1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 * Copyright (c) 2014 The Linux Foundation. All rights reserved. 5 * Copyright (C) 2013 Red Hat 6 * Author: Rob Clark <robdclark@gmail.com> 7 */ 8 9 /** 10 * DOC: VC4 Falcon HDMI module 11 * 12 * The HDMI core has a state machine and a PHY. On BCM2835, most of 13 * the unit operates off of the HSM clock from CPRMAN. It also 14 * internally uses the PLLH_PIX clock for the PHY. 15 * 16 * HDMI infoframes are kept within a small packet ram, where each 17 * packet can be individually enabled for including in a frame. 18 * 19 * HDMI audio is implemented entirely within the HDMI IP block. A 20 * register in the HDMI encoder takes SPDIF frames from the DMA engine 21 * and transfers them over an internal MAI (multi-channel audio 22 * interconnect) bus to the encoder side for insertion into the video 23 * blank regions. 24 * 25 * The driver's HDMI encoder does not yet support power management. 26 * The HDMI encoder's power domain and the HSM/pixel clocks are kept 27 * continuously running, and only the HDMI logic and packet ram are 28 * powered off/on at disable/enable time. 29 * 30 * The driver does not yet support CEC control, though the HDMI 31 * encoder block has CEC support. 32 */ 33 34 #include <drm/display/drm_hdmi_audio_helper.h> 35 #include <drm/display/drm_hdmi_helper.h> 36 #include <drm/display/drm_hdmi_state_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic_helper.h> 39 #include <drm/drm_drv.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_probe_helper.h> 42 #include <drm/drm_simple_kms_helper.h> 43 #include <linux/clk.h> 44 #include <linux/component.h> 45 #include <linux/gpio/consumer.h> 46 #include <linux/i2c.h> 47 #include <linux/of.h> 48 #include <linux/of_address.h> 49 #include <linux/pm_runtime.h> 50 #include <linux/rational.h> 51 #include <linux/reset.h> 52 #include <sound/dmaengine_pcm.h> 53 #include <sound/hdmi-codec.h> 54 #include <sound/jack.h> 55 #include <sound/pcm_drm_eld.h> 56 #include <sound/pcm_params.h> 57 #include <sound/soc.h> 58 #include "media/cec.h" 59 #include "vc4_drv.h" 60 #include "vc4_hdmi.h" 61 #include "vc4_hdmi_regs.h" 62 #include "vc4_regs.h" 63 64 #define VC5_HDMI_HORZA_HFP_SHIFT 16 65 #define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16) 66 #define VC5_HDMI_HORZA_VPOS BIT(15) 67 #define VC5_HDMI_HORZA_HPOS BIT(14) 68 #define VC5_HDMI_HORZA_HAP_SHIFT 0 69 #define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0) 70 71 #define VC5_HDMI_HORZB_HBP_SHIFT 16 72 #define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16) 73 #define VC5_HDMI_HORZB_HSP_SHIFT 0 74 #define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0) 75 76 #define VC5_HDMI_VERTA_VSP_SHIFT 24 77 #define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24) 78 #define VC5_HDMI_VERTA_VFP_SHIFT 16 79 #define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16) 80 #define VC5_HDMI_VERTA_VAL_SHIFT 0 81 #define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0) 82 83 #define VC5_HDMI_VERTB_VSPO_SHIFT 16 84 #define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16) 85 86 #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0 87 #define VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0) 88 #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0 89 #define VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0) 90 91 #define VC5_HDMI_SCRAMBLER_CTL_ENABLE BIT(0) 92 93 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT 8 94 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK VC4_MASK(10, 8) 95 96 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT 0 97 #define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK VC4_MASK(3, 0) 98 99 #define VC5_HDMI_GCP_CONFIG_GCP_ENABLE BIT(31) 100 101 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT 8 102 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK VC4_MASK(15, 8) 103 104 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK VC4_MASK(7, 0) 105 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_SET_AVMUTE BIT(0) 106 #define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE BIT(4) 107 108 # define VC4_HD_M_SW_RST BIT(2) 109 # define VC4_HD_M_ENABLE BIT(0) 110 111 #define HSM_MIN_CLOCK_FREQ 120000000 112 #define CEC_CLOCK_FREQ 40000 113 114 #define HDMI_14_MAX_TMDS_CLK (340 * 1000 * 1000) 115 116 static bool vc4_hdmi_supports_scrambling(struct vc4_hdmi *vc4_hdmi) 117 { 118 struct drm_display_info *display = &vc4_hdmi->connector.display_info; 119 120 lockdep_assert_held(&vc4_hdmi->mutex); 121 122 if (!display->is_hdmi) 123 return false; 124 125 if (!display->hdmi.scdc.supported || 126 !display->hdmi.scdc.scrambling.supported) 127 return false; 128 129 return true; 130 } 131 132 static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode, 133 unsigned int bpc, 134 enum hdmi_colorspace fmt) 135 { 136 unsigned long long clock = drm_hdmi_compute_mode_clock(mode, bpc, fmt); 137 138 return clock > HDMI_14_MAX_TMDS_CLK; 139 } 140 141 static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused) 142 { 143 struct drm_debugfs_entry *entry = m->private; 144 struct vc4_hdmi *vc4_hdmi = entry->file.data; 145 struct drm_device *drm = vc4_hdmi->connector.dev; 146 struct drm_printer p = drm_seq_file_printer(m); 147 int idx; 148 149 if (!drm_dev_enter(drm, &idx)) 150 return -ENODEV; 151 152 WARN_ON(pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev)); 153 154 drm_print_regset32(&p, &vc4_hdmi->hdmi_regset); 155 drm_print_regset32(&p, &vc4_hdmi->hd_regset); 156 drm_print_regset32(&p, &vc4_hdmi->cec_regset); 157 drm_print_regset32(&p, &vc4_hdmi->csc_regset); 158 drm_print_regset32(&p, &vc4_hdmi->dvp_regset); 159 drm_print_regset32(&p, &vc4_hdmi->phy_regset); 160 drm_print_regset32(&p, &vc4_hdmi->ram_regset); 161 drm_print_regset32(&p, &vc4_hdmi->rm_regset); 162 163 pm_runtime_put(&vc4_hdmi->pdev->dev); 164 165 drm_dev_exit(idx); 166 167 return 0; 168 } 169 170 static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi) 171 { 172 struct drm_device *drm = vc4_hdmi->connector.dev; 173 unsigned long flags; 174 int idx; 175 176 /* 177 * We can be called by our bind callback, when the 178 * connector->dev pointer might not be initialised yet. 179 */ 180 if (drm && !drm_dev_enter(drm, &idx)) 181 return; 182 183 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 184 185 HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST); 186 udelay(1); 187 HDMI_WRITE(HDMI_M_CTL, 0); 188 189 HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE); 190 191 HDMI_WRITE(HDMI_SW_RESET_CONTROL, 192 VC4_HDMI_SW_RESET_HDMI | 193 VC4_HDMI_SW_RESET_FORMAT_DETECT); 194 195 HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0); 196 197 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 198 199 if (drm) 200 drm_dev_exit(idx); 201 } 202 203 static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi) 204 { 205 struct drm_device *drm = vc4_hdmi->connector.dev; 206 unsigned long flags; 207 int idx; 208 209 /* 210 * We can be called by our bind callback, when the 211 * connector->dev pointer might not be initialised yet. 212 */ 213 if (drm && !drm_dev_enter(drm, &idx)) 214 return; 215 216 reset_control_reset(vc4_hdmi->reset); 217 218 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 219 220 HDMI_WRITE(HDMI_DVP_CTL, 0); 221 222 HDMI_WRITE(HDMI_CLOCK_STOP, 223 HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL); 224 225 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 226 227 if (drm) 228 drm_dev_exit(idx); 229 } 230 231 #ifdef CONFIG_DRM_VC4_HDMI_CEC 232 static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) 233 { 234 struct drm_device *drm = vc4_hdmi->connector.dev; 235 unsigned long cec_rate; 236 unsigned long flags; 237 u16 clk_cnt; 238 u32 value; 239 int idx; 240 241 /* 242 * This function is called by our runtime_resume implementation 243 * and thus at bind time, when we haven't registered our 244 * connector yet and thus don't have a pointer to the DRM 245 * device. 246 */ 247 if (drm && !drm_dev_enter(drm, &idx)) 248 return; 249 250 cec_rate = clk_get_rate(vc4_hdmi->cec_clock); 251 252 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 253 254 value = HDMI_READ(HDMI_CEC_CNTRL_1); 255 value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK; 256 257 /* 258 * Set the clock divider: the hsm_clock rate and this divider 259 * setting will give a 40 kHz CEC clock. 260 */ 261 clk_cnt = cec_rate / CEC_CLOCK_FREQ; 262 value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT; 263 HDMI_WRITE(HDMI_CEC_CNTRL_1, value); 264 265 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 266 267 if (drm) 268 drm_dev_exit(idx); 269 } 270 #else 271 static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {} 272 #endif 273 274 static int vc4_hdmi_reset_link(struct drm_connector *connector, 275 struct drm_modeset_acquire_ctx *ctx) 276 { 277 struct drm_device *drm; 278 struct vc4_hdmi *vc4_hdmi; 279 struct drm_connector_state *conn_state; 280 struct drm_crtc_state *crtc_state; 281 struct drm_crtc *crtc; 282 bool scrambling_needed; 283 u8 config; 284 int ret; 285 286 if (!connector) 287 return 0; 288 289 drm = connector->dev; 290 ret = drm_modeset_lock(&drm->mode_config.connection_mutex, ctx); 291 if (ret) 292 return ret; 293 294 conn_state = connector->state; 295 crtc = conn_state->crtc; 296 if (!crtc) 297 return 0; 298 299 ret = drm_modeset_lock(&crtc->mutex, ctx); 300 if (ret) 301 return ret; 302 303 crtc_state = crtc->state; 304 if (!crtc_state->active) 305 return 0; 306 307 vc4_hdmi = connector_to_vc4_hdmi(connector); 308 mutex_lock(&vc4_hdmi->mutex); 309 310 if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) { 311 mutex_unlock(&vc4_hdmi->mutex); 312 return 0; 313 } 314 315 scrambling_needed = vc4_hdmi_mode_needs_scrambling(&vc4_hdmi->saved_adjusted_mode, 316 vc4_hdmi->output_bpc, 317 vc4_hdmi->output_format); 318 if (!scrambling_needed) { 319 mutex_unlock(&vc4_hdmi->mutex); 320 return 0; 321 } 322 323 if (conn_state->commit && 324 !try_wait_for_completion(&conn_state->commit->hw_done)) { 325 mutex_unlock(&vc4_hdmi->mutex); 326 return 0; 327 } 328 329 ret = drm_scdc_readb(connector->ddc, SCDC_TMDS_CONFIG, &config); 330 if (ret < 0) { 331 drm_err(drm, "Failed to read TMDS config: %d\n", ret); 332 mutex_unlock(&vc4_hdmi->mutex); 333 return 0; 334 } 335 336 if (!!(config & SCDC_SCRAMBLING_ENABLE) == scrambling_needed) { 337 mutex_unlock(&vc4_hdmi->mutex); 338 return 0; 339 } 340 341 mutex_unlock(&vc4_hdmi->mutex); 342 343 /* 344 * HDMI 2.0 says that one should not send scrambled data 345 * prior to configuring the sink scrambling, and that 346 * TMDS clock/data transmission should be suspended when 347 * changing the TMDS clock rate in the sink. So let's 348 * just do a full modeset here, even though some sinks 349 * would be perfectly happy if were to just reconfigure 350 * the SCDC settings on the fly. 351 */ 352 return drm_atomic_helper_reset_crtc(crtc, ctx); 353 } 354 355 static void vc4_hdmi_handle_hotplug(struct vc4_hdmi *vc4_hdmi, 356 struct drm_modeset_acquire_ctx *ctx, 357 enum drm_connector_status status) 358 { 359 struct drm_connector *connector = &vc4_hdmi->connector; 360 int ret; 361 362 /* 363 * NOTE: This function should really be called with vc4_hdmi->mutex 364 * held, but doing so results in reentrancy issues since 365 * cec_s_phys_addr() might call .adap_enable, which leads to that 366 * funtion being called with our mutex held. 367 * 368 * A similar situation occurs with vc4_hdmi_reset_link() that 369 * will call into our KMS hooks if the scrambling was enabled. 370 * 371 * Concurrency isn't an issue at the moment since we don't share 372 * any state with any of the other frameworks so we can ignore 373 * the lock for now. 374 */ 375 376 drm_atomic_helper_connector_hdmi_hotplug(connector, status); 377 378 if (status == connector_status_disconnected) { 379 cec_phys_addr_invalidate(vc4_hdmi->cec_adap); 380 return; 381 } 382 383 cec_s_phys_addr(vc4_hdmi->cec_adap, 384 connector->display_info.source_physical_address, false); 385 386 if (status != connector_status_connected) 387 return; 388 389 for (;;) { 390 ret = vc4_hdmi_reset_link(connector, ctx); 391 if (ret == -EDEADLK) { 392 drm_modeset_backoff(ctx); 393 continue; 394 } 395 396 break; 397 } 398 } 399 400 static int vc4_hdmi_connector_detect_ctx(struct drm_connector *connector, 401 struct drm_modeset_acquire_ctx *ctx, 402 bool force) 403 { 404 struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); 405 enum drm_connector_status status = connector_status_disconnected; 406 int ret; 407 408 /* 409 * NOTE: This function should really take vc4_hdmi->mutex, but 410 * doing so results in reentrancy issues since 411 * vc4_hdmi_handle_hotplug() can call into other functions that 412 * would take the mutex while it's held here. 413 * 414 * Concurrency isn't an issue at the moment since we don't share 415 * any state with any of the other frameworks so we can ignore 416 * the lock for now. 417 */ 418 419 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); 420 if (ret) { 421 drm_err_once(connector->dev, "Failed to retain HDMI power domain: %d\n", 422 ret); 423 return connector_status_unknown; 424 } 425 426 if (vc4_hdmi->hpd_gpio) { 427 if (gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio)) 428 status = connector_status_connected; 429 } else { 430 if (vc4_hdmi->variant->hp_detect && 431 vc4_hdmi->variant->hp_detect(vc4_hdmi)) 432 status = connector_status_connected; 433 } 434 435 vc4_hdmi_handle_hotplug(vc4_hdmi, ctx, status); 436 pm_runtime_put(&vc4_hdmi->pdev->dev); 437 438 return status; 439 } 440 441 static int vc4_hdmi_connector_get_modes(struct drm_connector *connector) 442 { 443 struct vc4_dev *vc4 = to_vc4_dev(connector->dev); 444 int ret = 0; 445 446 ret = drm_edid_connector_add_modes(connector); 447 448 if (!vc4->hvs->vc5_hdmi_enable_hdmi_20) { 449 struct drm_device *drm = connector->dev; 450 const struct drm_display_mode *mode; 451 452 list_for_each_entry(mode, &connector->probed_modes, head) { 453 if (vc4_hdmi_mode_needs_scrambling(mode, 8, HDMI_COLORSPACE_RGB)) { 454 drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz."); 455 drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60."); 456 } 457 } 458 } 459 460 return ret; 461 } 462 463 static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector, 464 struct drm_atomic_state *state) 465 { 466 struct drm_connector_state *old_state = 467 drm_atomic_get_old_connector_state(state, connector); 468 struct drm_connector_state *new_state = 469 drm_atomic_get_new_connector_state(state, connector); 470 struct drm_crtc *crtc = new_state->crtc; 471 472 if (!crtc) 473 return 0; 474 475 if (old_state->tv.margins.left != new_state->tv.margins.left || 476 old_state->tv.margins.right != new_state->tv.margins.right || 477 old_state->tv.margins.top != new_state->tv.margins.top || 478 old_state->tv.margins.bottom != new_state->tv.margins.bottom) { 479 struct drm_crtc_state *crtc_state; 480 int ret; 481 482 crtc_state = drm_atomic_get_crtc_state(state, crtc); 483 if (IS_ERR(crtc_state)) 484 return PTR_ERR(crtc_state); 485 486 /* 487 * Strictly speaking, we should be calling 488 * drm_atomic_helper_check_planes() after our call to 489 * drm_atomic_add_affected_planes(). However, the 490 * connector atomic_check is called as part of 491 * drm_atomic_helper_check_modeset() that already 492 * happens before a call to 493 * drm_atomic_helper_check_planes() in 494 * drm_atomic_helper_check(). 495 */ 496 ret = drm_atomic_add_affected_planes(state, crtc); 497 if (ret) 498 return ret; 499 } 500 501 if (old_state->colorspace != new_state->colorspace) { 502 struct drm_crtc_state *crtc_state; 503 504 crtc_state = drm_atomic_get_crtc_state(state, crtc); 505 if (IS_ERR(crtc_state)) 506 return PTR_ERR(crtc_state); 507 508 crtc_state->mode_changed = true; 509 } 510 511 return drm_atomic_helper_connector_hdmi_check(connector, state); 512 } 513 514 static void vc4_hdmi_connector_reset(struct drm_connector *connector) 515 { 516 drm_atomic_helper_connector_reset(connector); 517 __drm_atomic_helper_connector_hdmi_reset(connector, connector->state); 518 drm_atomic_helper_connector_tv_margins_reset(connector); 519 } 520 521 static const struct drm_connector_funcs vc4_hdmi_connector_funcs = { 522 .force = drm_atomic_helper_connector_hdmi_force, 523 .fill_modes = drm_helper_probe_single_connector_modes, 524 .reset = vc4_hdmi_connector_reset, 525 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 526 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 527 }; 528 529 static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = { 530 .detect_ctx = vc4_hdmi_connector_detect_ctx, 531 .get_modes = vc4_hdmi_connector_get_modes, 532 .atomic_check = vc4_hdmi_connector_atomic_check, 533 .mode_valid = drm_hdmi_connector_mode_valid, 534 }; 535 536 static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs; 537 static const struct drm_connector_hdmi_audio_funcs vc4_hdmi_audio_funcs; 538 539 static int vc4_hdmi_connector_init(struct drm_device *dev, 540 struct vc4_hdmi *vc4_hdmi) 541 { 542 struct drm_connector *connector = &vc4_hdmi->connector; 543 struct drm_encoder *encoder = &vc4_hdmi->encoder.base; 544 unsigned int max_bpc = 8; 545 int ret; 546 547 if (vc4_hdmi->variant->supports_hdr) 548 max_bpc = 12; 549 550 ret = drmm_connector_hdmi_init(dev, connector, 551 "Broadcom", "Videocore", 552 &vc4_hdmi_connector_funcs, 553 &vc4_hdmi_hdmi_connector_funcs, 554 DRM_MODE_CONNECTOR_HDMIA, 555 vc4_hdmi->ddc, 556 BIT(HDMI_COLORSPACE_RGB) | 557 BIT(HDMI_COLORSPACE_YUV422) | 558 BIT(HDMI_COLORSPACE_YUV444), 559 max_bpc); 560 if (ret) 561 return ret; 562 563 ret = drm_connector_hdmi_audio_init(connector, dev->dev, 564 &vc4_hdmi_audio_funcs, 565 8, 0, false, -1); 566 if (ret) 567 return ret; 568 569 drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs); 570 571 /* 572 * Some of the properties below require access to state, like bpc. 573 * Allocate some default initial connector state with our reset helper. 574 */ 575 if (connector->funcs->reset) 576 connector->funcs->reset(connector); 577 578 /* Create and attach TV margin props to this connector. */ 579 ret = drm_mode_create_tv_margin_properties(dev); 580 if (ret) 581 return ret; 582 583 ret = drm_mode_create_hdmi_colorspace_property(connector, 0); 584 if (ret) 585 return ret; 586 587 drm_connector_attach_colorspace_property(connector); 588 drm_connector_attach_tv_margin_properties(connector); 589 590 connector->polled = (DRM_CONNECTOR_POLL_CONNECT | 591 DRM_CONNECTOR_POLL_DISCONNECT); 592 593 connector->interlace_allowed = 1; 594 connector->doublescan_allowed = 0; 595 connector->stereo_allowed = 1; 596 597 ret = drm_connector_attach_broadcast_rgb_property(connector); 598 if (ret) 599 return ret; 600 601 drm_connector_attach_encoder(connector, encoder); 602 603 return 0; 604 } 605 606 static int vc4_hdmi_stop_packet(struct vc4_hdmi *vc4_hdmi, 607 enum hdmi_infoframe_type type, 608 bool poll) 609 { 610 struct drm_device *drm = vc4_hdmi->connector.dev; 611 u32 packet_id = type - 0x80; 612 unsigned long flags; 613 int ret = 0; 614 int idx; 615 616 if (!drm_dev_enter(drm, &idx)) 617 return -ENODEV; 618 619 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 620 HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 621 HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id)); 622 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 623 624 if (poll) { 625 ret = wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) & 626 BIT(packet_id)), 100); 627 } 628 629 drm_dev_exit(idx); 630 return ret; 631 } 632 633 static int vc4_hdmi_write_infoframe(struct drm_connector *connector, 634 enum hdmi_infoframe_type type, 635 const u8 *infoframe, size_t len) 636 { 637 struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); 638 struct drm_device *drm = connector->dev; 639 u32 packet_id = type - 0x80; 640 const struct vc4_hdmi_register *ram_packet_start = 641 &vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START]; 642 u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id; 643 u32 packet_reg_next = ram_packet_start->offset + 644 VC4_HDMI_PACKET_STRIDE * (packet_id + 1); 645 void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi, 646 ram_packet_start->reg); 647 uint8_t buffer[VC4_HDMI_PACKET_STRIDE] = {}; 648 unsigned long flags; 649 ssize_t i; 650 int ret; 651 int idx; 652 653 if (!drm_dev_enter(drm, &idx)) 654 return 0; 655 656 if (len > sizeof(buffer)) { 657 ret = -ENOMEM; 658 goto out; 659 } 660 661 memcpy(buffer, infoframe, len); 662 663 WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) & 664 VC4_HDMI_RAM_PACKET_ENABLE), 665 "Packet RAM has to be on to store the packet."); 666 667 ret = vc4_hdmi_stop_packet(vc4_hdmi, type, true); 668 if (ret) { 669 drm_err(drm, "Failed to wait for infoframe to go idle: %d\n", ret); 670 goto out; 671 } 672 673 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 674 675 for (i = 0; i < len; i += 7) { 676 writel(buffer[i + 0] << 0 | 677 buffer[i + 1] << 8 | 678 buffer[i + 2] << 16, 679 base + packet_reg); 680 packet_reg += 4; 681 682 writel(buffer[i + 3] << 0 | 683 buffer[i + 4] << 8 | 684 buffer[i + 5] << 16 | 685 buffer[i + 6] << 24, 686 base + packet_reg); 687 packet_reg += 4; 688 } 689 690 /* 691 * clear remainder of packet ram as it's included in the 692 * infoframe and triggers a checksum error on hdmi analyser 693 */ 694 for (; packet_reg < packet_reg_next; packet_reg += 4) 695 writel(0, base + packet_reg); 696 697 HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 698 HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id)); 699 700 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 701 702 ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) & 703 BIT(packet_id)), 100); 704 if (ret) 705 drm_err(drm, "Failed to wait for infoframe to start: %d\n", ret); 706 707 out: 708 drm_dev_exit(idx); 709 return ret; 710 } 711 712 #define SCRAMBLING_POLLING_DELAY_MS 1000 713 714 static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder) 715 { 716 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 717 struct drm_connector *connector = &vc4_hdmi->connector; 718 struct drm_device *drm = connector->dev; 719 const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; 720 unsigned long flags; 721 int idx; 722 723 lockdep_assert_held(&vc4_hdmi->mutex); 724 725 if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) 726 return; 727 728 if (!vc4_hdmi_mode_needs_scrambling(mode, 729 vc4_hdmi->output_bpc, 730 vc4_hdmi->output_format)) 731 return; 732 733 if (!drm_dev_enter(drm, &idx)) 734 return; 735 736 drm_scdc_set_high_tmds_clock_ratio(connector, true); 737 drm_scdc_set_scrambling(connector, true); 738 739 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 740 HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) | 741 VC5_HDMI_SCRAMBLER_CTL_ENABLE); 742 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 743 744 drm_dev_exit(idx); 745 746 vc4_hdmi->scdc_enabled = true; 747 748 queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work, 749 msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS)); 750 } 751 752 static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder) 753 { 754 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 755 struct drm_connector *connector = &vc4_hdmi->connector; 756 struct drm_device *drm = connector->dev; 757 unsigned long flags; 758 int idx; 759 760 lockdep_assert_held(&vc4_hdmi->mutex); 761 762 if (!vc4_hdmi->scdc_enabled) 763 return; 764 765 vc4_hdmi->scdc_enabled = false; 766 767 if (delayed_work_pending(&vc4_hdmi->scrambling_work)) 768 cancel_delayed_work_sync(&vc4_hdmi->scrambling_work); 769 770 if (!drm_dev_enter(drm, &idx)) 771 return; 772 773 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 774 HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) & 775 ~VC5_HDMI_SCRAMBLER_CTL_ENABLE); 776 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 777 778 drm_scdc_set_scrambling(connector, false); 779 drm_scdc_set_high_tmds_clock_ratio(connector, false); 780 781 drm_dev_exit(idx); 782 } 783 784 static void vc4_hdmi_scrambling_wq(struct work_struct *work) 785 { 786 struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work), 787 struct vc4_hdmi, 788 scrambling_work); 789 struct drm_connector *connector = &vc4_hdmi->connector; 790 791 if (drm_scdc_get_scrambling_status(connector)) 792 return; 793 794 drm_scdc_set_high_tmds_clock_ratio(connector, true); 795 drm_scdc_set_scrambling(connector, true); 796 797 queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work, 798 msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS)); 799 } 800 801 static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder, 802 struct drm_atomic_state *state) 803 { 804 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 805 struct drm_device *drm = vc4_hdmi->connector.dev; 806 struct vc4_dev *vc4 = to_vc4_dev(drm); 807 unsigned long flags; 808 int idx; 809 810 mutex_lock(&vc4_hdmi->mutex); 811 812 vc4_hdmi->packet_ram_enabled = false; 813 814 if (!drm_dev_enter(drm, &idx)) 815 goto out; 816 817 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 818 819 HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0); 820 821 HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB); 822 823 if (vc4->gen >= VC4_GEN_6_C) 824 HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | 825 VC4_HD_VID_CTL_BLANKPIX); 826 827 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 828 829 mdelay(1); 830 831 /* 832 * TODO: This should work on BCM2712, but doesn't for some 833 * reason and result in a system lockup. 834 */ 835 if (vc4->gen < VC4_GEN_6_C) { 836 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 837 HDMI_WRITE(HDMI_VID_CTL, 838 HDMI_READ(HDMI_VID_CTL) & 839 ~VC4_HD_VID_CTL_ENABLE); 840 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 841 } 842 843 vc4_hdmi_disable_scrambling(encoder); 844 845 drm_dev_exit(idx); 846 847 out: 848 mutex_unlock(&vc4_hdmi->mutex); 849 } 850 851 static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder, 852 struct drm_atomic_state *state) 853 { 854 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 855 struct drm_device *drm = vc4_hdmi->connector.dev; 856 unsigned long flags; 857 int ret; 858 int idx; 859 860 mutex_lock(&vc4_hdmi->mutex); 861 862 if (!drm_dev_enter(drm, &idx)) 863 goto out; 864 865 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 866 HDMI_WRITE(HDMI_VID_CTL, 867 HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX); 868 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 869 870 if (vc4_hdmi->variant->phy_disable) 871 vc4_hdmi->variant->phy_disable(vc4_hdmi); 872 873 clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock); 874 clk_disable_unprepare(vc4_hdmi->pixel_clock); 875 876 ret = pm_runtime_put(&vc4_hdmi->pdev->dev); 877 if (ret < 0) 878 drm_err(drm, "Failed to release power domain: %d\n", ret); 879 880 drm_dev_exit(idx); 881 882 out: 883 mutex_unlock(&vc4_hdmi->mutex); 884 } 885 886 static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, 887 struct drm_connector_state *state, 888 const struct drm_display_mode *mode) 889 { 890 struct drm_device *drm = vc4_hdmi->connector.dev; 891 unsigned long flags; 892 u32 csc_ctl; 893 int idx; 894 895 if (!drm_dev_enter(drm, &idx)) 896 return; 897 898 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 899 900 csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR, 901 VC4_HD_CSC_CTL_ORDER); 902 903 if (state->hdmi.is_limited_range) { 904 /* CEA VICs other than #1 requre limited range RGB 905 * output unless overridden by an AVI infoframe. 906 * Apply a colorspace conversion to squash 0-255 down 907 * to 16-235. The matrix here is: 908 * 909 * [ 0 0 0.8594 16] 910 * [ 0 0.8594 0 16] 911 * [ 0.8594 0 0 16] 912 * [ 0 0 0 1] 913 */ 914 csc_ctl |= VC4_HD_CSC_CTL_ENABLE; 915 csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC; 916 csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, 917 VC4_HD_CSC_CTL_MODE); 918 919 HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000); 920 HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0); 921 HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000); 922 HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000); 923 HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0); 924 HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000); 925 } 926 927 /* The RGB order applies even when CSC is disabled. */ 928 HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); 929 930 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 931 932 drm_dev_exit(idx); 933 } 934 935 /* 936 * Matrices for (internal) RGB to RGB output. 937 * 938 * Matrices are signed 2p13 fixed point, with signed 9p6 offsets 939 */ 940 static const u16 vc5_hdmi_csc_full_rgb_to_rgb[2][3][4] = { 941 { 942 /* 943 * Full range - unity 944 * 945 * [ 1 0 0 0] 946 * [ 0 1 0 0] 947 * [ 0 0 1 0] 948 */ 949 { 0x2000, 0x0000, 0x0000, 0x0000 }, 950 { 0x0000, 0x2000, 0x0000, 0x0000 }, 951 { 0x0000, 0x0000, 0x2000, 0x0000 }, 952 }, 953 { 954 /* 955 * Limited range 956 * 957 * CEA VICs other than #1 require limited range RGB 958 * output unless overridden by an AVI infoframe. Apply a 959 * colorspace conversion to squash 0-255 down to 16-235. 960 * The matrix here is: 961 * 962 * [ 0.8594 0 0 16] 963 * [ 0 0.8594 0 16] 964 * [ 0 0 0.8594 16] 965 */ 966 { 0x1b80, 0x0000, 0x0000, 0x0400 }, 967 { 0x0000, 0x1b80, 0x0000, 0x0400 }, 968 { 0x0000, 0x0000, 0x1b80, 0x0400 }, 969 }, 970 }; 971 972 /* 973 * Conversion between Full Range RGB and YUV using the BT.601 Colorspace 974 * 975 * Matrices are signed 2p13 fixed point, with signed 9p6 offsets 976 */ 977 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt601[2][3][4] = { 978 { 979 /* 980 * Full Range 981 * 982 * [ 0.299000 0.587000 0.114000 0 ] 983 * [ -0.168736 -0.331264 0.500000 128 ] 984 * [ 0.500000 -0.418688 -0.081312 128 ] 985 */ 986 { 0x0991, 0x12c9, 0x03a6, 0x0000 }, 987 { 0xfa9b, 0xf567, 0x1000, 0x2000 }, 988 { 0x1000, 0xf29b, 0xfd67, 0x2000 }, 989 }, 990 { 991 /* Limited Range 992 * 993 * [ 0.255785 0.502160 0.097523 16 ] 994 * [ -0.147644 -0.289856 0.437500 128 ] 995 * [ 0.437500 -0.366352 -0.071148 128 ] 996 */ 997 { 0x082f, 0x1012, 0x031f, 0x0400 }, 998 { 0xfb48, 0xf6ba, 0x0e00, 0x2000 }, 999 { 0x0e00, 0xf448, 0xfdba, 0x2000 }, 1000 }, 1001 }; 1002 1003 /* 1004 * Conversion between Full Range RGB and YUV using the BT.709 Colorspace 1005 * 1006 * Matrices are signed 2p13 fixed point, with signed 9p6 offsets 1007 */ 1008 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt709[2][3][4] = { 1009 { 1010 /* 1011 * Full Range 1012 * 1013 * [ 0.212600 0.715200 0.072200 0 ] 1014 * [ -0.114572 -0.385428 0.500000 128 ] 1015 * [ 0.500000 -0.454153 -0.045847 128 ] 1016 */ 1017 { 0x06ce, 0x16e3, 0x024f, 0x0000 }, 1018 { 0xfc56, 0xf3ac, 0x1000, 0x2000 }, 1019 { 0x1000, 0xf179, 0xfe89, 0x2000 }, 1020 }, 1021 { 1022 /* 1023 * Limited Range 1024 * 1025 * [ 0.181906 0.611804 0.061758 16 ] 1026 * [ -0.100268 -0.337232 0.437500 128 ] 1027 * [ 0.437500 -0.397386 -0.040114 128 ] 1028 */ 1029 { 0x05d2, 0x1394, 0x01fa, 0x0400 }, 1030 { 0xfccc, 0xf536, 0x0e00, 0x2000 }, 1031 { 0x0e00, 0xf34a, 0xfeb8, 0x2000 }, 1032 }, 1033 }; 1034 1035 /* 1036 * Conversion between Full Range RGB and YUV using the BT.2020 Colorspace 1037 * 1038 * Matrices are signed 2p13 fixed point, with signed 9p6 offsets 1039 */ 1040 static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt2020[2][3][4] = { 1041 { 1042 /* 1043 * Full Range 1044 * 1045 * [ 0.262700 0.678000 0.059300 0 ] 1046 * [ -0.139630 -0.360370 0.500000 128 ] 1047 * [ 0.500000 -0.459786 -0.040214 128 ] 1048 */ 1049 { 0x0868, 0x15b2, 0x01e6, 0x0000 }, 1050 { 0xfb89, 0xf479, 0x1000, 0x2000 }, 1051 { 0x1000, 0xf14a, 0xfeb8, 0x2000 }, 1052 }, 1053 { 1054 /* Limited Range 1055 * 1056 * [ 0.224732 0.580008 0.050729 16 ] 1057 * [ -0.122176 -0.315324 0.437500 128 ] 1058 * [ 0.437500 -0.402312 -0.035188 128 ] 1059 */ 1060 { 0x082f, 0x1012, 0x031f, 0x0400 }, 1061 { 0xfb48, 0xf6ba, 0x0e00, 0x2000 }, 1062 { 0x0e00, 0xf448, 0xfdba, 0x2000 }, 1063 }, 1064 }; 1065 1066 static void vc5_hdmi_set_csc_coeffs(struct vc4_hdmi *vc4_hdmi, 1067 const u16 coeffs[3][4]) 1068 { 1069 lockdep_assert_held(&vc4_hdmi->hw_lock); 1070 1071 HDMI_WRITE(HDMI_CSC_12_11, (coeffs[0][1] << 16) | coeffs[0][0]); 1072 HDMI_WRITE(HDMI_CSC_14_13, (coeffs[0][3] << 16) | coeffs[0][2]); 1073 HDMI_WRITE(HDMI_CSC_22_21, (coeffs[1][1] << 16) | coeffs[1][0]); 1074 HDMI_WRITE(HDMI_CSC_24_23, (coeffs[1][3] << 16) | coeffs[1][2]); 1075 HDMI_WRITE(HDMI_CSC_32_31, (coeffs[2][1] << 16) | coeffs[2][0]); 1076 HDMI_WRITE(HDMI_CSC_34_33, (coeffs[2][3] << 16) | coeffs[2][2]); 1077 } 1078 1079 static void vc5_hdmi_set_csc_coeffs_swap(struct vc4_hdmi *vc4_hdmi, 1080 const u16 coeffs[3][4]) 1081 { 1082 lockdep_assert_held(&vc4_hdmi->hw_lock); 1083 1084 /* YUV444 needs the CSC matrices using the channels in a different order */ 1085 HDMI_WRITE(HDMI_CSC_12_11, (coeffs[1][1] << 16) | coeffs[1][0]); 1086 HDMI_WRITE(HDMI_CSC_14_13, (coeffs[1][3] << 16) | coeffs[1][2]); 1087 HDMI_WRITE(HDMI_CSC_22_21, (coeffs[2][1] << 16) | coeffs[2][0]); 1088 HDMI_WRITE(HDMI_CSC_24_23, (coeffs[2][3] << 16) | coeffs[2][2]); 1089 HDMI_WRITE(HDMI_CSC_32_31, (coeffs[0][1] << 16) | coeffs[0][0]); 1090 HDMI_WRITE(HDMI_CSC_34_33, (coeffs[0][3] << 16) | coeffs[0][2]); 1091 } 1092 1093 static const u16 1094 (*vc5_hdmi_find_yuv_csc_coeffs(struct vc4_hdmi *vc4_hdmi, u32 colorspace, bool limited))[4] 1095 { 1096 switch (colorspace) { 1097 case DRM_MODE_COLORIMETRY_SMPTE_170M_YCC: 1098 case DRM_MODE_COLORIMETRY_XVYCC_601: 1099 case DRM_MODE_COLORIMETRY_SYCC_601: 1100 case DRM_MODE_COLORIMETRY_OPYCC_601: 1101 case DRM_MODE_COLORIMETRY_BT601_YCC: 1102 return vc5_hdmi_csc_full_rgb_to_yuv_bt601[limited]; 1103 1104 default: 1105 case DRM_MODE_COLORIMETRY_NO_DATA: 1106 case DRM_MODE_COLORIMETRY_BT709_YCC: 1107 case DRM_MODE_COLORIMETRY_XVYCC_709: 1108 case DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED: 1109 case DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT: 1110 return vc5_hdmi_csc_full_rgb_to_yuv_bt709[limited]; 1111 1112 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 1113 case DRM_MODE_COLORIMETRY_BT2020_YCC: 1114 case DRM_MODE_COLORIMETRY_BT2020_RGB: 1115 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 1116 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 1117 return vc5_hdmi_csc_full_rgb_to_yuv_bt2020[limited]; 1118 } 1119 } 1120 1121 static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, 1122 struct drm_connector_state *state, 1123 const struct drm_display_mode *mode) 1124 { 1125 struct drm_device *drm = vc4_hdmi->connector.dev; 1126 unsigned int lim_range = state->hdmi.is_limited_range ? 1 : 0; 1127 unsigned long flags; 1128 const u16 (*csc)[4]; 1129 u32 if_cfg = 0; 1130 u32 if_xbar = 0x543210; 1131 u32 csc_chan_ctl = 0; 1132 u32 csc_ctl = VC5_MT_CP_CSC_CTL_ENABLE | VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, 1133 VC5_MT_CP_CSC_CTL_MODE); 1134 int idx; 1135 1136 if (!drm_dev_enter(drm, &idx)) 1137 return; 1138 1139 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1140 1141 switch (state->hdmi.output_format) { 1142 case HDMI_COLORSPACE_YUV444: 1143 csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range); 1144 1145 vc5_hdmi_set_csc_coeffs_swap(vc4_hdmi, csc); 1146 break; 1147 1148 case HDMI_COLORSPACE_YUV422: 1149 csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range); 1150 1151 csc_ctl |= VC4_SET_FIELD(VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422_STANDARD, 1152 VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422) | 1153 VC5_MT_CP_CSC_CTL_USE_444_TO_422 | 1154 VC5_MT_CP_CSC_CTL_USE_RNG_SUPPRESSION; 1155 1156 csc_chan_ctl |= VC4_SET_FIELD(VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP_LEGACY_STYLE, 1157 VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP); 1158 1159 if_cfg |= VC4_SET_FIELD(VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422_FORMAT_422_LEGACY, 1160 VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422); 1161 1162 vc5_hdmi_set_csc_coeffs(vc4_hdmi, csc); 1163 break; 1164 1165 case HDMI_COLORSPACE_RGB: 1166 if_xbar = 0x354021; 1167 1168 vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_rgb[lim_range]); 1169 break; 1170 1171 default: 1172 break; 1173 } 1174 1175 HDMI_WRITE(HDMI_VEC_INTERFACE_CFG, if_cfg); 1176 HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, if_xbar); 1177 HDMI_WRITE(HDMI_CSC_CHANNEL_CTL, csc_chan_ctl); 1178 HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); 1179 1180 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1181 1182 drm_dev_exit(idx); 1183 } 1184 1185 static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, 1186 struct drm_connector_state *state, 1187 const struct drm_display_mode *mode) 1188 { 1189 struct drm_device *drm = vc4_hdmi->connector.dev; 1190 bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; 1191 bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; 1192 bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 1193 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 1194 u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 1195 VC4_HDMI_VERTA_VSP) | 1196 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 1197 VC4_HDMI_VERTA_VFP) | 1198 VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL)); 1199 u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | 1200 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + 1201 interlaced, 1202 VC4_HDMI_VERTB_VBP)); 1203 u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | 1204 VC4_SET_FIELD(mode->crtc_vtotal - 1205 mode->crtc_vsync_end, 1206 VC4_HDMI_VERTB_VBP)); 1207 unsigned long flags; 1208 u32 reg; 1209 int idx; 1210 1211 if (!drm_dev_enter(drm, &idx)) 1212 return; 1213 1214 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1215 1216 HDMI_WRITE(HDMI_HORZA, 1217 (vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) | 1218 (hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) | 1219 VC4_SET_FIELD(mode->hdisplay * pixel_rep, 1220 VC4_HDMI_HORZA_HAP)); 1221 1222 HDMI_WRITE(HDMI_HORZB, 1223 VC4_SET_FIELD((mode->htotal - 1224 mode->hsync_end) * pixel_rep, 1225 VC4_HDMI_HORZB_HBP) | 1226 VC4_SET_FIELD((mode->hsync_end - 1227 mode->hsync_start) * pixel_rep, 1228 VC4_HDMI_HORZB_HSP) | 1229 VC4_SET_FIELD((mode->hsync_start - 1230 mode->hdisplay) * pixel_rep, 1231 VC4_HDMI_HORZB_HFP)); 1232 1233 HDMI_WRITE(HDMI_VERTA0, verta); 1234 HDMI_WRITE(HDMI_VERTA1, verta); 1235 1236 HDMI_WRITE(HDMI_VERTB0, vertb_even); 1237 HDMI_WRITE(HDMI_VERTB1, vertb); 1238 1239 reg = HDMI_READ(HDMI_MISC_CONTROL); 1240 reg &= ~VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK; 1241 reg |= VC4_SET_FIELD(pixel_rep - 1, VC4_HDMI_MISC_CONTROL_PIXEL_REP); 1242 HDMI_WRITE(HDMI_MISC_CONTROL, reg); 1243 1244 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1245 1246 drm_dev_exit(idx); 1247 } 1248 1249 static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, 1250 struct drm_connector_state *state, 1251 const struct drm_display_mode *mode) 1252 { 1253 struct drm_device *drm = vc4_hdmi->connector.dev; 1254 bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; 1255 bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; 1256 bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 1257 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 1258 u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 1259 VC5_HDMI_VERTA_VSP) | 1260 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 1261 VC5_HDMI_VERTA_VFP) | 1262 VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL)); 1263 u32 vertb = (VC4_SET_FIELD(mode->htotal >> (2 - pixel_rep), 1264 VC5_HDMI_VERTB_VSPO) | 1265 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + 1266 interlaced, 1267 VC4_HDMI_VERTB_VBP)); 1268 u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) | 1269 VC4_SET_FIELD(mode->crtc_vtotal - 1270 mode->crtc_vsync_end, 1271 VC4_HDMI_VERTB_VBP)); 1272 unsigned long flags; 1273 unsigned char gcp; 1274 u32 reg; 1275 int idx; 1276 1277 if (!drm_dev_enter(drm, &idx)) 1278 return; 1279 1280 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1281 1282 HDMI_WRITE(HDMI_HORZA, 1283 (vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) | 1284 (hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) | 1285 VC4_SET_FIELD(mode->hdisplay * pixel_rep, 1286 VC5_HDMI_HORZA_HAP) | 1287 VC4_SET_FIELD((mode->hsync_start - 1288 mode->hdisplay) * pixel_rep, 1289 VC5_HDMI_HORZA_HFP)); 1290 1291 HDMI_WRITE(HDMI_HORZB, 1292 VC4_SET_FIELD((mode->htotal - 1293 mode->hsync_end) * pixel_rep, 1294 VC5_HDMI_HORZB_HBP) | 1295 VC4_SET_FIELD((mode->hsync_end - 1296 mode->hsync_start) * pixel_rep, 1297 VC5_HDMI_HORZB_HSP)); 1298 1299 HDMI_WRITE(HDMI_VERTA0, verta); 1300 HDMI_WRITE(HDMI_VERTA1, verta); 1301 1302 HDMI_WRITE(HDMI_VERTB0, vertb_even); 1303 HDMI_WRITE(HDMI_VERTB1, vertb); 1304 1305 switch (state->hdmi.output_bpc) { 1306 case 12: 1307 gcp = 6; 1308 break; 1309 case 10: 1310 gcp = 5; 1311 break; 1312 case 8: 1313 default: 1314 gcp = 0; 1315 break; 1316 } 1317 1318 /* 1319 * YCC422 is always 36-bit and not considered deep colour so 1320 * doesn't signal in GCP. 1321 */ 1322 if (state->hdmi.output_format == HDMI_COLORSPACE_YUV422) { 1323 gcp = 0; 1324 } 1325 1326 reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1); 1327 reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK | 1328 VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK); 1329 reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) | 1330 VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH); 1331 HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg); 1332 1333 reg = HDMI_READ(HDMI_GCP_WORD_1); 1334 reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK; 1335 reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1); 1336 reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK; 1337 reg |= VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE; 1338 HDMI_WRITE(HDMI_GCP_WORD_1, reg); 1339 1340 reg = HDMI_READ(HDMI_GCP_CONFIG); 1341 reg |= VC5_HDMI_GCP_CONFIG_GCP_ENABLE; 1342 HDMI_WRITE(HDMI_GCP_CONFIG, reg); 1343 1344 reg = HDMI_READ(HDMI_MISC_CONTROL); 1345 reg &= ~VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK; 1346 reg |= VC4_SET_FIELD(pixel_rep - 1, VC5_HDMI_MISC_CONTROL_PIXEL_REP); 1347 HDMI_WRITE(HDMI_MISC_CONTROL, reg); 1348 1349 HDMI_WRITE(HDMI_CLOCK_STOP, 0); 1350 1351 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1352 1353 drm_dev_exit(idx); 1354 } 1355 1356 static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi) 1357 { 1358 struct drm_device *drm = vc4_hdmi->connector.dev; 1359 unsigned long flags; 1360 u32 drift; 1361 int ret; 1362 int idx; 1363 1364 if (!drm_dev_enter(drm, &idx)) 1365 return; 1366 1367 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1368 1369 drift = HDMI_READ(HDMI_FIFO_CTL); 1370 drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK; 1371 1372 HDMI_WRITE(HDMI_FIFO_CTL, 1373 drift & ~VC4_HDMI_FIFO_CTL_RECENTER); 1374 HDMI_WRITE(HDMI_FIFO_CTL, 1375 drift | VC4_HDMI_FIFO_CTL_RECENTER); 1376 1377 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1378 1379 usleep_range(1000, 1100); 1380 1381 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1382 1383 HDMI_WRITE(HDMI_FIFO_CTL, 1384 drift & ~VC4_HDMI_FIFO_CTL_RECENTER); 1385 HDMI_WRITE(HDMI_FIFO_CTL, 1386 drift | VC4_HDMI_FIFO_CTL_RECENTER); 1387 1388 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1389 1390 ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) & 1391 VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1); 1392 WARN_ONCE(ret, "Timeout waiting for " 1393 "VC4_HDMI_FIFO_CTL_RECENTER_DONE"); 1394 1395 drm_dev_exit(idx); 1396 } 1397 1398 static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder, 1399 struct drm_atomic_state *state) 1400 { 1401 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 1402 struct drm_device *drm = vc4_hdmi->connector.dev; 1403 struct drm_connector *connector = &vc4_hdmi->connector; 1404 struct drm_connector_state *conn_state = 1405 drm_atomic_get_new_connector_state(state, connector); 1406 const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; 1407 unsigned long long tmds_char_rate = conn_state->hdmi.tmds_char_rate; 1408 unsigned long bvb_rate, hsm_rate; 1409 unsigned long flags; 1410 int ret; 1411 int idx; 1412 1413 mutex_lock(&vc4_hdmi->mutex); 1414 1415 if (!drm_dev_enter(drm, &idx)) 1416 goto out; 1417 1418 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); 1419 if (ret < 0) { 1420 drm_err(drm, "Failed to retain power domain: %d\n", ret); 1421 goto err_dev_exit; 1422 } 1423 1424 /* 1425 * As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must 1426 * be faster than pixel clock, infinitesimally faster, tested in 1427 * simulation. Otherwise, exact value is unimportant for HDMI 1428 * operation." This conflicts with bcm2835's vc4 documentation, which 1429 * states HSM's clock has to be at least 108% of the pixel clock. 1430 * 1431 * Real life tests reveal that vc4's firmware statement holds up, and 1432 * users are able to use pixel clocks closer to HSM's, namely for 1433 * 1920x1200@60Hz. So it was decided to have leave a 1% margin between 1434 * both clocks. Which, for RPi0-3 implies a maximum pixel clock of 1435 * 162MHz. 1436 * 1437 * Additionally, the AXI clock needs to be at least 25% of 1438 * pixel clock, but HSM ends up being the limiting factor. 1439 */ 1440 hsm_rate = max_t(unsigned long, 1441 HSM_MIN_CLOCK_FREQ, 1442 div_u64(tmds_char_rate, 100) * 101); 1443 ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate); 1444 if (ret) { 1445 drm_err(drm, "Failed to set HSM clock rate: %d\n", ret); 1446 goto err_put_runtime_pm; 1447 } 1448 1449 ret = clk_set_rate(vc4_hdmi->pixel_clock, tmds_char_rate); 1450 if (ret) { 1451 drm_err(drm, "Failed to set pixel clock rate: %d\n", ret); 1452 goto err_put_runtime_pm; 1453 } 1454 1455 ret = clk_prepare_enable(vc4_hdmi->pixel_clock); 1456 if (ret) { 1457 drm_err(drm, "Failed to turn on pixel clock: %d\n", ret); 1458 goto err_put_runtime_pm; 1459 } 1460 1461 vc4_hdmi_cec_update_clk_div(vc4_hdmi); 1462 1463 if (tmds_char_rate > 297000000) 1464 bvb_rate = 300000000; 1465 else if (tmds_char_rate > 148500000) 1466 bvb_rate = 150000000; 1467 else 1468 bvb_rate = 75000000; 1469 1470 ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate); 1471 if (ret) { 1472 drm_err(drm, "Failed to set pixel bvb clock rate: %d\n", ret); 1473 goto err_disable_pixel_clock; 1474 } 1475 1476 ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock); 1477 if (ret) { 1478 drm_err(drm, "Failed to turn on pixel bvb clock: %d\n", ret); 1479 goto err_disable_pixel_clock; 1480 } 1481 1482 if (vc4_hdmi->variant->phy_init) 1483 vc4_hdmi->variant->phy_init(vc4_hdmi, conn_state); 1484 1485 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1486 1487 HDMI_WRITE(HDMI_SCHEDULER_CONTROL, 1488 HDMI_READ(HDMI_SCHEDULER_CONTROL) | 1489 VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT | 1490 VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS); 1491 1492 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1493 1494 if (vc4_hdmi->variant->set_timings) 1495 vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode); 1496 1497 drm_dev_exit(idx); 1498 1499 mutex_unlock(&vc4_hdmi->mutex); 1500 1501 return; 1502 1503 err_disable_pixel_clock: 1504 clk_disable_unprepare(vc4_hdmi->pixel_clock); 1505 err_put_runtime_pm: 1506 pm_runtime_put(&vc4_hdmi->pdev->dev); 1507 err_dev_exit: 1508 drm_dev_exit(idx); 1509 out: 1510 mutex_unlock(&vc4_hdmi->mutex); 1511 return; 1512 } 1513 1514 static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder, 1515 struct drm_atomic_state *state) 1516 { 1517 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 1518 struct drm_device *drm = vc4_hdmi->connector.dev; 1519 struct drm_connector *connector = &vc4_hdmi->connector; 1520 const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; 1521 struct drm_connector_state *conn_state = 1522 drm_atomic_get_new_connector_state(state, connector); 1523 unsigned long flags; 1524 int idx; 1525 1526 mutex_lock(&vc4_hdmi->mutex); 1527 1528 if (!drm_dev_enter(drm, &idx)) 1529 goto out; 1530 1531 if (vc4_hdmi->variant->csc_setup) 1532 vc4_hdmi->variant->csc_setup(vc4_hdmi, conn_state, mode); 1533 1534 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1535 HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N); 1536 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1537 1538 drm_dev_exit(idx); 1539 1540 out: 1541 mutex_unlock(&vc4_hdmi->mutex); 1542 } 1543 1544 static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder, 1545 struct drm_atomic_state *state) 1546 { 1547 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 1548 struct drm_connector *connector = &vc4_hdmi->connector; 1549 struct drm_device *drm = connector->dev; 1550 const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; 1551 struct drm_display_info *display = &vc4_hdmi->connector.display_info; 1552 bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; 1553 bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; 1554 unsigned long flags; 1555 int ret; 1556 int idx; 1557 1558 mutex_lock(&vc4_hdmi->mutex); 1559 1560 if (!drm_dev_enter(drm, &idx)) 1561 goto out; 1562 1563 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1564 1565 HDMI_WRITE(HDMI_VID_CTL, 1566 (HDMI_READ(HDMI_VID_CTL) & 1567 ~(VC4_HD_VID_CTL_VSYNC_LOW | VC4_HD_VID_CTL_HSYNC_LOW)) | 1568 VC4_HD_VID_CTL_ENABLE | 1569 VC4_HD_VID_CTL_CLRRGB | 1570 VC4_HD_VID_CTL_UNDERFLOW_ENABLE | 1571 VC4_HD_VID_CTL_FRAME_COUNTER_RESET | 1572 VC4_HD_VID_CTL_BLANK_INSERT_EN | 1573 (vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) | 1574 (hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW)); 1575 1576 HDMI_WRITE(HDMI_VID_CTL, 1577 HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX); 1578 1579 if (display->is_hdmi) { 1580 HDMI_WRITE(HDMI_SCHEDULER_CONTROL, 1581 HDMI_READ(HDMI_SCHEDULER_CONTROL) | 1582 VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); 1583 1584 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1585 1586 ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) & 1587 VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000); 1588 WARN_ONCE(ret, "Timeout waiting for " 1589 "VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); 1590 } else { 1591 HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 1592 HDMI_READ(HDMI_RAM_PACKET_CONFIG) & 1593 ~(VC4_HDMI_RAM_PACKET_ENABLE)); 1594 HDMI_WRITE(HDMI_SCHEDULER_CONTROL, 1595 HDMI_READ(HDMI_SCHEDULER_CONTROL) & 1596 ~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); 1597 1598 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1599 1600 ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & 1601 VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000); 1602 WARN_ONCE(ret, "Timeout waiting for " 1603 "!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); 1604 } 1605 1606 if (display->is_hdmi) { 1607 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1608 1609 WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & 1610 VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE)); 1611 1612 HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 1613 VC4_HDMI_RAM_PACKET_ENABLE); 1614 1615 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1616 vc4_hdmi->packet_ram_enabled = true; 1617 1618 drm_atomic_helper_connector_hdmi_update_infoframes(connector, state); 1619 } 1620 1621 vc4_hdmi_recenter_fifo(vc4_hdmi); 1622 vc4_hdmi_enable_scrambling(encoder); 1623 1624 drm_dev_exit(idx); 1625 1626 out: 1627 mutex_unlock(&vc4_hdmi->mutex); 1628 } 1629 1630 static void vc4_hdmi_encoder_atomic_mode_set(struct drm_encoder *encoder, 1631 struct drm_crtc_state *crtc_state, 1632 struct drm_connector_state *conn_state) 1633 { 1634 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 1635 1636 mutex_lock(&vc4_hdmi->mutex); 1637 drm_mode_copy(&vc4_hdmi->saved_adjusted_mode, 1638 &crtc_state->adjusted_mode); 1639 vc4_hdmi->output_bpc = conn_state->hdmi.output_bpc; 1640 vc4_hdmi->output_format = conn_state->hdmi.output_format; 1641 mutex_unlock(&vc4_hdmi->mutex); 1642 } 1643 1644 static enum drm_mode_status 1645 vc4_hdmi_connector_clock_valid(const struct drm_connector *connector, 1646 const struct drm_display_mode *mode, 1647 unsigned long long clock) 1648 { 1649 const struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); 1650 struct vc4_dev *vc4 = to_vc4_dev(connector->dev); 1651 1652 if (clock > vc4_hdmi->variant->max_pixel_clock) 1653 return MODE_CLOCK_HIGH; 1654 1655 if (!vc4->hvs->vc5_hdmi_enable_hdmi_20 && clock > HDMI_14_MAX_TMDS_CLK) 1656 return MODE_CLOCK_HIGH; 1657 1658 /* 4096x2160@60 is not reliable without overclocking core */ 1659 if (!vc4->hvs->vc5_hdmi_enable_4096by2160 && 1660 mode->hdisplay > 3840 && mode->vdisplay >= 2160 && 1661 drm_mode_vrefresh(mode) >= 50) 1662 return MODE_CLOCK_HIGH; 1663 1664 return MODE_OK; 1665 } 1666 1667 static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs = { 1668 .tmds_char_rate_valid = vc4_hdmi_connector_clock_valid, 1669 .write_infoframe = vc4_hdmi_write_infoframe, 1670 }; 1671 1672 #define WIFI_2_4GHz_CH1_MIN_FREQ 2400000000ULL 1673 #define WIFI_2_4GHz_CH1_MAX_FREQ 2422000000ULL 1674 1675 static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder, 1676 struct drm_crtc_state *crtc_state, 1677 struct drm_connector_state *conn_state) 1678 { 1679 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 1680 struct drm_display_mode *mode = &crtc_state->adjusted_mode; 1681 unsigned long long tmds_char_rate = mode->clock * 1000; 1682 unsigned long long tmds_bit_rate; 1683 1684 if (vc4_hdmi->variant->unsupported_odd_h_timings) { 1685 if (mode->flags & DRM_MODE_FLAG_DBLCLK) { 1686 /* Only try to fixup DBLCLK modes to get 480i and 576i 1687 * working. 1688 * A generic solution for all modes with odd horizontal 1689 * timing values seems impossible based on trying to 1690 * solve it for 1366x768 monitors. 1691 */ 1692 if ((mode->hsync_start - mode->hdisplay) & 1) 1693 mode->hsync_start--; 1694 if ((mode->hsync_end - mode->hsync_start) & 1) 1695 mode->hsync_end--; 1696 } 1697 1698 /* Now check whether we still have odd values remaining */ 1699 if ((mode->hdisplay % 2) || (mode->hsync_start % 2) || 1700 (mode->hsync_end % 2) || (mode->htotal % 2)) 1701 return -EINVAL; 1702 } 1703 1704 /* 1705 * The 1440p@60 pixel rate is in the same range than the first 1706 * WiFi channel (between 2.4GHz and 2.422GHz with 22MHz 1707 * bandwidth). Slightly lower the frequency to bring it out of 1708 * the WiFi range. 1709 */ 1710 tmds_bit_rate = tmds_char_rate * 10; 1711 if (vc4_hdmi->disable_wifi_frequencies && 1712 (tmds_bit_rate >= WIFI_2_4GHz_CH1_MIN_FREQ && 1713 tmds_bit_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) { 1714 mode->clock = 238560; 1715 tmds_char_rate = mode->clock * 1000; 1716 } 1717 1718 return 0; 1719 } 1720 1721 static enum drm_mode_status 1722 vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder, 1723 const struct drm_display_mode *mode) 1724 { 1725 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 1726 1727 if (vc4_hdmi->variant->unsupported_odd_h_timings && 1728 !(mode->flags & DRM_MODE_FLAG_DBLCLK) && 1729 ((mode->hdisplay % 2) || (mode->hsync_start % 2) || 1730 (mode->hsync_end % 2) || (mode->htotal % 2))) 1731 return MODE_H_ILLEGAL; 1732 1733 return MODE_OK; 1734 } 1735 1736 static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = { 1737 .atomic_check = vc4_hdmi_encoder_atomic_check, 1738 .atomic_mode_set = vc4_hdmi_encoder_atomic_mode_set, 1739 .mode_valid = vc4_hdmi_encoder_mode_valid, 1740 }; 1741 1742 static int vc4_hdmi_late_register(struct drm_encoder *encoder) 1743 { 1744 struct drm_device *drm = encoder->dev; 1745 struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); 1746 const struct vc4_hdmi_variant *variant = vc4_hdmi->variant; 1747 1748 drm_debugfs_add_file(drm, variant->debugfs_name, 1749 vc4_hdmi_debugfs_regs, vc4_hdmi); 1750 1751 return 0; 1752 } 1753 1754 static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = { 1755 .late_register = vc4_hdmi_late_register, 1756 }; 1757 1758 static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) 1759 { 1760 int i; 1761 u32 channel_map = 0; 1762 1763 for (i = 0; i < 8; i++) { 1764 if (channel_mask & BIT(i)) 1765 channel_map |= i << (3 * i); 1766 } 1767 return channel_map; 1768 } 1769 1770 static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) 1771 { 1772 int i; 1773 u32 channel_map = 0; 1774 1775 for (i = 0; i < 8; i++) { 1776 if (channel_mask & BIT(i)) 1777 channel_map |= i << (4 * i); 1778 } 1779 return channel_map; 1780 } 1781 1782 static bool vc5_hdmi_hp_detect(struct vc4_hdmi *vc4_hdmi) 1783 { 1784 struct drm_device *drm = vc4_hdmi->connector.dev; 1785 unsigned long flags; 1786 u32 hotplug; 1787 int idx; 1788 1789 if (!drm_dev_enter(drm, &idx)) 1790 return false; 1791 1792 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1793 hotplug = HDMI_READ(HDMI_HOTPLUG); 1794 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1795 1796 drm_dev_exit(idx); 1797 1798 return !!(hotplug & VC4_HDMI_HOTPLUG_CONNECTED); 1799 } 1800 1801 /* HDMI audio codec callbacks */ 1802 static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi, 1803 unsigned int samplerate) 1804 { 1805 struct drm_device *drm = vc4_hdmi->connector.dev; 1806 u32 hsm_clock; 1807 unsigned long flags; 1808 unsigned long n, m; 1809 int idx; 1810 1811 if (!drm_dev_enter(drm, &idx)) 1812 return; 1813 1814 hsm_clock = clk_get_rate(vc4_hdmi->audio_clock); 1815 rational_best_approximation(hsm_clock, samplerate, 1816 VC4_HD_MAI_SMP_N_MASK >> 1817 VC4_HD_MAI_SMP_N_SHIFT, 1818 (VC4_HD_MAI_SMP_M_MASK >> 1819 VC4_HD_MAI_SMP_M_SHIFT) + 1, 1820 &n, &m); 1821 1822 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1823 HDMI_WRITE(HDMI_MAI_SMP, 1824 VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) | 1825 VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M)); 1826 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1827 1828 drm_dev_exit(idx); 1829 } 1830 1831 static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate) 1832 { 1833 const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode; 1834 u32 n, cts; 1835 u64 tmp; 1836 1837 lockdep_assert_held(&vc4_hdmi->mutex); 1838 lockdep_assert_held(&vc4_hdmi->hw_lock); 1839 1840 n = 128 * samplerate / 1000; 1841 tmp = (u64)(mode->clock * 1000) * n; 1842 do_div(tmp, 128 * samplerate); 1843 cts = tmp; 1844 1845 HDMI_WRITE(HDMI_CRP_CFG, 1846 VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN | 1847 VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N)); 1848 1849 /* 1850 * We could get slightly more accurate clocks in some cases by 1851 * providing a CTS_1 value. The two CTS values are alternated 1852 * between based on the period fields 1853 */ 1854 HDMI_WRITE(HDMI_CTS_0, cts); 1855 HDMI_WRITE(HDMI_CTS_1, cts); 1856 } 1857 1858 static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai) 1859 { 1860 struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai); 1861 1862 return snd_soc_card_get_drvdata(card); 1863 } 1864 1865 static bool vc4_hdmi_audio_can_stream(struct vc4_hdmi *vc4_hdmi) 1866 { 1867 struct drm_display_info *display = &vc4_hdmi->connector.display_info; 1868 1869 lockdep_assert_held(&vc4_hdmi->mutex); 1870 1871 /* 1872 * If the encoder is currently in DVI mode, treat the codec DAI 1873 * as missing. 1874 */ 1875 if (!display->is_hdmi) 1876 return false; 1877 1878 return true; 1879 } 1880 1881 static int vc4_hdmi_audio_startup(struct drm_connector *connector) 1882 { 1883 struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); 1884 struct drm_device *drm = vc4_hdmi->connector.dev; 1885 unsigned long flags; 1886 int ret = 0; 1887 int idx; 1888 1889 mutex_lock(&vc4_hdmi->mutex); 1890 1891 if (!drm_dev_enter(drm, &idx)) { 1892 ret = -ENODEV; 1893 goto out; 1894 } 1895 1896 if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) { 1897 ret = -ENOTSUPP; 1898 goto out_dev_exit; 1899 } 1900 1901 vc4_hdmi->audio.streaming = true; 1902 1903 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1904 HDMI_WRITE(HDMI_MAI_CTL, 1905 VC4_HD_MAI_CTL_RESET | 1906 VC4_HD_MAI_CTL_FLUSH | 1907 VC4_HD_MAI_CTL_DLATE | 1908 VC4_HD_MAI_CTL_ERRORE | 1909 VC4_HD_MAI_CTL_ERRORF); 1910 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1911 1912 if (vc4_hdmi->variant->phy_rng_enable) 1913 vc4_hdmi->variant->phy_rng_enable(vc4_hdmi); 1914 1915 out_dev_exit: 1916 drm_dev_exit(idx); 1917 out: 1918 mutex_unlock(&vc4_hdmi->mutex); 1919 1920 return ret; 1921 } 1922 1923 static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi) 1924 { 1925 struct device *dev = &vc4_hdmi->pdev->dev; 1926 unsigned long flags; 1927 int ret; 1928 1929 lockdep_assert_held(&vc4_hdmi->mutex); 1930 1931 vc4_hdmi->audio.streaming = false; 1932 ret = vc4_hdmi_stop_packet(vc4_hdmi, HDMI_INFOFRAME_TYPE_AUDIO, false); 1933 if (ret) 1934 dev_err(dev, "Failed to stop audio infoframe: %d\n", ret); 1935 1936 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1937 1938 HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET); 1939 HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF); 1940 HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH); 1941 1942 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1943 } 1944 1945 static void vc4_hdmi_audio_shutdown(struct drm_connector *connector) 1946 { 1947 struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); 1948 struct drm_device *drm = vc4_hdmi->connector.dev; 1949 unsigned long flags; 1950 int idx; 1951 1952 mutex_lock(&vc4_hdmi->mutex); 1953 1954 if (!drm_dev_enter(drm, &idx)) 1955 goto out; 1956 1957 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 1958 1959 HDMI_WRITE(HDMI_MAI_CTL, 1960 VC4_HD_MAI_CTL_DLATE | 1961 VC4_HD_MAI_CTL_ERRORE | 1962 VC4_HD_MAI_CTL_ERRORF); 1963 1964 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 1965 1966 if (vc4_hdmi->variant->phy_rng_disable) 1967 vc4_hdmi->variant->phy_rng_disable(vc4_hdmi); 1968 1969 vc4_hdmi->audio.streaming = false; 1970 vc4_hdmi_audio_reset(vc4_hdmi); 1971 1972 drm_dev_exit(idx); 1973 1974 out: 1975 mutex_unlock(&vc4_hdmi->mutex); 1976 } 1977 1978 static int sample_rate_to_mai_fmt(int samplerate) 1979 { 1980 switch (samplerate) { 1981 case 8000: 1982 return VC4_HDMI_MAI_SAMPLE_RATE_8000; 1983 case 11025: 1984 return VC4_HDMI_MAI_SAMPLE_RATE_11025; 1985 case 12000: 1986 return VC4_HDMI_MAI_SAMPLE_RATE_12000; 1987 case 16000: 1988 return VC4_HDMI_MAI_SAMPLE_RATE_16000; 1989 case 22050: 1990 return VC4_HDMI_MAI_SAMPLE_RATE_22050; 1991 case 24000: 1992 return VC4_HDMI_MAI_SAMPLE_RATE_24000; 1993 case 32000: 1994 return VC4_HDMI_MAI_SAMPLE_RATE_32000; 1995 case 44100: 1996 return VC4_HDMI_MAI_SAMPLE_RATE_44100; 1997 case 48000: 1998 return VC4_HDMI_MAI_SAMPLE_RATE_48000; 1999 case 64000: 2000 return VC4_HDMI_MAI_SAMPLE_RATE_64000; 2001 case 88200: 2002 return VC4_HDMI_MAI_SAMPLE_RATE_88200; 2003 case 96000: 2004 return VC4_HDMI_MAI_SAMPLE_RATE_96000; 2005 case 128000: 2006 return VC4_HDMI_MAI_SAMPLE_RATE_128000; 2007 case 176400: 2008 return VC4_HDMI_MAI_SAMPLE_RATE_176400; 2009 case 192000: 2010 return VC4_HDMI_MAI_SAMPLE_RATE_192000; 2011 default: 2012 return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED; 2013 } 2014 } 2015 2016 /* HDMI audio codec callbacks */ 2017 static int vc4_hdmi_audio_prepare(struct drm_connector *connector, 2018 struct hdmi_codec_daifmt *daifmt, 2019 struct hdmi_codec_params *params) 2020 { 2021 struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); 2022 struct drm_device *drm = vc4_hdmi->connector.dev; 2023 struct vc4_dev *vc4 = to_vc4_dev(drm); 2024 unsigned int sample_rate = params->sample_rate; 2025 unsigned int channels = params->channels; 2026 unsigned long flags; 2027 u32 audio_packet_config, channel_mask; 2028 u32 channel_map; 2029 u32 mai_audio_format; 2030 u32 mai_sample_rate; 2031 int ret = 0; 2032 int idx; 2033 2034 dev_dbg(&vc4_hdmi->pdev->dev, "%s: %u Hz, %d bit, %d channels\n", __func__, 2035 sample_rate, params->sample_width, channels); 2036 2037 mutex_lock(&vc4_hdmi->mutex); 2038 2039 if (!drm_dev_enter(drm, &idx)) { 2040 ret = -ENODEV; 2041 goto out; 2042 } 2043 2044 if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) { 2045 ret = -EINVAL; 2046 goto out_dev_exit; 2047 } 2048 2049 vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate); 2050 2051 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 2052 HDMI_WRITE(HDMI_MAI_CTL, 2053 VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) | 2054 VC4_HD_MAI_CTL_WHOLSMP | 2055 VC4_HD_MAI_CTL_CHALIGN | 2056 VC4_HD_MAI_CTL_ENABLE); 2057 2058 mai_sample_rate = sample_rate_to_mai_fmt(sample_rate); 2059 if (params->iec.status[0] & IEC958_AES0_NONAUDIO && 2060 params->channels == 8) 2061 mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR; 2062 else 2063 mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM; 2064 HDMI_WRITE(HDMI_MAI_FMT, 2065 VC4_SET_FIELD(mai_sample_rate, 2066 VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) | 2067 VC4_SET_FIELD(mai_audio_format, 2068 VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT)); 2069 2070 /* The B frame identifier should match the value used by alsa-lib (8) */ 2071 audio_packet_config = 2072 VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT | 2073 VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS | 2074 VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER); 2075 2076 channel_mask = GENMASK(channels - 1, 0); 2077 audio_packet_config |= VC4_SET_FIELD(channel_mask, 2078 VC4_HDMI_AUDIO_PACKET_CEA_MASK); 2079 2080 /* Set the MAI threshold */ 2081 switch (vc4->gen) { 2082 case VC4_GEN_6_D: 2083 HDMI_WRITE(HDMI_MAI_THR, 2084 VC4_SET_FIELD(0x10, VC6_D_HD_MAI_THR_PANICHIGH) | 2085 VC4_SET_FIELD(0x10, VC6_D_HD_MAI_THR_PANICLOW) | 2086 VC4_SET_FIELD(0x1c, VC6_D_HD_MAI_THR_DREQHIGH) | 2087 VC4_SET_FIELD(0x1c, VC6_D_HD_MAI_THR_DREQLOW)); 2088 break; 2089 case VC4_GEN_6_C: 2090 case VC4_GEN_5: 2091 HDMI_WRITE(HDMI_MAI_THR, 2092 VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICHIGH) | 2093 VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICLOW) | 2094 VC4_SET_FIELD(0x1c, VC4_HD_MAI_THR_DREQHIGH) | 2095 VC4_SET_FIELD(0x1c, VC4_HD_MAI_THR_DREQLOW)); 2096 break; 2097 case VC4_GEN_4: 2098 HDMI_WRITE(HDMI_MAI_THR, 2099 VC4_SET_FIELD(0x8, VC4_HD_MAI_THR_PANICHIGH) | 2100 VC4_SET_FIELD(0x8, VC4_HD_MAI_THR_PANICLOW) | 2101 VC4_SET_FIELD(0x6, VC4_HD_MAI_THR_DREQHIGH) | 2102 VC4_SET_FIELD(0x8, VC4_HD_MAI_THR_DREQLOW)); 2103 break; 2104 default: 2105 drm_err(drm, "Unknown VC4 generation: %d", vc4->gen); 2106 break; 2107 } 2108 2109 HDMI_WRITE(HDMI_MAI_CONFIG, 2110 VC4_HDMI_MAI_CONFIG_BIT_REVERSE | 2111 VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE | 2112 VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK)); 2113 2114 channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask); 2115 HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map); 2116 HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config); 2117 2118 vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate); 2119 2120 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 2121 2122 ret = drm_atomic_helper_connector_hdmi_update_audio_infoframe(connector, 2123 ¶ms->cea); 2124 if (ret) 2125 goto out_dev_exit; 2126 2127 out_dev_exit: 2128 drm_dev_exit(idx); 2129 out: 2130 mutex_unlock(&vc4_hdmi->mutex); 2131 2132 return ret; 2133 } 2134 2135 static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = { 2136 .name = "vc4-hdmi-cpu-dai-component", 2137 .legacy_dai_naming = 1, 2138 }; 2139 2140 static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai) 2141 { 2142 struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); 2143 2144 snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL); 2145 2146 return 0; 2147 } 2148 2149 static const struct snd_soc_dai_ops vc4_snd_dai_ops = { 2150 .probe = vc4_hdmi_audio_cpu_dai_probe, 2151 }; 2152 2153 static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = { 2154 .name = "vc4-hdmi-cpu-dai", 2155 .ops = &vc4_snd_dai_ops, 2156 .playback = { 2157 .stream_name = "Playback", 2158 .channels_min = 1, 2159 .channels_max = 8, 2160 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | 2161 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | 2162 SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | 2163 SNDRV_PCM_RATE_192000, 2164 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 2165 }, 2166 }; 2167 2168 static const struct snd_dmaengine_pcm_config pcm_conf = { 2169 .chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx", 2170 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, 2171 }; 2172 2173 static const struct drm_connector_hdmi_audio_funcs vc4_hdmi_audio_funcs = { 2174 .startup = vc4_hdmi_audio_startup, 2175 .prepare = vc4_hdmi_audio_prepare, 2176 .shutdown = vc4_hdmi_audio_shutdown, 2177 }; 2178 2179 static int vc4_hdmi_codec_init(struct snd_soc_pcm_runtime *rtd) 2180 { 2181 struct vc4_hdmi *vc4_hdmi = snd_soc_card_get_drvdata(rtd->card); 2182 struct snd_soc_component *component = snd_soc_rtd_to_codec(rtd, 0)->component; 2183 int ret; 2184 2185 ret = snd_soc_card_jack_new(rtd->card, "HDMI Jack", SND_JACK_LINEOUT, 2186 &vc4_hdmi->hdmi_jack); 2187 if (ret) { 2188 dev_err(rtd->dev, "HDMI Jack creation failed: %d\n", ret); 2189 return ret; 2190 } 2191 2192 return snd_soc_component_set_jack(component, &vc4_hdmi->hdmi_jack, NULL); 2193 } 2194 2195 static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi) 2196 { 2197 const struct vc4_hdmi_register *mai_data = 2198 &vc4_hdmi->variant->registers[HDMI_MAI_DATA]; 2199 struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link; 2200 struct snd_soc_card *card = &vc4_hdmi->audio.card; 2201 struct device *dev = &vc4_hdmi->pdev->dev; 2202 const __be32 *addr; 2203 int index, len; 2204 int ret; 2205 2206 /* 2207 * ASoC makes it a bit hard to retrieve a pointer to the 2208 * vc4_hdmi structure. Registering the card will overwrite our 2209 * device drvdata with a pointer to the snd_soc_card structure, 2210 * which can then be used to retrieve whatever drvdata we want 2211 * to associate. 2212 * 2213 * However, that doesn't fly in the case where we wouldn't 2214 * register an ASoC card (because of an old DT that is missing 2215 * the dmas properties for example), then the card isn't 2216 * registered and the device drvdata wouldn't be set. 2217 * 2218 * We can deal with both cases by making sure a snd_soc_card 2219 * pointer and a vc4_hdmi structure are pointing to the same 2220 * memory address, so we can treat them indistinctly without any 2221 * issue. 2222 */ 2223 BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0); 2224 BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0); 2225 2226 if (!of_find_property(dev->of_node, "dmas", &len) || !len) { 2227 dev_warn(dev, 2228 "'dmas' DT property is missing or empty, no HDMI audio\n"); 2229 return 0; 2230 } 2231 2232 if (mai_data->reg != VC4_HD) { 2233 WARN_ONCE(true, "MAI isn't in the HD block\n"); 2234 return -EINVAL; 2235 } 2236 2237 /* 2238 * Get the physical address of VC4_HD_MAI_DATA. We need to retrieve 2239 * the bus address specified in the DT, because the physical address 2240 * (the one returned by platform_get_resource()) is not appropriate 2241 * for DMA transfers. 2242 * This VC/MMU should probably be exposed to avoid this kind of hacks. 2243 */ 2244 index = of_property_match_string(dev->of_node, "reg-names", "hd"); 2245 /* Before BCM2711, we don't have a named register range */ 2246 if (index < 0) 2247 index = 1; 2248 2249 addr = of_get_address(dev->of_node, index, NULL, NULL); 2250 if (!addr) 2251 return -EINVAL; 2252 2253 vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset; 2254 vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2255 vc4_hdmi->audio.dma_data.maxburst = 2; 2256 2257 /* 2258 * NOTE: Strictly speaking, we should probably use a DRM-managed 2259 * registration there to avoid removing all the audio components 2260 * by the time the driver doesn't have any user anymore. 2261 * 2262 * However, the ASoC core uses a number of devm_kzalloc calls 2263 * when registering, even when using non-device-managed 2264 * functions (such as in snd_soc_register_component()). 2265 * 2266 * If we call snd_soc_unregister_component() in a DRM-managed 2267 * action, the device-managed actions have already been executed 2268 * and thus we would access memory that has been freed. 2269 * 2270 * Using device-managed hooks here probably leaves us open to a 2271 * bunch of issues if userspace still has a handle on the ALSA 2272 * device when the device is removed. However, this is mitigated 2273 * by the use of drm_dev_enter()/drm_dev_exit() in the audio 2274 * path to prevent the access to the device resources if it 2275 * isn't there anymore. 2276 * 2277 * Then, the vc4_hdmi structure is DRM-managed and thus only 2278 * freed whenever the last user has closed the DRM device file. 2279 * It should thus outlive ALSA in most situations. 2280 */ 2281 ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0); 2282 if (ret) { 2283 dev_err(dev, "Could not register PCM component: %d\n", ret); 2284 return ret; 2285 } 2286 2287 ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp, 2288 &vc4_hdmi_audio_cpu_dai_drv, 1); 2289 if (ret) { 2290 dev_err(dev, "Could not register CPU DAI: %d\n", ret); 2291 return ret; 2292 } 2293 2294 ret = drm_connector_hdmi_audio_init(&vc4_hdmi->connector, dev, 2295 &vc4_hdmi_audio_funcs, 8, 0, false, 2296 -1); 2297 if (ret) 2298 return ret; 2299 2300 dai_link->cpus = &vc4_hdmi->audio.cpu; 2301 dai_link->codecs = &vc4_hdmi->audio.codec; 2302 dai_link->platforms = &vc4_hdmi->audio.platform; 2303 2304 dai_link->num_cpus = 1; 2305 dai_link->num_codecs = 1; 2306 dai_link->num_platforms = 1; 2307 2308 dai_link->name = "MAI"; 2309 dai_link->stream_name = "MAI PCM"; 2310 dai_link->codecs->dai_name = "i2s-hifi"; 2311 dai_link->cpus->dai_name = dev_name(dev); 2312 dai_link->codecs->name = dev_name(&vc4_hdmi->connector.hdmi_audio.codec_pdev->dev); 2313 dai_link->platforms->name = dev_name(dev); 2314 dai_link->init = vc4_hdmi_codec_init; 2315 2316 card->dai_link = dai_link; 2317 card->num_links = 1; 2318 card->name = vc4_hdmi->variant->card_name; 2319 card->driver_name = "vc4-hdmi"; 2320 card->dev = dev; 2321 card->owner = THIS_MODULE; 2322 2323 /* 2324 * Be careful, snd_soc_register_card() calls dev_set_drvdata() and 2325 * stores a pointer to the snd card object in dev->driver_data. This 2326 * means we cannot use it for something else. The hdmi back-pointer is 2327 * now stored in card->drvdata and should be retrieved with 2328 * snd_soc_card_get_drvdata() if needed. 2329 */ 2330 snd_soc_card_set_drvdata(card, vc4_hdmi); 2331 ret = devm_snd_soc_register_card(dev, card); 2332 if (ret) 2333 dev_err_probe(dev, ret, "Could not register sound card\n"); 2334 2335 return ret; 2336 2337 } 2338 2339 static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv) 2340 { 2341 struct vc4_hdmi *vc4_hdmi = priv; 2342 struct drm_connector *connector = &vc4_hdmi->connector; 2343 struct drm_device *dev = connector->dev; 2344 2345 if (dev && dev->registered) 2346 drm_connector_helper_hpd_irq_event(connector); 2347 2348 return IRQ_HANDLED; 2349 } 2350 2351 static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi) 2352 { 2353 struct drm_connector *connector = &vc4_hdmi->connector; 2354 struct platform_device *pdev = vc4_hdmi->pdev; 2355 int ret; 2356 2357 if (vc4_hdmi->variant->external_irq_controller) { 2358 unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected"); 2359 unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed"); 2360 2361 ret = devm_request_threaded_irq(&pdev->dev, hpd_con, 2362 NULL, 2363 vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT, 2364 "vc4 hdmi hpd connected", vc4_hdmi); 2365 if (ret) 2366 return ret; 2367 2368 ret = devm_request_threaded_irq(&pdev->dev, hpd_rm, 2369 NULL, 2370 vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT, 2371 "vc4 hdmi hpd disconnected", vc4_hdmi); 2372 if (ret) 2373 return ret; 2374 2375 connector->polled = DRM_CONNECTOR_POLL_HPD; 2376 } 2377 2378 return 0; 2379 } 2380 2381 #ifdef CONFIG_DRM_VC4_HDMI_CEC 2382 static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv) 2383 { 2384 struct vc4_hdmi *vc4_hdmi = priv; 2385 2386 if (vc4_hdmi->cec_rx_msg.len) 2387 cec_received_msg(vc4_hdmi->cec_adap, 2388 &vc4_hdmi->cec_rx_msg); 2389 2390 return IRQ_HANDLED; 2391 } 2392 2393 static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv) 2394 { 2395 struct vc4_hdmi *vc4_hdmi = priv; 2396 2397 if (vc4_hdmi->cec_tx_ok) { 2398 cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK, 2399 0, 0, 0, 0); 2400 } else { 2401 /* 2402 * This CEC implementation makes 1 retry, so if we 2403 * get a NACK, then that means it made 2 attempts. 2404 */ 2405 cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK, 2406 0, 2, 0, 0); 2407 } 2408 return IRQ_HANDLED; 2409 } 2410 2411 static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv) 2412 { 2413 struct vc4_hdmi *vc4_hdmi = priv; 2414 irqreturn_t ret; 2415 2416 if (vc4_hdmi->cec_irq_was_rx) 2417 ret = vc4_cec_irq_handler_rx_thread(irq, priv); 2418 else 2419 ret = vc4_cec_irq_handler_tx_thread(irq, priv); 2420 2421 return ret; 2422 } 2423 2424 static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1) 2425 { 2426 struct drm_device *dev = vc4_hdmi->connector.dev; 2427 struct cec_msg *msg = &vc4_hdmi->cec_rx_msg; 2428 unsigned int i; 2429 2430 lockdep_assert_held(&vc4_hdmi->hw_lock); 2431 2432 msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >> 2433 VC4_HDMI_CEC_REC_WRD_CNT_SHIFT); 2434 2435 if (msg->len > 16) { 2436 drm_err(dev, "Attempting to read too much data (%d)\n", msg->len); 2437 return; 2438 } 2439 2440 for (i = 0; i < msg->len; i += 4) { 2441 u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2)); 2442 2443 msg->msg[i] = val & 0xff; 2444 msg->msg[i + 1] = (val >> 8) & 0xff; 2445 msg->msg[i + 2] = (val >> 16) & 0xff; 2446 msg->msg[i + 3] = (val >> 24) & 0xff; 2447 } 2448 } 2449 2450 static irqreturn_t vc4_cec_irq_handler_tx_bare_locked(struct vc4_hdmi *vc4_hdmi) 2451 { 2452 u32 cntrl1; 2453 2454 /* 2455 * We don't need to protect the register access using 2456 * drm_dev_enter() there because the interrupt handler lifetime 2457 * is tied to the device itself, and not to the DRM device. 2458 * 2459 * So when the device will be gone, one of the first thing we 2460 * will be doing will be to unregister the interrupt handler, 2461 * and then unregister the DRM device. drm_dev_enter() would 2462 * thus always succeed if we are here. 2463 */ 2464 2465 lockdep_assert_held(&vc4_hdmi->hw_lock); 2466 2467 cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1); 2468 vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD; 2469 cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; 2470 HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); 2471 2472 return IRQ_WAKE_THREAD; 2473 } 2474 2475 static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv) 2476 { 2477 struct vc4_hdmi *vc4_hdmi = priv; 2478 irqreturn_t ret; 2479 2480 spin_lock(&vc4_hdmi->hw_lock); 2481 ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi); 2482 spin_unlock(&vc4_hdmi->hw_lock); 2483 2484 return ret; 2485 } 2486 2487 static irqreturn_t vc4_cec_irq_handler_rx_bare_locked(struct vc4_hdmi *vc4_hdmi) 2488 { 2489 u32 cntrl1; 2490 2491 lockdep_assert_held(&vc4_hdmi->hw_lock); 2492 2493 /* 2494 * We don't need to protect the register access using 2495 * drm_dev_enter() there because the interrupt handler lifetime 2496 * is tied to the device itself, and not to the DRM device. 2497 * 2498 * So when the device will be gone, one of the first thing we 2499 * will be doing will be to unregister the interrupt handler, 2500 * and then unregister the DRM device. drm_dev_enter() would 2501 * thus always succeed if we are here. 2502 */ 2503 2504 vc4_hdmi->cec_rx_msg.len = 0; 2505 cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1); 2506 vc4_cec_read_msg(vc4_hdmi, cntrl1); 2507 cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; 2508 HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); 2509 cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; 2510 2511 HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); 2512 2513 return IRQ_WAKE_THREAD; 2514 } 2515 2516 static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv) 2517 { 2518 struct vc4_hdmi *vc4_hdmi = priv; 2519 irqreturn_t ret; 2520 2521 spin_lock(&vc4_hdmi->hw_lock); 2522 ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi); 2523 spin_unlock(&vc4_hdmi->hw_lock); 2524 2525 return ret; 2526 } 2527 2528 static irqreturn_t vc4_cec_irq_handler(int irq, void *priv) 2529 { 2530 struct vc4_hdmi *vc4_hdmi = priv; 2531 u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS); 2532 irqreturn_t ret; 2533 u32 cntrl5; 2534 2535 /* 2536 * We don't need to protect the register access using 2537 * drm_dev_enter() there because the interrupt handler lifetime 2538 * is tied to the device itself, and not to the DRM device. 2539 * 2540 * So when the device will be gone, one of the first thing we 2541 * will be doing will be to unregister the interrupt handler, 2542 * and then unregister the DRM device. drm_dev_enter() would 2543 * thus always succeed if we are here. 2544 */ 2545 2546 if (!(stat & VC4_HDMI_CPU_CEC)) 2547 return IRQ_NONE; 2548 2549 spin_lock(&vc4_hdmi->hw_lock); 2550 cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5); 2551 vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT; 2552 if (vc4_hdmi->cec_irq_was_rx) 2553 ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi); 2554 else 2555 ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi); 2556 2557 HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC); 2558 spin_unlock(&vc4_hdmi->hw_lock); 2559 2560 return ret; 2561 } 2562 2563 static int vc4_hdmi_cec_enable(struct cec_adapter *adap) 2564 { 2565 struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); 2566 struct drm_device *drm = vc4_hdmi->connector.dev; 2567 /* clock period in microseconds */ 2568 const u32 usecs = 1000000 / CEC_CLOCK_FREQ; 2569 unsigned long flags; 2570 u32 val; 2571 int ret; 2572 int idx; 2573 2574 if (!drm_dev_enter(drm, &idx)) 2575 /* 2576 * We can't return an error code, because the CEC 2577 * framework will emit WARN_ON messages at unbind 2578 * otherwise. 2579 */ 2580 return 0; 2581 2582 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); 2583 if (ret) { 2584 drm_dev_exit(idx); 2585 return ret; 2586 } 2587 2588 mutex_lock(&vc4_hdmi->mutex); 2589 2590 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 2591 2592 val = HDMI_READ(HDMI_CEC_CNTRL_5); 2593 val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET | 2594 VC4_HDMI_CEC_CNT_TO_4700_US_MASK | 2595 VC4_HDMI_CEC_CNT_TO_4500_US_MASK); 2596 val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) | 2597 ((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT); 2598 2599 HDMI_WRITE(HDMI_CEC_CNTRL_5, val | 2600 VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); 2601 HDMI_WRITE(HDMI_CEC_CNTRL_5, val); 2602 HDMI_WRITE(HDMI_CEC_CNTRL_2, 2603 ((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) | 2604 ((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) | 2605 ((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) | 2606 ((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) | 2607 ((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT)); 2608 HDMI_WRITE(HDMI_CEC_CNTRL_3, 2609 ((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) | 2610 ((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) | 2611 ((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) | 2612 ((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT)); 2613 HDMI_WRITE(HDMI_CEC_CNTRL_4, 2614 ((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) | 2615 ((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) | 2616 ((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) | 2617 ((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT)); 2618 2619 if (!vc4_hdmi->variant->external_irq_controller) 2620 HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC); 2621 2622 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 2623 2624 mutex_unlock(&vc4_hdmi->mutex); 2625 drm_dev_exit(idx); 2626 2627 return 0; 2628 } 2629 2630 static int vc4_hdmi_cec_disable(struct cec_adapter *adap) 2631 { 2632 struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); 2633 struct drm_device *drm = vc4_hdmi->connector.dev; 2634 unsigned long flags; 2635 int idx; 2636 2637 if (!drm_dev_enter(drm, &idx)) 2638 /* 2639 * We can't return an error code, because the CEC 2640 * framework will emit WARN_ON messages at unbind 2641 * otherwise. 2642 */ 2643 return 0; 2644 2645 mutex_lock(&vc4_hdmi->mutex); 2646 2647 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 2648 2649 if (!vc4_hdmi->variant->external_irq_controller) 2650 HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC); 2651 2652 HDMI_WRITE(HDMI_CEC_CNTRL_5, HDMI_READ(HDMI_CEC_CNTRL_5) | 2653 VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); 2654 2655 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 2656 2657 mutex_unlock(&vc4_hdmi->mutex); 2658 2659 pm_runtime_put(&vc4_hdmi->pdev->dev); 2660 2661 drm_dev_exit(idx); 2662 2663 return 0; 2664 } 2665 2666 static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable) 2667 { 2668 if (enable) 2669 return vc4_hdmi_cec_enable(adap); 2670 else 2671 return vc4_hdmi_cec_disable(adap); 2672 } 2673 2674 static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr) 2675 { 2676 struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); 2677 struct drm_device *drm = vc4_hdmi->connector.dev; 2678 unsigned long flags; 2679 int idx; 2680 2681 if (!drm_dev_enter(drm, &idx)) 2682 /* 2683 * We can't return an error code, because the CEC 2684 * framework will emit WARN_ON messages at unbind 2685 * otherwise. 2686 */ 2687 return 0; 2688 2689 mutex_lock(&vc4_hdmi->mutex); 2690 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 2691 HDMI_WRITE(HDMI_CEC_CNTRL_1, 2692 (HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) | 2693 (log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT); 2694 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 2695 mutex_unlock(&vc4_hdmi->mutex); 2696 2697 drm_dev_exit(idx); 2698 2699 return 0; 2700 } 2701 2702 static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, 2703 u32 signal_free_time, struct cec_msg *msg) 2704 { 2705 struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); 2706 struct drm_device *dev = vc4_hdmi->connector.dev; 2707 unsigned long flags; 2708 u32 val; 2709 unsigned int i; 2710 int idx; 2711 2712 if (!drm_dev_enter(dev, &idx)) 2713 return -ENODEV; 2714 2715 if (msg->len > 16) { 2716 drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len); 2717 drm_dev_exit(idx); 2718 return -ENOMEM; 2719 } 2720 2721 mutex_lock(&vc4_hdmi->mutex); 2722 2723 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 2724 2725 for (i = 0; i < msg->len; i += 4) 2726 HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2), 2727 (msg->msg[i]) | 2728 (msg->msg[i + 1] << 8) | 2729 (msg->msg[i + 2] << 16) | 2730 (msg->msg[i + 3] << 24)); 2731 2732 val = HDMI_READ(HDMI_CEC_CNTRL_1); 2733 val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; 2734 HDMI_WRITE(HDMI_CEC_CNTRL_1, val); 2735 val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK; 2736 val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT; 2737 val |= VC4_HDMI_CEC_START_XMIT_BEGIN; 2738 2739 HDMI_WRITE(HDMI_CEC_CNTRL_1, val); 2740 2741 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 2742 mutex_unlock(&vc4_hdmi->mutex); 2743 drm_dev_exit(idx); 2744 2745 return 0; 2746 } 2747 2748 static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = { 2749 .adap_enable = vc4_hdmi_cec_adap_enable, 2750 .adap_log_addr = vc4_hdmi_cec_adap_log_addr, 2751 .adap_transmit = vc4_hdmi_cec_adap_transmit, 2752 }; 2753 2754 static void vc4_hdmi_cec_release(void *ptr) 2755 { 2756 struct vc4_hdmi *vc4_hdmi = ptr; 2757 2758 cec_unregister_adapter(vc4_hdmi->cec_adap); 2759 vc4_hdmi->cec_adap = NULL; 2760 } 2761 2762 static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) 2763 { 2764 struct cec_connector_info conn_info; 2765 struct platform_device *pdev = vc4_hdmi->pdev; 2766 struct device *dev = &pdev->dev; 2767 int ret; 2768 2769 if (!of_property_present(dev->of_node, "interrupts")) { 2770 dev_warn(dev, "'interrupts' DT property is missing, no CEC\n"); 2771 return 0; 2772 } 2773 2774 vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops, 2775 vc4_hdmi, 2776 vc4_hdmi->variant->card_name, 2777 CEC_CAP_DEFAULTS | 2778 CEC_CAP_CONNECTOR_INFO, 1); 2779 ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap); 2780 if (ret < 0) 2781 return ret; 2782 2783 cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector); 2784 cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info); 2785 2786 if (vc4_hdmi->variant->external_irq_controller) { 2787 ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-rx"), 2788 vc4_cec_irq_handler_rx_bare, 2789 vc4_cec_irq_handler_rx_thread, 0, 2790 "vc4 hdmi cec rx", vc4_hdmi); 2791 if (ret) 2792 goto err_delete_cec_adap; 2793 2794 ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-tx"), 2795 vc4_cec_irq_handler_tx_bare, 2796 vc4_cec_irq_handler_tx_thread, 0, 2797 "vc4 hdmi cec tx", vc4_hdmi); 2798 if (ret) 2799 goto err_delete_cec_adap; 2800 } else { 2801 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 2802 vc4_cec_irq_handler, 2803 vc4_cec_irq_handler_thread, 0, 2804 "vc4 hdmi cec", vc4_hdmi); 2805 if (ret) 2806 goto err_delete_cec_adap; 2807 } 2808 2809 ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev); 2810 if (ret < 0) 2811 goto err_delete_cec_adap; 2812 2813 /* 2814 * NOTE: Strictly speaking, we should probably use a DRM-managed 2815 * registration there to avoid removing the CEC adapter by the 2816 * time the DRM driver doesn't have any user anymore. 2817 * 2818 * However, the CEC framework already cleans up the CEC adapter 2819 * only when the last user has closed its file descriptor, so we 2820 * don't need to handle it in DRM. 2821 * 2822 * By the time the device-managed hook is executed, we will give 2823 * up our reference to the CEC adapter and therefore don't 2824 * really care when it's actually freed. 2825 * 2826 * There's still a problematic sequence: if we unregister our 2827 * CEC adapter, but the userspace keeps a handle on the CEC 2828 * adapter but not the DRM device for some reason. In such a 2829 * case, our vc4_hdmi structure will be freed, but the 2830 * cec_adapter structure will have a dangling pointer to what 2831 * used to be our HDMI controller. If we get a CEC call at that 2832 * moment, we could end up with a use-after-free. Fortunately, 2833 * the CEC framework already handles this too, by calling 2834 * cec_is_registered() in cec_ioctl() and cec_poll(). 2835 */ 2836 ret = devm_add_action_or_reset(dev, vc4_hdmi_cec_release, vc4_hdmi); 2837 if (ret) 2838 return ret; 2839 2840 return 0; 2841 2842 err_delete_cec_adap: 2843 cec_delete_adapter(vc4_hdmi->cec_adap); 2844 2845 return ret; 2846 } 2847 #else 2848 static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) 2849 { 2850 return 0; 2851 } 2852 #endif 2853 2854 static void vc4_hdmi_free_regset(struct drm_device *drm, void *ptr) 2855 { 2856 struct debugfs_reg32 *regs = ptr; 2857 2858 kfree(regs); 2859 } 2860 2861 static int vc4_hdmi_build_regset(struct drm_device *drm, 2862 struct vc4_hdmi *vc4_hdmi, 2863 struct debugfs_regset32 *regset, 2864 enum vc4_hdmi_regs reg) 2865 { 2866 const struct vc4_hdmi_variant *variant = vc4_hdmi->variant; 2867 struct debugfs_reg32 *regs, *new_regs; 2868 unsigned int count = 0; 2869 unsigned int i; 2870 int ret; 2871 2872 regs = kcalloc(variant->num_registers, sizeof(*regs), 2873 GFP_KERNEL); 2874 if (!regs) 2875 return -ENOMEM; 2876 2877 for (i = 0; i < variant->num_registers; i++) { 2878 const struct vc4_hdmi_register *field = &variant->registers[i]; 2879 2880 if (field->reg != reg) 2881 continue; 2882 2883 regs[count].name = field->name; 2884 regs[count].offset = field->offset; 2885 count++; 2886 } 2887 2888 new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL); 2889 if (!new_regs) 2890 return -ENOMEM; 2891 2892 regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg); 2893 regset->regs = new_regs; 2894 regset->nregs = count; 2895 2896 ret = drmm_add_action_or_reset(drm, vc4_hdmi_free_regset, new_regs); 2897 if (ret) 2898 return ret; 2899 2900 return 0; 2901 } 2902 2903 static int vc4_hdmi_init_resources(struct drm_device *drm, 2904 struct vc4_hdmi *vc4_hdmi) 2905 { 2906 struct platform_device *pdev = vc4_hdmi->pdev; 2907 struct device *dev = &pdev->dev; 2908 int ret; 2909 2910 vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0); 2911 if (IS_ERR(vc4_hdmi->hdmicore_regs)) 2912 return PTR_ERR(vc4_hdmi->hdmicore_regs); 2913 2914 vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1); 2915 if (IS_ERR(vc4_hdmi->hd_regs)) 2916 return PTR_ERR(vc4_hdmi->hd_regs); 2917 2918 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD); 2919 if (ret) 2920 return ret; 2921 2922 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI); 2923 if (ret) 2924 return ret; 2925 2926 vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel"); 2927 if (IS_ERR(vc4_hdmi->pixel_clock)) { 2928 ret = PTR_ERR(vc4_hdmi->pixel_clock); 2929 if (ret != -EPROBE_DEFER) 2930 drm_err(drm, "Failed to get pixel clock\n"); 2931 return ret; 2932 } 2933 2934 vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); 2935 if (IS_ERR(vc4_hdmi->hsm_clock)) { 2936 drm_err(drm, "Failed to get HDMI state machine clock\n"); 2937 return PTR_ERR(vc4_hdmi->hsm_clock); 2938 } 2939 vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock; 2940 vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock; 2941 2942 return 0; 2943 } 2944 2945 static int vc5_hdmi_init_resources(struct drm_device *drm, 2946 struct vc4_hdmi *vc4_hdmi) 2947 { 2948 struct platform_device *pdev = vc4_hdmi->pdev; 2949 struct device *dev = &pdev->dev; 2950 struct resource *res; 2951 int ret; 2952 2953 vc4_hdmi->hdmicore_regs = devm_platform_ioremap_resource_byname(pdev, 2954 "hdmi"); 2955 if (IS_ERR(vc4_hdmi->hdmicore_regs)) 2956 return PTR_ERR(vc4_hdmi->hdmicore_regs); 2957 2958 /* This is shared between both HDMI controllers. Cannot 2959 * claim for both instances. Lets not convert to using 2960 * devm_platform_ioremap_resource_byname() like 2961 * the rest 2962 */ 2963 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd"); 2964 if (!res) 2965 return -ENODEV; 2966 2967 vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res)); 2968 if (!vc4_hdmi->hd_regs) 2969 return -ENOMEM; 2970 2971 vc4_hdmi->cec_regs = devm_platform_ioremap_resource_byname(pdev, 2972 "cec"); 2973 if (IS_ERR(vc4_hdmi->cec_regs)) 2974 return PTR_ERR(vc4_hdmi->cec_regs); 2975 2976 vc4_hdmi->csc_regs = devm_platform_ioremap_resource_byname(pdev, 2977 "csc"); 2978 if (IS_ERR(vc4_hdmi->csc_regs)) 2979 return PTR_ERR(vc4_hdmi->csc_regs); 2980 2981 vc4_hdmi->dvp_regs = devm_platform_ioremap_resource_byname(pdev, 2982 "dvp"); 2983 if (IS_ERR(vc4_hdmi->dvp_regs)) 2984 return PTR_ERR(vc4_hdmi->dvp_regs); 2985 2986 vc4_hdmi->phy_regs = devm_platform_ioremap_resource_byname(pdev, 2987 "phy"); 2988 2989 if (IS_ERR(vc4_hdmi->phy_regs)) 2990 return PTR_ERR(vc4_hdmi->phy_regs); 2991 2992 vc4_hdmi->ram_regs = devm_platform_ioremap_resource_byname(pdev, 2993 "packet"); 2994 if (IS_ERR(vc4_hdmi->ram_regs)) 2995 return PTR_ERR(vc4_hdmi->ram_regs); 2996 2997 vc4_hdmi->rm_regs = devm_platform_ioremap_resource_byname(pdev, "rm"); 2998 if (IS_ERR(vc4_hdmi->rm_regs)) 2999 return PTR_ERR(vc4_hdmi->rm_regs); 3000 3001 vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); 3002 if (IS_ERR(vc4_hdmi->hsm_clock)) { 3003 drm_err(drm, "Failed to get HDMI state machine clock\n"); 3004 return PTR_ERR(vc4_hdmi->hsm_clock); 3005 } 3006 3007 vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb"); 3008 if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) { 3009 drm_err(drm, "Failed to get pixel bvb clock\n"); 3010 return PTR_ERR(vc4_hdmi->pixel_bvb_clock); 3011 } 3012 3013 vc4_hdmi->audio_clock = devm_clk_get(dev, "audio"); 3014 if (IS_ERR(vc4_hdmi->audio_clock)) { 3015 drm_err(drm, "Failed to get audio clock\n"); 3016 return PTR_ERR(vc4_hdmi->audio_clock); 3017 } 3018 3019 vc4_hdmi->cec_clock = devm_clk_get(dev, "cec"); 3020 if (IS_ERR(vc4_hdmi->cec_clock)) { 3021 drm_err(drm, "Failed to get CEC clock\n"); 3022 return PTR_ERR(vc4_hdmi->cec_clock); 3023 } 3024 3025 vc4_hdmi->reset = devm_reset_control_get(dev, NULL); 3026 if (IS_ERR(vc4_hdmi->reset)) { 3027 drm_err(drm, "Failed to get HDMI reset line\n"); 3028 return PTR_ERR(vc4_hdmi->reset); 3029 } 3030 3031 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI); 3032 if (ret) 3033 return ret; 3034 3035 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD); 3036 if (ret) 3037 return ret; 3038 3039 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->cec_regset, VC5_CEC); 3040 if (ret) 3041 return ret; 3042 3043 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->csc_regset, VC5_CSC); 3044 if (ret) 3045 return ret; 3046 3047 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->dvp_regset, VC5_DVP); 3048 if (ret) 3049 return ret; 3050 3051 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->phy_regset, VC5_PHY); 3052 if (ret) 3053 return ret; 3054 3055 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->ram_regset, VC5_RAM); 3056 if (ret) 3057 return ret; 3058 3059 ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->rm_regset, VC5_RM); 3060 if (ret) 3061 return ret; 3062 3063 return 0; 3064 } 3065 3066 static int vc4_hdmi_runtime_suspend(struct device *dev) 3067 { 3068 struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); 3069 3070 clk_disable_unprepare(vc4_hdmi->audio_clock); 3071 clk_disable_unprepare(vc4_hdmi->hsm_clock); 3072 3073 return 0; 3074 } 3075 3076 static int vc4_hdmi_runtime_resume(struct device *dev) 3077 { 3078 struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev); 3079 unsigned long __maybe_unused flags; 3080 u32 __maybe_unused value; 3081 unsigned long rate; 3082 int ret; 3083 3084 ret = clk_prepare_enable(vc4_hdmi->hsm_clock); 3085 if (ret) 3086 return ret; 3087 3088 /* 3089 * Whenever the RaspberryPi boots without an HDMI monitor 3090 * plugged in, the firmware won't have initialized the HSM clock 3091 * rate and it will be reported as 0. 3092 * 3093 * If we try to access a register of the controller in such a 3094 * case, it will lead to a silent CPU stall. Let's make sure we 3095 * prevent such a case. 3096 */ 3097 rate = clk_get_rate(vc4_hdmi->hsm_clock); 3098 if (!rate) { 3099 ret = -EINVAL; 3100 goto err_disable_clk; 3101 } 3102 3103 ret = clk_prepare_enable(vc4_hdmi->audio_clock); 3104 if (ret) 3105 goto err_disable_clk; 3106 3107 if (vc4_hdmi->variant->reset) 3108 vc4_hdmi->variant->reset(vc4_hdmi); 3109 3110 #ifdef CONFIG_DRM_VC4_HDMI_CEC 3111 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 3112 value = HDMI_READ(HDMI_CEC_CNTRL_1); 3113 /* Set the logical address to Unregistered */ 3114 value |= VC4_HDMI_CEC_ADDR_MASK; 3115 HDMI_WRITE(HDMI_CEC_CNTRL_1, value); 3116 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 3117 3118 vc4_hdmi_cec_update_clk_div(vc4_hdmi); 3119 3120 if (!vc4_hdmi->variant->external_irq_controller) { 3121 spin_lock_irqsave(&vc4_hdmi->hw_lock, flags); 3122 HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff); 3123 spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags); 3124 } 3125 #endif 3126 3127 return 0; 3128 3129 err_disable_clk: 3130 clk_disable_unprepare(vc4_hdmi->hsm_clock); 3131 return ret; 3132 } 3133 3134 static void vc4_hdmi_put_ddc_device(void *ptr) 3135 { 3136 struct vc4_hdmi *vc4_hdmi = ptr; 3137 3138 put_device(&vc4_hdmi->ddc->dev); 3139 } 3140 3141 static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data) 3142 { 3143 const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev); 3144 struct platform_device *pdev = to_platform_device(dev); 3145 struct drm_device *drm = dev_get_drvdata(master); 3146 struct vc4_hdmi *vc4_hdmi; 3147 struct drm_encoder *encoder; 3148 struct device_node *ddc_node; 3149 int ret; 3150 3151 vc4_hdmi = drmm_kzalloc(drm, sizeof(*vc4_hdmi), GFP_KERNEL); 3152 if (!vc4_hdmi) 3153 return -ENOMEM; 3154 3155 ret = drmm_mutex_init(drm, &vc4_hdmi->mutex); 3156 if (ret) 3157 return ret; 3158 3159 spin_lock_init(&vc4_hdmi->hw_lock); 3160 INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq); 3161 3162 dev_set_drvdata(dev, vc4_hdmi); 3163 encoder = &vc4_hdmi->encoder.base; 3164 vc4_hdmi->encoder.type = variant->encoder_type; 3165 vc4_hdmi->encoder.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure; 3166 vc4_hdmi->encoder.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable; 3167 vc4_hdmi->encoder.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable; 3168 vc4_hdmi->encoder.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable; 3169 vc4_hdmi->encoder.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown; 3170 vc4_hdmi->pdev = pdev; 3171 vc4_hdmi->variant = variant; 3172 3173 /* 3174 * Since we don't know the state of the controller and its 3175 * display (if any), let's assume it's always enabled. 3176 * vc4_hdmi_disable_scrambling() will thus run at boot, make 3177 * sure it's disabled, and avoid any inconsistency. 3178 */ 3179 if (variant->max_pixel_clock > HDMI_14_MAX_TMDS_CLK) 3180 vc4_hdmi->scdc_enabled = true; 3181 3182 ret = variant->init_resources(drm, vc4_hdmi); 3183 if (ret) 3184 return ret; 3185 3186 ddc_node = of_parse_phandle(dev->of_node, "ddc", 0); 3187 if (!ddc_node) { 3188 drm_err(drm, "Failed to find ddc node in device tree\n"); 3189 return -ENODEV; 3190 } 3191 3192 vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node); 3193 of_node_put(ddc_node); 3194 if (!vc4_hdmi->ddc) { 3195 drm_err(drm, "Failed to get ddc i2c adapter by node\n"); 3196 return -EPROBE_DEFER; 3197 } 3198 3199 ret = devm_add_action_or_reset(dev, vc4_hdmi_put_ddc_device, vc4_hdmi); 3200 if (ret) 3201 return ret; 3202 3203 /* Only use the GPIO HPD pin if present in the DT, otherwise 3204 * we'll use the HDMI core's register. 3205 */ 3206 vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN); 3207 if (IS_ERR(vc4_hdmi->hpd_gpio)) { 3208 return PTR_ERR(vc4_hdmi->hpd_gpio); 3209 } 3210 3211 vc4_hdmi->disable_wifi_frequencies = 3212 of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence"); 3213 3214 ret = devm_pm_runtime_enable(dev); 3215 if (ret) 3216 return ret; 3217 3218 /* 3219 * We need to have the device powered up at this point to call 3220 * our reset hook and for the CEC init. 3221 */ 3222 ret = pm_runtime_resume_and_get(dev); 3223 if (ret) 3224 return ret; 3225 3226 if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") || 3227 of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1") || 3228 of_device_is_compatible(dev->of_node, "brcm,bcm2712-hdmi0") || 3229 of_device_is_compatible(dev->of_node, "brcm,bcm2712-hdmi1")) && 3230 HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) { 3231 clk_prepare_enable(vc4_hdmi->pixel_clock); 3232 clk_prepare_enable(vc4_hdmi->hsm_clock); 3233 clk_prepare_enable(vc4_hdmi->pixel_bvb_clock); 3234 } 3235 3236 ret = drmm_encoder_init(drm, encoder, 3237 &vc4_hdmi_encoder_funcs, 3238 DRM_MODE_ENCODER_TMDS, 3239 NULL); 3240 if (ret) 3241 goto err_put_runtime_pm; 3242 3243 drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs); 3244 3245 ret = vc4_hdmi_connector_init(drm, vc4_hdmi); 3246 if (ret) 3247 goto err_put_runtime_pm; 3248 3249 ret = vc4_hdmi_hotplug_init(vc4_hdmi); 3250 if (ret) 3251 goto err_put_runtime_pm; 3252 3253 ret = vc4_hdmi_cec_init(vc4_hdmi); 3254 if (ret) 3255 goto err_put_runtime_pm; 3256 3257 ret = vc4_hdmi_audio_init(vc4_hdmi); 3258 if (ret) 3259 goto err_put_runtime_pm; 3260 3261 pm_runtime_put_sync(dev); 3262 3263 return 0; 3264 3265 err_put_runtime_pm: 3266 pm_runtime_put_sync(dev); 3267 3268 return ret; 3269 } 3270 3271 static const struct component_ops vc4_hdmi_ops = { 3272 .bind = vc4_hdmi_bind, 3273 }; 3274 3275 static int vc4_hdmi_dev_probe(struct platform_device *pdev) 3276 { 3277 return component_add(&pdev->dev, &vc4_hdmi_ops); 3278 } 3279 3280 static void vc4_hdmi_dev_remove(struct platform_device *pdev) 3281 { 3282 component_del(&pdev->dev, &vc4_hdmi_ops); 3283 } 3284 3285 static const struct vc4_hdmi_variant bcm2835_variant = { 3286 .encoder_type = VC4_ENCODER_TYPE_HDMI0, 3287 .debugfs_name = "hdmi_regs", 3288 .card_name = "vc4-hdmi", 3289 .max_pixel_clock = 162000000, 3290 .registers = vc4_hdmi_fields, 3291 .num_registers = ARRAY_SIZE(vc4_hdmi_fields), 3292 3293 .init_resources = vc4_hdmi_init_resources, 3294 .csc_setup = vc4_hdmi_csc_setup, 3295 .reset = vc4_hdmi_reset, 3296 .set_timings = vc4_hdmi_set_timings, 3297 .phy_init = vc4_hdmi_phy_init, 3298 .phy_disable = vc4_hdmi_phy_disable, 3299 .phy_rng_enable = vc4_hdmi_phy_rng_enable, 3300 .phy_rng_disable = vc4_hdmi_phy_rng_disable, 3301 .channel_map = vc4_hdmi_channel_map, 3302 .supports_hdr = false, 3303 }; 3304 3305 static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = { 3306 .encoder_type = VC4_ENCODER_TYPE_HDMI0, 3307 .debugfs_name = "hdmi0_regs", 3308 .card_name = "vc4-hdmi-0", 3309 .max_pixel_clock = 600000000, 3310 .registers = vc5_hdmi_hdmi0_fields, 3311 .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields), 3312 .phy_lane_mapping = { 3313 PHY_LANE_0, 3314 PHY_LANE_1, 3315 PHY_LANE_2, 3316 PHY_LANE_CK, 3317 }, 3318 .unsupported_odd_h_timings = true, 3319 .external_irq_controller = true, 3320 3321 .init_resources = vc5_hdmi_init_resources, 3322 .csc_setup = vc5_hdmi_csc_setup, 3323 .reset = vc5_hdmi_reset, 3324 .set_timings = vc5_hdmi_set_timings, 3325 .phy_init = vc5_hdmi_phy_init, 3326 .phy_disable = vc5_hdmi_phy_disable, 3327 .phy_rng_enable = vc5_hdmi_phy_rng_enable, 3328 .phy_rng_disable = vc5_hdmi_phy_rng_disable, 3329 .channel_map = vc5_hdmi_channel_map, 3330 .supports_hdr = true, 3331 .hp_detect = vc5_hdmi_hp_detect, 3332 }; 3333 3334 static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = { 3335 .encoder_type = VC4_ENCODER_TYPE_HDMI1, 3336 .debugfs_name = "hdmi1_regs", 3337 .card_name = "vc4-hdmi-1", 3338 .max_pixel_clock = HDMI_14_MAX_TMDS_CLK, 3339 .registers = vc5_hdmi_hdmi1_fields, 3340 .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields), 3341 .phy_lane_mapping = { 3342 PHY_LANE_1, 3343 PHY_LANE_0, 3344 PHY_LANE_CK, 3345 PHY_LANE_2, 3346 }, 3347 .unsupported_odd_h_timings = true, 3348 .external_irq_controller = true, 3349 3350 .init_resources = vc5_hdmi_init_resources, 3351 .csc_setup = vc5_hdmi_csc_setup, 3352 .reset = vc5_hdmi_reset, 3353 .set_timings = vc5_hdmi_set_timings, 3354 .phy_init = vc5_hdmi_phy_init, 3355 .phy_disable = vc5_hdmi_phy_disable, 3356 .phy_rng_enable = vc5_hdmi_phy_rng_enable, 3357 .phy_rng_disable = vc5_hdmi_phy_rng_disable, 3358 .channel_map = vc5_hdmi_channel_map, 3359 .supports_hdr = true, 3360 .hp_detect = vc5_hdmi_hp_detect, 3361 }; 3362 3363 static const struct vc4_hdmi_variant bcm2712_hdmi0_variant = { 3364 .encoder_type = VC4_ENCODER_TYPE_HDMI0, 3365 .debugfs_name = "hdmi0_regs", 3366 .card_name = "vc4-hdmi-0", 3367 .max_pixel_clock = 600000000, 3368 .registers = vc6_hdmi_hdmi0_fields, 3369 .num_registers = ARRAY_SIZE(vc6_hdmi_hdmi0_fields), 3370 .phy_lane_mapping = { 3371 PHY_LANE_0, 3372 PHY_LANE_1, 3373 PHY_LANE_2, 3374 PHY_LANE_CK, 3375 }, 3376 .unsupported_odd_h_timings = false, 3377 .external_irq_controller = true, 3378 3379 .init_resources = vc5_hdmi_init_resources, 3380 .csc_setup = vc5_hdmi_csc_setup, 3381 .reset = vc5_hdmi_reset, 3382 .set_timings = vc5_hdmi_set_timings, 3383 .phy_init = vc6_hdmi_phy_init, 3384 .phy_disable = vc6_hdmi_phy_disable, 3385 .channel_map = vc5_hdmi_channel_map, 3386 .supports_hdr = true, 3387 .hp_detect = vc5_hdmi_hp_detect, 3388 }; 3389 3390 static const struct vc4_hdmi_variant bcm2712_hdmi1_variant = { 3391 .encoder_type = VC4_ENCODER_TYPE_HDMI1, 3392 .debugfs_name = "hdmi1_regs", 3393 .card_name = "vc4-hdmi-1", 3394 .max_pixel_clock = 600000000, 3395 .registers = vc6_hdmi_hdmi1_fields, 3396 .num_registers = ARRAY_SIZE(vc6_hdmi_hdmi1_fields), 3397 .phy_lane_mapping = { 3398 PHY_LANE_0, 3399 PHY_LANE_1, 3400 PHY_LANE_2, 3401 PHY_LANE_CK, 3402 }, 3403 .unsupported_odd_h_timings = false, 3404 .external_irq_controller = true, 3405 3406 .init_resources = vc5_hdmi_init_resources, 3407 .csc_setup = vc5_hdmi_csc_setup, 3408 .reset = vc5_hdmi_reset, 3409 .set_timings = vc5_hdmi_set_timings, 3410 .phy_init = vc6_hdmi_phy_init, 3411 .phy_disable = vc6_hdmi_phy_disable, 3412 .channel_map = vc5_hdmi_channel_map, 3413 .supports_hdr = true, 3414 .hp_detect = vc5_hdmi_hp_detect, 3415 }; 3416 3417 static const struct of_device_id vc4_hdmi_dt_match[] = { 3418 { .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant }, 3419 { .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant }, 3420 { .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant }, 3421 { .compatible = "brcm,bcm2712-hdmi0", .data = &bcm2712_hdmi0_variant }, 3422 { .compatible = "brcm,bcm2712-hdmi1", .data = &bcm2712_hdmi1_variant }, 3423 {} 3424 }; 3425 3426 static const struct dev_pm_ops vc4_hdmi_pm_ops = { 3427 SET_RUNTIME_PM_OPS(vc4_hdmi_runtime_suspend, 3428 vc4_hdmi_runtime_resume, 3429 NULL) 3430 }; 3431 3432 struct platform_driver vc4_hdmi_driver = { 3433 .probe = vc4_hdmi_dev_probe, 3434 .remove = vc4_hdmi_dev_remove, 3435 .driver = { 3436 .name = "vc4_hdmi", 3437 .of_match_table = vc4_hdmi_dt_match, 3438 .pm = &vc4_hdmi_pm_ops, 3439 }, 3440 }; 3441