1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 31 #include "uapi/drm/vc4_drm.h" 32 #include "vc4_drv.h" 33 #include "vc4_regs.h" 34 #include "vc4_trace.h" 35 36 static void 37 vc4_queue_hangcheck(struct drm_device *dev) 38 { 39 struct vc4_dev *vc4 = to_vc4_dev(dev); 40 41 mod_timer(&vc4->hangcheck.timer, 42 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 43 } 44 45 struct vc4_hang_state { 46 struct drm_vc4_get_hang_state user_state; 47 48 u32 bo_count; 49 struct drm_gem_object **bo; 50 }; 51 52 static void 53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 54 { 55 unsigned int i; 56 57 for (i = 0; i < state->user_state.bo_count; i++) 58 drm_gem_object_put_unlocked(state->bo[i]); 59 60 kfree(state); 61 } 62 63 int 64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 65 struct drm_file *file_priv) 66 { 67 struct drm_vc4_get_hang_state *get_state = data; 68 struct drm_vc4_get_hang_state_bo *bo_state; 69 struct vc4_hang_state *kernel_state; 70 struct drm_vc4_get_hang_state *state; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 unsigned long irqflags; 73 u32 i; 74 int ret = 0; 75 76 spin_lock_irqsave(&vc4->job_lock, irqflags); 77 kernel_state = vc4->hang_state; 78 if (!kernel_state) { 79 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 80 return -ENOENT; 81 } 82 state = &kernel_state->user_state; 83 84 /* If the user's array isn't big enough, just return the 85 * required array size. 86 */ 87 if (get_state->bo_count < state->bo_count) { 88 get_state->bo_count = state->bo_count; 89 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 90 return 0; 91 } 92 93 vc4->hang_state = NULL; 94 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 95 96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 97 state->bo = get_state->bo; 98 memcpy(get_state, state, sizeof(*state)); 99 100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 101 if (!bo_state) { 102 ret = -ENOMEM; 103 goto err_free; 104 } 105 106 for (i = 0; i < state->bo_count; i++) { 107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 108 u32 handle; 109 110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 111 &handle); 112 113 if (ret) { 114 state->bo_count = i; 115 goto err_delete_handle; 116 } 117 bo_state[i].handle = handle; 118 bo_state[i].paddr = vc4_bo->base.paddr; 119 bo_state[i].size = vc4_bo->base.base.size; 120 } 121 122 if (copy_to_user(u64_to_user_ptr(get_state->bo), 123 bo_state, 124 state->bo_count * sizeof(*bo_state))) 125 ret = -EFAULT; 126 127 err_delete_handle: 128 if (ret) { 129 for (i = 0; i < state->bo_count; i++) 130 drm_gem_handle_delete(file_priv, bo_state[i].handle); 131 } 132 133 err_free: 134 vc4_free_hang_state(dev, kernel_state); 135 kfree(bo_state); 136 137 return ret; 138 } 139 140 static void 141 vc4_save_hang_state(struct drm_device *dev) 142 { 143 struct vc4_dev *vc4 = to_vc4_dev(dev); 144 struct drm_vc4_get_hang_state *state; 145 struct vc4_hang_state *kernel_state; 146 struct vc4_exec_info *exec[2]; 147 struct vc4_bo *bo; 148 unsigned long irqflags; 149 unsigned int i, j, k, unref_list_count; 150 151 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 152 if (!kernel_state) 153 return; 154 155 state = &kernel_state->user_state; 156 157 spin_lock_irqsave(&vc4->job_lock, irqflags); 158 exec[0] = vc4_first_bin_job(vc4); 159 exec[1] = vc4_first_render_job(vc4); 160 if (!exec[0] && !exec[1]) { 161 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 162 return; 163 } 164 165 /* Get the bos from both binner and renderer into hang state. */ 166 state->bo_count = 0; 167 for (i = 0; i < 2; i++) { 168 if (!exec[i]) 169 continue; 170 171 unref_list_count = 0; 172 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 173 unref_list_count++; 174 state->bo_count += exec[i]->bo_count + unref_list_count; 175 } 176 177 kernel_state->bo = kcalloc(state->bo_count, 178 sizeof(*kernel_state->bo), GFP_ATOMIC); 179 180 if (!kernel_state->bo) { 181 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 182 return; 183 } 184 185 k = 0; 186 for (i = 0; i < 2; i++) { 187 if (!exec[i]) 188 continue; 189 190 for (j = 0; j < exec[i]->bo_count; j++) { 191 bo = to_vc4_bo(&exec[i]->bo[j]->base); 192 193 /* Retain BOs just in case they were marked purgeable. 194 * This prevents the BO from being purged before 195 * someone had a chance to dump the hang state. 196 */ 197 WARN_ON(!refcount_read(&bo->usecnt)); 198 refcount_inc(&bo->usecnt); 199 drm_gem_object_get(&exec[i]->bo[j]->base); 200 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 201 } 202 203 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 204 /* No need to retain BOs coming from the ->unref_list 205 * because they are naturally unpurgeable. 206 */ 207 drm_gem_object_get(&bo->base.base); 208 kernel_state->bo[k++] = &bo->base.base; 209 } 210 } 211 212 WARN_ON_ONCE(k != state->bo_count); 213 214 if (exec[0]) 215 state->start_bin = exec[0]->ct0ca; 216 if (exec[1]) 217 state->start_render = exec[1]->ct1ca; 218 219 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 220 221 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 222 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 223 224 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 225 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 226 227 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 228 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 229 230 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 231 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 232 233 state->bpca = V3D_READ(V3D_BPCA); 234 state->bpcs = V3D_READ(V3D_BPCS); 235 state->bpoa = V3D_READ(V3D_BPOA); 236 state->bpos = V3D_READ(V3D_BPOS); 237 238 state->vpmbase = V3D_READ(V3D_VPMBASE); 239 240 state->dbge = V3D_READ(V3D_DBGE); 241 state->fdbgo = V3D_READ(V3D_FDBGO); 242 state->fdbgb = V3D_READ(V3D_FDBGB); 243 state->fdbgr = V3D_READ(V3D_FDBGR); 244 state->fdbgs = V3D_READ(V3D_FDBGS); 245 state->errstat = V3D_READ(V3D_ERRSTAT); 246 247 /* We need to turn purgeable BOs into unpurgeable ones so that 248 * userspace has a chance to dump the hang state before the kernel 249 * decides to purge those BOs. 250 * Note that BO consistency at dump time cannot be guaranteed. For 251 * example, if the owner of these BOs decides to re-use them or mark 252 * them purgeable again there's nothing we can do to prevent it. 253 */ 254 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 255 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 256 257 if (bo->madv == __VC4_MADV_NOTSUPP) 258 continue; 259 260 mutex_lock(&bo->madv_lock); 261 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 262 bo->madv = VC4_MADV_WILLNEED; 263 refcount_dec(&bo->usecnt); 264 mutex_unlock(&bo->madv_lock); 265 } 266 267 spin_lock_irqsave(&vc4->job_lock, irqflags); 268 if (vc4->hang_state) { 269 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 270 vc4_free_hang_state(dev, kernel_state); 271 } else { 272 vc4->hang_state = kernel_state; 273 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 274 } 275 } 276 277 static void 278 vc4_reset(struct drm_device *dev) 279 { 280 struct vc4_dev *vc4 = to_vc4_dev(dev); 281 282 DRM_INFO("Resetting GPU.\n"); 283 284 mutex_lock(&vc4->power_lock); 285 if (vc4->power_refcount) { 286 /* Power the device off and back on the by dropping the 287 * reference on runtime PM. 288 */ 289 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 290 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 291 } 292 mutex_unlock(&vc4->power_lock); 293 294 vc4_irq_reset(dev); 295 296 /* Rearm the hangcheck -- another job might have been waiting 297 * for our hung one to get kicked off, and vc4_irq_reset() 298 * would have started it. 299 */ 300 vc4_queue_hangcheck(dev); 301 } 302 303 static void 304 vc4_reset_work(struct work_struct *work) 305 { 306 struct vc4_dev *vc4 = 307 container_of(work, struct vc4_dev, hangcheck.reset_work); 308 309 vc4_save_hang_state(vc4->dev); 310 311 vc4_reset(vc4->dev); 312 } 313 314 static void 315 vc4_hangcheck_elapsed(struct timer_list *t) 316 { 317 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 318 struct drm_device *dev = vc4->dev; 319 uint32_t ct0ca, ct1ca; 320 unsigned long irqflags; 321 struct vc4_exec_info *bin_exec, *render_exec; 322 323 spin_lock_irqsave(&vc4->job_lock, irqflags); 324 325 bin_exec = vc4_first_bin_job(vc4); 326 render_exec = vc4_first_render_job(vc4); 327 328 /* If idle, we can stop watching for hangs. */ 329 if (!bin_exec && !render_exec) { 330 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 331 return; 332 } 333 334 ct0ca = V3D_READ(V3D_CTNCA(0)); 335 ct1ca = V3D_READ(V3D_CTNCA(1)); 336 337 /* If we've made any progress in execution, rearm the timer 338 * and wait. 339 */ 340 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 341 (render_exec && ct1ca != render_exec->last_ct1ca)) { 342 if (bin_exec) 343 bin_exec->last_ct0ca = ct0ca; 344 if (render_exec) 345 render_exec->last_ct1ca = ct1ca; 346 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 347 vc4_queue_hangcheck(dev); 348 return; 349 } 350 351 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 352 353 /* We've gone too long with no progress, reset. This has to 354 * be done from a work struct, since resetting can sleep and 355 * this timer hook isn't allowed to. 356 */ 357 schedule_work(&vc4->hangcheck.reset_work); 358 } 359 360 static void 361 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 362 { 363 struct vc4_dev *vc4 = to_vc4_dev(dev); 364 365 /* Set the current and end address of the control list. 366 * Writing the end register is what starts the job. 367 */ 368 V3D_WRITE(V3D_CTNCA(thread), start); 369 V3D_WRITE(V3D_CTNEA(thread), end); 370 } 371 372 int 373 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 374 bool interruptible) 375 { 376 struct vc4_dev *vc4 = to_vc4_dev(dev); 377 int ret = 0; 378 unsigned long timeout_expire; 379 DEFINE_WAIT(wait); 380 381 if (vc4->finished_seqno >= seqno) 382 return 0; 383 384 if (timeout_ns == 0) 385 return -ETIME; 386 387 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 388 389 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 390 for (;;) { 391 prepare_to_wait(&vc4->job_wait_queue, &wait, 392 interruptible ? TASK_INTERRUPTIBLE : 393 TASK_UNINTERRUPTIBLE); 394 395 if (interruptible && signal_pending(current)) { 396 ret = -ERESTARTSYS; 397 break; 398 } 399 400 if (vc4->finished_seqno >= seqno) 401 break; 402 403 if (timeout_ns != ~0ull) { 404 if (time_after_eq(jiffies, timeout_expire)) { 405 ret = -ETIME; 406 break; 407 } 408 schedule_timeout(timeout_expire - jiffies); 409 } else { 410 schedule(); 411 } 412 } 413 414 finish_wait(&vc4->job_wait_queue, &wait); 415 trace_vc4_wait_for_seqno_end(dev, seqno); 416 417 return ret; 418 } 419 420 static void 421 vc4_flush_caches(struct drm_device *dev) 422 { 423 struct vc4_dev *vc4 = to_vc4_dev(dev); 424 425 /* Flush the GPU L2 caches. These caches sit on top of system 426 * L3 (the 128kb or so shared with the CPU), and are 427 * non-allocating in the L3. 428 */ 429 V3D_WRITE(V3D_L2CACTL, 430 V3D_L2CACTL_L2CCLR); 431 432 V3D_WRITE(V3D_SLCACTL, 433 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 435 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 436 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 437 } 438 439 static void 440 vc4_flush_texture_caches(struct drm_device *dev) 441 { 442 struct vc4_dev *vc4 = to_vc4_dev(dev); 443 444 V3D_WRITE(V3D_L2CACTL, 445 V3D_L2CACTL_L2CCLR); 446 447 V3D_WRITE(V3D_SLCACTL, 448 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 449 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 450 } 451 452 /* Sets the registers for the next job to be actually be executed in 453 * the hardware. 454 * 455 * The job_lock should be held during this. 456 */ 457 void 458 vc4_submit_next_bin_job(struct drm_device *dev) 459 { 460 struct vc4_dev *vc4 = to_vc4_dev(dev); 461 struct vc4_exec_info *exec; 462 463 again: 464 exec = vc4_first_bin_job(vc4); 465 if (!exec) 466 return; 467 468 vc4_flush_caches(dev); 469 470 /* Only start the perfmon if it was not already started by a previous 471 * job. 472 */ 473 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 474 vc4_perfmon_start(vc4, exec->perfmon); 475 476 /* Either put the job in the binner if it uses the binner, or 477 * immediately move it to the to-be-rendered queue. 478 */ 479 if (exec->ct0ca != exec->ct0ea) { 480 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 481 } else { 482 struct vc4_exec_info *next; 483 484 vc4_move_job_to_render(dev, exec); 485 next = vc4_first_bin_job(vc4); 486 487 /* We can't start the next bin job if the previous job had a 488 * different perfmon instance attached to it. The same goes 489 * if one of them had a perfmon attached to it and the other 490 * one doesn't. 491 */ 492 if (next && next->perfmon == exec->perfmon) 493 goto again; 494 } 495 } 496 497 void 498 vc4_submit_next_render_job(struct drm_device *dev) 499 { 500 struct vc4_dev *vc4 = to_vc4_dev(dev); 501 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 502 503 if (!exec) 504 return; 505 506 /* A previous RCL may have written to one of our textures, and 507 * our full cache flush at bin time may have occurred before 508 * that RCL completed. Flush the texture cache now, but not 509 * the instructions or uniforms (since we don't write those 510 * from an RCL). 511 */ 512 vc4_flush_texture_caches(dev); 513 514 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 515 } 516 517 void 518 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 519 { 520 struct vc4_dev *vc4 = to_vc4_dev(dev); 521 bool was_empty = list_empty(&vc4->render_job_list); 522 523 list_move_tail(&exec->head, &vc4->render_job_list); 524 if (was_empty) 525 vc4_submit_next_render_job(dev); 526 } 527 528 static void 529 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 530 { 531 struct vc4_bo *bo; 532 unsigned i; 533 534 for (i = 0; i < exec->bo_count; i++) { 535 bo = to_vc4_bo(&exec->bo[i]->base); 536 bo->seqno = seqno; 537 538 reservation_object_add_shared_fence(bo->resv, exec->fence); 539 } 540 541 list_for_each_entry(bo, &exec->unref_list, unref_head) { 542 bo->seqno = seqno; 543 } 544 545 for (i = 0; i < exec->rcl_write_bo_count; i++) { 546 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 547 bo->write_seqno = seqno; 548 549 reservation_object_add_excl_fence(bo->resv, exec->fence); 550 } 551 } 552 553 static void 554 vc4_unlock_bo_reservations(struct drm_device *dev, 555 struct vc4_exec_info *exec, 556 struct ww_acquire_ctx *acquire_ctx) 557 { 558 int i; 559 560 for (i = 0; i < exec->bo_count; i++) { 561 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 562 563 ww_mutex_unlock(&bo->resv->lock); 564 } 565 566 ww_acquire_fini(acquire_ctx); 567 } 568 569 /* Takes the reservation lock on all the BOs being referenced, so that 570 * at queue submit time we can update the reservations. 571 * 572 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 573 * (all of which are on exec->unref_list). They're entirely private 574 * to vc4, so we don't attach dma-buf fences to them. 575 */ 576 static int 577 vc4_lock_bo_reservations(struct drm_device *dev, 578 struct vc4_exec_info *exec, 579 struct ww_acquire_ctx *acquire_ctx) 580 { 581 int contended_lock = -1; 582 int i, ret; 583 struct vc4_bo *bo; 584 585 ww_acquire_init(acquire_ctx, &reservation_ww_class); 586 587 retry: 588 if (contended_lock != -1) { 589 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 590 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, 591 acquire_ctx); 592 if (ret) { 593 ww_acquire_done(acquire_ctx); 594 return ret; 595 } 596 } 597 598 for (i = 0; i < exec->bo_count; i++) { 599 if (i == contended_lock) 600 continue; 601 602 bo = to_vc4_bo(&exec->bo[i]->base); 603 604 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); 605 if (ret) { 606 int j; 607 608 for (j = 0; j < i; j++) { 609 bo = to_vc4_bo(&exec->bo[j]->base); 610 ww_mutex_unlock(&bo->resv->lock); 611 } 612 613 if (contended_lock != -1 && contended_lock >= i) { 614 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 615 616 ww_mutex_unlock(&bo->resv->lock); 617 } 618 619 if (ret == -EDEADLK) { 620 contended_lock = i; 621 goto retry; 622 } 623 624 ww_acquire_done(acquire_ctx); 625 return ret; 626 } 627 } 628 629 ww_acquire_done(acquire_ctx); 630 631 /* Reserve space for our shared (read-only) fence references, 632 * before we commit the CL to the hardware. 633 */ 634 for (i = 0; i < exec->bo_count; i++) { 635 bo = to_vc4_bo(&exec->bo[i]->base); 636 637 ret = reservation_object_reserve_shared(bo->resv); 638 if (ret) { 639 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 640 return ret; 641 } 642 } 643 644 return 0; 645 } 646 647 /* Queues a struct vc4_exec_info for execution. If no job is 648 * currently executing, then submits it. 649 * 650 * Unlike most GPUs, our hardware only handles one command list at a 651 * time. To queue multiple jobs at once, we'd need to edit the 652 * previous command list to have a jump to the new one at the end, and 653 * then bump the end address. That's a change for a later date, 654 * though. 655 */ 656 static int 657 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 658 struct ww_acquire_ctx *acquire_ctx) 659 { 660 struct vc4_dev *vc4 = to_vc4_dev(dev); 661 struct vc4_exec_info *renderjob; 662 uint64_t seqno; 663 unsigned long irqflags; 664 struct vc4_fence *fence; 665 666 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 667 if (!fence) 668 return -ENOMEM; 669 fence->dev = dev; 670 671 spin_lock_irqsave(&vc4->job_lock, irqflags); 672 673 seqno = ++vc4->emit_seqno; 674 exec->seqno = seqno; 675 676 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 677 vc4->dma_fence_context, exec->seqno); 678 fence->seqno = exec->seqno; 679 exec->fence = &fence->base; 680 681 vc4_update_bo_seqnos(exec, seqno); 682 683 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 684 685 list_add_tail(&exec->head, &vc4->bin_job_list); 686 687 /* If no bin job was executing and if the render job (if any) has the 688 * same perfmon as our job attached to it (or if both jobs don't have 689 * perfmon activated), then kick ours off. Otherwise, it'll get 690 * started when the previous job's flush/render done interrupt occurs. 691 */ 692 renderjob = vc4_first_render_job(vc4); 693 if (vc4_first_bin_job(vc4) == exec && 694 (!renderjob || renderjob->perfmon == exec->perfmon)) { 695 vc4_submit_next_bin_job(dev); 696 vc4_queue_hangcheck(dev); 697 } 698 699 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 700 701 return 0; 702 } 703 704 /** 705 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 706 * referenced by the job. 707 * @dev: DRM device 708 * @file_priv: DRM file for this fd 709 * @exec: V3D job being set up 710 * 711 * The command validator needs to reference BOs by their index within 712 * the submitted job's BO list. This does the validation of the job's 713 * BO list and reference counting for the lifetime of the job. 714 */ 715 static int 716 vc4_cl_lookup_bos(struct drm_device *dev, 717 struct drm_file *file_priv, 718 struct vc4_exec_info *exec) 719 { 720 struct drm_vc4_submit_cl *args = exec->args; 721 uint32_t *handles; 722 int ret = 0; 723 int i; 724 725 exec->bo_count = args->bo_handle_count; 726 727 if (!exec->bo_count) { 728 /* See comment on bo_index for why we have to check 729 * this. 730 */ 731 DRM_DEBUG("Rendering requires BOs to validate\n"); 732 return -EINVAL; 733 } 734 735 exec->bo = kvmalloc_array(exec->bo_count, 736 sizeof(struct drm_gem_cma_object *), 737 GFP_KERNEL | __GFP_ZERO); 738 if (!exec->bo) { 739 DRM_ERROR("Failed to allocate validated BO pointers\n"); 740 return -ENOMEM; 741 } 742 743 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 744 if (!handles) { 745 ret = -ENOMEM; 746 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 747 goto fail; 748 } 749 750 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 751 exec->bo_count * sizeof(uint32_t))) { 752 ret = -EFAULT; 753 DRM_ERROR("Failed to copy in GEM handles\n"); 754 goto fail; 755 } 756 757 spin_lock(&file_priv->table_lock); 758 for (i = 0; i < exec->bo_count; i++) { 759 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 760 handles[i]); 761 if (!bo) { 762 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 763 i, handles[i]); 764 ret = -EINVAL; 765 break; 766 } 767 768 drm_gem_object_get(bo); 769 exec->bo[i] = (struct drm_gem_cma_object *)bo; 770 } 771 spin_unlock(&file_priv->table_lock); 772 773 if (ret) 774 goto fail_put_bo; 775 776 for (i = 0; i < exec->bo_count; i++) { 777 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 778 if (ret) 779 goto fail_dec_usecnt; 780 } 781 782 kvfree(handles); 783 return 0; 784 785 fail_dec_usecnt: 786 /* Decrease usecnt on acquired objects. 787 * We cannot rely on vc4_complete_exec() to release resources here, 788 * because vc4_complete_exec() has no information about which BO has 789 * had its ->usecnt incremented. 790 * To make things easier we just free everything explicitly and set 791 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 792 * step. 793 */ 794 for (i-- ; i >= 0; i--) 795 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 796 797 fail_put_bo: 798 /* Release any reference to acquired objects. */ 799 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 800 drm_gem_object_put_unlocked(&exec->bo[i]->base); 801 802 fail: 803 kvfree(handles); 804 kvfree(exec->bo); 805 exec->bo = NULL; 806 return ret; 807 } 808 809 static int 810 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 811 { 812 struct drm_vc4_submit_cl *args = exec->args; 813 void *temp = NULL; 814 void *bin; 815 int ret = 0; 816 uint32_t bin_offset = 0; 817 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 818 16); 819 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 820 uint32_t exec_size = uniforms_offset + args->uniforms_size; 821 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 822 args->shader_rec_count); 823 struct vc4_bo *bo; 824 825 if (shader_rec_offset < args->bin_cl_size || 826 uniforms_offset < shader_rec_offset || 827 exec_size < uniforms_offset || 828 args->shader_rec_count >= (UINT_MAX / 829 sizeof(struct vc4_shader_state)) || 830 temp_size < exec_size) { 831 DRM_DEBUG("overflow in exec arguments\n"); 832 ret = -EINVAL; 833 goto fail; 834 } 835 836 /* Allocate space where we'll store the copied in user command lists 837 * and shader records. 838 * 839 * We don't just copy directly into the BOs because we need to 840 * read the contents back for validation, and I think the 841 * bo->vaddr is uncached access. 842 */ 843 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 844 if (!temp) { 845 DRM_ERROR("Failed to allocate storage for copying " 846 "in bin/render CLs.\n"); 847 ret = -ENOMEM; 848 goto fail; 849 } 850 bin = temp + bin_offset; 851 exec->shader_rec_u = temp + shader_rec_offset; 852 exec->uniforms_u = temp + uniforms_offset; 853 exec->shader_state = temp + exec_size; 854 exec->shader_state_size = args->shader_rec_count; 855 856 if (copy_from_user(bin, 857 u64_to_user_ptr(args->bin_cl), 858 args->bin_cl_size)) { 859 ret = -EFAULT; 860 goto fail; 861 } 862 863 if (copy_from_user(exec->shader_rec_u, 864 u64_to_user_ptr(args->shader_rec), 865 args->shader_rec_size)) { 866 ret = -EFAULT; 867 goto fail; 868 } 869 870 if (copy_from_user(exec->uniforms_u, 871 u64_to_user_ptr(args->uniforms), 872 args->uniforms_size)) { 873 ret = -EFAULT; 874 goto fail; 875 } 876 877 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 878 if (IS_ERR(bo)) { 879 DRM_ERROR("Couldn't allocate BO for binning\n"); 880 ret = PTR_ERR(bo); 881 goto fail; 882 } 883 exec->exec_bo = &bo->base; 884 885 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 886 &exec->unref_list); 887 888 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 889 890 exec->bin_u = bin; 891 892 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 893 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 894 exec->shader_rec_size = args->shader_rec_size; 895 896 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 897 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 898 exec->uniforms_size = args->uniforms_size; 899 900 ret = vc4_validate_bin_cl(dev, 901 exec->exec_bo->vaddr + bin_offset, 902 bin, 903 exec); 904 if (ret) 905 goto fail; 906 907 ret = vc4_validate_shader_recs(dev, exec); 908 if (ret) 909 goto fail; 910 911 /* Block waiting on any previous rendering into the CS's VBO, 912 * IB, or textures, so that pixels are actually written by the 913 * time we try to read them. 914 */ 915 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 916 917 fail: 918 kvfree(temp); 919 return ret; 920 } 921 922 static void 923 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 924 { 925 struct vc4_dev *vc4 = to_vc4_dev(dev); 926 unsigned long irqflags; 927 unsigned i; 928 929 /* If we got force-completed because of GPU reset rather than 930 * through our IRQ handler, signal the fence now. 931 */ 932 if (exec->fence) { 933 dma_fence_signal(exec->fence); 934 dma_fence_put(exec->fence); 935 } 936 937 if (exec->bo) { 938 for (i = 0; i < exec->bo_count; i++) { 939 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 940 941 vc4_bo_dec_usecnt(bo); 942 drm_gem_object_put_unlocked(&exec->bo[i]->base); 943 } 944 kvfree(exec->bo); 945 } 946 947 while (!list_empty(&exec->unref_list)) { 948 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 949 struct vc4_bo, unref_head); 950 list_del(&bo->unref_head); 951 drm_gem_object_put_unlocked(&bo->base.base); 952 } 953 954 /* Free up the allocation of any bin slots we used. */ 955 spin_lock_irqsave(&vc4->job_lock, irqflags); 956 vc4->bin_alloc_used &= ~exec->bin_slots; 957 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 958 959 /* Release the reference we had on the perf monitor. */ 960 vc4_perfmon_put(exec->perfmon); 961 962 mutex_lock(&vc4->power_lock); 963 if (--vc4->power_refcount == 0) { 964 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev); 965 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev); 966 } 967 mutex_unlock(&vc4->power_lock); 968 969 kfree(exec); 970 } 971 972 void 973 vc4_job_handle_completed(struct vc4_dev *vc4) 974 { 975 unsigned long irqflags; 976 struct vc4_seqno_cb *cb, *cb_temp; 977 978 spin_lock_irqsave(&vc4->job_lock, irqflags); 979 while (!list_empty(&vc4->job_done_list)) { 980 struct vc4_exec_info *exec = 981 list_first_entry(&vc4->job_done_list, 982 struct vc4_exec_info, head); 983 list_del(&exec->head); 984 985 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 986 vc4_complete_exec(vc4->dev, exec); 987 spin_lock_irqsave(&vc4->job_lock, irqflags); 988 } 989 990 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 991 if (cb->seqno <= vc4->finished_seqno) { 992 list_del_init(&cb->work.entry); 993 schedule_work(&cb->work); 994 } 995 } 996 997 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 998 } 999 1000 static void vc4_seqno_cb_work(struct work_struct *work) 1001 { 1002 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1003 1004 cb->func(cb); 1005 } 1006 1007 int vc4_queue_seqno_cb(struct drm_device *dev, 1008 struct vc4_seqno_cb *cb, uint64_t seqno, 1009 void (*func)(struct vc4_seqno_cb *cb)) 1010 { 1011 struct vc4_dev *vc4 = to_vc4_dev(dev); 1012 int ret = 0; 1013 unsigned long irqflags; 1014 1015 cb->func = func; 1016 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1017 1018 spin_lock_irqsave(&vc4->job_lock, irqflags); 1019 if (seqno > vc4->finished_seqno) { 1020 cb->seqno = seqno; 1021 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1022 } else { 1023 schedule_work(&cb->work); 1024 } 1025 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1026 1027 return ret; 1028 } 1029 1030 /* Scheduled when any job has been completed, this walks the list of 1031 * jobs that had completed and unrefs their BOs and frees their exec 1032 * structs. 1033 */ 1034 static void 1035 vc4_job_done_work(struct work_struct *work) 1036 { 1037 struct vc4_dev *vc4 = 1038 container_of(work, struct vc4_dev, job_done_work); 1039 1040 vc4_job_handle_completed(vc4); 1041 } 1042 1043 static int 1044 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1045 uint64_t seqno, 1046 uint64_t *timeout_ns) 1047 { 1048 unsigned long start = jiffies; 1049 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1050 1051 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1052 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1053 1054 if (*timeout_ns >= delta) 1055 *timeout_ns -= delta; 1056 } 1057 1058 return ret; 1059 } 1060 1061 int 1062 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1063 struct drm_file *file_priv) 1064 { 1065 struct drm_vc4_wait_seqno *args = data; 1066 1067 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1068 &args->timeout_ns); 1069 } 1070 1071 int 1072 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1073 struct drm_file *file_priv) 1074 { 1075 int ret; 1076 struct drm_vc4_wait_bo *args = data; 1077 struct drm_gem_object *gem_obj; 1078 struct vc4_bo *bo; 1079 1080 if (args->pad != 0) 1081 return -EINVAL; 1082 1083 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1084 if (!gem_obj) { 1085 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1086 return -EINVAL; 1087 } 1088 bo = to_vc4_bo(gem_obj); 1089 1090 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1091 &args->timeout_ns); 1092 1093 drm_gem_object_put_unlocked(gem_obj); 1094 return ret; 1095 } 1096 1097 /** 1098 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1099 * @dev: DRM device 1100 * @data: ioctl argument 1101 * @file_priv: DRM file for this fd 1102 * 1103 * This is the main entrypoint for userspace to submit a 3D frame to 1104 * the GPU. Userspace provides the binner command list (if 1105 * applicable), and the kernel sets up the render command list to draw 1106 * to the framebuffer described in the ioctl, using the command lists 1107 * that the 3D engine's binner will produce. 1108 */ 1109 int 1110 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1111 struct drm_file *file_priv) 1112 { 1113 struct vc4_dev *vc4 = to_vc4_dev(dev); 1114 struct vc4_file *vc4file = file_priv->driver_priv; 1115 struct drm_vc4_submit_cl *args = data; 1116 struct vc4_exec_info *exec; 1117 struct ww_acquire_ctx acquire_ctx; 1118 int ret = 0; 1119 1120 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1121 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1122 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1123 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1124 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1125 return -EINVAL; 1126 } 1127 1128 if (args->pad2 != 0) { 1129 DRM_DEBUG("->pad2 must be set to zero\n"); 1130 return -EINVAL; 1131 } 1132 1133 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1134 if (!exec) { 1135 DRM_ERROR("malloc failure on exec struct\n"); 1136 return -ENOMEM; 1137 } 1138 1139 mutex_lock(&vc4->power_lock); 1140 if (vc4->power_refcount++ == 0) { 1141 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev); 1142 if (ret < 0) { 1143 mutex_unlock(&vc4->power_lock); 1144 vc4->power_refcount--; 1145 kfree(exec); 1146 return ret; 1147 } 1148 } 1149 mutex_unlock(&vc4->power_lock); 1150 1151 exec->args = args; 1152 INIT_LIST_HEAD(&exec->unref_list); 1153 1154 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1155 if (ret) 1156 goto fail; 1157 1158 if (args->perfmonid) { 1159 exec->perfmon = vc4_perfmon_find(vc4file, 1160 args->perfmonid); 1161 if (!exec->perfmon) { 1162 ret = -ENOENT; 1163 goto fail; 1164 } 1165 } 1166 1167 if (exec->args->bin_cl_size != 0) { 1168 ret = vc4_get_bcl(dev, exec); 1169 if (ret) 1170 goto fail; 1171 } else { 1172 exec->ct0ca = 0; 1173 exec->ct0ea = 0; 1174 } 1175 1176 ret = vc4_get_rcl(dev, exec); 1177 if (ret) 1178 goto fail; 1179 1180 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1181 if (ret) 1182 goto fail; 1183 1184 /* Clear this out of the struct we'll be putting in the queue, 1185 * since it's part of our stack. 1186 */ 1187 exec->args = NULL; 1188 1189 ret = vc4_queue_submit(dev, exec, &acquire_ctx); 1190 if (ret) 1191 goto fail; 1192 1193 /* Return the seqno for our job. */ 1194 args->seqno = vc4->emit_seqno; 1195 1196 return 0; 1197 1198 fail: 1199 vc4_complete_exec(vc4->dev, exec); 1200 1201 return ret; 1202 } 1203 1204 void 1205 vc4_gem_init(struct drm_device *dev) 1206 { 1207 struct vc4_dev *vc4 = to_vc4_dev(dev); 1208 1209 vc4->dma_fence_context = dma_fence_context_alloc(1); 1210 1211 INIT_LIST_HEAD(&vc4->bin_job_list); 1212 INIT_LIST_HEAD(&vc4->render_job_list); 1213 INIT_LIST_HEAD(&vc4->job_done_list); 1214 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1215 spin_lock_init(&vc4->job_lock); 1216 1217 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1218 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1219 1220 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1221 1222 mutex_init(&vc4->power_lock); 1223 1224 INIT_LIST_HEAD(&vc4->purgeable.list); 1225 mutex_init(&vc4->purgeable.lock); 1226 } 1227 1228 void 1229 vc4_gem_destroy(struct drm_device *dev) 1230 { 1231 struct vc4_dev *vc4 = to_vc4_dev(dev); 1232 1233 /* Waiting for exec to finish would need to be done before 1234 * unregistering V3D. 1235 */ 1236 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1237 1238 /* V3D should already have disabled its interrupt and cleared 1239 * the overflow allocation registers. Now free the object. 1240 */ 1241 if (vc4->bin_bo) { 1242 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1243 vc4->bin_bo = NULL; 1244 } 1245 1246 if (vc4->hang_state) 1247 vc4_free_hang_state(dev, vc4->hang_state); 1248 } 1249 1250 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1251 struct drm_file *file_priv) 1252 { 1253 struct drm_vc4_gem_madvise *args = data; 1254 struct drm_gem_object *gem_obj; 1255 struct vc4_bo *bo; 1256 int ret; 1257 1258 switch (args->madv) { 1259 case VC4_MADV_DONTNEED: 1260 case VC4_MADV_WILLNEED: 1261 break; 1262 default: 1263 return -EINVAL; 1264 } 1265 1266 if (args->pad != 0) 1267 return -EINVAL; 1268 1269 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1270 if (!gem_obj) { 1271 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1272 return -ENOENT; 1273 } 1274 1275 bo = to_vc4_bo(gem_obj); 1276 1277 /* Only BOs exposed to userspace can be purged. */ 1278 if (bo->madv == __VC4_MADV_NOTSUPP) { 1279 DRM_DEBUG("madvise not supported on this BO\n"); 1280 ret = -EINVAL; 1281 goto out_put_gem; 1282 } 1283 1284 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1285 * not until proven otherwise. 1286 */ 1287 if (gem_obj->import_attach) { 1288 DRM_DEBUG("madvise not supported on imported BOs\n"); 1289 ret = -EINVAL; 1290 goto out_put_gem; 1291 } 1292 1293 mutex_lock(&bo->madv_lock); 1294 1295 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1296 !refcount_read(&bo->usecnt)) { 1297 /* If the BO is about to be marked as purgeable, is not used 1298 * and is not already purgeable or purged, add it to the 1299 * purgeable list. 1300 */ 1301 vc4_bo_add_to_purgeable_pool(bo); 1302 } else if (args->madv == VC4_MADV_WILLNEED && 1303 bo->madv == VC4_MADV_DONTNEED && 1304 !refcount_read(&bo->usecnt)) { 1305 /* The BO has not been purged yet, just remove it from 1306 * the purgeable list. 1307 */ 1308 vc4_bo_remove_from_purgeable_pool(bo); 1309 } 1310 1311 /* Save the purged state. */ 1312 args->retained = bo->madv != __VC4_MADV_PURGED; 1313 1314 /* Update internal madv state only if the bo was not purged. */ 1315 if (bo->madv != __VC4_MADV_PURGED) 1316 bo->madv = args->madv; 1317 1318 mutex_unlock(&bo->madv_lock); 1319 1320 ret = 0; 1321 1322 out_put_gem: 1323 drm_gem_object_put_unlocked(gem_obj); 1324 1325 return ret; 1326 } 1327