev_exit(idx);
814 }
815 
816 static void vc4_hdmi_scrambling_wq(struct work_struct *work)
817 {
818 	struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work),
819 						 struct vc4_hdmi,
820 						 scrambling_work);
821 	struct drm_connector *connector = &vc4_hdmi->connector;
822 
823 	if (drm_scdc_get_scrambling_status(connector))
824 		return;
825 
826 	drm_scdc_set_high_tmds_clock_ratio(connector, true);
827 	drm_scdc_set_scrambling(connector, true);
828 
829 	queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
830 			   msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
831 }
832 
833 static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder,
834 					       struct drm_atomic_state *state)
835 {
836 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
837 	struct drm_device *drm = vc4_hdmi->connector.dev;
838 	unsigned long flags;
839 	int idx;
840 
841 	mutex_lock(&vc4_hdmi->mutex);
842 
843 	vc4_hdmi->packet_ram_enabled = false;
844 
845 	if (!drm_dev_enter(drm, &idx))
846 		goto out;
847 
848 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
849 
850 	HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0);
851 
852 	HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB);
853 
854 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
855 
856 	mdelay(1);
857 
858 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
859 	HDMI_WRITE(HDMI_VID_CTL,
860 		   HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE);
861 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
862 
863 	vc4_hdmi_disable_scrambling(encoder);
864 
865 	drm_dev_exit(idx);
866 
867 out:
868 	mutex_unlock(&vc4_hdmi->mutex);
869 }
870 
871 static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder,
872 						 struct drm_atomic_state *state)
873 {
874 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
875 	struct drm_device *drm = vc4_hdmi->connector.dev;
876 	unsigned long flags;
877 	int ret;
878 	int idx;
879 
880 	mutex_lock(&vc4_hdmi->mutex);
881 
882 	if (!drm_dev_enter(drm, &idx))
883 		goto out;
884 
885 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
886 	HDMI_WRITE(HDMI_VID_CTL,
887 		   HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX);
888 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
889 
890 	if (vc4_hdmi->variant->phy_disable)
891 		vc4_hdmi->variant->phy_disable(vc4_hdmi);
892 
893 	clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock);
894 	clk_disable_unprepare(vc4_hdmi->pixel_clock);
895 
896 	ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
897 	if (ret < 0)
898 		DRM_ERROR("Failed to release power domain: %d\n", ret);
899 
900 	drm_dev_exit(idx);
901 
902 out:
903 	mutex_unlock(&vc4_hdmi->mutex);
904 }
905 
906 static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
907 			       struct drm_connector_state *state,
908 			       const struct drm_display_mode *mode)
909 {
910 	struct drm_device *drm = vc4_hdmi->connector.dev;
911 	unsigned long flags;
912 	u32 csc_ctl;
913 	int idx;
914 
915 	if (!drm_dev_enter(drm, &idx))
916 		return;
917 
918 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
919 
920 	csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR,
921 				VC4_HD_CSC_CTL_ORDER);
922 
923 	if (state->hdmi.is_limited_range) {
924 		/* CEA VICs other than #1 requre limited range RGB
925 		 * output unless overridden by an AVI infoframe.
926 		 * Apply a colorspace conversion to squash 0-255 down
927 		 * to 16-235.  The matrix here is:
928 		 *
929 		 * [ 0      0      0.8594 16]
930 		 * [ 0      0.8594 0      16]
931 		 * [ 0.8594 0      0      16]
932 		 * [ 0      0      0       1]
933 		 */
934 		csc_ctl |= VC4_HD_CSC_CTL_ENABLE;
935 		csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC;
936 		csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
937 					 VC4_HD_CSC_CTL_MODE);
938 
939 		HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000);
940 		HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0);
941 		HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000);
942 		HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000);
943 		HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0);
944 		HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000);
945 	}
946 
947 	/* The RGB order applies even when CSC is disabled. */
948 	HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
949 
950 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
951 
952 	drm_dev_exit(idx);
953 }
954 
955 /*
956  * Matrices for (internal) RGB to RGB output.
957  *
958  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
959  */
960 static const u16 vc5_hdmi_csc_full_rgb_to_rgb[2][3][4] = {
961 	{
962 		/*
963 		 * Full range - unity
964 		 *
965 		 * [ 1      0      0      0]
966 		 * [ 0      1      0      0]
967 		 * [ 0      0      1      0]
968 		 */
969 		{ 0x2000, 0x0000, 0x0000, 0x0000 },
970 		{ 0x0000, 0x2000, 0x0000, 0x0000 },
971 		{ 0x0000, 0x0000, 0x2000, 0x0000 },
972 	},
973 	{
974 		/*
975 		 * Limited range
976 		 *
977 		 * CEA VICs other than #1 require limited range RGB
978 		 * output unless overridden by an AVI infoframe. Apply a
979 		 * colorspace conversion to squash 0-255 down to 16-235.
980 		 * The matrix here is:
981 		 *
982 		 * [ 0.8594 0      0      16]
983 		 * [ 0      0.8594 0      16]
984 		 * [ 0      0      0.8594 16]
985 		 */
986 		{ 0x1b80, 0x0000, 0x0000, 0x0400 },
987 		{ 0x0000, 0x1b80, 0x0000, 0x0400 },
988 		{ 0x0000, 0x0000, 0x1b80, 0x0400 },
989 	},
990 };
991 
992 /*
993  * Conversion between Full Range RGB and YUV using the BT.601 Colorspace
994  *
995  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
996  */
997 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt601[2][3][4] = {
998 	{
999 		/*
1000 		 * Full Range
1001 		 *
1002 		 * [  0.299000  0.587000  0.114000  0   ]
1003 		 * [ -0.168736 -0.331264  0.500000  128 ]
1004 		 * [  0.500000 -0.418688 -0.081312  128 ]
1005 		 */
1006 		{ 0x0991, 0x12c9, 0x03a6, 0x0000 },
1007 		{ 0xfa9b, 0xf567, 0x1000, 0x2000 },
1008 		{ 0x1000, 0xf29b, 0xfd67, 0x2000 },
1009 	},
1010 	{
1011 		/* Limited Range
1012 		 *
1013 		 * [  0.255785  0.502160  0.097523  16  ]
1014 		 * [ -0.147644 -0.289856  0.437500  128 ]
1015 		 * [  0.437500 -0.366352 -0.071148  128 ]
1016 		 */
1017 		{ 0x082f, 0x1012, 0x031f, 0x0400 },
1018 		{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
1019 		{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
1020 	},
1021 };
1022 
1023 /*
1024  * Conversion between Full Range RGB and YUV using the BT.709 Colorspace
1025  *
1026  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
1027  */
1028 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt709[2][3][4] = {
1029 	{
1030 		/*
1031 		 * Full Range
1032 		 *
1033 		 * [  0.212600  0.715200  0.072200  0   ]
1034 		 * [ -0.114572 -0.385428  0.500000  128 ]
1035 		 * [  0.500000 -0.454153 -0.045847  128 ]
1036 		 */
1037 		{ 0x06ce, 0x16e3, 0x024f, 0x0000 },
1038 		{ 0xfc56, 0xf3ac, 0x1000, 0x2000 },
1039 		{ 0x1000, 0xf179, 0xfe89, 0x2000 },
1040 	},
1041 	{
1042 		/*
1043 		 * Limited Range
1044 		 *
1045 		 * [  0.181906  0.611804  0.061758  16  ]
1046 		 * [ -0.100268 -0.337232  0.437500  128 ]
1047 		 * [  0.437500 -0.397386 -0.040114  128 ]
1048 		 */
1049 		{ 0x05d2, 0x1394, 0x01fa, 0x0400 },
1050 		{ 0xfccc, 0xf536, 0x0e00, 0x2000 },
1051 		{ 0x0e00, 0xf34a, 0xfeb8, 0x2000 },
1052 	},
1053 };
1054 
1055 /*
1056  * Conversion between Full Range RGB and YUV using the BT.2020 Colorspace
1057  *
1058  * Matrices are signed 2p13 fixed point, with signed 9p6 offsets
1059  */
1060 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt2020[2][3][4] = {
1061 	{
1062 		/*
1063 		 * Full Range
1064 		 *
1065 		 * [  0.262700  0.678000  0.059300  0   ]
1066 		 * [ -0.139630 -0.360370  0.500000  128 ]
1067 		 * [  0.500000 -0.459786 -0.040214  128 ]
1068 		 */
1069 		{ 0x0868, 0x15b2, 0x01e6, 0x0000 },
1070 		{ 0xfb89, 0xf479, 0x1000, 0x2000 },
1071 		{ 0x1000, 0xf14a, 0xfeb8, 0x2000 },
1072 	},
1073 	{
1074 		/* Limited Range
1075 		 *
1076 		 * [  0.224732  0.580008  0.050729  16  ]
1077 		 * [ -0.122176 -0.315324  0.437500  128 ]
1078 		 * [  0.437500 -0.402312 -0.035188  128 ]
1079 		 */
1080 		{ 0x082f, 0x1012, 0x031f, 0x0400 },
1081 		{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
1082 		{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
1083 	},
1084 };
1085 
1086 static void vc5_hdmi_set_csc_coeffs(struct vc4_hdmi *vc4_hdmi,
1087 				    const u16 coeffs[3][4])
1088 {
1089 	lockdep_assert_held(&vc4_hdmi->hw_lock);
1090 
1091 	HDMI_WRITE(HDMI_CSC_12_11, (coeffs[0][1] << 16) | coeffs[0][0]);
1092 	HDMI_WRITE(HDMI_CSC_14_13, (coeffs[0][3] << 16) | coeffs[0][2]);
1093 	HDMI_WRITE(HDMI_CSC_22_21, (coeffs[1][1] << 16) | coeffs[1][0]);
1094 	HDMI_WRITE(HDMI_CSC_24_23, (coeffs[1][3] << 16) | coeffs[1][2]);
1095 	HDMI_WRITE(HDMI_CSC_32_31, (coeffs[2][1] << 16) | coeffs[2][0]);
1096 	HDMI_WRITE(HDMI_CSC_34_33, (coeffs[2][3] << 16) | coeffs[2][2]);
1097 }
1098 
1099 static void vc5_hdmi_set_csc_coeffs_swap(struct vc4_hdmi *vc4_hdmi,
1100 					 const u16 coeffs[3][4])
1101 {
1102 	lockdep_assert_held(&vc4_hdmi->hw_lock);
1103 
1104 	/* YUV444 needs the CSC matrices using the channels in a different order */
1105 	HDMI_WRITE(HDMI_CSC_12_11, (coeffs[1][1] << 16) | coeffs[1][0]);
1106 	HDMI_WRITE(HDMI_CSC_14_13, (coeffs[1][3] << 16) | coeffs[1][2]);
1107 	HDMI_WRITE(HDMI_CSC_22_21, (coeffs[2][1] << 16) | coeffs[2][0]);
1108 	HDMI_WRITE(HDMI_CSC_24_23, (coeffs[2][3] << 16) | coeffs[2][2]);
1109 	HDMI_WRITE(HDMI_CSC_32_31, (coeffs[0][1] << 16) | coeffs[0][0]);
1110 	HDMI_WRITE(HDMI_CSC_34_33, (coeffs[0][3] << 16) | coeffs[0][2]);
1111 }
1112 
1113 static const u16
1114 (*vc5_hdmi_find_yuv_csc_coeffs(struct vc4_hdmi *vc4_hdmi, u32 colorspace, bool limited))[4]
1115 {
1116 	switch (colorspace) {
1117 	case DRM_MODE_COLORIMETRY_SMPTE_170M_YCC:
1118 	case DRM_MODE_COLORIMETRY_XVYCC_601:
1119 	case DRM_MODE_COLORIMETRY_SYCC_601:
1120 	case DRM_MODE_COLORIMETRY_OPYCC_601:
1121 	case DRM_MODE_COLORIMETRY_BT601_YCC:
1122 		return vc5_hdmi_csc_full_rgb_to_yuv_bt601[limited];
1123 
1124 	default:
1125 	case DRM_MODE_COLORIMETRY_NO_DATA:
1126 	case DRM_MODE_COLORIMETRY_BT709_YCC:
1127 	case DRM_MODE_COLORIMETRY_XVYCC_709:
1128 	case DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED:
1129 	case DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT:
1130 		return vc5_hdmi_csc_full_rgb_to_yuv_bt709[limited];
1131 
1132 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
1133 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
1134 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
1135 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
1136 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
1137 		return vc5_hdmi_csc_full_rgb_to_yuv_bt2020[limited];
1138 	}
1139 }
1140 
1141 static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
1142 			       struct drm_connector_state *state,
1143 			       const struct drm_display_mode *mode)
1144 {
1145 	struct drm_device *drm = vc4_hdmi->connector.dev;
1146 	unsigned int lim_range = state->hdmi.is_limited_range ? 1 : 0;
1147 	unsigned long flags;
1148 	const u16 (*csc)[4];
1149 	u32 if_cfg = 0;
1150 	u32 if_xbar = 0x543210;
1151 	u32 csc_chan_ctl = 0;
1152 	u32 csc_ctl = VC5_MT_CP_CSC_CTL_ENABLE | VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
1153 							       VC5_MT_CP_CSC_CTL_MODE);
1154 	int idx;
1155 
1156 	if (!drm_dev_enter(drm, &idx))
1157 		return;
1158 
1159 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1160 
1161 	switch (state->hdmi.output_format) {
1162 	case HDMI_COLORSPACE_YUV444:
1163 		csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
1164 
1165 		vc5_hdmi_set_csc_coeffs_swap(vc4_hdmi, csc);
1166 		break;
1167 
1168 	case HDMI_COLORSPACE_YUV422:
1169 		csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
1170 
1171 		csc_ctl |= VC4_SET_FIELD(VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422_STANDARD,
1172 					 VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422) |
1173 			VC5_MT_CP_CSC_CTL_USE_444_TO_422 |
1174 			VC5_MT_CP_CSC_CTL_USE_RNG_SUPPRESSION;
1175 
1176 		csc_chan_ctl |= VC4_SET_FIELD(VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP_LEGACY_STYLE,
1177 					      VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP);
1178 
1179 		if_cfg |= VC4_SET_FIELD(VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422_FORMAT_422_LEGACY,
1180 					VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422);
1181 
1182 		vc5_hdmi_set_csc_coeffs(vc4_hdmi, csc);
1183 		break;
1184 
1185 	case HDMI_COLORSPACE_RGB:
1186 		if_xbar = 0x354021;
1187 
1188 		vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_rgb[lim_range]);
1189 		break;
1190 
1191 	default:
1192 		break;
1193 	}
1194 
1195 	HDMI_WRITE(HDMI_VEC_INTERFACE_CFG, if_cfg);
1196 	HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, if_xbar);
1197 	HDMI_WRITE(HDMI_CSC_CHANNEL_CTL, csc_chan_ctl);
1198 	HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
1199 
1200 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1201 
1202 	drm_dev_exit(idx);
1203 }
1204 
1205 static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
1206 				 struct drm_connector_state *state,
1207 				 const struct drm_display_mode *mode)
1208 {
1209 	struct drm_device *drm = vc4_hdmi->connector.dev;
1210 	bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
1211 	bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
1212 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
1213 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
1214 	u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
1215 				   VC4_HDMI_VERTA_VSP) |
1216 		     VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
1217 				   VC4_HDMI_VERTA_VFP) |
1218 		     VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL));
1219 	u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
1220 		     VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
1221 				   interlaced,
1222 				   VC4_HDMI_VERTB_VBP));
1223 	u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
1224 			  VC4_SET_FIELD(mode->crtc_vtotal -
1225 					mode->crtc_vsync_end,
1226 					VC4_HDMI_VERTB_VBP));
1227 	unsigned long flags;
1228 	u32 reg;
1229 	int idx;
1230 
1231 	if (!drm_dev_enter(drm, &idx))
1232 		return;
1233 
1234 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1235 
1236 	HDMI_WRITE(HDMI_HORZA,
1237 		   (vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) |
1238 		   (hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) |
1239 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep,
1240 				 VC4_HDMI_HORZA_HAP));
1241 
1242 	HDMI_WRITE(HDMI_HORZB,
1243 		   VC4_SET_FIELD((mode->htotal -
1244 				  mode->hsync_end) * pixel_rep,
1245 				 VC4_HDMI_HORZB_HBP) |
1246 		   VC4_SET_FIELD((mode->hsync_end -
1247 				  mode->hsync_start) * pixel_rep,
1248 				 VC4_HDMI_HORZB_HSP) |
1249 		   VC4_SET_FIELD((mode->hsync_start -
1250 				  mode->hdisplay) * pixel_rep,
1251 				 VC4_HDMI_HORZB_HFP));
1252 
1253 	HDMI_WRITE(HDMI_VERTA0, verta);
1254 	HDMI_WRITE(HDMI_VERTA1, verta);
1255 
1256 	HDMI_WRITE(HDMI_VERTB0, vertb_even);
1257 	HDMI_WRITE(HDMI_VERTB1, vertb);
1258 
1259 	reg = HDMI_READ(HDMI_MISC_CONTROL);
1260 	reg &= ~VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
1261 	reg |= VC4_SET_FIELD(pixel_rep - 1, VC4_HDMI_MISC_CONTROL_PIXEL_REP);
1262 	HDMI_WRITE(HDMI_MISC_CONTROL, reg);
1263 
1264 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1265 
1266 	drm_dev_exit(idx);
1267 }
1268 
1269 static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
1270 				 struct drm_connector_state *state,
1271 				 const struct drm_display_mode *mode)
1272 {
1273 	struct drm_device *drm = vc4_hdmi->connector.dev;
1274 	bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
1275 	bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
1276 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
1277 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
1278 	u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
1279 				   VC5_HDMI_VERTA_VSP) |
1280 		     VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
1281 				   VC5_HDMI_VERTA_VFP) |
1282 		     VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL));
1283 	u32 vertb = (VC4_SET_FIELD(mode->htotal >> (2 - pixel_rep),
1284 				   VC5_HDMI_VERTB_VSPO) |
1285 		     VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
1286 				   interlaced,
1287 				   VC4_HDMI_VERTB_VBP));
1288 	u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
1289 			  VC4_SET_FIELD(mode->crtc_vtotal -
1290 					mode->crtc_vsync_end,
1291 					VC4_HDMI_VERTB_VBP));
1292 	unsigned long flags;
1293 	unsigned char gcp;
1294 	u32 reg;
1295 	int idx;
1296 
1297 	if (!drm_dev_enter(drm, &idx))
1298 		return;
1299 
1300 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1301 
1302 	HDMI_WRITE(HDMI_HORZA,
1303 		   (vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) |
1304 		   (hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) |
1305 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep,
1306 				 VC5_HDMI_HORZA_HAP) |
1307 		   VC4_SET_FIELD((mode->hsync_start -
1308 				  mode->hdisplay) * pixel_rep,
1309 				 VC5_HDMI_HORZA_HFP));
1310 
1311 	HDMI_WRITE(HDMI_HORZB,
1312 		   VC4_SET_FIELD((mode->htotal -
1313 				  mode->hsync_end) * pixel_rep,
1314 				 VC5_HDMI_HORZB_HBP) |
1315 		   VC4_SET_FIELD((mode->hsync_end -
1316 				  mode->hsync_start) * pixel_rep,
1317 				 VC5_HDMI_HORZB_HSP));
1318 
1319 	HDMI_WRITE(HDMI_VERTA0, verta);
1320 	HDMI_WRITE(HDMI_VERTA1, verta);
1321 
1322 	HDMI_WRITE(HDMI_VERTB0, vertb_even);
1323 	HDMI_WRITE(HDMI_VERTB1, vertb);
1324 
1325 	switch (state->hdmi.output_bpc) {
1326 	case 12:
1327 		gcp = 6;
1328 		break;
1329 	case 10:
1330 		gcp = 5;
1331 		break;
1332 	case 8:
1333 	default:
1334 		gcp = 0;
1335 		break;
1336 	}
1337 
1338 	/*
1339 	 * YCC422 is always 36-bit and not considered deep colour so
1340 	 * doesn't signal in GCP.
1341 	 */
1342 	if (state->hdmi.output_format == HDMI_COLORSPACE_YUV422) {
1343 		gcp = 0;
1344 	}
1345 
1346 	reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1);
1347 	reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK |
1348 		 VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK);
1349 	reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) |
1350 	       VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH);
1351 	HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg);
1352 
1353 	reg = HDMI_READ(HDMI_GCP_WORD_1);
1354 	reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK;
1355 	reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1);
1356 	reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK;
1357 	reg |= VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE;
1358 	HDMI_WRITE(HDMI_GCP_WORD_1, reg);
1359 
1360 	reg = HDMI_READ(HDMI_GCP_CONFIG);
1361 	reg |= VC5_HDMI_GCP_CONFIG_GCP_ENABLE;
1362 	HDMI_WRITE(HDMI_GCP_CONFIG, reg);
1363 
1364 	reg = HDMI_READ(HDMI_MISC_CONTROL);
1365 	reg &= ~VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
1366 	reg |= VC4_SET_FIELD(pixel_rep - 1, VC5_HDMI_MISC_CONTROL_PIXEL_REP);
1367 	HDMI_WRITE(HDMI_MISC_CONTROL, reg);
1368 
1369 	HDMI_WRITE(HDMI_CLOCK_STOP, 0);
1370 
1371 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1372 
1373 	drm_dev_exit(idx);
1374 }
1375 
1376 static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi)
1377 {
1378 	struct drm_device *drm = vc4_hdmi->connector.dev;
1379 	unsigned long flags;
1380 	u32 drift;
1381 	int ret;
1382 	int idx;
1383 
1384 	if (!drm_dev_enter(drm, &idx))
1385 		return;
1386 
1387 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1388 
1389 	drift = HDMI_READ(HDMI_FIFO_CTL);
1390 	drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK;
1391 
1392 	HDMI_WRITE(HDMI_FIFO_CTL,
1393 		   drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
1394 	HDMI_WRITE(HDMI_FIFO_CTL,
1395 		   drift | VC4_HDMI_FIFO_CTL_RECENTER);
1396 
1397 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1398 
1399 	usleep_range(1000, 1100);
1400 
1401 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1402 
1403 	HDMI_WRITE(HDMI_FIFO_CTL,
1404 		   drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
1405 	HDMI_WRITE(HDMI_FIFO_CTL,
1406 		   drift | VC4_HDMI_FIFO_CTL_RECENTER);
1407 
1408 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1409 
1410 	ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) &
1411 		       VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1);
1412 	WARN_ONCE(ret, "Timeout waiting for "
1413 		  "VC4_HDMI_FIFO_CTL_RECENTER_DONE");
1414 
1415 	drm_dev_exit(idx);
1416 }
1417 
1418 static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder,
1419 						struct drm_atomic_state *state)
1420 {
1421 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1422 	struct drm_device *drm = vc4_hdmi->connector.dev;
1423 	struct drm_connector *connector = &vc4_hdmi->connector;
1424 	struct drm_connector_state *conn_state =
1425 		drm_atomic_get_new_connector_state(state, connector);
1426 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1427 	unsigned long long tmds_char_rate = conn_state->hdmi.tmds_char_rate;
1428 	unsigned long bvb_rate, hsm_rate;
1429 	unsigned long flags;
1430 	int ret;
1431 	int idx;
1432 
1433 	mutex_lock(&vc4_hdmi->mutex);
1434 
1435 	if (!drm_dev_enter(drm, &idx))
1436 		goto out;
1437 
1438 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
1439 	if (ret < 0) {
1440 		DRM_ERROR("Failed to retain power domain: %d\n", ret);
1441 		goto err_dev_exit;
1442 	}
1443 
1444 	/*
1445 	 * As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must
1446 	 * be faster than pixel clock, infinitesimally faster, tested in
1447 	 * simulation. Otherwise, exact value is unimportant for HDMI
1448 	 * operation." This conflicts with bcm2835's vc4 documentation, which
1449 	 * states HSM's clock has to be at least 108% of the pixel clock.
1450 	 *
1451 	 * Real life tests reveal that vc4's firmware statement holds up, and
1452 	 * users are able to use pixel clocks closer to HSM's, namely for
1453 	 * 1920x1200@60Hz. So it was decided to have leave a 1% margin between
1454 	 * both clocks. Which, for RPi0-3 implies a maximum pixel clock of
1455 	 * 162MHz.
1456 	 *
1457 	 * Additionally, the AXI clock needs to be at least 25% of
1458 	 * pixel clock, but HSM ends up being the limiting factor.
1459 	 */
1460 	hsm_rate = max_t(unsigned long,
1461 			 HSM_MIN_CLOCK_FREQ,
1462 			 div_u64(tmds_char_rate, 100) * 101);
1463 	ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate);
1464 	if (ret) {
1465 		DRM_ERROR("Failed to set HSM clock rate: %d\n", ret);
1466 		goto err_put_runtime_pm;
1467 	}
1468 
1469 	ret = clk_set_rate(vc4_hdmi->pixel_clock, tmds_char_rate);
1470 	if (ret) {
1471 		DRM_ERROR("Failed to set pixel clock rate: %d\n", ret);
1472 		goto err_put_runtime_pm;
1473 	}
1474 
1475 	ret = clk_prepare_enable(vc4_hdmi->pixel_clock);
1476 	if (ret) {
1477 		DRM_ERROR("Failed to turn on pixel clock: %d\n", ret);
1478 		goto err_put_runtime_pm;
1479 	}
1480 
1481 
1482 	vc4_hdmi_cec_update_clk_div(vc4_hdmi);
1483 
1484 	if (tmds_char_rate > 297000000)
1485 		bvb_rate = 300000000;
1486 	else if (tmds_char_rate > 148500000)
1487 		bvb_rate = 150000000;
1488 	else
1489 		bvb_rate = 75000000;
1490 
1491 	ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate);
1492 	if (ret) {
1493 		DRM_ERROR("Failed to set pixel bvb clock rate: %d\n", ret);
1494 		goto err_disable_pixel_clock;
1495 	}
1496 
1497 	ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
1498 	if (ret) {
1499 		DRM_ERROR("Failed to turn on pixel bvb clock: %d\n", ret);
1500 		goto err_disable_pixel_clock;
1501 	}
1502 
1503 	if (vc4_hdmi->variant->phy_init)
1504 		vc4_hdmi->variant->phy_init(vc4_hdmi, conn_state);
1505 
1506 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1507 
1508 	HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
1509 		   HDMI_READ(HDMI_SCHEDULER_CONTROL) |
1510 		   VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT |
1511 		   VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS);
1512 
1513 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1514 
1515 	if (vc4_hdmi->variant->set_timings)
1516 		vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode);
1517 
1518 	drm_dev_exit(idx);
1519 
1520 	mutex_unlock(&vc4_hdmi->mutex);
1521 
1522 	return;
1523 
1524 err_disable_pixel_clock:
1525 	clk_disable_unprepare(vc4_hdmi->pixel_clock);
1526 err_put_runtime_pm:
1527 	pm_runtime_put(&vc4_hdmi->pdev->dev);
1528 err_dev_exit:
1529 	drm_dev_exit(idx);
1530 out:
1531 	mutex_unlock(&vc4_hdmi->mutex);
1532 	return;
1533 }
1534 
1535 static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder,
1536 					     struct drm_atomic_state *state)
1537 {
1538 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1539 	struct drm_device *drm = vc4_hdmi->connector.dev;
1540 	struct drm_connector *connector = &vc4_hdmi->connector;
1541 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1542 	struct drm_connector_state *conn_state =
1543 		drm_atomic_get_new_connector_state(state, connector);
1544 	unsigned long flags;
1545 	int idx;
1546 
1547 	mutex_lock(&vc4_hdmi->mutex);
1548 
1549 	if (!drm_dev_enter(drm, &idx))
1550 		goto out;
1551 
1552 	if (vc4_hdmi->variant->csc_setup)
1553 		vc4_hdmi->variant->csc_setup(vc4_hdmi, conn_state, mode);
1554 
1555 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1556 	HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N);
1557 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1558 
1559 	drm_dev_exit(idx);
1560 
1561 out:
1562 	mutex_unlock(&vc4_hdmi->mutex);
1563 }
1564 
1565 static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder,
1566 					      struct drm_atomic_state *state)
1567 {
1568 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1569 	struct drm_connector *connector = &vc4_hdmi->connector;
1570 	struct drm_device *drm = connector->dev;
1571 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1572 	struct drm_display_info *display = &vc4_hdmi->connector.display_info;
1573 	bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
1574 	bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
1575 	unsigned long flags;
1576 	int ret;
1577 	int idx;
1578 
1579 	mutex_lock(&vc4_hdmi->mutex);
1580 
1581 	if (!drm_dev_enter(drm, &idx))
1582 		goto out;
1583 
1584 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1585 
1586 	HDMI_WRITE(HDMI_VID_CTL,
1587 		   VC4_HD_VID_CTL_ENABLE |
1588 		   VC4_HD_VID_CTL_CLRRGB |
1589 		   VC4_HD_VID_CTL_UNDERFLOW_ENABLE |
1590 		   VC4_HD_VID_CTL_FRAME_COUNTER_RESET |
1591 		   (vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) |
1592 		   (hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW));
1593 
1594 	HDMI_WRITE(HDMI_VID_CTL,
1595 		   HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX);
1596 
1597 	if (display->is_hdmi) {
1598 		HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
1599 			   HDMI_READ(HDMI_SCHEDULER_CONTROL) |
1600 			   VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
1601 
1602 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1603 
1604 		ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1605 			       VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000);
1606 		WARN_ONCE(ret, "Timeout waiting for "
1607 			  "VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
1608 	} else {
1609 		HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
1610 			   HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
1611 			   ~(VC4_HDMI_RAM_PACKET_ENABLE));
1612 		HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
1613 			   HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1614 			   ~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
1615 
1616 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1617 
1618 		ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1619 				 VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000);
1620 		WARN_ONCE(ret, "Timeout waiting for "
1621 			  "!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
1622 	}
1623 
1624 	if (display->is_hdmi) {
1625 		spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1626 
1627 		WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
1628 			  VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE));
1629 
1630 		HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
1631 			   VC4_HDMI_RAM_PACKET_ENABLE);
1632 
1633 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1634 		vc4_hdmi->packet_ram_enabled = true;
1635 
1636 		drm_atomic_helper_connector_hdmi_update_infoframes(connector, state);
1637 	}
1638 
1639 	vc4_hdmi_recenter_fifo(vc4_hdmi);
1640 	vc4_hdmi_enable_scrambling(encoder);
1641 
1642 	drm_dev_exit(idx);
1643 
1644 out:
1645 	mutex_unlock(&vc4_hdmi->mutex);
1646 }
1647 
1648 static void vc4_hdmi_encoder_atomic_mode_set(struct drm_encoder *encoder,
1649 					     struct drm_crtc_state *crtc_state,
1650 					     struct drm_connector_state *conn_state)
1651 {
1652 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1653 
1654 	mutex_lock(&vc4_hdmi->mutex);
1655 	drm_mode_copy(&vc4_hdmi->saved_adjusted_mode,
1656 		      &crtc_state->adjusted_mode);
1657 	vc4_hdmi->output_bpc = conn_state->hdmi.output_bpc;
1658 	vc4_hdmi->output_format = conn_state->hdmi.output_format;
1659 	mutex_unlock(&vc4_hdmi->mutex);
1660 }
1661 
1662 static enum drm_mode_status
1663 vc4_hdmi_connector_clock_valid(const struct drm_connector *connector,
1664 			       const struct drm_display_mode *mode,
1665 			       unsigned long long clock)
1666 {
1667 	const struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
1668 	struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
1669 
1670 	if (clock > vc4_hdmi->variant->max_pixel_clock)
1671 		return MODE_CLOCK_HIGH;
1672 
1673 	if (!vc4->hvs->vc5_hdmi_enable_hdmi_20 && clock > HDMI_14_MAX_TMDS_CLK)
1674 		return MODE_CLOCK_HIGH;
1675 
1676 	/* 4096x2160@60 is not reliable without overclocking core */
1677 	if (!vc4->hvs->vc5_hdmi_enable_4096by2160 &&
1678 	    mode->hdisplay > 3840 && mode->vdisplay >= 2160 &&
1679 	    drm_mode_vrefresh(mode) >= 50)
1680 		return MODE_CLOCK_HIGH;
1681 
1682 	return MODE_OK;
1683 }
1684 
1685 static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs = {
1686 	.tmds_char_rate_valid	= vc4_hdmi_connector_clock_valid,
1687 	.write_infoframe	= vc4_hdmi_write_infoframe,
1688 };
1689 
1690 #define WIFI_2_4GHz_CH1_MIN_FREQ	2400000000ULL
1691 #define WIFI_2_4GHz_CH1_MAX_FREQ	2422000000ULL
1692 
1693 static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
1694 					 struct drm_crtc_state *crtc_state,
1695 					 struct drm_connector_state *conn_state)
1696 {
1697 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1698 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
1699 	unsigned long long tmds_char_rate = mode->clock * 1000;
1700 	unsigned long long tmds_bit_rate;
1701 
1702 	if (vc4_hdmi->variant->unsupported_odd_h_timings) {
1703 		if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1704 			/* Only try to fixup DBLCLK modes to get 480i and 576i
1705 			 * working.
1706 			 * A generic solution for all modes with odd horizontal
1707 			 * timing values seems impossible based on trying to
1708 			 * solve it for 1366x768 monitors.
1709 			 */
1710 			if ((mode->hsync_start - mode->hdisplay) & 1)
1711 				mode->hsync_start--;
1712 			if ((mode->hsync_end - mode->hsync_start) & 1)
1713 				mode->hsync_end--;
1714 		}
1715 
1716 		/* Now check whether we still have odd values remaining */
1717 		if ((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
1718 		    (mode->hsync_end % 2) || (mode->htotal % 2))
1719 			return -EINVAL;
1720 	}
1721 
1722 	/*
1723 	 * The 1440p@60 pixel rate is in the same range than the first
1724 	 * WiFi channel (between 2.4GHz and 2.422GHz with 22MHz
1725 	 * bandwidth). Slightly lower the frequency to bring it out of
1726 	 * the WiFi range.
1727 	 */
1728 	tmds_bit_rate = tmds_char_rate * 10;
1729 	if (vc4_hdmi->disable_wifi_frequencies &&
1730 	    (tmds_bit_rate >= WIFI_2_4GHz_CH1_MIN_FREQ &&
1731 	     tmds_bit_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) {
1732 		mode->clock = 238560;
1733 		tmds_char_rate = mode->clock * 1000;
1734 	}
1735 
1736 	return 0;
1737 }
1738 
1739 static enum drm_mode_status
1740 vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder,
1741 			    const struct drm_display_mode *mode)
1742 {
1743 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1744 	unsigned long long rate;
1745 
1746 	if (vc4_hdmi->variant->unsupported_odd_h_timings &&
1747 	    !(mode->flags & DRM_MODE_FLAG_DBLCLK) &&
1748 	    ((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
1749 	     (mode->hsync_end % 2) || (mode->htotal % 2)))
1750 		return MODE_H_ILLEGAL;
1751 
1752 	rate = drm_hdmi_compute_mode_clock(mode, 8, HDMI_COLORSPACE_RGB);
1753 	return vc4_hdmi_connector_clock_valid(&vc4_hdmi->connector, mode, rate);
1754 }
1755 
1756 static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = {
1757 	.atomic_check = vc4_hdmi_encoder_atomic_check,
1758 	.atomic_mode_set = vc4_hdmi_encoder_atomic_mode_set,
1759 	.mode_valid = vc4_hdmi_encoder_mode_valid,
1760 };
1761 
1762 static int vc4_hdmi_late_register(struct drm_encoder *encoder)
1763 {
1764 	struct drm_device *drm = encoder->dev;
1765 	struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
1766 	const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
1767 
1768 	drm_debugfs_add_file(drm, variant->debugfs_name,
1769 			     vc4_hdmi_debugfs_regs, vc4_hdmi);
1770 
1771 	return 0;
1772 }
1773 
1774 static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = {
1775 	.late_register = vc4_hdmi_late_register,
1776 };
1777 
1778 static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
1779 {
1780 	int i;
1781 	u32 channel_map = 0;
1782 
1783 	for (i = 0; i < 8; i++) {
1784 		if (channel_mask & BIT(i))
1785 			channel_map |= i << (3 * i);
1786 	}
1787 	return channel_map;
1788 }
1789 
1790 static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
1791 {
1792 	int i;
1793 	u32 channel_map = 0;
1794 
1795 	for (i = 0; i < 8; i++) {
1796 		if (channel_mask & BIT(i))
1797 			channel_map |= i << (4 * i);
1798 	}
1799 	return channel_map;
1800 }
1801 
1802 static bool vc5_hdmi_hp_detect(struct vc4_hdmi *vc4_hdmi)
1803 {
1804 	struct drm_device *drm = vc4_hdmi->connector.dev;
1805 	unsigned long flags;
1806 	u32 hotplug;
1807 	int idx;
1808 
1809 	if (!drm_dev_enter(drm, &idx))
1810 		return false;
1811 
1812 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1813 	hotplug = HDMI_READ(HDMI_HOTPLUG);
1814 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1815 
1816 	drm_dev_exit(idx);
1817 
1818 	return !!(hotplug & VC4_HDMI_HOTPLUG_CONNECTED);
1819 }
1820 
1821 /* HDMI audio codec callbacks */
1822 static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi,
1823 					 unsigned int samplerate)
1824 {
1825 	struct drm_device *drm = vc4_hdmi->connector.dev;
1826 	u32 hsm_clock;
1827 	unsigned long flags;
1828 	unsigned long n, m;
1829 	int idx;
1830 
1831 	if (!drm_dev_enter(drm, &idx))
1832 		return;
1833 
1834 	hsm_clock = clk_get_rate(vc4_hdmi->audio_clock);
1835 	rational_best_approximation(hsm_clock, samplerate,
1836 				    VC4_HD_MAI_SMP_N_MASK >>
1837 				    VC4_HD_MAI_SMP_N_SHIFT,
1838 				    (VC4_HD_MAI_SMP_M_MASK >>
1839 				     VC4_HD_MAI_SMP_M_SHIFT) + 1,
1840 				    &n, &m);
1841 
1842 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1843 	HDMI_WRITE(HDMI_MAI_SMP,
1844 		   VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) |
1845 		   VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M));
1846 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1847 
1848 	drm_dev_exit(idx);
1849 }
1850 
1851 static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate)
1852 {
1853 	const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
1854 	u32 n, cts;
1855 	u64 tmp;
1856 
1857 	lockdep_assert_held(&vc4_hdmi->mutex);
1858 	lockdep_assert_held(&vc4_hdmi->hw_lock);
1859 
1860 	n = 128 * samplerate / 1000;
1861 	tmp = (u64)(mode->clock * 1000) * n;
1862 	do_div(tmp, 128 * samplerate);
1863 	cts = tmp;
1864 
1865 	HDMI_WRITE(HDMI_CRP_CFG,
1866 		   VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN |
1867 		   VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N));
1868 
1869 	/*
1870 	 * We could get slightly more accurate clocks in some cases by
1871 	 * providing a CTS_1 value.  The two CTS values are alternated
1872 	 * between based on the period fields
1873 	 */
1874 	HDMI_WRITE(HDMI_CTS_0, cts);
1875 	HDMI_WRITE(HDMI_CTS_1, cts);
1876 }
1877 
1878 static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai)
1879 {
1880 	struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai);
1881 
1882 	return snd_soc_card_get_drvdata(card);
1883 }
1884 
1885 static bool vc4_hdmi_audio_can_stream(struct vc4_hdmi *vc4_hdmi)
1886 {
1887 	struct drm_display_info *display = &vc4_hdmi->connector.display_info;
1888 
1889 	lockdep_assert_held(&vc4_hdmi->mutex);
1890 
1891 	/*
1892 	 * If the encoder is currently in DVI mode, treat the codec DAI
1893 	 * as missing.
1894 	 */
1895 	if (!display->is_hdmi)
1896 		return false;
1897 
1898 	return true;
1899 }
1900 
1901 static int vc4_hdmi_audio_startup(struct device *dev, void *data)
1902 {
1903 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
1904 	struct drm_device *drm = vc4_hdmi->connector.dev;
1905 	unsigned long flags;
1906 	int ret = 0;
1907 	int idx;
1908 
1909 	mutex_lock(&vc4_hdmi->mutex);
1910 
1911 	if (!drm_dev_enter(drm, &idx)) {
1912 		ret = -ENODEV;
1913 		goto out;
1914 	}
1915 
1916 	if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
1917 		ret = -ENODEV;
1918 		goto out_dev_exit;
1919 	}
1920 
1921 	vc4_hdmi->audio.streaming = true;
1922 
1923 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1924 	HDMI_WRITE(HDMI_MAI_CTL,
1925 		   VC4_HD_MAI_CTL_RESET |
1926 		   VC4_HD_MAI_CTL_FLUSH |
1927 		   VC4_HD_MAI_CTL_DLATE |
1928 		   VC4_HD_MAI_CTL_ERRORE |
1929 		   VC4_HD_MAI_CTL_ERRORF);
1930 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1931 
1932 	if (vc4_hdmi->variant->phy_rng_enable)
1933 		vc4_hdmi->variant->phy_rng_enable(vc4_hdmi);
1934 
1935 out_dev_exit:
1936 	drm_dev_exit(idx);
1937 out:
1938 	mutex_unlock(&vc4_hdmi->mutex);
1939 
1940 	return ret;
1941 }
1942 
1943 static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi)
1944 {
1945 	struct device *dev = &vc4_hdmi->pdev->dev;
1946 	unsigned long flags;
1947 	int ret;
1948 
1949 	lockdep_assert_held(&vc4_hdmi->mutex);
1950 
1951 	vc4_hdmi->audio.streaming = false;
1952 	ret = vc4_hdmi_stop_packet(vc4_hdmi, HDMI_INFOFRAME_TYPE_AUDIO, false);
1953 	if (ret)
1954 		dev_err(dev, "Failed to stop audio infoframe: %d\n", ret);
1955 
1956 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1957 
1958 	HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET);
1959 	HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF);
1960 	HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH);
1961 
1962 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1963 }
1964 
1965 static void vc4_hdmi_audio_shutdown(struct device *dev, void *data)
1966 {
1967 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
1968 	struct drm_device *drm = vc4_hdmi->connector.dev;
1969 	unsigned long flags;
1970 	int idx;
1971 
1972 	mutex_lock(&vc4_hdmi->mutex);
1973 
1974 	if (!drm_dev_enter(drm, &idx))
1975 		goto out;
1976 
1977 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
1978 
1979 	HDMI_WRITE(HDMI_MAI_CTL,
1980 		   VC4_HD_MAI_CTL_DLATE |
1981 		   VC4_HD_MAI_CTL_ERRORE |
1982 		   VC4_HD_MAI_CTL_ERRORF);
1983 
1984 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
1985 
1986 	if (vc4_hdmi->variant->phy_rng_disable)
1987 		vc4_hdmi->variant->phy_rng_disable(vc4_hdmi);
1988 
1989 	vc4_hdmi->audio.streaming = false;
1990 	vc4_hdmi_audio_reset(vc4_hdmi);
1991 
1992 	drm_dev_exit(idx);
1993 
1994 out:
1995 	mutex_unlock(&vc4_hdmi->mutex);
1996 }
1997 
1998 static int sample_rate_to_mai_fmt(int samplerate)
1999 {
2000 	switch (samplerate) {
2001 	case 8000:
2002 		return VC4_HDMI_MAI_SAMPLE_RATE_8000;
2003 	case 11025:
2004 		return VC4_HDMI_MAI_SAMPLE_RATE_11025;
2005 	case 12000:
2006 		return VC4_HDMI_MAI_SAMPLE_RATE_12000;
2007 	case 16000:
2008 		return VC4_HDMI_MAI_SAMPLE_RATE_16000;
2009 	case 22050:
2010 		return VC4_HDMI_MAI_SAMPLE_RATE_22050;
2011 	case 24000:
2012 		return VC4_HDMI_MAI_SAMPLE_RATE_24000;
2013 	case 32000:
2014 		return VC4_HDMI_MAI_SAMPLE_RATE_32000;
2015 	case 44100:
2016 		return VC4_HDMI_MAI_SAMPLE_RATE_44100;
2017 	case 48000:
2018 		return VC4_HDMI_MAI_SAMPLE_RATE_48000;
2019 	case 64000:
2020 		return VC4_HDMI_MAI_SAMPLE_RATE_64000;
2021 	case 88200:
2022 		return VC4_HDMI_MAI_SAMPLE_RATE_88200;
2023 	case 96000:
2024 		return VC4_HDMI_MAI_SAMPLE_RATE_96000;
2025 	case 128000:
2026 		return VC4_HDMI_MAI_SAMPLE_RATE_128000;
2027 	case 176400:
2028 		return VC4_HDMI_MAI_SAMPLE_RATE_176400;
2029 	case 192000:
2030 		return VC4_HDMI_MAI_SAMPLE_RATE_192000;
2031 	default:
2032 		return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED;
2033 	}
2034 }
2035 
2036 /* HDMI audio codec callbacks */
2037 static int vc4_hdmi_audio_prepare(struct device *dev, void *data,
2038 				  struct hdmi_codec_daifmt *daifmt,
2039 				  struct hdmi_codec_params *params)
2040 {
2041 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
2042 	struct drm_device *drm = vc4_hdmi->connector.dev;
2043 	struct drm_connector *connector = &vc4_hdmi->connector;
2044 	unsigned int sample_rate = params->sample_rate;
2045 	unsigned int channels = params->channels;
2046 	unsigned long flags;
2047 	u32 audio_packet_config, channel_mask;
2048 	u32 channel_map;
2049 	u32 mai_audio_format;
2050 	u32 mai_sample_rate;
2051 	int ret = 0;
2052 	int idx;
2053 
2054 	dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__,
2055 		sample_rate, params->sample_width, channels);
2056 
2057 	mutex_lock(&vc4_hdmi->mutex);
2058 
2059 	if (!drm_dev_enter(drm, &idx)) {
2060 		ret = -ENODEV;
2061 		goto out;
2062 	}
2063 
2064 	if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
2065 		ret = -EINVAL;
2066 		goto out_dev_exit;
2067 	}
2068 
2069 	vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate);
2070 
2071 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2072 	HDMI_WRITE(HDMI_MAI_CTL,
2073 		   VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) |
2074 		   VC4_HD_MAI_CTL_WHOLSMP |
2075 		   VC4_HD_MAI_CTL_CHALIGN |
2076 		   VC4_HD_MAI_CTL_ENABLE);
2077 
2078 	mai_sample_rate = sample_rate_to_mai_fmt(sample_rate);
2079 	if (params->iec.status[0] & IEC958_AES0_NONAUDIO &&
2080 	    params->channels == 8)
2081 		mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR;
2082 	else
2083 		mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM;
2084 	HDMI_WRITE(HDMI_MAI_FMT,
2085 		   VC4_SET_FIELD(mai_sample_rate,
2086 				 VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) |
2087 		   VC4_SET_FIELD(mai_audio_format,
2088 				 VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT));
2089 
2090 	/* The B frame identifier should match the value used by alsa-lib (8) */
2091 	audio_packet_config =
2092 		VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT |
2093 		VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS |
2094 		VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER);
2095 
2096 	channel_mask = GENMASK(channels - 1, 0);
2097 	audio_packet_config |= VC4_SET_FIELD(channel_mask,
2098 					     VC4_HDMI_AUDIO_PACKET_CEA_MASK);
2099 
2100 	/* Set the MAI threshold */
2101 	HDMI_WRITE(HDMI_MAI_THR,
2102 		   VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICHIGH) |
2103 		   VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICLOW) |
2104 		   VC4_SET_FIELD(0x06, VC4_HD_MAI_THR_DREQHIGH) |
2105 		   VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_DREQLOW));
2106 
2107 	HDMI_WRITE(HDMI_MAI_CONFIG,
2108 		   VC4_HDMI_MAI_CONFIG_BIT_REVERSE |
2109 		   VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE |
2110 		   VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK));
2111 
2112 	channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask);
2113 	HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map);
2114 	HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config);
2115 
2116 	vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate);
2117 
2118 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2119 
2120 	ret = drm_atomic_helper_connector_hdmi_update_audio_infoframe(connector,
2121 								      &params->cea);
2122 	if (ret)
2123 		goto out_dev_exit;
2124 
2125 out_dev_exit:
2126 	drm_dev_exit(idx);
2127 out:
2128 	mutex_unlock(&vc4_hdmi->mutex);
2129 
2130 	return ret;
2131 }
2132 
2133 static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = {
2134 	.name = "vc4-hdmi-cpu-dai-component",
2135 	.legacy_dai_naming = 1,
2136 };
2137 
2138 static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai)
2139 {
2140 	struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
2141 
2142 	snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL);
2143 
2144 	return 0;
2145 }
2146 
2147 static const struct snd_soc_dai_ops vc4_snd_dai_ops = {
2148 	.probe  = vc4_hdmi_audio_cpu_dai_probe,
2149 };
2150 
2151 static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = {
2152 	.name = "vc4-hdmi-cpu-dai",
2153 	.ops = &vc4_snd_dai_ops,
2154 	.playback = {
2155 		.stream_name = "Playback",
2156 		.channels_min = 1,
2157 		.channels_max = 8,
2158 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2159 			 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2160 			 SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2161 			 SNDRV_PCM_RATE_192000,
2162 		.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
2163 	},
2164 };
2165 
2166 static const struct snd_dmaengine_pcm_config pcm_conf = {
2167 	.chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx",
2168 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
2169 };
2170 
2171 static int vc4_hdmi_audio_get_eld(struct device *dev, void *data,
2172 				  uint8_t *buf, size_t len)
2173 {
2174 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
2175 	struct drm_connector *connector = &vc4_hdmi->connector;
2176 
2177 	mutex_lock(&vc4_hdmi->mutex);
2178 	memcpy(buf, connector->eld, min(sizeof(connector->eld), len));
2179 	mutex_unlock(&vc4_hdmi->mutex);
2180 
2181 	return 0;
2182 }
2183 
2184 static const struct hdmi_codec_ops vc4_hdmi_codec_ops = {
2185 	.get_eld = vc4_hdmi_audio_get_eld,
2186 	.prepare = vc4_hdmi_audio_prepare,
2187 	.audio_shutdown = vc4_hdmi_audio_shutdown,
2188 	.audio_startup = vc4_hdmi_audio_startup,
2189 };
2190 
2191 static struct hdmi_codec_pdata vc4_hdmi_codec_pdata = {
2192 	.ops = &vc4_hdmi_codec_ops,
2193 	.max_i2s_channels = 8,
2194 	.i2s = 1,
2195 };
2196 
2197 static void vc4_hdmi_audio_codec_release(void *ptr)
2198 {
2199 	struct vc4_hdmi *vc4_hdmi = ptr;
2200 
2201 	platform_device_unregister(vc4_hdmi->audio.codec_pdev);
2202 	vc4_hdmi->audio.codec_pdev = NULL;
2203 }
2204 
2205 static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi)
2206 {
2207 	const struct vc4_hdmi_register *mai_data =
2208 		&vc4_hdmi->variant->registers[HDMI_MAI_DATA];
2209 	struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link;
2210 	struct snd_soc_card *card = &vc4_hdmi->audio.card;
2211 	struct device *dev = &vc4_hdmi->pdev->dev;
2212 	struct platform_device *codec_pdev;
2213 	const __be32 *addr;
2214 	int index, len;
2215 	int ret;
2216 
2217 	/*
2218 	 * ASoC makes it a bit hard to retrieve a pointer to the
2219 	 * vc4_hdmi structure. Registering the card will overwrite our
2220 	 * device drvdata with a pointer to the snd_soc_card structure,
2221 	 * which can then be used to retrieve whatever drvdata we want
2222 	 * to associate.
2223 	 *
2224 	 * However, that doesn't fly in the case where we wouldn't
2225 	 * register an ASoC card (because of an old DT that is missing
2226 	 * the dmas properties for example), then the card isn't
2227 	 * registered and the device drvdata wouldn't be set.
2228 	 *
2229 	 * We can deal with both cases by making sure a snd_soc_card
2230 	 * pointer and a vc4_hdmi structure are pointing to the same
2231 	 * memory address, so we can treat them indistinctly without any
2232 	 * issue.
2233 	 */
2234 	BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0);
2235 	BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0);
2236 
2237 	if (!of_find_property(dev->of_node, "dmas", &len) || !len) {
2238 		dev_warn(dev,
2239 			 "'dmas' DT property is missing or empty, no HDMI audio\n");
2240 		return 0;
2241 	}
2242 
2243 	if (mai_data->reg != VC4_HD) {
2244 		WARN_ONCE(true, "MAI isn't in the HD block\n");
2245 		return -EINVAL;
2246 	}
2247 
2248 	/*
2249 	 * Get the physical address of VC4_HD_MAI_DATA. We need to retrieve
2250 	 * the bus address specified in the DT, because the physical address
2251 	 * (the one returned by platform_get_resource()) is not appropriate
2252 	 * for DMA transfers.
2253 	 * This VC/MMU should probably be exposed to avoid this kind of hacks.
2254 	 */
2255 	index = of_property_match_string(dev->of_node, "reg-names", "hd");
2256 	/* Before BCM2711, we don't have a named register range */
2257 	if (index < 0)
2258 		index = 1;
2259 
2260 	addr = of_get_address(dev->of_node, index, NULL, NULL);
2261 	if (!addr)
2262 		return -EINVAL;
2263 
2264 	vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset;
2265 	vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2266 	vc4_hdmi->audio.dma_data.maxburst = 2;
2267 
2268 	/*
2269 	 * NOTE: Strictly speaking, we should probably use a DRM-managed
2270 	 * registration there to avoid removing all the audio components
2271 	 * by the time the driver doesn't have any user anymore.
2272 	 *
2273 	 * However, the ASoC core uses a number of devm_kzalloc calls
2274 	 * when registering, even when using non-device-managed
2275 	 * functions (such as in snd_soc_register_component()).
2276 	 *
2277 	 * If we call snd_soc_unregister_component() in a DRM-managed
2278 	 * action, the device-managed actions have already been executed
2279 	 * and thus we would access memory that has been freed.
2280 	 *
2281 	 * Using device-managed hooks here probably leaves us open to a
2282 	 * bunch of issues if userspace still has a handle on the ALSA
2283 	 * device when the device is removed. However, this is mitigated
2284 	 * by the use of drm_dev_enter()/drm_dev_exit() in the audio
2285 	 * path to prevent the access to the device resources if it
2286 	 * isn't there anymore.
2287 	 *
2288 	 * Then, the vc4_hdmi structure is DRM-managed and thus only
2289 	 * freed whenever the last user has closed the DRM device file.
2290 	 * It should thus outlive ALSA in most situations.
2291 	 */
2292 	ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0);
2293 	if (ret) {
2294 		dev_err(dev, "Could not register PCM component: %d\n", ret);
2295 		return ret;
2296 	}
2297 
2298 	ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp,
2299 					      &vc4_hdmi_audio_cpu_dai_drv, 1);
2300 	if (ret) {
2301 		dev_err(dev, "Could not register CPU DAI: %d\n", ret);
2302 		return ret;
2303 	}
2304 
2305 	codec_pdev = platform_device_register_data(dev, HDMI_CODEC_DRV_NAME,
2306 						   PLATFORM_DEVID_AUTO,
2307 						   &vc4_hdmi_codec_pdata,
2308 						   sizeof(vc4_hdmi_codec_pdata));
2309 	if (IS_ERR(codec_pdev)) {
2310 		dev_err(dev, "Couldn't register the HDMI codec: %ld\n", PTR_ERR(codec_pdev));
2311 		return PTR_ERR(codec_pdev);
2312 	}
2313 	vc4_hdmi->audio.codec_pdev = codec_pdev;
2314 
2315 	ret = devm_add_action_or_reset(dev, vc4_hdmi_audio_codec_release, vc4_hdmi);
2316 	if (ret)
2317 		return ret;
2318 
2319 	dai_link->cpus		= &vc4_hdmi->audio.cpu;
2320 	dai_link->codecs	= &vc4_hdmi->audio.codec;
2321 	dai_link->platforms	= &vc4_hdmi->audio.platform;
2322 
2323 	dai_link->num_cpus	= 1;
2324 	dai_link->num_codecs	= 1;
2325 	dai_link->num_platforms	= 1;
2326 
2327 	dai_link->name = "MAI";
2328 	dai_link->stream_name = "MAI PCM";
2329 	dai_link->codecs->dai_name = "i2s-hifi";
2330 	dai_link->cpus->dai_name = dev_name(dev);
2331 	dai_link->codecs->name = dev_name(&codec_pdev->dev);
2332 	dai_link->platforms->name = dev_name(dev);
2333 
2334 	card->dai_link = dai_link;
2335 	card->num_links = 1;
2336 	card->name = vc4_hdmi->variant->card_name;
2337 	card->driver_name = "vc4-hdmi";
2338 	card->dev = dev;
2339 	card->owner = THIS_MODULE;
2340 
2341 	/*
2342 	 * Be careful, snd_soc_register_card() calls dev_set_drvdata() and
2343 	 * stores a pointer to the snd card object in dev->driver_data. This
2344 	 * means we cannot use it for something else. The hdmi back-pointer is
2345 	 * now stored in card->drvdata and should be retrieved with
2346 	 * snd_soc_card_get_drvdata() if needed.
2347 	 */
2348 	snd_soc_card_set_drvdata(card, vc4_hdmi);
2349 	ret = devm_snd_soc_register_card(dev, card);
2350 	if (ret)
2351 		dev_err_probe(dev, ret, "Could not register sound card\n");
2352 
2353 	return ret;
2354 
2355 }
2356 
2357 static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv)
2358 {
2359 	struct vc4_hdmi *vc4_hdmi = priv;
2360 	struct drm_connector *connector = &vc4_hdmi->connector;
2361 	struct drm_device *dev = connector->dev;
2362 
2363 	if (dev && dev->registered)
2364 		drm_connector_helper_hpd_irq_event(connector);
2365 
2366 	return IRQ_HANDLED;
2367 }
2368 
2369 static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi)
2370 {
2371 	struct drm_connector *connector = &vc4_hdmi->connector;
2372 	struct platform_device *pdev = vc4_hdmi->pdev;
2373 	int ret;
2374 
2375 	if (vc4_hdmi->variant->external_irq_controller) {
2376 		unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected");
2377 		unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed");
2378 
2379 		ret = devm_request_threaded_irq(&pdev->dev, hpd_con,
2380 						NULL,
2381 						vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
2382 						"vc4 hdmi hpd connected", vc4_hdmi);
2383 		if (ret)
2384 			return ret;
2385 
2386 		ret = devm_request_threaded_irq(&pdev->dev, hpd_rm,
2387 						NULL,
2388 						vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
2389 						"vc4 hdmi hpd disconnected", vc4_hdmi);
2390 		if (ret)
2391 			return ret;
2392 
2393 		connector->polled = DRM_CONNECTOR_POLL_HPD;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 #ifdef CONFIG_DRM_VC4_HDMI_CEC
2400 static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv)
2401 {
2402 	struct vc4_hdmi *vc4_hdmi = priv;
2403 
2404 	if (vc4_hdmi->cec_rx_msg.len)
2405 		cec_received_msg(vc4_hdmi->cec_adap,
2406 				 &vc4_hdmi->cec_rx_msg);
2407 
2408 	return IRQ_HANDLED;
2409 }
2410 
2411 static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv)
2412 {
2413 	struct vc4_hdmi *vc4_hdmi = priv;
2414 
2415 	if (vc4_hdmi->cec_tx_ok) {
2416 		cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK,
2417 				  0, 0, 0, 0);
2418 	} else {
2419 		/*
2420 		 * This CEC implementation makes 1 retry, so if we
2421 		 * get a NACK, then that means it made 2 attempts.
2422 		 */
2423 		cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK,
2424 				  0, 2, 0, 0);
2425 	}
2426 	return IRQ_HANDLED;
2427 }
2428 
2429 static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv)
2430 {
2431 	struct vc4_hdmi *vc4_hdmi = priv;
2432 	irqreturn_t ret;
2433 
2434 	if (vc4_hdmi->cec_irq_was_rx)
2435 		ret = vc4_cec_irq_handler_rx_thread(irq, priv);
2436 	else
2437 		ret = vc4_cec_irq_handler_tx_thread(irq, priv);
2438 
2439 	return ret;
2440 }
2441 
2442 static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1)
2443 {
2444 	struct drm_device *dev = vc4_hdmi->connector.dev;
2445 	struct cec_msg *msg = &vc4_hdmi->cec_rx_msg;
2446 	unsigned int i;
2447 
2448 	lockdep_assert_held(&vc4_hdmi->hw_lock);
2449 
2450 	msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >>
2451 					VC4_HDMI_CEC_REC_WRD_CNT_SHIFT);
2452 
2453 	if (msg->len > 16) {
2454 		drm_err(dev, "Attempting to read too much data (%d)\n", msg->len);
2455 		return;
2456 	}
2457 
2458 	for (i = 0; i < msg->len; i += 4) {
2459 		u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2));
2460 
2461 		msg->msg[i] = val & 0xff;
2462 		msg->msg[i + 1] = (val >> 8) & 0xff;
2463 		msg->msg[i + 2] = (val >> 16) & 0xff;
2464 		msg->msg[i + 3] = (val >> 24) & 0xff;
2465 	}
2466 }
2467 
2468 static irqreturn_t vc4_cec_irq_handler_tx_bare_locked(struct vc4_hdmi *vc4_hdmi)
2469 {
2470 	u32 cntrl1;
2471 
2472 	/*
2473 	 * We don't need to protect the register access using
2474 	 * drm_dev_enter() there because the interrupt handler lifetime
2475 	 * is tied to the device itself, and not to the DRM device.
2476 	 *
2477 	 * So when the device will be gone, one of the first thing we
2478 	 * will be doing will be to unregister the interrupt handler,
2479 	 * and then unregister the DRM device. drm_dev_enter() would
2480 	 * thus always succeed if we are here.
2481 	 */
2482 
2483 	lockdep_assert_held(&vc4_hdmi->hw_lock);
2484 
2485 	cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
2486 	vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD;
2487 	cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
2488 	HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
2489 
2490 	return IRQ_WAKE_THREAD;
2491 }
2492 
2493 static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv)
2494 {
2495 	struct vc4_hdmi *vc4_hdmi = priv;
2496 	irqreturn_t ret;
2497 
2498 	spin_lock(&vc4_hdmi->hw_lock);
2499 	ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
2500 	spin_unlock(&vc4_hdmi->hw_lock);
2501 
2502 	return ret;
2503 }
2504 
2505 static irqreturn_t vc4_cec_irq_handler_rx_bare_locked(struct vc4_hdmi *vc4_hdmi)
2506 {
2507 	u32 cntrl1;
2508 
2509 	lockdep_assert_held(&vc4_hdmi->hw_lock);
2510 
2511 	/*
2512 	 * We don't need to protect the register access using
2513 	 * drm_dev_enter() there because the interrupt handler lifetime
2514 	 * is tied to the device itself, and not to the DRM device.
2515 	 *
2516 	 * So when the device will be gone, one of the first thing we
2517 	 * will be doing will be to unregister the interrupt handler,
2518 	 * and then unregister the DRM device. drm_dev_enter() would
2519 	 * thus always succeed if we are here.
2520 	 */
2521 
2522 	vc4_hdmi->cec_rx_msg.len = 0;
2523 	cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
2524 	vc4_cec_read_msg(vc4_hdmi, cntrl1);
2525 	cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
2526 	HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
2527 	cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
2528 
2529 	HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
2530 
2531 	return IRQ_WAKE_THREAD;
2532 }
2533 
2534 static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv)
2535 {
2536 	struct vc4_hdmi *vc4_hdmi = priv;
2537 	irqreturn_t ret;
2538 
2539 	spin_lock(&vc4_hdmi->hw_lock);
2540 	ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
2541 	spin_unlock(&vc4_hdmi->hw_lock);
2542 
2543 	return ret;
2544 }
2545 
2546 static irqreturn_t vc4_cec_irq_handler(int irq, void *priv)
2547 {
2548 	struct vc4_hdmi *vc4_hdmi = priv;
2549 	u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS);
2550 	irqreturn_t ret;
2551 	u32 cntrl5;
2552 
2553 	/*
2554 	 * We don't need to protect the register access using
2555 	 * drm_dev_enter() there because the interrupt handler lifetime
2556 	 * is tied to the device itself, and not to the DRM device.
2557 	 *
2558 	 * So when the device will be gone, one of the first thing we
2559 	 * will be doing will be to unregister the interrupt handler,
2560 	 * and then unregister the DRM device. drm_dev_enter() would
2561 	 * thus always succeed if we are here.
2562 	 */
2563 
2564 	if (!(stat & VC4_HDMI_CPU_CEC))
2565 		return IRQ_NONE;
2566 
2567 	spin_lock(&vc4_hdmi->hw_lock);
2568 	cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5);
2569 	vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT;
2570 	if (vc4_hdmi->cec_irq_was_rx)
2571 		ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
2572 	else
2573 		ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
2574 
2575 	HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC);
2576 	spin_unlock(&vc4_hdmi->hw_lock);
2577 
2578 	return ret;
2579 }
2580 
2581 static int vc4_hdmi_cec_enable(struct cec_adapter *adap)
2582 {
2583 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2584 	struct drm_device *drm = vc4_hdmi->connector.dev;
2585 	/* clock period in microseconds */
2586 	const u32 usecs = 1000000 / CEC_CLOCK_FREQ;
2587 	unsigned long flags;
2588 	u32 val;
2589 	int ret;
2590 	int idx;
2591 
2592 	if (!drm_dev_enter(drm, &idx))
2593 		/*
2594 		 * We can't return an error code, because the CEC
2595 		 * framework will emit WARN_ON messages at unbind
2596 		 * otherwise.
2597 		 */
2598 		return 0;
2599 
2600 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
2601 	if (ret) {
2602 		drm_dev_exit(idx);
2603 		return ret;
2604 	}
2605 
2606 	mutex_lock(&vc4_hdmi->mutex);
2607 
2608 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2609 
2610 	val = HDMI_READ(HDMI_CEC_CNTRL_5);
2611 	val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET |
2612 		 VC4_HDMI_CEC_CNT_TO_4700_US_MASK |
2613 		 VC4_HDMI_CEC_CNT_TO_4500_US_MASK);
2614 	val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) |
2615 	       ((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT);
2616 
2617 	HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
2618 		   VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
2619 	HDMI_WRITE(HDMI_CEC_CNTRL_5, val);
2620 	HDMI_WRITE(HDMI_CEC_CNTRL_2,
2621 		   ((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) |
2622 		   ((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) |
2623 		   ((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) |
2624 		   ((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) |
2625 		   ((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT));
2626 	HDMI_WRITE(HDMI_CEC_CNTRL_3,
2627 		   ((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) |
2628 		   ((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) |
2629 		   ((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) |
2630 		   ((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT));
2631 	HDMI_WRITE(HDMI_CEC_CNTRL_4,
2632 		   ((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) |
2633 		   ((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) |
2634 		   ((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) |
2635 		   ((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT));
2636 
2637 	if (!vc4_hdmi->variant->external_irq_controller)
2638 		HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC);
2639 
2640 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2641 
2642 	mutex_unlock(&vc4_hdmi->mutex);
2643 	drm_dev_exit(idx);
2644 
2645 	return 0;
2646 }
2647 
2648 static int vc4_hdmi_cec_disable(struct cec_adapter *adap)
2649 {
2650 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2651 	struct drm_device *drm = vc4_hdmi->connector.dev;
2652 	unsigned long flags;
2653 	int idx;
2654 
2655 	if (!drm_dev_enter(drm, &idx))
2656 		/*
2657 		 * We can't return an error code, because the CEC
2658 		 * framework will emit WARN_ON messages at unbind
2659 		 * otherwise.
2660 		 */
2661 		return 0;
2662 
2663 	mutex_lock(&vc4_hdmi->mutex);
2664 
2665 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2666 
2667 	if (!vc4_hdmi->variant->external_irq_controller)
2668 		HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC);
2669 
2670 	HDMI_WRITE(HDMI_CEC_CNTRL_5, HDMI_READ(HDMI_CEC_CNTRL_5) |
2671 		   VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
2672 
2673 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2674 
2675 	mutex_unlock(&vc4_hdmi->mutex);
2676 
2677 	pm_runtime_put(&vc4_hdmi->pdev->dev);
2678 
2679 	drm_dev_exit(idx);
2680 
2681 	return 0;
2682 }
2683 
2684 static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable)
2685 {
2686 	if (enable)
2687 		return vc4_hdmi_cec_enable(adap);
2688 	else
2689 		return vc4_hdmi_cec_disable(adap);
2690 }
2691 
2692 static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
2693 {
2694 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2695 	struct drm_device *drm = vc4_hdmi->connector.dev;
2696 	unsigned long flags;
2697 	int idx;
2698 
2699 	if (!drm_dev_enter(drm, &idx))
2700 		/*
2701 		 * We can't return an error code, because the CEC
2702 		 * framework will emit WARN_ON messages at unbind
2703 		 * otherwise.
2704 		 */
2705 		return 0;
2706 
2707 	mutex_lock(&vc4_hdmi->mutex);
2708 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2709 	HDMI_WRITE(HDMI_CEC_CNTRL_1,
2710 		   (HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) |
2711 		   (log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT);
2712 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2713 	mutex_unlock(&vc4_hdmi->mutex);
2714 
2715 	drm_dev_exit(idx);
2716 
2717 	return 0;
2718 }
2719 
2720 static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2721 				      u32 signal_free_time, struct cec_msg *msg)
2722 {
2723 	struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
2724 	struct drm_device *dev = vc4_hdmi->connector.dev;
2725 	unsigned long flags;
2726 	u32 val;
2727 	unsigned int i;
2728 	int idx;
2729 
2730 	if (!drm_dev_enter(dev, &idx))
2731 		return -ENODEV;
2732 
2733 	if (msg->len > 16) {
2734 		drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len);
2735 		drm_dev_exit(idx);
2736 		return -ENOMEM;
2737 	}
2738 
2739 	mutex_lock(&vc4_hdmi->mutex);
2740 
2741 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
2742 
2743 	for (i = 0; i < msg->len; i += 4)
2744 		HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2),
2745 			   (msg->msg[i]) |
2746 			   (msg->msg[i + 1] << 8) |
2747 			   (msg->msg[i + 2] << 16) |
2748 			   (msg->msg[i + 3] << 24));
2749 
2750 	val = HDMI_READ(HDMI_CEC_CNTRL_1);
2751 	val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
2752 	HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
2753 	val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK;
2754 	val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT;
2755 	val |= VC4_HDMI_CEC_START_XMIT_BEGIN;
2756 
2757 	HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
2758 
2759 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
2760 	mutex_unlock(&vc4_hdmi->mutex);
2761 	drm_dev_exit(idx);
2762 
2763 	return 0;
2764 }
2765 
2766 static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = {
2767 	.adap_enable = vc4_hdmi_cec_adap_enable,
2768 	.adap_log_addr = vc4_hdmi_cec_adap_log_addr,
2769 	.adap_transmit = vc4_hdmi_cec_adap_transmit,
2770 };
2771 
2772 static void vc4_hdmi_cec_release(void *ptr)
2773 {
2774 	struct vc4_hdmi *vc4_hdmi = ptr;
2775 
2776 	cec_unregister_adapter(vc4_hdmi->cec_adap);
2777 	vc4_hdmi->cec_adap = NULL;
2778 }
2779 
2780 static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
2781 {
2782 	struct cec_connector_info conn_info;
2783 	struct platform_device *pdev = vc4_hdmi->pdev;
2784 	struct device *dev = &pdev->dev;
2785 	int ret;
2786 
2787 	if (!of_property_present(dev->of_node, "interrupts")) {
2788 		dev_warn(dev, "'interrupts' DT property is missing, no CEC\n");
2789 		return 0;
2790 	}
2791 
2792 	vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops,
2793 						  vc4_hdmi,
2794 						  vc4_hdmi->variant->card_name,
2795 						  CEC_CAP_DEFAULTS |
2796 						  CEC_CAP_CONNECTOR_INFO, 1);
2797 	ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap);
2798 	if (ret < 0)
2799 		return ret;
2800 
2801 	cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector);
2802 	cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info);
2803 
2804 	if (vc4_hdmi->variant->external_irq_controller) {
2805 		ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-rx"),
2806 						vc4_cec_irq_handler_rx_bare,
2807 						vc4_cec_irq_handler_rx_thread, 0,
2808 						"vc4 hdmi cec rx", vc4_hdmi);
2809 		if (ret)
2810 			goto err_delete_cec_adap;
2811 
2812 		ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-tx"),
2813 						vc4_cec_irq_handler_tx_bare,
2814 						vc4_cec_irq_handler_tx_thread, 0,
2815 						"vc4 hdmi cec tx", vc4_hdmi);
2816 		if (ret)
2817 			goto err_delete_cec_adap;
2818 	} else {
2819 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
2820 						vc4_cec_irq_handler,
2821 						vc4_cec_irq_handler_thread, 0,
2822 						"vc4 hdmi cec", vc4_hdmi);
2823 		if (ret)
2824 			goto err_delete_cec_adap;
2825 	}
2826 
2827 	ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev);
2828 	if (ret < 0)
2829 		goto err_delete_cec_adap;
2830 
2831 	/*
2832 	 * NOTE: Strictly speaking, we should probably use a DRM-managed
2833 	 * registration there to avoid removing the CEC adapter by the
2834 	 * time the DRM driver doesn't have any user anymore.
2835 	 *
2836 	 * However, the CEC framework already cleans up the CEC adapter
2837 	 * only when the last user has closed its file descriptor, so we
2838 	 * don't need to handle it in DRM.
2839 	 *
2840 	 * By the time the device-managed hook is executed, we will give
2841 	 * up our reference to the CEC adapter and therefore don't
2842 	 * really care when it's actually freed.
2843 	 *
2844 	 * There's still a problematic sequence: if we unregister our
2845 	 * CEC adapter, but the userspace keeps a handle on the CEC
2846 	 * adapter but not the DRM device for some reason. In such a
2847 	 * case, our vc4_hdmi structure will be freed, but the
2848 	 * cec_adapter structure will have a dangling pointer to what
2849 	 * used to be our HDMI controller. If we get a CEC call at that
2850 	 * moment, we could end up with a use-after-free. Fortunately,
2851 	 * the CEC framework already handles this too, by calling
2852 	 * cec_is_registered() in cec_ioctl() and cec_poll().
2853 	 */
2854 	ret = devm_add_action_or_reset(dev, vc4_hdmi_cec_release, vc4_hdmi);
2855 	if (ret)
2856 		return ret;
2857 
2858 	return 0;
2859 
2860 err_delete_cec_adap:
2861 	cec_delete_adapter(vc4_hdmi->cec_adap);
2862 
2863 	return ret;
2864 }
2865 #else
2866 static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
2867 {
2868 	return 0;
2869 }
2870 #endif
2871 
2872 static void vc4_hdmi_free_regset(struct drm_device *drm, void *ptr)
2873 {
2874 	struct debugfs_reg32 *regs = ptr;
2875 
2876 	kfree(regs);
2877 }
2878 
2879 static int vc4_hdmi_build_regset(struct drm_device *drm,
2880 				 struct vc4_hdmi *vc4_hdmi,
2881 				 struct debugfs_regset32 *regset,
2882 				 enum vc4_hdmi_regs reg)
2883 {
2884 	const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
2885 	struct debugfs_reg32 *regs, *new_regs;
2886 	unsigned int count = 0;
2887 	unsigned int i;
2888 	int ret;
2889 
2890 	regs = kcalloc(variant->num_registers, sizeof(*regs),
2891 		       GFP_KERNEL);
2892 	if (!regs)
2893 		return -ENOMEM;
2894 
2895 	for (i = 0; i < variant->num_registers; i++) {
2896 		const struct vc4_hdmi_register *field =	&variant->registers[i];
2897 
2898 		if (field->reg != reg)
2899 			continue;
2900 
2901 		regs[count].name = field->name;
2902 		regs[count].offset = field->offset;
2903 		count++;
2904 	}
2905 
2906 	new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL);
2907 	if (!new_regs)
2908 		return -ENOMEM;
2909 
2910 	regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg);
2911 	regset->regs = new_regs;
2912 	regset->nregs = count;
2913 
2914 	ret = drmm_add_action_or_reset(drm, vc4_hdmi_free_regset, new_regs);
2915 	if (ret)
2916 		return ret;
2917 
2918 	return 0;
2919 }
2920 
2921 static int vc4_hdmi_init_resources(struct drm_device *drm,
2922 				   struct vc4_hdmi *vc4_hdmi)
2923 {
2924 	struct platform_device *pdev = vc4_hdmi->pdev;
2925 	struct device *dev = &pdev->dev;
2926 	int ret;
2927 
2928 	vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0);
2929 	if (IS_ERR(vc4_hdmi->hdmicore_regs))
2930 		return PTR_ERR(vc4_hdmi->hdmicore_regs);
2931 
2932 	vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1);
2933 	if (IS_ERR(vc4_hdmi->hd_regs))
2934 		return PTR_ERR(vc4_hdmi->hd_regs);
2935 
2936 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
2937 	if (ret)
2938 		return ret;
2939 
2940 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
2941 	if (ret)
2942 		return ret;
2943 
2944 	vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel");
2945 	if (IS_ERR(vc4_hdmi->pixel_clock)) {
2946 		ret = PTR_ERR(vc4_hdmi->pixel_clock);
2947 		if (ret != -EPROBE_DEFER)
2948 			DRM_ERROR("Failed to get pixel clock\n");
2949 		return ret;
2950 	}
2951 
2952 	vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
2953 	if (IS_ERR(vc4_hdmi->hsm_clock)) {
2954 		DRM_ERROR("Failed to get HDMI state machine clock\n");
2955 		return PTR_ERR(vc4_hdmi->hsm_clock);
2956 	}
2957 	vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock;
2958 	vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock;
2959 
2960 	return 0;
2961 }
2962 
2963 static int vc5_hdmi_init_resources(struct drm_device *drm,
2964 				   struct vc4_hdmi *vc4_hdmi)
2965 {
2966 	struct platform_device *pdev = vc4_hdmi->pdev;
2967 	struct device *dev = &pdev->dev;
2968 	struct resource *res;
2969 	int ret;
2970 
2971 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi");
2972 	if (!res)
2973 		return -ENODEV;
2974 
2975 	vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start,
2976 					       resource_size(res));
2977 	if (!vc4_hdmi->hdmicore_regs)
2978 		return -ENOMEM;
2979 
2980 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd");
2981 	if (!res)
2982 		return -ENODEV;
2983 
2984 	vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res));
2985 	if (!vc4_hdmi->hd_regs)
2986 		return -ENOMEM;
2987 
2988 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec");
2989 	if (!res)
2990 		return -ENODEV;
2991 
2992 	vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res));
2993 	if (!vc4_hdmi->cec_regs)
2994 		return -ENOMEM;
2995 
2996 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc");
2997 	if (!res)
2998 		return -ENODEV;
2999 
3000 	vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res));
3001 	if (!vc4_hdmi->csc_regs)
3002 		return -ENOMEM;
3003 
3004 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp");
3005 	if (!res)
3006 		return -ENODEV;
3007 
3008 	vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res));
3009 	if (!vc4_hdmi->dvp_regs)
3010 		return -ENOMEM;
3011 
3012 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
3013 	if (!res)
3014 		return -ENODEV;
3015 
3016 	vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res));
3017 	if (!vc4_hdmi->phy_regs)
3018 		return -ENOMEM;
3019 
3020 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet");
3021 	if (!res)
3022 		return -ENODEV;
3023 
3024 	vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res));
3025 	if (!vc4_hdmi->ram_regs)
3026 		return -ENOMEM;
3027 
3028 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm");
3029 	if (!res)
3030 		return -ENODEV;
3031 
3032 	vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res));
3033 	if (!vc4_hdmi->rm_regs)
3034 		return -ENOMEM;
3035 
3036 	vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
3037 	if (IS_ERR(vc4_hdmi->hsm_clock)) {
3038 		DRM_ERROR("Failed to get HDMI state machine clock\n");
3039 		return PTR_ERR(vc4_hdmi->hsm_clock);
3040 	}
3041 
3042 	vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb");
3043 	if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) {
3044 		DRM_ERROR("Failed to get pixel bvb clock\n");
3045 		return PTR_ERR(vc4_hdmi->pixel_bvb_clock);
3046 	}
3047 
3048 	vc4_hdmi->audio_clock = devm_clk_get(dev, "audio");
3049 	if (IS_ERR(vc4_hdmi->audio_clock)) {
3050 		DRM_ERROR("Failed to get audio clock\n");
3051 		return PTR_ERR(vc4_hdmi->audio_clock);
3052 	}
3053 
3054 	vc4_hdmi->cec_clock = devm_clk_get(dev, "cec");
3055 	if (IS_ERR(vc4_hdmi->cec_clock)) {
3056 		DRM_ERROR("Failed to get CEC clock\n");
3057 		return PTR_ERR(vc4_hdmi->cec_clock);
3058 	}
3059 
3060 	vc4_hdmi->reset = devm_reset_control_get(dev, NULL);
3061 	if (IS_ERR(vc4_hdmi->reset)) {
3062 		DRM_ERROR("Failed to get HDMI reset line\n");
3063 		return PTR_ERR(vc4_hdmi->reset);
3064 	}
3065 
3066 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
3067 	if (ret)
3068 		return ret;
3069 
3070 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
3071 	if (ret)
3072 		return ret;
3073 
3074 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->cec_regset, VC5_CEC);
3075 	if (ret)
3076 		return ret;
3077 
3078 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->csc_regset, VC5_CSC);
3079 	if (ret)
3080 		return ret;
3081 
3082 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->dvp_regset, VC5_DVP);
3083 	if (ret)
3084 		return ret;
3085 
3086 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->phy_regset, VC5_PHY);
3087 	if (ret)
3088 		return ret;
3089 
3090 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->ram_regset, VC5_RAM);
3091 	if (ret)
3092 		return ret;
3093 
3094 	ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->rm_regset, VC5_RM);
3095 	if (ret)
3096 		return ret;
3097 
3098 	return 0;
3099 }
3100 
3101 static int vc4_hdmi_runtime_suspend(struct device *dev)
3102 {
3103 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
3104 
3105 	clk_disable_unprepare(vc4_hdmi->hsm_clock);
3106 
3107 	return 0;
3108 }
3109 
3110 static int vc4_hdmi_runtime_resume(struct device *dev)
3111 {
3112 	struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
3113 	unsigned long __maybe_unused flags;
3114 	u32 __maybe_unused value;
3115 	unsigned long rate;
3116 	int ret;
3117 
3118 	ret = clk_prepare_enable(vc4_hdmi->hsm_clock);
3119 	if (ret)
3120 		return ret;
3121 
3122 	/*
3123 	 * Whenever the RaspberryPi boots without an HDMI monitor
3124 	 * plugged in, the firmware won't have initialized the HSM clock
3125 	 * rate and it will be reported as 0.
3126 	 *
3127 	 * If we try to access a register of the controller in such a
3128 	 * case, it will lead to a silent CPU stall. Let's make sure we
3129 	 * prevent such a case.
3130 	 */
3131 	rate = clk_get_rate(vc4_hdmi->hsm_clock);
3132 	if (!rate) {
3133 		ret = -EINVAL;
3134 		goto err_disable_clk;
3135 	}
3136 
3137 	if (vc4_hdmi->variant->reset)
3138 		vc4_hdmi->variant->reset(vc4_hdmi);
3139 
3140 #ifdef CONFIG_DRM_VC4_HDMI_CEC
3141 	spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
3142 	value = HDMI_READ(HDMI_CEC_CNTRL_1);
3143 	/* Set the logical address to Unregistered */
3144 	value |= VC4_HDMI_CEC_ADDR_MASK;
3145 	HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
3146 	spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
3147 
3148 	vc4_hdmi_cec_update_clk_div(vc4_hdmi);
3149 
3150 	if (!vc4_hdmi->variant->external_irq_controller) {
3151 		spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
3152 		HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff);
3153 		spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
3154 	}
3155 #endif
3156 
3157 	return 0;
3158 
3159 err_disable_clk:
3160 	clk_disable_unprepare(vc4_hdmi->hsm_clock);
3161 	return ret;
3162 }
3163 
3164 static void vc4_hdmi_put_ddc_device(void *ptr)
3165 {
3166 	struct vc4_hdmi *vc4_hdmi = ptr;
3167 
3168 	put_device(&vc4_hdmi->ddc->dev);
3169 }
3170 
3171 static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data)
3172 {
3173 	const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev);
3174 	struct platform_device *pdev = to_platform_device(dev);
3175 	struct drm_device *drm = dev_get_drvdata(master);
3176 	struct vc4_hdmi *vc4_hdmi;
3177 	struct drm_encoder *encoder;
3178 	struct device_node *ddc_node;
3179 	int ret;
3180 
3181 	vc4_hdmi = drmm_kzalloc(drm, sizeof(*vc4_hdmi), GFP_KERNEL);
3182 	if (!vc4_hdmi)
3183 		return -ENOMEM;
3184 
3185 	ret = drmm_mutex_init(drm, &vc4_hdmi->mutex);
3186 	if (ret)
3187 		return ret;
3188 
3189 	spin_lock_init(&vc4_hdmi->hw_lock);
3190 	INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq);
3191 
3192 	dev_set_drvdata(dev, vc4_hdmi);
3193 	encoder = &vc4_hdmi->encoder.base;
3194 	vc4_hdmi->encoder.type = variant->encoder_type;
3195 	vc4_hdmi->encoder.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure;
3196 	vc4_hdmi->encoder.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable;
3197 	vc4_hdmi->encoder.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable;
3198 	vc4_hdmi->encoder.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable;
3199 	vc4_hdmi->encoder.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown;
3200 	vc4_hdmi->pdev = pdev;
3201 	vc4_hdmi->variant = variant;
3202 
3203 	/*
3204 	 * Since we don't know the state of the controller and its
3205 	 * display (if any), let's assume it's always enabled.
3206 	 * vc4_hdmi_disable_scrambling() will thus run at boot, make
3207 	 * sure it's disabled, and avoid any inconsistency.
3208 	 */
3209 	if (variant->max_pixel_clock > HDMI_14_MAX_TMDS_CLK)
3210 		vc4_hdmi->scdc_enabled = true;
3211 
3212 	ret = variant->init_resources(drm, vc4_hdmi);
3213 	if (ret)
3214 		return ret;
3215 
3216 	ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
3217 	if (!ddc_node) {
3218 		DRM_ERROR("Failed to find ddc node in device tree\n");
3219 		return -ENODEV;
3220 	}
3221 
3222 	vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node);
3223 	of_node_put(ddc_node);
3224 	if (!vc4_hdmi->ddc) {
3225 		DRM_DEBUG("Failed to get ddc i2c adapter by node\n");
3226 		return -EPROBE_DEFER;
3227 	}
3228 
3229 	ret = devm_add_action_or_reset(dev, vc4_hdmi_put_ddc_device, vc4_hdmi);
3230 	if (ret)
3231 		return ret;
3232 
3233 	/* Only use the GPIO HPD pin if present in the DT, otherwise
3234 	 * we'll use the HDMI core's register.
3235 	 */
3236 	vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN);
3237 	if (IS_ERR(vc4_hdmi->hpd_gpio)) {
3238 		return PTR_ERR(vc4_hdmi->hpd_gpio);
3239 	}
3240 
3241 	vc4_hdmi->disable_wifi_frequencies =
3242 		of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence");
3243 
3244 	ret = devm_pm_runtime_enable(dev);
3245 	if (ret)
3246 		return ret;
3247 
3248 	/*
3249 	 *  We need to have the device powered up at this point to call
3250 	 *  our reset hook and for the CEC init.
3251 	 */
3252 	ret = pm_runtime_resume_and_get(dev);
3253 	if (ret)
3254 		return ret;
3255 
3256 	if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") ||
3257 	     of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1")) &&
3258 	    HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) {
3259 		clk_prepare_enable(vc4_hdmi->pixel_clock);
3260 		clk_prepare_enable(vc4_hdmi->hsm_clock);
3261 		clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
3262 	}
3263 
3264 	ret = drmm_encoder_init(drm, encoder,
3265 				&vc4_hdmi_encoder_funcs,
3266 				DRM_MODE_ENCODER_TMDS,
3267 				NULL);
3268 	if (ret)
3269 		goto err_put_runtime_pm;
3270 
3271 	drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs);
3272 
3273 	ret = vc4_hdmi_connector_init(drm, vc4_hdmi);
3274 	if (ret)
3275 		goto err_put_runtime_pm;
3276 
3277 	ret = vc4_hdmi_hotplug_init(vc4_hdmi);
3278 	if (ret)
3279 		goto err_put_runtime_pm;
3280 
3281 	ret = vc4_hdmi_cec_init(vc4_hdmi);
3282 	if (ret)
3283 		goto err_put_runtime_pm;
3284 
3285 	ret = vc4_hdmi_audio_init(vc4_hdmi);
3286 	if (ret)
3287 		goto err_put_runtime_pm;
3288 
3289 	pm_runtime_put_sync(dev);
3290 
3291 	return 0;
3292 
3293 err_put_runtime_pm:
3294 	pm_runtime_put_sync(dev);
3295 
3296 	return ret;
3297 }
3298 
3299 static const struct component_ops vc4_hdmi_ops = {
3300 	.bind   = vc4_hdmi_bind,
3301 };
3302 
3303 static int vc4_hdmi_dev_probe(struct platform_device *pdev)
3304 {
3305 	return component_add(&pdev->dev, &vc4_hdmi_ops);
3306 }
3307 
3308 static void vc4_hdmi_dev_remove(struct platform_device *pdev)
3309 {
3310 	component_del(&pdev->dev, &vc4_hdmi_ops);
3311 }
3312 
3313 static const struct vc4_hdmi_variant bcm2835_variant = {
3314 	.encoder_type		= VC4_ENCODER_TYPE_HDMI0,
3315 	.debugfs_name		= "hdmi_regs",
3316 	.card_name		= "vc4-hdmi",
3317 	.max_pixel_clock	= 162000000,
3318 	.registers		= vc4_hdmi_fields,
3319 	.num_registers		= ARRAY_SIZE(vc4_hdmi_fields),
3320 
3321 	.init_resources		= vc4_hdmi_init_resources,
3322 	.csc_setup		= vc4_hdmi_csc_setup,
3323 	.reset			= vc4_hdmi_reset,
3324 	.set_timings		= vc4_hdmi_set_timings,
3325 	.phy_init		= vc4_hdmi_phy_init,
3326 	.phy_disable		= vc4_hdmi_phy_disable,
3327 	.phy_rng_enable		= vc4_hdmi_phy_rng_enable,
3328 	.phy_rng_disable	= vc4_hdmi_phy_rng_disable,
3329 	.channel_map		= vc4_hdmi_channel_map,
3330 	.supports_hdr		= false,
3331 };
3332 
3333 static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = {
3334 	.encoder_type		= VC4_ENCODER_TYPE_HDMI0,
3335 	.debugfs_name		= "hdmi0_regs",
3336 	.card_name		= "vc4-hdmi-0",
3337 	.max_pixel_clock	= 600000000,
3338 	.registers		= vc5_hdmi_hdmi0_fields,
3339 	.num_registers		= ARRAY_SIZE(vc5_hdmi_hdmi0_fields),
3340 	.phy_lane_mapping	= {
3341 		PHY_LANE_0,
3342 		PHY_LANE_1,
3343 		PHY_LANE_2,
3344 		PHY_LANE_CK,
3345 	},
3346 	.unsupported_odd_h_timings	= true,
3347 	.external_irq_controller	= true,
3348 
3349 	.init_resources		= vc5_hdmi_init_resources,
3350 	.csc_setup		= vc5_hdmi_csc_setup,
3351 	.reset			= vc5_hdmi_reset,
3352 	.set_timings		= vc5_hdmi_set_timings,
3353 	.phy_init		= vc5_hdmi_phy_init,
3354 	.phy_disable		= vc5_hdmi_phy_disable,
3355 	.phy_rng_enable		= vc5_hdmi_phy_rng_enable,
3356 	.phy_rng_disable	= vc5_hdmi_phy_rng_disable,
3357 	.channel_map		= vc5_hdmi_channel_map,
3358 	.supports_hdr		= true,
3359 	.hp_detect		= vc5_hdmi_hp_detect,
3360 };
3361 
3362 static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = {
3363 	.encoder_type		= VC4_ENCODER_TYPE_HDMI1,
3364 	.debugfs_name		= "hdmi1_regs",
3365 	.card_name		= "vc4-hdmi-1",
3366 	.max_pixel_clock	= HDMI_14_MAX_TMDS_CLK,
3367 	.registers		= vc5_hdmi_hdmi1_fields,
3368 	.num_registers		= ARRAY_SIZE(vc5_hdmi_hdmi1_fields),
3369 	.phy_lane_mapping	= {
3370 		PHY_LANE_1,
3371 		PHY_LANE_0,
3372 		PHY_LANE_CK,
3373 		PHY_LANE_2,
3374 	},
3375 	.unsupported_odd_h_timings	= true,
3376 	.external_irq_controller	= true,
3377 
3378 	.init_resources		= vc5_hdmi_init_resources,
3379 	.csc_setup		= vc5_hdmi_csc_setup,
3380 	.reset			= vc5_hdmi_reset,
3381 	.set_timings		= vc5_hdmi_set_timings,
3382 	.phy_init		= vc5_hdmi_phy_init,
3383 	.phy_disable		= vc5_hdmi_phy_disable,
3384 	.phy_rng_enable		= vc5_hdmi_phy_rng_enable,
3385 	.phy_rng_disable	= vc5_hdmi_phy_rng_disable,
3386 	.channel_map		= vc5_hdmi_channel_map,
3387 	.supports_hdr		= true,
3388 	.hp_detect		= vc5_hdmi_hp_detect,
3389 };
3390 
3391 static const struct of_device_id vc4_hdmi_dt_match[] = {
3392 	{ .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant },
3393 	{ .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant },
3394 	{ .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant },
3395 	{}
3396 };
3397 
3398 static const struct dev_pm_ops vc4_hdmi_pm_ops = {
3399 	SET_RUNTIME_PM_OPS(vc4_hdmi_runtime_suspend,
3400 			   vc4_hdmi_runtime_resume,
3401 			   NULL)
3402 };
3403 
3404 struct platform_driver vc4_hdmi_driver = {
3405 	.probe = vc4_hdmi_dev_probe,
3406 	.remove_new = vc4_hdmi_dev_remove,
3407 	.driver = {
3408 		.name = "vc4_hdmi",
3409 		.of_match_table = vc4_hdmi_dt_match,
3410 		.pm = &vc4_hdmi_pm_ops,
3411 	},
3412 };
3413