xref: /linux/drivers/gpu/drm/vc4/vc4_gem.c (revision 4ab5a5d2a4a2289c2af07accbec7170ca5671f41)
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31 
32 #include "uapi/drm/vc4_drm.h"
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35 #include "vc4_trace.h"
36 
37 static void
38 vc4_queue_hangcheck(struct drm_device *dev)
39 {
40 	struct vc4_dev *vc4 = to_vc4_dev(dev);
41 
42 	mod_timer(&vc4->hangcheck.timer,
43 		  round_jiffies_up(jiffies + msecs_to_jiffies(100)));
44 }
45 
46 struct vc4_hang_state {
47 	struct drm_vc4_get_hang_state user_state;
48 
49 	u32 bo_count;
50 	struct drm_gem_object **bo;
51 };
52 
53 static void
54 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
55 {
56 	unsigned int i;
57 
58 	for (i = 0; i < state->user_state.bo_count; i++)
59 		drm_gem_object_put_unlocked(state->bo[i]);
60 
61 	kfree(state);
62 }
63 
64 int
65 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
66 			 struct drm_file *file_priv)
67 {
68 	struct drm_vc4_get_hang_state *get_state = data;
69 	struct drm_vc4_get_hang_state_bo *bo_state;
70 	struct vc4_hang_state *kernel_state;
71 	struct drm_vc4_get_hang_state *state;
72 	struct vc4_dev *vc4 = to_vc4_dev(dev);
73 	unsigned long irqflags;
74 	u32 i;
75 	int ret = 0;
76 
77 	spin_lock_irqsave(&vc4->job_lock, irqflags);
78 	kernel_state = vc4->hang_state;
79 	if (!kernel_state) {
80 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
81 		return -ENOENT;
82 	}
83 	state = &kernel_state->user_state;
84 
85 	/* If the user's array isn't big enough, just return the
86 	 * required array size.
87 	 */
88 	if (get_state->bo_count < state->bo_count) {
89 		get_state->bo_count = state->bo_count;
90 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
91 		return 0;
92 	}
93 
94 	vc4->hang_state = NULL;
95 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
96 
97 	/* Save the user's BO pointer, so we don't stomp it with the memcpy. */
98 	state->bo = get_state->bo;
99 	memcpy(get_state, state, sizeof(*state));
100 
101 	bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
102 	if (!bo_state) {
103 		ret = -ENOMEM;
104 		goto err_free;
105 	}
106 
107 	for (i = 0; i < state->bo_count; i++) {
108 		struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
109 		u32 handle;
110 
111 		ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
112 					    &handle);
113 
114 		if (ret) {
115 			state->bo_count = i;
116 			goto err_delete_handle;
117 		}
118 		bo_state[i].handle = handle;
119 		bo_state[i].paddr = vc4_bo->base.paddr;
120 		bo_state[i].size = vc4_bo->base.base.size;
121 	}
122 
123 	if (copy_to_user(u64_to_user_ptr(get_state->bo),
124 			 bo_state,
125 			 state->bo_count * sizeof(*bo_state)))
126 		ret = -EFAULT;
127 
128 err_delete_handle:
129 	if (ret) {
130 		for (i = 0; i < state->bo_count; i++)
131 			drm_gem_handle_delete(file_priv, bo_state[i].handle);
132 	}
133 
134 err_free:
135 	vc4_free_hang_state(dev, kernel_state);
136 	kfree(bo_state);
137 
138 	return ret;
139 }
140 
141 static void
142 vc4_save_hang_state(struct drm_device *dev)
143 {
144 	struct vc4_dev *vc4 = to_vc4_dev(dev);
145 	struct drm_vc4_get_hang_state *state;
146 	struct vc4_hang_state *kernel_state;
147 	struct vc4_exec_info *exec[2];
148 	struct vc4_bo *bo;
149 	unsigned long irqflags;
150 	unsigned int i, j, k, unref_list_count;
151 
152 	kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
153 	if (!kernel_state)
154 		return;
155 
156 	state = &kernel_state->user_state;
157 
158 	spin_lock_irqsave(&vc4->job_lock, irqflags);
159 	exec[0] = vc4_first_bin_job(vc4);
160 	exec[1] = vc4_first_render_job(vc4);
161 	if (!exec[0] && !exec[1]) {
162 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
163 		return;
164 	}
165 
166 	/* Get the bos from both binner and renderer into hang state. */
167 	state->bo_count = 0;
168 	for (i = 0; i < 2; i++) {
169 		if (!exec[i])
170 			continue;
171 
172 		unref_list_count = 0;
173 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
174 			unref_list_count++;
175 		state->bo_count += exec[i]->bo_count + unref_list_count;
176 	}
177 
178 	kernel_state->bo = kcalloc(state->bo_count,
179 				   sizeof(*kernel_state->bo), GFP_ATOMIC);
180 
181 	if (!kernel_state->bo) {
182 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
183 		return;
184 	}
185 
186 	k = 0;
187 	for (i = 0; i < 2; i++) {
188 		if (!exec[i])
189 			continue;
190 
191 		for (j = 0; j < exec[i]->bo_count; j++) {
192 			bo = to_vc4_bo(&exec[i]->bo[j]->base);
193 
194 			/* Retain BOs just in case they were marked purgeable.
195 			 * This prevents the BO from being purged before
196 			 * someone had a chance to dump the hang state.
197 			 */
198 			WARN_ON(!refcount_read(&bo->usecnt));
199 			refcount_inc(&bo->usecnt);
200 			drm_gem_object_get(&exec[i]->bo[j]->base);
201 			kernel_state->bo[k++] = &exec[i]->bo[j]->base;
202 		}
203 
204 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
205 			/* No need to retain BOs coming from the ->unref_list
206 			 * because they are naturally unpurgeable.
207 			 */
208 			drm_gem_object_get(&bo->base.base);
209 			kernel_state->bo[k++] = &bo->base.base;
210 		}
211 	}
212 
213 	WARN_ON_ONCE(k != state->bo_count);
214 
215 	if (exec[0])
216 		state->start_bin = exec[0]->ct0ca;
217 	if (exec[1])
218 		state->start_render = exec[1]->ct1ca;
219 
220 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
221 
222 	state->ct0ca = V3D_READ(V3D_CTNCA(0));
223 	state->ct0ea = V3D_READ(V3D_CTNEA(0));
224 
225 	state->ct1ca = V3D_READ(V3D_CTNCA(1));
226 	state->ct1ea = V3D_READ(V3D_CTNEA(1));
227 
228 	state->ct0cs = V3D_READ(V3D_CTNCS(0));
229 	state->ct1cs = V3D_READ(V3D_CTNCS(1));
230 
231 	state->ct0ra0 = V3D_READ(V3D_CT00RA0);
232 	state->ct1ra0 = V3D_READ(V3D_CT01RA0);
233 
234 	state->bpca = V3D_READ(V3D_BPCA);
235 	state->bpcs = V3D_READ(V3D_BPCS);
236 	state->bpoa = V3D_READ(V3D_BPOA);
237 	state->bpos = V3D_READ(V3D_BPOS);
238 
239 	state->vpmbase = V3D_READ(V3D_VPMBASE);
240 
241 	state->dbge = V3D_READ(V3D_DBGE);
242 	state->fdbgo = V3D_READ(V3D_FDBGO);
243 	state->fdbgb = V3D_READ(V3D_FDBGB);
244 	state->fdbgr = V3D_READ(V3D_FDBGR);
245 	state->fdbgs = V3D_READ(V3D_FDBGS);
246 	state->errstat = V3D_READ(V3D_ERRSTAT);
247 
248 	/* We need to turn purgeable BOs into unpurgeable ones so that
249 	 * userspace has a chance to dump the hang state before the kernel
250 	 * decides to purge those BOs.
251 	 * Note that BO consistency at dump time cannot be guaranteed. For
252 	 * example, if the owner of these BOs decides to re-use them or mark
253 	 * them purgeable again there's nothing we can do to prevent it.
254 	 */
255 	for (i = 0; i < kernel_state->user_state.bo_count; i++) {
256 		struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
257 
258 		if (bo->madv == __VC4_MADV_NOTSUPP)
259 			continue;
260 
261 		mutex_lock(&bo->madv_lock);
262 		if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
263 			bo->madv = VC4_MADV_WILLNEED;
264 		refcount_dec(&bo->usecnt);
265 		mutex_unlock(&bo->madv_lock);
266 	}
267 
268 	spin_lock_irqsave(&vc4->job_lock, irqflags);
269 	if (vc4->hang_state) {
270 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
271 		vc4_free_hang_state(dev, kernel_state);
272 	} else {
273 		vc4->hang_state = kernel_state;
274 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
275 	}
276 }
277 
278 static void
279 vc4_reset(struct drm_device *dev)
280 {
281 	struct vc4_dev *vc4 = to_vc4_dev(dev);
282 
283 	DRM_INFO("Resetting GPU.\n");
284 
285 	mutex_lock(&vc4->power_lock);
286 	if (vc4->power_refcount) {
287 		/* Power the device off and back on the by dropping the
288 		 * reference on runtime PM.
289 		 */
290 		pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
291 		pm_runtime_get_sync(&vc4->v3d->pdev->dev);
292 	}
293 	mutex_unlock(&vc4->power_lock);
294 
295 	vc4_irq_reset(dev);
296 
297 	/* Rearm the hangcheck -- another job might have been waiting
298 	 * for our hung one to get kicked off, and vc4_irq_reset()
299 	 * would have started it.
300 	 */
301 	vc4_queue_hangcheck(dev);
302 }
303 
304 static void
305 vc4_reset_work(struct work_struct *work)
306 {
307 	struct vc4_dev *vc4 =
308 		container_of(work, struct vc4_dev, hangcheck.reset_work);
309 
310 	vc4_save_hang_state(vc4->dev);
311 
312 	vc4_reset(vc4->dev);
313 }
314 
315 static void
316 vc4_hangcheck_elapsed(struct timer_list *t)
317 {
318 	struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
319 	struct drm_device *dev = vc4->dev;
320 	uint32_t ct0ca, ct1ca;
321 	unsigned long irqflags;
322 	struct vc4_exec_info *bin_exec, *render_exec;
323 
324 	spin_lock_irqsave(&vc4->job_lock, irqflags);
325 
326 	bin_exec = vc4_first_bin_job(vc4);
327 	render_exec = vc4_first_render_job(vc4);
328 
329 	/* If idle, we can stop watching for hangs. */
330 	if (!bin_exec && !render_exec) {
331 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
332 		return;
333 	}
334 
335 	ct0ca = V3D_READ(V3D_CTNCA(0));
336 	ct1ca = V3D_READ(V3D_CTNCA(1));
337 
338 	/* If we've made any progress in execution, rearm the timer
339 	 * and wait.
340 	 */
341 	if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
342 	    (render_exec && ct1ca != render_exec->last_ct1ca)) {
343 		if (bin_exec)
344 			bin_exec->last_ct0ca = ct0ca;
345 		if (render_exec)
346 			render_exec->last_ct1ca = ct1ca;
347 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
348 		vc4_queue_hangcheck(dev);
349 		return;
350 	}
351 
352 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
353 
354 	/* We've gone too long with no progress, reset.  This has to
355 	 * be done from a work struct, since resetting can sleep and
356 	 * this timer hook isn't allowed to.
357 	 */
358 	schedule_work(&vc4->hangcheck.reset_work);
359 }
360 
361 static void
362 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
363 {
364 	struct vc4_dev *vc4 = to_vc4_dev(dev);
365 
366 	/* Set the current and end address of the control list.
367 	 * Writing the end register is what starts the job.
368 	 */
369 	V3D_WRITE(V3D_CTNCA(thread), start);
370 	V3D_WRITE(V3D_CTNEA(thread), end);
371 }
372 
373 int
374 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
375 		   bool interruptible)
376 {
377 	struct vc4_dev *vc4 = to_vc4_dev(dev);
378 	int ret = 0;
379 	unsigned long timeout_expire;
380 	DEFINE_WAIT(wait);
381 
382 	if (vc4->finished_seqno >= seqno)
383 		return 0;
384 
385 	if (timeout_ns == 0)
386 		return -ETIME;
387 
388 	timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
389 
390 	trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
391 	for (;;) {
392 		prepare_to_wait(&vc4->job_wait_queue, &wait,
393 				interruptible ? TASK_INTERRUPTIBLE :
394 				TASK_UNINTERRUPTIBLE);
395 
396 		if (interruptible && signal_pending(current)) {
397 			ret = -ERESTARTSYS;
398 			break;
399 		}
400 
401 		if (vc4->finished_seqno >= seqno)
402 			break;
403 
404 		if (timeout_ns != ~0ull) {
405 			if (time_after_eq(jiffies, timeout_expire)) {
406 				ret = -ETIME;
407 				break;
408 			}
409 			schedule_timeout(timeout_expire - jiffies);
410 		} else {
411 			schedule();
412 		}
413 	}
414 
415 	finish_wait(&vc4->job_wait_queue, &wait);
416 	trace_vc4_wait_for_seqno_end(dev, seqno);
417 
418 	return ret;
419 }
420 
421 static void
422 vc4_flush_caches(struct drm_device *dev)
423 {
424 	struct vc4_dev *vc4 = to_vc4_dev(dev);
425 
426 	/* Flush the GPU L2 caches.  These caches sit on top of system
427 	 * L3 (the 128kb or so shared with the CPU), and are
428 	 * non-allocating in the L3.
429 	 */
430 	V3D_WRITE(V3D_L2CACTL,
431 		  V3D_L2CACTL_L2CCLR);
432 
433 	V3D_WRITE(V3D_SLCACTL,
434 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
435 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
436 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
437 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
438 }
439 
440 static void
441 vc4_flush_texture_caches(struct drm_device *dev)
442 {
443 	struct vc4_dev *vc4 = to_vc4_dev(dev);
444 
445 	V3D_WRITE(V3D_L2CACTL,
446 		  V3D_L2CACTL_L2CCLR);
447 
448 	V3D_WRITE(V3D_SLCACTL,
449 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
450 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
451 }
452 
453 /* Sets the registers for the next job to be actually be executed in
454  * the hardware.
455  *
456  * The job_lock should be held during this.
457  */
458 void
459 vc4_submit_next_bin_job(struct drm_device *dev)
460 {
461 	struct vc4_dev *vc4 = to_vc4_dev(dev);
462 	struct vc4_exec_info *exec;
463 
464 again:
465 	exec = vc4_first_bin_job(vc4);
466 	if (!exec)
467 		return;
468 
469 	vc4_flush_caches(dev);
470 
471 	/* Only start the perfmon if it was not already started by a previous
472 	 * job.
473 	 */
474 	if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
475 		vc4_perfmon_start(vc4, exec->perfmon);
476 
477 	/* Either put the job in the binner if it uses the binner, or
478 	 * immediately move it to the to-be-rendered queue.
479 	 */
480 	if (exec->ct0ca != exec->ct0ea) {
481 		submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
482 	} else {
483 		struct vc4_exec_info *next;
484 
485 		vc4_move_job_to_render(dev, exec);
486 		next = vc4_first_bin_job(vc4);
487 
488 		/* We can't start the next bin job if the previous job had a
489 		 * different perfmon instance attached to it. The same goes
490 		 * if one of them had a perfmon attached to it and the other
491 		 * one doesn't.
492 		 */
493 		if (next && next->perfmon == exec->perfmon)
494 			goto again;
495 	}
496 }
497 
498 void
499 vc4_submit_next_render_job(struct drm_device *dev)
500 {
501 	struct vc4_dev *vc4 = to_vc4_dev(dev);
502 	struct vc4_exec_info *exec = vc4_first_render_job(vc4);
503 
504 	if (!exec)
505 		return;
506 
507 	/* A previous RCL may have written to one of our textures, and
508 	 * our full cache flush at bin time may have occurred before
509 	 * that RCL completed.  Flush the texture cache now, but not
510 	 * the instructions or uniforms (since we don't write those
511 	 * from an RCL).
512 	 */
513 	vc4_flush_texture_caches(dev);
514 
515 	submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
516 }
517 
518 void
519 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
520 {
521 	struct vc4_dev *vc4 = to_vc4_dev(dev);
522 	bool was_empty = list_empty(&vc4->render_job_list);
523 
524 	list_move_tail(&exec->head, &vc4->render_job_list);
525 	if (was_empty)
526 		vc4_submit_next_render_job(dev);
527 }
528 
529 static void
530 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
531 {
532 	struct vc4_bo *bo;
533 	unsigned i;
534 
535 	for (i = 0; i < exec->bo_count; i++) {
536 		bo = to_vc4_bo(&exec->bo[i]->base);
537 		bo->seqno = seqno;
538 
539 		reservation_object_add_shared_fence(bo->resv, exec->fence);
540 	}
541 
542 	list_for_each_entry(bo, &exec->unref_list, unref_head) {
543 		bo->seqno = seqno;
544 	}
545 
546 	for (i = 0; i < exec->rcl_write_bo_count; i++) {
547 		bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
548 		bo->write_seqno = seqno;
549 
550 		reservation_object_add_excl_fence(bo->resv, exec->fence);
551 	}
552 }
553 
554 static void
555 vc4_unlock_bo_reservations(struct drm_device *dev,
556 			   struct vc4_exec_info *exec,
557 			   struct ww_acquire_ctx *acquire_ctx)
558 {
559 	int i;
560 
561 	for (i = 0; i < exec->bo_count; i++) {
562 		struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
563 
564 		ww_mutex_unlock(&bo->resv->lock);
565 	}
566 
567 	ww_acquire_fini(acquire_ctx);
568 }
569 
570 /* Takes the reservation lock on all the BOs being referenced, so that
571  * at queue submit time we can update the reservations.
572  *
573  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
574  * (all of which are on exec->unref_list).  They're entirely private
575  * to vc4, so we don't attach dma-buf fences to them.
576  */
577 static int
578 vc4_lock_bo_reservations(struct drm_device *dev,
579 			 struct vc4_exec_info *exec,
580 			 struct ww_acquire_ctx *acquire_ctx)
581 {
582 	int contended_lock = -1;
583 	int i, ret;
584 	struct vc4_bo *bo;
585 
586 	ww_acquire_init(acquire_ctx, &reservation_ww_class);
587 
588 retry:
589 	if (contended_lock != -1) {
590 		bo = to_vc4_bo(&exec->bo[contended_lock]->base);
591 		ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
592 						       acquire_ctx);
593 		if (ret) {
594 			ww_acquire_done(acquire_ctx);
595 			return ret;
596 		}
597 	}
598 
599 	for (i = 0; i < exec->bo_count; i++) {
600 		if (i == contended_lock)
601 			continue;
602 
603 		bo = to_vc4_bo(&exec->bo[i]->base);
604 
605 		ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
606 		if (ret) {
607 			int j;
608 
609 			for (j = 0; j < i; j++) {
610 				bo = to_vc4_bo(&exec->bo[j]->base);
611 				ww_mutex_unlock(&bo->resv->lock);
612 			}
613 
614 			if (contended_lock != -1 && contended_lock >= i) {
615 				bo = to_vc4_bo(&exec->bo[contended_lock]->base);
616 
617 				ww_mutex_unlock(&bo->resv->lock);
618 			}
619 
620 			if (ret == -EDEADLK) {
621 				contended_lock = i;
622 				goto retry;
623 			}
624 
625 			ww_acquire_done(acquire_ctx);
626 			return ret;
627 		}
628 	}
629 
630 	ww_acquire_done(acquire_ctx);
631 
632 	/* Reserve space for our shared (read-only) fence references,
633 	 * before we commit the CL to the hardware.
634 	 */
635 	for (i = 0; i < exec->bo_count; i++) {
636 		bo = to_vc4_bo(&exec->bo[i]->base);
637 
638 		ret = reservation_object_reserve_shared(bo->resv);
639 		if (ret) {
640 			vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
641 			return ret;
642 		}
643 	}
644 
645 	return 0;
646 }
647 
648 /* Queues a struct vc4_exec_info for execution.  If no job is
649  * currently executing, then submits it.
650  *
651  * Unlike most GPUs, our hardware only handles one command list at a
652  * time.  To queue multiple jobs at once, we'd need to edit the
653  * previous command list to have a jump to the new one at the end, and
654  * then bump the end address.  That's a change for a later date,
655  * though.
656  */
657 static int
658 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
659 		 struct ww_acquire_ctx *acquire_ctx,
660 		 struct drm_syncobj *out_sync)
661 {
662 	struct vc4_dev *vc4 = to_vc4_dev(dev);
663 	struct vc4_exec_info *renderjob;
664 	uint64_t seqno;
665 	unsigned long irqflags;
666 	struct vc4_fence *fence;
667 
668 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
669 	if (!fence)
670 		return -ENOMEM;
671 	fence->dev = dev;
672 
673 	spin_lock_irqsave(&vc4->job_lock, irqflags);
674 
675 	seqno = ++vc4->emit_seqno;
676 	exec->seqno = seqno;
677 
678 	dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
679 		       vc4->dma_fence_context, exec->seqno);
680 	fence->seqno = exec->seqno;
681 	exec->fence = &fence->base;
682 
683 	if (out_sync)
684 		drm_syncobj_replace_fence(out_sync, 0, exec->fence);
685 
686 	vc4_update_bo_seqnos(exec, seqno);
687 
688 	vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
689 
690 	list_add_tail(&exec->head, &vc4->bin_job_list);
691 
692 	/* If no bin job was executing and if the render job (if any) has the
693 	 * same perfmon as our job attached to it (or if both jobs don't have
694 	 * perfmon activated), then kick ours off.  Otherwise, it'll get
695 	 * started when the previous job's flush/render done interrupt occurs.
696 	 */
697 	renderjob = vc4_first_render_job(vc4);
698 	if (vc4_first_bin_job(vc4) == exec &&
699 	    (!renderjob || renderjob->perfmon == exec->perfmon)) {
700 		vc4_submit_next_bin_job(dev);
701 		vc4_queue_hangcheck(dev);
702 	}
703 
704 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
705 
706 	return 0;
707 }
708 
709 /**
710  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
711  * referenced by the job.
712  * @dev: DRM device
713  * @file_priv: DRM file for this fd
714  * @exec: V3D job being set up
715  *
716  * The command validator needs to reference BOs by their index within
717  * the submitted job's BO list.  This does the validation of the job's
718  * BO list and reference counting for the lifetime of the job.
719  */
720 static int
721 vc4_cl_lookup_bos(struct drm_device *dev,
722 		  struct drm_file *file_priv,
723 		  struct vc4_exec_info *exec)
724 {
725 	struct drm_vc4_submit_cl *args = exec->args;
726 	uint32_t *handles;
727 	int ret = 0;
728 	int i;
729 
730 	exec->bo_count = args->bo_handle_count;
731 
732 	if (!exec->bo_count) {
733 		/* See comment on bo_index for why we have to check
734 		 * this.
735 		 */
736 		DRM_DEBUG("Rendering requires BOs to validate\n");
737 		return -EINVAL;
738 	}
739 
740 	exec->bo = kvmalloc_array(exec->bo_count,
741 				    sizeof(struct drm_gem_cma_object *),
742 				    GFP_KERNEL | __GFP_ZERO);
743 	if (!exec->bo) {
744 		DRM_ERROR("Failed to allocate validated BO pointers\n");
745 		return -ENOMEM;
746 	}
747 
748 	handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
749 	if (!handles) {
750 		ret = -ENOMEM;
751 		DRM_ERROR("Failed to allocate incoming GEM handles\n");
752 		goto fail;
753 	}
754 
755 	if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
756 			   exec->bo_count * sizeof(uint32_t))) {
757 		ret = -EFAULT;
758 		DRM_ERROR("Failed to copy in GEM handles\n");
759 		goto fail;
760 	}
761 
762 	spin_lock(&file_priv->table_lock);
763 	for (i = 0; i < exec->bo_count; i++) {
764 		struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
765 						     handles[i]);
766 		if (!bo) {
767 			DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
768 				  i, handles[i]);
769 			ret = -EINVAL;
770 			break;
771 		}
772 
773 		drm_gem_object_get(bo);
774 		exec->bo[i] = (struct drm_gem_cma_object *)bo;
775 	}
776 	spin_unlock(&file_priv->table_lock);
777 
778 	if (ret)
779 		goto fail_put_bo;
780 
781 	for (i = 0; i < exec->bo_count; i++) {
782 		ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
783 		if (ret)
784 			goto fail_dec_usecnt;
785 	}
786 
787 	kvfree(handles);
788 	return 0;
789 
790 fail_dec_usecnt:
791 	/* Decrease usecnt on acquired objects.
792 	 * We cannot rely on  vc4_complete_exec() to release resources here,
793 	 * because vc4_complete_exec() has no information about which BO has
794 	 * had its ->usecnt incremented.
795 	 * To make things easier we just free everything explicitly and set
796 	 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
797 	 * step.
798 	 */
799 	for (i-- ; i >= 0; i--)
800 		vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
801 
802 fail_put_bo:
803 	/* Release any reference to acquired objects. */
804 	for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
805 		drm_gem_object_put_unlocked(&exec->bo[i]->base);
806 
807 fail:
808 	kvfree(handles);
809 	kvfree(exec->bo);
810 	exec->bo = NULL;
811 	return ret;
812 }
813 
814 static int
815 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
816 {
817 	struct drm_vc4_submit_cl *args = exec->args;
818 	void *temp = NULL;
819 	void *bin;
820 	int ret = 0;
821 	uint32_t bin_offset = 0;
822 	uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
823 					     16);
824 	uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
825 	uint32_t exec_size = uniforms_offset + args->uniforms_size;
826 	uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
827 					  args->shader_rec_count);
828 	struct vc4_bo *bo;
829 
830 	if (shader_rec_offset < args->bin_cl_size ||
831 	    uniforms_offset < shader_rec_offset ||
832 	    exec_size < uniforms_offset ||
833 	    args->shader_rec_count >= (UINT_MAX /
834 					  sizeof(struct vc4_shader_state)) ||
835 	    temp_size < exec_size) {
836 		DRM_DEBUG("overflow in exec arguments\n");
837 		ret = -EINVAL;
838 		goto fail;
839 	}
840 
841 	/* Allocate space where we'll store the copied in user command lists
842 	 * and shader records.
843 	 *
844 	 * We don't just copy directly into the BOs because we need to
845 	 * read the contents back for validation, and I think the
846 	 * bo->vaddr is uncached access.
847 	 */
848 	temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
849 	if (!temp) {
850 		DRM_ERROR("Failed to allocate storage for copying "
851 			  "in bin/render CLs.\n");
852 		ret = -ENOMEM;
853 		goto fail;
854 	}
855 	bin = temp + bin_offset;
856 	exec->shader_rec_u = temp + shader_rec_offset;
857 	exec->uniforms_u = temp + uniforms_offset;
858 	exec->shader_state = temp + exec_size;
859 	exec->shader_state_size = args->shader_rec_count;
860 
861 	if (copy_from_user(bin,
862 			   u64_to_user_ptr(args->bin_cl),
863 			   args->bin_cl_size)) {
864 		ret = -EFAULT;
865 		goto fail;
866 	}
867 
868 	if (copy_from_user(exec->shader_rec_u,
869 			   u64_to_user_ptr(args->shader_rec),
870 			   args->shader_rec_size)) {
871 		ret = -EFAULT;
872 		goto fail;
873 	}
874 
875 	if (copy_from_user(exec->uniforms_u,
876 			   u64_to_user_ptr(args->uniforms),
877 			   args->uniforms_size)) {
878 		ret = -EFAULT;
879 		goto fail;
880 	}
881 
882 	bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
883 	if (IS_ERR(bo)) {
884 		DRM_ERROR("Couldn't allocate BO for binning\n");
885 		ret = PTR_ERR(bo);
886 		goto fail;
887 	}
888 	exec->exec_bo = &bo->base;
889 
890 	list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
891 		      &exec->unref_list);
892 
893 	exec->ct0ca = exec->exec_bo->paddr + bin_offset;
894 
895 	exec->bin_u = bin;
896 
897 	exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
898 	exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
899 	exec->shader_rec_size = args->shader_rec_size;
900 
901 	exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
902 	exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
903 	exec->uniforms_size = args->uniforms_size;
904 
905 	ret = vc4_validate_bin_cl(dev,
906 				  exec->exec_bo->vaddr + bin_offset,
907 				  bin,
908 				  exec);
909 	if (ret)
910 		goto fail;
911 
912 	ret = vc4_validate_shader_recs(dev, exec);
913 	if (ret)
914 		goto fail;
915 
916 	/* Block waiting on any previous rendering into the CS's VBO,
917 	 * IB, or textures, so that pixels are actually written by the
918 	 * time we try to read them.
919 	 */
920 	ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
921 
922 fail:
923 	kvfree(temp);
924 	return ret;
925 }
926 
927 static void
928 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
929 {
930 	struct vc4_dev *vc4 = to_vc4_dev(dev);
931 	unsigned long irqflags;
932 	unsigned i;
933 
934 	/* If we got force-completed because of GPU reset rather than
935 	 * through our IRQ handler, signal the fence now.
936 	 */
937 	if (exec->fence) {
938 		dma_fence_signal(exec->fence);
939 		dma_fence_put(exec->fence);
940 	}
941 
942 	if (exec->bo) {
943 		for (i = 0; i < exec->bo_count; i++) {
944 			struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
945 
946 			vc4_bo_dec_usecnt(bo);
947 			drm_gem_object_put_unlocked(&exec->bo[i]->base);
948 		}
949 		kvfree(exec->bo);
950 	}
951 
952 	while (!list_empty(&exec->unref_list)) {
953 		struct vc4_bo *bo = list_first_entry(&exec->unref_list,
954 						     struct vc4_bo, unref_head);
955 		list_del(&bo->unref_head);
956 		drm_gem_object_put_unlocked(&bo->base.base);
957 	}
958 
959 	/* Free up the allocation of any bin slots we used. */
960 	spin_lock_irqsave(&vc4->job_lock, irqflags);
961 	vc4->bin_alloc_used &= ~exec->bin_slots;
962 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
963 
964 	/* Release the reference we had on the perf monitor. */
965 	vc4_perfmon_put(exec->perfmon);
966 
967 	mutex_lock(&vc4->power_lock);
968 	if (--vc4->power_refcount == 0) {
969 		pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
970 		pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
971 	}
972 	mutex_unlock(&vc4->power_lock);
973 
974 	kfree(exec);
975 }
976 
977 void
978 vc4_job_handle_completed(struct vc4_dev *vc4)
979 {
980 	unsigned long irqflags;
981 	struct vc4_seqno_cb *cb, *cb_temp;
982 
983 	spin_lock_irqsave(&vc4->job_lock, irqflags);
984 	while (!list_empty(&vc4->job_done_list)) {
985 		struct vc4_exec_info *exec =
986 			list_first_entry(&vc4->job_done_list,
987 					 struct vc4_exec_info, head);
988 		list_del(&exec->head);
989 
990 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
991 		vc4_complete_exec(vc4->dev, exec);
992 		spin_lock_irqsave(&vc4->job_lock, irqflags);
993 	}
994 
995 	list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
996 		if (cb->seqno <= vc4->finished_seqno) {
997 			list_del_init(&cb->work.entry);
998 			schedule_work(&cb->work);
999 		}
1000 	}
1001 
1002 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1003 }
1004 
1005 static void vc4_seqno_cb_work(struct work_struct *work)
1006 {
1007 	struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1008 
1009 	cb->func(cb);
1010 }
1011 
1012 int vc4_queue_seqno_cb(struct drm_device *dev,
1013 		       struct vc4_seqno_cb *cb, uint64_t seqno,
1014 		       void (*func)(struct vc4_seqno_cb *cb))
1015 {
1016 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1017 	int ret = 0;
1018 	unsigned long irqflags;
1019 
1020 	cb->func = func;
1021 	INIT_WORK(&cb->work, vc4_seqno_cb_work);
1022 
1023 	spin_lock_irqsave(&vc4->job_lock, irqflags);
1024 	if (seqno > vc4->finished_seqno) {
1025 		cb->seqno = seqno;
1026 		list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1027 	} else {
1028 		schedule_work(&cb->work);
1029 	}
1030 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1031 
1032 	return ret;
1033 }
1034 
1035 /* Scheduled when any job has been completed, this walks the list of
1036  * jobs that had completed and unrefs their BOs and frees their exec
1037  * structs.
1038  */
1039 static void
1040 vc4_job_done_work(struct work_struct *work)
1041 {
1042 	struct vc4_dev *vc4 =
1043 		container_of(work, struct vc4_dev, job_done_work);
1044 
1045 	vc4_job_handle_completed(vc4);
1046 }
1047 
1048 static int
1049 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1050 				uint64_t seqno,
1051 				uint64_t *timeout_ns)
1052 {
1053 	unsigned long start = jiffies;
1054 	int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1055 
1056 	if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1057 		uint64_t delta = jiffies_to_nsecs(jiffies - start);
1058 
1059 		if (*timeout_ns >= delta)
1060 			*timeout_ns -= delta;
1061 	}
1062 
1063 	return ret;
1064 }
1065 
1066 int
1067 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1068 		     struct drm_file *file_priv)
1069 {
1070 	struct drm_vc4_wait_seqno *args = data;
1071 
1072 	return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1073 					       &args->timeout_ns);
1074 }
1075 
1076 int
1077 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1078 		  struct drm_file *file_priv)
1079 {
1080 	int ret;
1081 	struct drm_vc4_wait_bo *args = data;
1082 	struct drm_gem_object *gem_obj;
1083 	struct vc4_bo *bo;
1084 
1085 	if (args->pad != 0)
1086 		return -EINVAL;
1087 
1088 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1089 	if (!gem_obj) {
1090 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1091 		return -EINVAL;
1092 	}
1093 	bo = to_vc4_bo(gem_obj);
1094 
1095 	ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1096 					      &args->timeout_ns);
1097 
1098 	drm_gem_object_put_unlocked(gem_obj);
1099 	return ret;
1100 }
1101 
1102 /**
1103  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1104  * @dev: DRM device
1105  * @data: ioctl argument
1106  * @file_priv: DRM file for this fd
1107  *
1108  * This is the main entrypoint for userspace to submit a 3D frame to
1109  * the GPU.  Userspace provides the binner command list (if
1110  * applicable), and the kernel sets up the render command list to draw
1111  * to the framebuffer described in the ioctl, using the command lists
1112  * that the 3D engine's binner will produce.
1113  */
1114 int
1115 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1116 		    struct drm_file *file_priv)
1117 {
1118 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1119 	struct vc4_file *vc4file = file_priv->driver_priv;
1120 	struct drm_vc4_submit_cl *args = data;
1121 	struct drm_syncobj *out_sync = NULL;
1122 	struct vc4_exec_info *exec;
1123 	struct ww_acquire_ctx acquire_ctx;
1124 	struct dma_fence *in_fence;
1125 	int ret = 0;
1126 
1127 	if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1128 			     VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1129 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1130 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1131 		DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1132 		return -EINVAL;
1133 	}
1134 
1135 	if (args->pad2 != 0) {
1136 		DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1137 		return -EINVAL;
1138 	}
1139 
1140 	exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1141 	if (!exec) {
1142 		DRM_ERROR("malloc failure on exec struct\n");
1143 		return -ENOMEM;
1144 	}
1145 
1146 	mutex_lock(&vc4->power_lock);
1147 	if (vc4->power_refcount++ == 0) {
1148 		ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1149 		if (ret < 0) {
1150 			mutex_unlock(&vc4->power_lock);
1151 			vc4->power_refcount--;
1152 			kfree(exec);
1153 			return ret;
1154 		}
1155 	}
1156 	mutex_unlock(&vc4->power_lock);
1157 
1158 	exec->args = args;
1159 	INIT_LIST_HEAD(&exec->unref_list);
1160 
1161 	ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1162 	if (ret)
1163 		goto fail;
1164 
1165 	if (args->perfmonid) {
1166 		exec->perfmon = vc4_perfmon_find(vc4file,
1167 						 args->perfmonid);
1168 		if (!exec->perfmon) {
1169 			ret = -ENOENT;
1170 			goto fail;
1171 		}
1172 	}
1173 
1174 	if (args->in_sync) {
1175 		ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1176 					     0, &in_fence);
1177 		if (ret)
1178 			goto fail;
1179 
1180 		/* When the fence (or fence array) is exclusively from our
1181 		 * context we can skip the wait since jobs are executed in
1182 		 * order of their submission through this ioctl and this can
1183 		 * only have fences from a prior job.
1184 		 */
1185 		if (!dma_fence_match_context(in_fence,
1186 					     vc4->dma_fence_context)) {
1187 			ret = dma_fence_wait(in_fence, true);
1188 			if (ret) {
1189 				dma_fence_put(in_fence);
1190 				goto fail;
1191 			}
1192 		}
1193 
1194 		dma_fence_put(in_fence);
1195 	}
1196 
1197 	if (exec->args->bin_cl_size != 0) {
1198 		ret = vc4_get_bcl(dev, exec);
1199 		if (ret)
1200 			goto fail;
1201 	} else {
1202 		exec->ct0ca = 0;
1203 		exec->ct0ea = 0;
1204 	}
1205 
1206 	ret = vc4_get_rcl(dev, exec);
1207 	if (ret)
1208 		goto fail;
1209 
1210 	ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1211 	if (ret)
1212 		goto fail;
1213 
1214 	if (args->out_sync) {
1215 		out_sync = drm_syncobj_find(file_priv, args->out_sync);
1216 		if (!out_sync) {
1217 			ret = -EINVAL;
1218 			goto fail;
1219 		}
1220 
1221 		/* We replace the fence in out_sync in vc4_queue_submit since
1222 		 * the render job could execute immediately after that call.
1223 		 * If it finishes before our ioctl processing resumes the
1224 		 * render job fence could already have been freed.
1225 		 */
1226 	}
1227 
1228 	/* Clear this out of the struct we'll be putting in the queue,
1229 	 * since it's part of our stack.
1230 	 */
1231 	exec->args = NULL;
1232 
1233 	ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1234 
1235 	/* The syncobj isn't part of the exec data and we need to free our
1236 	 * reference even if job submission failed.
1237 	 */
1238 	if (out_sync)
1239 		drm_syncobj_put(out_sync);
1240 
1241 	if (ret)
1242 		goto fail;
1243 
1244 	/* Return the seqno for our job. */
1245 	args->seqno = vc4->emit_seqno;
1246 
1247 	return 0;
1248 
1249 fail:
1250 	vc4_complete_exec(vc4->dev, exec);
1251 
1252 	return ret;
1253 }
1254 
1255 void
1256 vc4_gem_init(struct drm_device *dev)
1257 {
1258 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1259 
1260 	vc4->dma_fence_context = dma_fence_context_alloc(1);
1261 
1262 	INIT_LIST_HEAD(&vc4->bin_job_list);
1263 	INIT_LIST_HEAD(&vc4->render_job_list);
1264 	INIT_LIST_HEAD(&vc4->job_done_list);
1265 	INIT_LIST_HEAD(&vc4->seqno_cb_list);
1266 	spin_lock_init(&vc4->job_lock);
1267 
1268 	INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1269 	timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1270 
1271 	INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1272 
1273 	mutex_init(&vc4->power_lock);
1274 
1275 	INIT_LIST_HEAD(&vc4->purgeable.list);
1276 	mutex_init(&vc4->purgeable.lock);
1277 }
1278 
1279 void
1280 vc4_gem_destroy(struct drm_device *dev)
1281 {
1282 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1283 
1284 	/* Waiting for exec to finish would need to be done before
1285 	 * unregistering V3D.
1286 	 */
1287 	WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1288 
1289 	/* V3D should already have disabled its interrupt and cleared
1290 	 * the overflow allocation registers.  Now free the object.
1291 	 */
1292 	if (vc4->bin_bo) {
1293 		drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1294 		vc4->bin_bo = NULL;
1295 	}
1296 
1297 	if (vc4->hang_state)
1298 		vc4_free_hang_state(dev, vc4->hang_state);
1299 }
1300 
1301 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1302 			  struct drm_file *file_priv)
1303 {
1304 	struct drm_vc4_gem_madvise *args = data;
1305 	struct drm_gem_object *gem_obj;
1306 	struct vc4_bo *bo;
1307 	int ret;
1308 
1309 	switch (args->madv) {
1310 	case VC4_MADV_DONTNEED:
1311 	case VC4_MADV_WILLNEED:
1312 		break;
1313 	default:
1314 		return -EINVAL;
1315 	}
1316 
1317 	if (args->pad != 0)
1318 		return -EINVAL;
1319 
1320 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1321 	if (!gem_obj) {
1322 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1323 		return -ENOENT;
1324 	}
1325 
1326 	bo = to_vc4_bo(gem_obj);
1327 
1328 	/* Only BOs exposed to userspace can be purged. */
1329 	if (bo->madv == __VC4_MADV_NOTSUPP) {
1330 		DRM_DEBUG("madvise not supported on this BO\n");
1331 		ret = -EINVAL;
1332 		goto out_put_gem;
1333 	}
1334 
1335 	/* Not sure it's safe to purge imported BOs. Let's just assume it's
1336 	 * not until proven otherwise.
1337 	 */
1338 	if (gem_obj->import_attach) {
1339 		DRM_DEBUG("madvise not supported on imported BOs\n");
1340 		ret = -EINVAL;
1341 		goto out_put_gem;
1342 	}
1343 
1344 	mutex_lock(&bo->madv_lock);
1345 
1346 	if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1347 	    !refcount_read(&bo->usecnt)) {
1348 		/* If the BO is about to be marked as purgeable, is not used
1349 		 * and is not already purgeable or purged, add it to the
1350 		 * purgeable list.
1351 		 */
1352 		vc4_bo_add_to_purgeable_pool(bo);
1353 	} else if (args->madv == VC4_MADV_WILLNEED &&
1354 		   bo->madv == VC4_MADV_DONTNEED &&
1355 		   !refcount_read(&bo->usecnt)) {
1356 		/* The BO has not been purged yet, just remove it from
1357 		 * the purgeable list.
1358 		 */
1359 		vc4_bo_remove_from_purgeable_pool(bo);
1360 	}
1361 
1362 	/* Save the purged state. */
1363 	args->retained = bo->madv != __VC4_MADV_PURGED;
1364 
1365 	/* Update internal madv state only if the bo was not purged. */
1366 	if (bo->madv != __VC4_MADV_PURGED)
1367 		bo->madv = args->madv;
1368 
1369 	mutex_unlock(&bo->madv_lock);
1370 
1371 	ret = 0;
1372 
1373 out_put_gem:
1374 	drm_gem_object_put_unlocked(gem_obj);
1375 
1376 	return ret;
1377 }
1378