1 /* 2 * Copyright (C) 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 as published by 6 * the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program. If not, see <http://www.gnu.org/licenses/>. 15 */ 16 17 /** 18 * DOC: VC4 DSI0/DSI1 module 19 * 20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 22 * controller. 23 * 24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 25 * while the compute module brings both DSI0 and DSI1 out. 26 * 27 * This driver has been tested for DSI1 video-mode display only 28 * currently, with most of the information necessary for DSI0 29 * hopefully present. 30 */ 31 32 #include "drm_atomic_helper.h" 33 #include "drm_crtc_helper.h" 34 #include "drm_edid.h" 35 #include "drm_mipi_dsi.h" 36 #include "drm_panel.h" 37 #include "linux/clk.h" 38 #include "linux/clk-provider.h" 39 #include "linux/completion.h" 40 #include "linux/component.h" 41 #include "linux/dmaengine.h" 42 #include "linux/i2c.h" 43 #include "linux/of_address.h" 44 #include "linux/of_platform.h" 45 #include "linux/pm_runtime.h" 46 #include "vc4_drv.h" 47 #include "vc4_regs.h" 48 49 #define DSI_CMD_FIFO_DEPTH 16 50 #define DSI_PIX_FIFO_DEPTH 256 51 #define DSI_PIX_FIFO_WIDTH 4 52 53 #define DSI0_CTRL 0x00 54 55 /* Command packet control. */ 56 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 57 #define DSI1_TXPKT1C 0x04 58 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 59 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 60 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 61 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 62 63 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 64 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 65 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 66 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 67 /* Primary display where cmdfifo provides part of the payload and 68 * pixelvalve the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 71 /* Secondary display where cmdfifo provides part of the payload and 72 * pixfifo the rest. 73 */ 74 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 75 76 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 77 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 78 79 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 80 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 81 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 82 # define DSI_TXPKT1C_CMD_CTRL_TX 0 83 /* Command with BTA for either ack or read data. */ 84 # define DSI_TXPKT1C_CMD_CTRL_RX 1 85 /* Trigger according to TRIG_CMD */ 86 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 87 /* BTA alone for getting error status after a command, or a TE trigger 88 * without a previous command. 89 */ 90 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 91 92 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 93 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 94 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 95 # define DSI_TXPKT1C_CMD_EN BIT(0) 96 97 /* Command packet header. */ 98 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 99 #define DSI1_TXPKT1H 0x08 100 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 101 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 102 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 103 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 104 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 105 # define DSI_TXPKT1H_BC_DT_SHIFT 0 106 107 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 108 #define DSI1_RXPKT1H 0x14 109 # define DSI_RXPKT1H_CRC_ERR BIT(31) 110 # define DSI_RXPKT1H_DET_ERR BIT(30) 111 # define DSI_RXPKT1H_ECC_ERR BIT(29) 112 # define DSI_RXPKT1H_COR_ERR BIT(28) 113 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 114 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 115 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 116 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 117 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 118 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 119 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 120 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 121 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 122 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 123 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 124 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 125 126 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 127 #define DSI1_RXPKT2H 0x18 128 # define DSI_RXPKT1H_DET_ERR BIT(30) 129 # define DSI_RXPKT1H_ECC_ERR BIT(29) 130 # define DSI_RXPKT1H_COR_ERR BIT(28) 131 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 132 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 133 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 134 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 135 # define DSI_RXPKT1H_DT_SHIFT 0 136 137 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 138 #define DSI1_TXPKT_CMD_FIFO 0x1c 139 140 #define DSI0_DISP0_CTRL 0x18 141 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 142 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 143 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 144 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 145 # define DSI_DISP0_LP_STOP_DISABLE 0 146 # define DSI_DISP0_LP_STOP_PERLINE 1 147 # define DSI_DISP0_LP_STOP_PERFRAME 2 148 149 /* Transmit RGB pixels and null packets only during HACTIVE, instead 150 * of going to LP-STOP. 151 */ 152 # define DSI_DISP_HACTIVE_NULL BIT(10) 153 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 154 # define DSI_DISP_VBLP_CTRL BIT(9) 155 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 156 # define DSI_DISP_HFP_CTRL BIT(8) 157 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 158 # define DSI_DISP_HBP_CTRL BIT(7) 159 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 160 # define DSI_DISP0_CHANNEL_SHIFT 5 161 /* Enables end events for HSYNC/VSYNC, not just start events. */ 162 # define DSI_DISP0_ST_END BIT(4) 163 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 164 # define DSI_DISP0_PFORMAT_SHIFT 2 165 # define DSI_PFORMAT_RGB565 0 166 # define DSI_PFORMAT_RGB666_PACKED 1 167 # define DSI_PFORMAT_RGB666 2 168 # define DSI_PFORMAT_RGB888 3 169 /* Default is VIDEO mode. */ 170 # define DSI_DISP0_COMMAND_MODE BIT(1) 171 # define DSI_DISP0_ENABLE BIT(0) 172 173 #define DSI0_DISP1_CTRL 0x1c 174 #define DSI1_DISP1_CTRL 0x2c 175 /* Format of the data written to TXPKT_PIX_FIFO. */ 176 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 177 # define DSI_DISP1_PFORMAT_SHIFT 1 178 # define DSI_DISP1_PFORMAT_16BIT 0 179 # define DSI_DISP1_PFORMAT_24BIT 1 180 # define DSI_DISP1_PFORMAT_32BIT_LE 2 181 # define DSI_DISP1_PFORMAT_32BIT_BE 3 182 183 /* DISP1 is always command mode. */ 184 # define DSI_DISP1_ENABLE BIT(0) 185 186 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 187 188 #define DSI0_INT_STAT 0x24 189 #define DSI0_INT_EN 0x28 190 # define DSI1_INT_PHY_D3_ULPS BIT(30) 191 # define DSI1_INT_PHY_D3_STOP BIT(29) 192 # define DSI1_INT_PHY_D2_ULPS BIT(28) 193 # define DSI1_INT_PHY_D2_STOP BIT(27) 194 # define DSI1_INT_PHY_D1_ULPS BIT(26) 195 # define DSI1_INT_PHY_D1_STOP BIT(25) 196 # define DSI1_INT_PHY_D0_ULPS BIT(24) 197 # define DSI1_INT_PHY_D0_STOP BIT(23) 198 # define DSI1_INT_FIFO_ERR BIT(22) 199 # define DSI1_INT_PHY_DIR_RTF BIT(21) 200 # define DSI1_INT_PHY_RXLPDT BIT(20) 201 # define DSI1_INT_PHY_RXTRIG BIT(19) 202 # define DSI1_INT_PHY_D0_LPDT BIT(18) 203 # define DSI1_INT_PHY_DIR_FTR BIT(17) 204 205 /* Signaled when the clock lane enters the given state. */ 206 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 207 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 208 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 209 210 /* Signaled on timeouts */ 211 # define DSI1_INT_PR_TO BIT(13) 212 # define DSI1_INT_TA_TO BIT(12) 213 # define DSI1_INT_LPRX_TO BIT(11) 214 # define DSI1_INT_HSTX_TO BIT(10) 215 216 /* Contention on a line when trying to drive the line low */ 217 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 218 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 219 220 /* Control error: incorrect line state sequence on data lane 0. */ 221 # define DSI1_INT_ERR_CONTROL BIT(7) 222 /* LPDT synchronization error (bits received not a multiple of 8. */ 223 224 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 225 /* Signaled after receiving an error packet from the display in 226 * response to a read. 227 */ 228 # define DSI1_INT_RXPKT2 BIT(5) 229 /* Signaled after receiving a packet. The header and optional short 230 * response will be in RXPKT1H, and a long response will be in the 231 * RXPKT_FIFO. 232 */ 233 # define DSI1_INT_RXPKT1 BIT(4) 234 # define DSI1_INT_TXPKT2_DONE BIT(3) 235 # define DSI1_INT_TXPKT2_END BIT(2) 236 /* Signaled after all repeats of TXPKT1 are transferred. */ 237 # define DSI1_INT_TXPKT1_DONE BIT(1) 238 /* Signaled after each TXPKT1 repeat is scheduled. */ 239 # define DSI1_INT_TXPKT1_END BIT(0) 240 241 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 242 DSI1_INT_ERR_CONTROL | \ 243 DSI1_INT_ERR_CONT_LP0 | \ 244 DSI1_INT_ERR_CONT_LP1 | \ 245 DSI1_INT_HSTX_TO | \ 246 DSI1_INT_LPRX_TO | \ 247 DSI1_INT_TA_TO | \ 248 DSI1_INT_PR_TO) 249 250 #define DSI0_STAT 0x2c 251 #define DSI0_HSTX_TO_CNT 0x30 252 #define DSI0_LPRX_TO_CNT 0x34 253 #define DSI0_TA_TO_CNT 0x38 254 #define DSI0_PR_TO_CNT 0x3c 255 #define DSI0_PHYC 0x40 256 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 257 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 258 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 259 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 260 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 261 # define DSI1_PHYC_CLANE_ULPS BIT(17) 262 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 263 # define DSI_PHYC_DLANE3_ULPS BIT(13) 264 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 265 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 266 # define DSI0_PHYC_CLANE_ULPS BIT(9) 267 # define DSI_PHYC_DLANE2_ULPS BIT(9) 268 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 269 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 270 # define DSI_PHYC_DLANE1_ULPS BIT(5) 271 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 272 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 273 # define DSI_PHYC_DLANE0_ULPS BIT(1) 274 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 275 276 #define DSI0_HS_CLT0 0x44 277 #define DSI0_HS_CLT1 0x48 278 #define DSI0_HS_CLT2 0x4c 279 #define DSI0_HS_DLT3 0x50 280 #define DSI0_HS_DLT4 0x54 281 #define DSI0_HS_DLT5 0x58 282 #define DSI0_HS_DLT6 0x5c 283 #define DSI0_HS_DLT7 0x60 284 285 #define DSI0_PHY_AFEC0 0x64 286 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 287 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 288 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 289 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 290 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 291 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 292 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 293 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 294 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 295 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 296 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 297 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 298 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 299 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 301 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 303 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 305 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 306 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 307 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 308 # define DSI1_PHY_AFEC0_RESET BIT(13) 309 # define DSI1_PHY_AFEC0_PD BIT(12) 310 # define DSI0_PHY_AFEC0_RESET BIT(11) 311 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 312 # define DSI0_PHY_AFEC0_PD BIT(10) 313 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 314 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 315 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 316 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 317 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 318 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 319 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 320 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 321 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 322 323 #define DSI0_PHY_AFEC1 0x68 324 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 325 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 326 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 327 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 328 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 329 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 330 331 #define DSI0_TST_SEL 0x6c 332 #define DSI0_TST_MON 0x70 333 #define DSI0_ID 0x74 334 # define DSI_ID_VALUE 0x00647369 335 336 #define DSI1_CTRL 0x00 337 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 338 # define DSI_CTRL_HS_CLKC_SHIFT 14 339 # define DSI_CTRL_HS_CLKC_BYTE 0 340 # define DSI_CTRL_HS_CLKC_DDR2 1 341 # define DSI_CTRL_HS_CLKC_DDR 2 342 343 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 344 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 345 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 346 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 347 # define DSI_CTRL_CAL_BYTE BIT(9) 348 # define DSI_CTRL_INV_BYTE BIT(8) 349 # define DSI_CTRL_CLR_LDF BIT(7) 350 # define DSI0_CTRL_CLR_PBCF BIT(6) 351 # define DSI1_CTRL_CLR_RXF BIT(6) 352 # define DSI0_CTRL_CLR_CPBCF BIT(5) 353 # define DSI1_CTRL_CLR_PDF BIT(5) 354 # define DSI0_CTRL_CLR_PDF BIT(4) 355 # define DSI1_CTRL_CLR_CDF BIT(4) 356 # define DSI0_CTRL_CLR_CDF BIT(3) 357 # define DSI0_CTRL_CTRL2 BIT(2) 358 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 359 # define DSI0_CTRL_CTRL1 BIT(1) 360 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 361 # define DSI0_CTRL_CTRL0 BIT(0) 362 # define DSI1_CTRL_EN BIT(0) 363 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 364 DSI0_CTRL_CLR_PBCF | \ 365 DSI0_CTRL_CLR_CPBCF | \ 366 DSI0_CTRL_CLR_PDF | \ 367 DSI0_CTRL_CLR_CDF) 368 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 369 DSI1_CTRL_CLR_RXF | \ 370 DSI1_CTRL_CLR_PDF | \ 371 DSI1_CTRL_CLR_CDF) 372 373 #define DSI1_TXPKT2C 0x0c 374 #define DSI1_TXPKT2H 0x10 375 #define DSI1_TXPKT_PIX_FIFO 0x20 376 #define DSI1_RXPKT_FIFO 0x24 377 #define DSI1_DISP0_CTRL 0x28 378 #define DSI1_INT_STAT 0x30 379 #define DSI1_INT_EN 0x34 380 /* State reporting bits. These mostly behave like INT_STAT, where 381 * writing a 1 clears the bit. 382 */ 383 #define DSI1_STAT 0x38 384 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 385 # define DSI1_STAT_PHY_D3_STOP BIT(30) 386 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 387 # define DSI1_STAT_PHY_D2_STOP BIT(28) 388 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 389 # define DSI1_STAT_PHY_D1_STOP BIT(26) 390 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 391 # define DSI1_STAT_PHY_D0_STOP BIT(24) 392 # define DSI1_STAT_FIFO_ERR BIT(23) 393 # define DSI1_STAT_PHY_RXLPDT BIT(22) 394 # define DSI1_STAT_PHY_RXTRIG BIT(21) 395 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 396 /* Set when in forward direction */ 397 # define DSI1_STAT_PHY_DIR BIT(19) 398 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 399 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 400 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 401 # define DSI1_STAT_PR_TO BIT(15) 402 # define DSI1_STAT_TA_TO BIT(14) 403 # define DSI1_STAT_LPRX_TO BIT(13) 404 # define DSI1_STAT_HSTX_TO BIT(12) 405 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 406 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 407 # define DSI1_STAT_ERR_CONTROL BIT(9) 408 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 409 # define DSI1_STAT_RXPKT2 BIT(7) 410 # define DSI1_STAT_RXPKT1 BIT(6) 411 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 412 # define DSI1_STAT_TXPKT2_DONE BIT(4) 413 # define DSI1_STAT_TXPKT2_END BIT(3) 414 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 415 # define DSI1_STAT_TXPKT1_DONE BIT(1) 416 # define DSI1_STAT_TXPKT1_END BIT(0) 417 418 #define DSI1_HSTX_TO_CNT 0x3c 419 #define DSI1_LPRX_TO_CNT 0x40 420 #define DSI1_TA_TO_CNT 0x44 421 #define DSI1_PR_TO_CNT 0x48 422 #define DSI1_PHYC 0x4c 423 424 #define DSI1_HS_CLT0 0x50 425 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 426 # define DSI_HS_CLT0_CZERO_SHIFT 18 427 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 428 # define DSI_HS_CLT0_CPRE_SHIFT 9 429 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 430 # define DSI_HS_CLT0_CPREP_SHIFT 0 431 432 #define DSI1_HS_CLT1 0x54 433 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 434 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 435 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 436 # define DSI_HS_CLT1_CPOST_SHIFT 0 437 438 #define DSI1_HS_CLT2 0x58 439 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 440 # define DSI_HS_CLT2_WUP_SHIFT 0 441 442 #define DSI1_HS_DLT3 0x5c 443 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 444 # define DSI_HS_DLT3_EXIT_SHIFT 18 445 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 446 # define DSI_HS_DLT3_ZERO_SHIFT 9 447 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 448 # define DSI_HS_DLT3_PRE_SHIFT 0 449 450 #define DSI1_HS_DLT4 0x60 451 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 452 # define DSI_HS_DLT4_ANLAT_SHIFT 18 453 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 454 # define DSI_HS_DLT4_TRAIL_SHIFT 9 455 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 456 # define DSI_HS_DLT4_LPX_SHIFT 0 457 458 #define DSI1_HS_DLT5 0x64 459 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 460 # define DSI_HS_DLT5_INIT_SHIFT 0 461 462 #define DSI1_HS_DLT6 0x68 463 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 464 # define DSI_HS_DLT6_TA_GET_SHIFT 24 465 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 466 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 467 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 468 # define DSI_HS_DLT6_TA_GO_SHIFT 8 469 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 470 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 471 472 #define DSI1_HS_DLT7 0x6c 473 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 474 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 475 476 #define DSI1_PHY_AFEC0 0x70 477 478 #define DSI1_PHY_AFEC1 0x74 479 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 483 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 485 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 487 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 489 490 #define DSI1_TST_SEL 0x78 491 #define DSI1_TST_MON 0x7c 492 #define DSI1_PHY_TST1 0x80 493 #define DSI1_PHY_TST2 0x84 494 #define DSI1_PHY_FIFO_STAT 0x88 495 /* Actually, all registers in the range that aren't otherwise claimed 496 * will return the ID. 497 */ 498 #define DSI1_ID 0x8c 499 500 /* General DSI hardware state. */ 501 struct vc4_dsi { 502 struct platform_device *pdev; 503 504 struct mipi_dsi_host dsi_host; 505 struct drm_encoder *encoder; 506 struct drm_connector *connector; 507 struct drm_panel *panel; 508 509 void __iomem *regs; 510 511 struct dma_chan *reg_dma_chan; 512 dma_addr_t reg_dma_paddr; 513 u32 *reg_dma_mem; 514 dma_addr_t reg_paddr; 515 516 /* Whether we're on bcm2835's DSI0 or DSI1. */ 517 int port; 518 519 /* DSI channel for the panel we're connected to. */ 520 u32 channel; 521 u32 lanes; 522 enum mipi_dsi_pixel_format format; 523 u32 mode_flags; 524 525 /* Input clock from CPRMAN to the digital PHY, for the DSI 526 * escape clock. 527 */ 528 struct clk *escape_clock; 529 530 /* Input clock to the analog PHY, used to generate the DSI bit 531 * clock. 532 */ 533 struct clk *pll_phy_clock; 534 535 /* HS Clocks generated within the DSI analog PHY. */ 536 struct clk_fixed_factor phy_clocks[3]; 537 538 struct clk_hw_onecell_data *clk_onecell; 539 540 /* Pixel clock output to the pixelvalve, generated from the HS 541 * clock. 542 */ 543 struct clk *pixel_clock; 544 545 struct completion xfer_completion; 546 int xfer_result; 547 }; 548 549 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 550 551 static inline void 552 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 553 { 554 struct dma_chan *chan = dsi->reg_dma_chan; 555 struct dma_async_tx_descriptor *tx; 556 dma_cookie_t cookie; 557 int ret; 558 559 /* DSI0 should be able to write normally. */ 560 if (!chan) { 561 writel(val, dsi->regs + offset); 562 return; 563 } 564 565 *dsi->reg_dma_mem = val; 566 567 tx = chan->device->device_prep_dma_memcpy(chan, 568 dsi->reg_paddr + offset, 569 dsi->reg_dma_paddr, 570 4, 0); 571 if (!tx) { 572 DRM_ERROR("Failed to set up DMA register write\n"); 573 return; 574 } 575 576 cookie = tx->tx_submit(tx); 577 ret = dma_submit_error(cookie); 578 if (ret) { 579 DRM_ERROR("Failed to submit DMA: %d\n", ret); 580 return; 581 } 582 ret = dma_sync_wait(chan, cookie); 583 if (ret) 584 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 585 } 586 587 #define DSI_READ(offset) readl(dsi->regs + (offset)) 588 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 589 #define DSI_PORT_READ(offset) \ 590 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 591 #define DSI_PORT_WRITE(offset, val) \ 592 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 593 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 594 595 /* VC4 DSI encoder KMS struct */ 596 struct vc4_dsi_encoder { 597 struct vc4_encoder base; 598 struct vc4_dsi *dsi; 599 }; 600 601 static inline struct vc4_dsi_encoder * 602 to_vc4_dsi_encoder(struct drm_encoder *encoder) 603 { 604 return container_of(encoder, struct vc4_dsi_encoder, base.base); 605 } 606 607 /* VC4 DSI connector KMS struct */ 608 struct vc4_dsi_connector { 609 struct drm_connector base; 610 struct vc4_dsi *dsi; 611 }; 612 613 static inline struct vc4_dsi_connector * 614 to_vc4_dsi_connector(struct drm_connector *connector) 615 { 616 return container_of(connector, struct vc4_dsi_connector, base); 617 } 618 619 #define DSI_REG(reg) { reg, #reg } 620 static const struct { 621 u32 reg; 622 const char *name; 623 } dsi0_regs[] = { 624 DSI_REG(DSI0_CTRL), 625 DSI_REG(DSI0_STAT), 626 DSI_REG(DSI0_HSTX_TO_CNT), 627 DSI_REG(DSI0_LPRX_TO_CNT), 628 DSI_REG(DSI0_TA_TO_CNT), 629 DSI_REG(DSI0_PR_TO_CNT), 630 DSI_REG(DSI0_DISP0_CTRL), 631 DSI_REG(DSI0_DISP1_CTRL), 632 DSI_REG(DSI0_INT_STAT), 633 DSI_REG(DSI0_INT_EN), 634 DSI_REG(DSI0_PHYC), 635 DSI_REG(DSI0_HS_CLT0), 636 DSI_REG(DSI0_HS_CLT1), 637 DSI_REG(DSI0_HS_CLT2), 638 DSI_REG(DSI0_HS_DLT3), 639 DSI_REG(DSI0_HS_DLT4), 640 DSI_REG(DSI0_HS_DLT5), 641 DSI_REG(DSI0_HS_DLT6), 642 DSI_REG(DSI0_HS_DLT7), 643 DSI_REG(DSI0_PHY_AFEC0), 644 DSI_REG(DSI0_PHY_AFEC1), 645 DSI_REG(DSI0_ID), 646 }; 647 648 static const struct { 649 u32 reg; 650 const char *name; 651 } dsi1_regs[] = { 652 DSI_REG(DSI1_CTRL), 653 DSI_REG(DSI1_STAT), 654 DSI_REG(DSI1_HSTX_TO_CNT), 655 DSI_REG(DSI1_LPRX_TO_CNT), 656 DSI_REG(DSI1_TA_TO_CNT), 657 DSI_REG(DSI1_PR_TO_CNT), 658 DSI_REG(DSI1_DISP0_CTRL), 659 DSI_REG(DSI1_DISP1_CTRL), 660 DSI_REG(DSI1_INT_STAT), 661 DSI_REG(DSI1_INT_EN), 662 DSI_REG(DSI1_PHYC), 663 DSI_REG(DSI1_HS_CLT0), 664 DSI_REG(DSI1_HS_CLT1), 665 DSI_REG(DSI1_HS_CLT2), 666 DSI_REG(DSI1_HS_DLT3), 667 DSI_REG(DSI1_HS_DLT4), 668 DSI_REG(DSI1_HS_DLT5), 669 DSI_REG(DSI1_HS_DLT6), 670 DSI_REG(DSI1_HS_DLT7), 671 DSI_REG(DSI1_PHY_AFEC0), 672 DSI_REG(DSI1_PHY_AFEC1), 673 DSI_REG(DSI1_ID), 674 }; 675 676 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi) 677 { 678 int i; 679 680 if (dsi->port == 0) { 681 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) { 682 DRM_INFO("0x%04x (%s): 0x%08x\n", 683 dsi0_regs[i].reg, dsi0_regs[i].name, 684 DSI_READ(dsi0_regs[i].reg)); 685 } 686 } else { 687 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) { 688 DRM_INFO("0x%04x (%s): 0x%08x\n", 689 dsi1_regs[i].reg, dsi1_regs[i].name, 690 DSI_READ(dsi1_regs[i].reg)); 691 } 692 } 693 } 694 695 #ifdef CONFIG_DEBUG_FS 696 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused) 697 { 698 struct drm_info_node *node = (struct drm_info_node *)m->private; 699 struct drm_device *drm = node->minor->dev; 700 struct vc4_dev *vc4 = to_vc4_dev(drm); 701 int dsi_index = (uintptr_t)node->info_ent->data; 702 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL); 703 int i; 704 705 if (!dsi) 706 return 0; 707 708 if (dsi->port == 0) { 709 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) { 710 seq_printf(m, "0x%04x (%s): 0x%08x\n", 711 dsi0_regs[i].reg, dsi0_regs[i].name, 712 DSI_READ(dsi0_regs[i].reg)); 713 } 714 } else { 715 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) { 716 seq_printf(m, "0x%04x (%s): 0x%08x\n", 717 dsi1_regs[i].reg, dsi1_regs[i].name, 718 DSI_READ(dsi1_regs[i].reg)); 719 } 720 } 721 722 return 0; 723 } 724 #endif 725 726 static enum drm_connector_status 727 vc4_dsi_connector_detect(struct drm_connector *connector, bool force) 728 { 729 struct vc4_dsi_connector *vc4_connector = 730 to_vc4_dsi_connector(connector); 731 struct vc4_dsi *dsi = vc4_connector->dsi; 732 733 if (dsi->panel) 734 return connector_status_connected; 735 else 736 return connector_status_disconnected; 737 } 738 739 static void vc4_dsi_connector_destroy(struct drm_connector *connector) 740 { 741 drm_connector_unregister(connector); 742 drm_connector_cleanup(connector); 743 } 744 745 static int vc4_dsi_connector_get_modes(struct drm_connector *connector) 746 { 747 struct vc4_dsi_connector *vc4_connector = 748 to_vc4_dsi_connector(connector); 749 struct vc4_dsi *dsi = vc4_connector->dsi; 750 751 if (dsi->panel) 752 return drm_panel_get_modes(dsi->panel); 753 754 return 0; 755 } 756 757 static const struct drm_connector_funcs vc4_dsi_connector_funcs = { 758 .dpms = drm_atomic_helper_connector_dpms, 759 .detect = vc4_dsi_connector_detect, 760 .fill_modes = drm_helper_probe_single_connector_modes, 761 .destroy = vc4_dsi_connector_destroy, 762 .reset = drm_atomic_helper_connector_reset, 763 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 764 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 765 }; 766 767 static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = { 768 .get_modes = vc4_dsi_connector_get_modes, 769 }; 770 771 static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev, 772 struct vc4_dsi *dsi) 773 { 774 struct drm_connector *connector = NULL; 775 struct vc4_dsi_connector *dsi_connector; 776 int ret = 0; 777 778 dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector), 779 GFP_KERNEL); 780 if (!dsi_connector) { 781 ret = -ENOMEM; 782 goto fail; 783 } 784 connector = &dsi_connector->base; 785 786 dsi_connector->dsi = dsi; 787 788 drm_connector_init(dev, connector, &vc4_dsi_connector_funcs, 789 DRM_MODE_CONNECTOR_DSI); 790 drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs); 791 792 connector->polled = 0; 793 connector->interlace_allowed = 0; 794 connector->doublescan_allowed = 0; 795 796 drm_mode_connector_attach_encoder(connector, dsi->encoder); 797 798 return connector; 799 800 fail: 801 if (connector) 802 vc4_dsi_connector_destroy(connector); 803 804 return ERR_PTR(ret); 805 } 806 807 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 808 { 809 drm_encoder_cleanup(encoder); 810 } 811 812 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 813 .destroy = vc4_dsi_encoder_destroy, 814 }; 815 816 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 817 { 818 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 819 820 if (latch) 821 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 822 else 823 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 824 825 DSI_PORT_WRITE(PHY_AFEC0, afec0); 826 } 827 828 /* Enters or exits Ultra Low Power State. */ 829 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 830 { 831 bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 832 u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 833 DSI_PHYC_DLANE0_ULPS | 834 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 835 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 836 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 837 u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 838 DSI1_STAT_PHY_D0_ULPS | 839 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 840 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 841 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 842 u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 843 DSI1_STAT_PHY_D0_STOP | 844 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 845 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 846 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 847 int ret; 848 849 DSI_PORT_WRITE(STAT, stat_ulps); 850 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 851 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 852 if (ret) { 853 dev_warn(&dsi->pdev->dev, 854 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 855 DSI_PORT_READ(STAT)); 856 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 857 vc4_dsi_latch_ulps(dsi, false); 858 return; 859 } 860 861 /* The DSI module can't be disabled while the module is 862 * generating ULPS state. So, to be able to disable the 863 * module, we have the AFE latch the ULPS state and continue 864 * on to having the module enter STOP. 865 */ 866 vc4_dsi_latch_ulps(dsi, ulps); 867 868 DSI_PORT_WRITE(STAT, stat_stop); 869 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 870 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 871 if (ret) { 872 dev_warn(&dsi->pdev->dev, 873 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 874 DSI_PORT_READ(STAT)); 875 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 876 return; 877 } 878 } 879 880 static u32 881 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 882 { 883 /* The HS timings have to be rounded up to a multiple of 8 884 * because we're using the byte clock. 885 */ 886 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 887 } 888 889 /* ESC always runs at 100Mhz. */ 890 #define ESC_TIME_NS 10 891 892 static u32 893 dsi_esc_timing(u32 ns) 894 { 895 return DIV_ROUND_UP(ns, ESC_TIME_NS); 896 } 897 898 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 899 { 900 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 901 struct vc4_dsi *dsi = vc4_encoder->dsi; 902 struct device *dev = &dsi->pdev->dev; 903 904 drm_panel_disable(dsi->panel); 905 906 vc4_dsi_ulps(dsi, true); 907 908 drm_panel_unprepare(dsi->panel); 909 910 clk_disable_unprepare(dsi->pll_phy_clock); 911 clk_disable_unprepare(dsi->escape_clock); 912 clk_disable_unprepare(dsi->pixel_clock); 913 914 pm_runtime_put(dev); 915 } 916 917 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 918 { 919 struct drm_display_mode *mode = &encoder->crtc->mode; 920 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 921 struct vc4_dsi *dsi = vc4_encoder->dsi; 922 struct device *dev = &dsi->pdev->dev; 923 u32 format = 0, divider = 0; 924 bool debug_dump_regs = false; 925 unsigned long hs_clock; 926 u32 ui_ns; 927 /* Minimum LP state duration in escape clock cycles. */ 928 u32 lpx = dsi_esc_timing(60); 929 unsigned long pixel_clock_hz = mode->clock * 1000; 930 unsigned long dsip_clock; 931 unsigned long phy_clock; 932 int ret; 933 934 ret = pm_runtime_get_sync(dev); 935 if (ret) { 936 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 937 return; 938 } 939 940 ret = drm_panel_prepare(dsi->panel); 941 if (ret) { 942 DRM_ERROR("Panel failed to prepare\n"); 943 return; 944 } 945 946 if (debug_dump_regs) { 947 DRM_INFO("DSI regs before:\n"); 948 vc4_dsi_dump_regs(dsi); 949 } 950 951 switch (dsi->format) { 952 case MIPI_DSI_FMT_RGB888: 953 format = DSI_PFORMAT_RGB888; 954 divider = 24 / dsi->lanes; 955 break; 956 case MIPI_DSI_FMT_RGB666: 957 format = DSI_PFORMAT_RGB666; 958 divider = 24 / dsi->lanes; 959 break; 960 case MIPI_DSI_FMT_RGB666_PACKED: 961 format = DSI_PFORMAT_RGB666_PACKED; 962 divider = 18 / dsi->lanes; 963 break; 964 case MIPI_DSI_FMT_RGB565: 965 format = DSI_PFORMAT_RGB565; 966 divider = 16 / dsi->lanes; 967 break; 968 } 969 970 phy_clock = pixel_clock_hz * divider; 971 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 972 if (ret) { 973 dev_err(&dsi->pdev->dev, 974 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 975 } 976 977 /* Reset the DSI and all its fifos. */ 978 DSI_PORT_WRITE(CTRL, 979 DSI_CTRL_SOFT_RESET_CFG | 980 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 981 982 DSI_PORT_WRITE(CTRL, 983 DSI_CTRL_HSDT_EOT_DISABLE | 984 DSI_CTRL_RX_LPDT_EOT_DISABLE); 985 986 /* Clear all stat bits so we see what has happened during enable. */ 987 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 988 989 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 990 if (dsi->port == 0) { 991 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 992 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 993 994 if (dsi->lanes < 2) 995 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 996 997 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 998 afec0 |= DSI0_PHY_AFEC0_RESET; 999 1000 DSI_PORT_WRITE(PHY_AFEC0, afec0); 1001 1002 DSI_PORT_WRITE(PHY_AFEC1, 1003 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 1004 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 1005 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 1006 } else { 1007 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 1008 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 1009 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 1010 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 1011 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 1012 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 1013 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 1014 1015 if (dsi->lanes < 4) 1016 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 1017 if (dsi->lanes < 3) 1018 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 1019 if (dsi->lanes < 2) 1020 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 1021 1022 afec0 |= DSI1_PHY_AFEC0_RESET; 1023 1024 DSI_PORT_WRITE(PHY_AFEC0, afec0); 1025 1026 DSI_PORT_WRITE(PHY_AFEC1, 0); 1027 1028 /* AFEC reset hold time */ 1029 mdelay(1); 1030 } 1031 1032 ret = clk_prepare_enable(dsi->escape_clock); 1033 if (ret) { 1034 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 1035 return; 1036 } 1037 1038 ret = clk_prepare_enable(dsi->pll_phy_clock); 1039 if (ret) { 1040 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 1041 return; 1042 } 1043 1044 hs_clock = clk_get_rate(dsi->pll_phy_clock); 1045 1046 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 1047 * not the pixel clock rate. DSIxP take from the APHY's byte, 1048 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 1049 * that rate. Separately, a value derived from PIX_CLK_DIV 1050 * and HS_CLKC is fed into the PV to divide down to the actual 1051 * pixel clock for pushing pixels into DSI. 1052 */ 1053 dsip_clock = phy_clock / 8; 1054 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 1055 if (ret) { 1056 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 1057 dsip_clock, ret); 1058 } 1059 1060 ret = clk_prepare_enable(dsi->pixel_clock); 1061 if (ret) { 1062 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 1063 return; 1064 } 1065 1066 /* How many ns one DSI unit interval is. Note that the clock 1067 * is DDR, so there's an extra divide by 2. 1068 */ 1069 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1070 1071 DSI_PORT_WRITE(HS_CLT0, 1072 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1073 DSI_HS_CLT0_CZERO) | 1074 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1075 DSI_HS_CLT0_CPRE) | 1076 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1077 DSI_HS_CLT0_CPREP)); 1078 1079 DSI_PORT_WRITE(HS_CLT1, 1080 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1081 DSI_HS_CLT1_CTRAIL) | 1082 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1083 DSI_HS_CLT1_CPOST)); 1084 1085 DSI_PORT_WRITE(HS_CLT2, 1086 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1087 DSI_HS_CLT2_WUP)); 1088 1089 DSI_PORT_WRITE(HS_DLT3, 1090 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1091 DSI_HS_DLT3_EXIT) | 1092 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1093 DSI_HS_DLT3_ZERO) | 1094 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1095 DSI_HS_DLT3_PRE)); 1096 1097 DSI_PORT_WRITE(HS_DLT4, 1098 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1099 DSI_HS_DLT4_LPX) | 1100 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1101 dsi_hs_timing(ui_ns, 60, 4)), 1102 DSI_HS_DLT4_TRAIL) | 1103 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1104 1105 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000), 1106 DSI_HS_DLT5_INIT)); 1107 1108 DSI_PORT_WRITE(HS_DLT6, 1109 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1110 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1111 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1112 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1113 1114 DSI_PORT_WRITE(HS_DLT7, 1115 VC4_SET_FIELD(dsi_esc_timing(1000000), 1116 DSI_HS_DLT7_LP_WUP)); 1117 1118 DSI_PORT_WRITE(PHYC, 1119 DSI_PHYC_DLANE0_ENABLE | 1120 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1121 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1122 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1123 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1124 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1125 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1126 (dsi->port == 0 ? 1127 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1128 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1129 1130 DSI_PORT_WRITE(CTRL, 1131 DSI_PORT_READ(CTRL) | 1132 DSI_CTRL_CAL_BYTE); 1133 1134 /* HS timeout in HS clock cycles: disabled. */ 1135 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1136 /* LP receive timeout in HS clocks. */ 1137 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1138 /* Bus turnaround timeout */ 1139 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1140 /* Display reset sequence timeout */ 1141 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1142 1143 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1144 DSI_PORT_WRITE(DISP0_CTRL, 1145 VC4_SET_FIELD(divider, DSI_DISP0_PIX_CLK_DIV) | 1146 VC4_SET_FIELD(format, DSI_DISP0_PFORMAT) | 1147 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1148 DSI_DISP0_LP_STOP_CTRL) | 1149 DSI_DISP0_ST_END | 1150 DSI_DISP0_ENABLE); 1151 } else { 1152 DSI_PORT_WRITE(DISP0_CTRL, 1153 DSI_DISP0_COMMAND_MODE | 1154 DSI_DISP0_ENABLE); 1155 } 1156 1157 /* Set up DISP1 for transferring long command payloads through 1158 * the pixfifo. 1159 */ 1160 DSI_PORT_WRITE(DISP1_CTRL, 1161 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1162 DSI_DISP1_PFORMAT) | 1163 DSI_DISP1_ENABLE); 1164 1165 /* Ungate the block. */ 1166 if (dsi->port == 0) 1167 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1168 else 1169 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1170 1171 /* Bring AFE out of reset. */ 1172 if (dsi->port == 0) { 1173 } else { 1174 DSI_PORT_WRITE(PHY_AFEC0, 1175 DSI_PORT_READ(PHY_AFEC0) & 1176 ~DSI1_PHY_AFEC0_RESET); 1177 } 1178 1179 vc4_dsi_ulps(dsi, false); 1180 1181 if (debug_dump_regs) { 1182 DRM_INFO("DSI regs after:\n"); 1183 vc4_dsi_dump_regs(dsi); 1184 } 1185 1186 ret = drm_panel_enable(dsi->panel); 1187 if (ret) { 1188 DRM_ERROR("Panel failed to enable\n"); 1189 drm_panel_unprepare(dsi->panel); 1190 return; 1191 } 1192 } 1193 1194 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1195 const struct mipi_dsi_msg *msg) 1196 { 1197 struct vc4_dsi *dsi = host_to_dsi(host); 1198 struct mipi_dsi_packet packet; 1199 u32 pkth = 0, pktc = 0; 1200 int i, ret; 1201 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1202 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1203 1204 mipi_dsi_create_packet(&packet, msg); 1205 1206 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1207 pkth |= VC4_SET_FIELD(packet.header[1] | 1208 (packet.header[2] << 8), 1209 DSI_TXPKT1H_BC_PARAM); 1210 if (is_long) { 1211 /* Divide data across the various FIFOs we have available. 1212 * The command FIFO takes byte-oriented data, but is of 1213 * limited size. The pixel FIFO (never actually used for 1214 * pixel data in reality) is word oriented, and substantially 1215 * larger. So, we use the pixel FIFO for most of the data, 1216 * sending the residual bytes in the command FIFO at the start. 1217 * 1218 * With this arrangement, the command FIFO will never get full. 1219 */ 1220 if (packet.payload_length <= 16) { 1221 cmd_fifo_len = packet.payload_length; 1222 pix_fifo_len = 0; 1223 } else { 1224 cmd_fifo_len = (packet.payload_length % 1225 DSI_PIX_FIFO_WIDTH); 1226 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1227 DSI_PIX_FIFO_WIDTH); 1228 } 1229 1230 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1231 1232 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1233 } 1234 1235 if (msg->rx_len) { 1236 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1237 DSI_TXPKT1C_CMD_CTRL); 1238 } else { 1239 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1240 DSI_TXPKT1C_CMD_CTRL); 1241 } 1242 1243 for (i = 0; i < cmd_fifo_len; i++) 1244 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1245 for (i = 0; i < pix_fifo_len; i++) { 1246 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1247 1248 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1249 pix[0] | 1250 pix[1] << 8 | 1251 pix[2] << 16 | 1252 pix[3] << 24); 1253 } 1254 1255 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1256 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1257 if (is_long) 1258 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1259 1260 /* Send one copy of the packet. Larger repeats are used for pixel 1261 * data in command mode. 1262 */ 1263 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1264 1265 pktc |= DSI_TXPKT1C_CMD_EN; 1266 if (pix_fifo_len) { 1267 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1268 DSI_TXPKT1C_DISPLAY_NO); 1269 } else { 1270 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1271 DSI_TXPKT1C_DISPLAY_NO); 1272 } 1273 1274 /* Enable the appropriate interrupt for the transfer completion. */ 1275 dsi->xfer_result = 0; 1276 reinit_completion(&dsi->xfer_completion); 1277 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1278 if (msg->rx_len) { 1279 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1280 DSI1_INT_PHY_DIR_RTF)); 1281 } else { 1282 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1283 DSI1_INT_TXPKT1_DONE)); 1284 } 1285 1286 /* Send the packet. */ 1287 DSI_PORT_WRITE(TXPKT1H, pkth); 1288 DSI_PORT_WRITE(TXPKT1C, pktc); 1289 1290 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1291 msecs_to_jiffies(1000))) { 1292 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1293 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1294 DSI_PORT_READ(INT_STAT)); 1295 ret = -ETIMEDOUT; 1296 } else { 1297 ret = dsi->xfer_result; 1298 } 1299 1300 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1301 1302 if (ret) 1303 goto reset_fifo_and_return; 1304 1305 if (ret == 0 && msg->rx_len) { 1306 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1307 u8 *msg_rx = msg->rx_buf; 1308 1309 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1310 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1311 DSI_RXPKT1H_BC_PARAM); 1312 1313 if (rxlen != msg->rx_len) { 1314 DRM_ERROR("DSI returned %db, expecting %db\n", 1315 rxlen, (int)msg->rx_len); 1316 ret = -ENXIO; 1317 goto reset_fifo_and_return; 1318 } 1319 1320 for (i = 0; i < msg->rx_len; i++) 1321 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1322 } else { 1323 /* FINISHME: Handle AWER */ 1324 1325 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1326 DSI_RXPKT1H_SHORT_0); 1327 if (msg->rx_len > 1) { 1328 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1329 DSI_RXPKT1H_SHORT_1); 1330 } 1331 } 1332 } 1333 1334 return ret; 1335 1336 reset_fifo_and_return: 1337 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1338 1339 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1340 udelay(1); 1341 DSI_PORT_WRITE(CTRL, 1342 DSI_PORT_READ(CTRL) | 1343 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1344 1345 DSI_PORT_WRITE(TXPKT1C, 0); 1346 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1347 return ret; 1348 } 1349 1350 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1351 struct mipi_dsi_device *device) 1352 { 1353 struct vc4_dsi *dsi = host_to_dsi(host); 1354 int ret = 0; 1355 1356 dsi->lanes = device->lanes; 1357 dsi->channel = device->channel; 1358 dsi->format = device->format; 1359 dsi->mode_flags = device->mode_flags; 1360 1361 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1362 dev_err(&dsi->pdev->dev, 1363 "Only VIDEO mode panels supported currently.\n"); 1364 return 0; 1365 } 1366 1367 dsi->panel = of_drm_find_panel(device->dev.of_node); 1368 if (!dsi->panel) 1369 return 0; 1370 1371 ret = drm_panel_attach(dsi->panel, dsi->connector); 1372 if (ret != 0) 1373 return ret; 1374 1375 drm_helper_hpd_irq_event(dsi->connector->dev); 1376 1377 return 0; 1378 } 1379 1380 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1381 struct mipi_dsi_device *device) 1382 { 1383 struct vc4_dsi *dsi = host_to_dsi(host); 1384 1385 if (dsi->panel) { 1386 int ret = drm_panel_detach(dsi->panel); 1387 1388 if (ret) 1389 return ret; 1390 1391 dsi->panel = NULL; 1392 1393 drm_helper_hpd_irq_event(dsi->connector->dev); 1394 } 1395 1396 return 0; 1397 } 1398 1399 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1400 .attach = vc4_dsi_host_attach, 1401 .detach = vc4_dsi_host_detach, 1402 .transfer = vc4_dsi_host_transfer, 1403 }; 1404 1405 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1406 .disable = vc4_dsi_encoder_disable, 1407 .enable = vc4_dsi_encoder_enable, 1408 }; 1409 1410 static const struct of_device_id vc4_dsi_dt_match[] = { 1411 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1412 {} 1413 }; 1414 1415 static void dsi_handle_error(struct vc4_dsi *dsi, 1416 irqreturn_t *ret, u32 stat, u32 bit, 1417 const char *type) 1418 { 1419 if (!(stat & bit)) 1420 return; 1421 1422 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1423 *ret = IRQ_HANDLED; 1424 } 1425 1426 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1427 { 1428 struct vc4_dsi *dsi = data; 1429 u32 stat = DSI_PORT_READ(INT_STAT); 1430 irqreturn_t ret = IRQ_NONE; 1431 1432 DSI_PORT_WRITE(INT_STAT, stat); 1433 1434 dsi_handle_error(dsi, &ret, stat, 1435 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1436 dsi_handle_error(dsi, &ret, stat, 1437 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1438 dsi_handle_error(dsi, &ret, stat, 1439 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1440 dsi_handle_error(dsi, &ret, stat, 1441 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1442 dsi_handle_error(dsi, &ret, stat, 1443 DSI1_INT_HSTX_TO, "HSTX timeout"); 1444 dsi_handle_error(dsi, &ret, stat, 1445 DSI1_INT_LPRX_TO, "LPRX timeout"); 1446 dsi_handle_error(dsi, &ret, stat, 1447 DSI1_INT_TA_TO, "turnaround timeout"); 1448 dsi_handle_error(dsi, &ret, stat, 1449 DSI1_INT_PR_TO, "peripheral reset timeout"); 1450 1451 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1452 complete(&dsi->xfer_completion); 1453 ret = IRQ_HANDLED; 1454 } else if (stat & DSI1_INT_HSTX_TO) { 1455 complete(&dsi->xfer_completion); 1456 dsi->xfer_result = -ETIMEDOUT; 1457 ret = IRQ_HANDLED; 1458 } 1459 1460 return ret; 1461 } 1462 1463 /** 1464 * Exposes clocks generated by the analog PHY that are consumed by 1465 * CPRMAN (clk-bcm2835.c). 1466 */ 1467 static int 1468 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1469 { 1470 struct device *dev = &dsi->pdev->dev; 1471 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1472 static const struct { 1473 const char *dsi0_name, *dsi1_name; 1474 int div; 1475 } phy_clocks[] = { 1476 { "dsi0_byte", "dsi1_byte", 8 }, 1477 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1478 { "dsi0_ddr", "dsi1_ddr", 2 }, 1479 }; 1480 int i; 1481 1482 dsi->clk_onecell = devm_kzalloc(dev, 1483 sizeof(*dsi->clk_onecell) + 1484 ARRAY_SIZE(phy_clocks) * 1485 sizeof(struct clk_hw *), 1486 GFP_KERNEL); 1487 if (!dsi->clk_onecell) 1488 return -ENOMEM; 1489 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1490 1491 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1492 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1493 struct clk_init_data init; 1494 int ret; 1495 1496 /* We just use core fixed factor clock ops for the PHY 1497 * clocks. The clocks are actually gated by the 1498 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1499 * setting if we use the DDR/DDR2 clocks. However, 1500 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1501 * setting both our parent DSI PLL's rate and this 1502 * clock's rate, so it knows if DDR/DDR2 are going to 1503 * be used and could enable the gates itself. 1504 */ 1505 fix->mult = 1; 1506 fix->div = phy_clocks[i].div; 1507 fix->hw.init = &init; 1508 1509 memset(&init, 0, sizeof(init)); 1510 init.parent_names = &parent_name; 1511 init.num_parents = 1; 1512 if (dsi->port == 1) 1513 init.name = phy_clocks[i].dsi1_name; 1514 else 1515 init.name = phy_clocks[i].dsi0_name; 1516 init.ops = &clk_fixed_factor_ops; 1517 1518 ret = devm_clk_hw_register(dev, &fix->hw); 1519 if (ret) 1520 return ret; 1521 1522 dsi->clk_onecell->hws[i] = &fix->hw; 1523 } 1524 1525 return of_clk_add_hw_provider(dev->of_node, 1526 of_clk_hw_onecell_get, 1527 dsi->clk_onecell); 1528 } 1529 1530 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1531 { 1532 struct platform_device *pdev = to_platform_device(dev); 1533 struct drm_device *drm = dev_get_drvdata(master); 1534 struct vc4_dev *vc4 = to_vc4_dev(drm); 1535 struct vc4_dsi *dsi; 1536 struct vc4_dsi_encoder *vc4_dsi_encoder; 1537 const struct of_device_id *match; 1538 dma_cap_mask_t dma_mask; 1539 int ret; 1540 1541 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1542 if (!dsi) 1543 return -ENOMEM; 1544 1545 match = of_match_device(vc4_dsi_dt_match, dev); 1546 if (!match) 1547 return -ENODEV; 1548 1549 dsi->port = (uintptr_t)match->data; 1550 1551 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1552 GFP_KERNEL); 1553 if (!vc4_dsi_encoder) 1554 return -ENOMEM; 1555 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1556 vc4_dsi_encoder->dsi = dsi; 1557 dsi->encoder = &vc4_dsi_encoder->base.base; 1558 1559 dsi->pdev = pdev; 1560 dsi->regs = vc4_ioremap_regs(pdev, 0); 1561 if (IS_ERR(dsi->regs)) 1562 return PTR_ERR(dsi->regs); 1563 1564 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1565 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1566 DSI_PORT_READ(ID), DSI_ID_VALUE); 1567 return -ENODEV; 1568 } 1569 1570 /* DSI1 has a broken AXI slave that doesn't respond to writes 1571 * from the ARM. It does handle writes from the DMA engine, 1572 * so set up a channel for talking to it. 1573 */ 1574 if (dsi->port == 1) { 1575 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1576 &dsi->reg_dma_paddr, 1577 GFP_KERNEL); 1578 if (!dsi->reg_dma_mem) { 1579 DRM_ERROR("Failed to get DMA memory\n"); 1580 return -ENOMEM; 1581 } 1582 1583 dma_cap_zero(dma_mask); 1584 dma_cap_set(DMA_MEMCPY, dma_mask); 1585 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1586 if (IS_ERR(dsi->reg_dma_chan)) { 1587 ret = PTR_ERR(dsi->reg_dma_chan); 1588 if (ret != -EPROBE_DEFER) 1589 DRM_ERROR("Failed to get DMA channel: %d\n", 1590 ret); 1591 return ret; 1592 } 1593 1594 /* Get the physical address of the device's registers. The 1595 * struct resource for the regs gives us the bus address 1596 * instead. 1597 */ 1598 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1599 0, NULL, NULL)); 1600 } 1601 1602 init_completion(&dsi->xfer_completion); 1603 /* At startup enable error-reporting interrupts and nothing else. */ 1604 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1605 /* Clear any existing interrupt state. */ 1606 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1607 1608 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1609 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1610 if (ret) { 1611 if (ret != -EPROBE_DEFER) 1612 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1613 return ret; 1614 } 1615 1616 dsi->escape_clock = devm_clk_get(dev, "escape"); 1617 if (IS_ERR(dsi->escape_clock)) { 1618 ret = PTR_ERR(dsi->escape_clock); 1619 if (ret != -EPROBE_DEFER) 1620 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1621 return ret; 1622 } 1623 1624 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1625 if (IS_ERR(dsi->pll_phy_clock)) { 1626 ret = PTR_ERR(dsi->pll_phy_clock); 1627 if (ret != -EPROBE_DEFER) 1628 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1629 return ret; 1630 } 1631 1632 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1633 if (IS_ERR(dsi->pixel_clock)) { 1634 ret = PTR_ERR(dsi->pixel_clock); 1635 if (ret != -EPROBE_DEFER) 1636 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1637 return ret; 1638 } 1639 1640 /* The esc clock rate is supposed to always be 100Mhz. */ 1641 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1642 if (ret) { 1643 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1644 return ret; 1645 } 1646 1647 ret = vc4_dsi_init_phy_clocks(dsi); 1648 if (ret) 1649 return ret; 1650 1651 if (dsi->port == 1) 1652 vc4->dsi1 = dsi; 1653 1654 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1655 DRM_MODE_ENCODER_DSI, NULL); 1656 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1657 1658 dsi->connector = vc4_dsi_connector_init(drm, dsi); 1659 if (IS_ERR(dsi->connector)) { 1660 ret = PTR_ERR(dsi->connector); 1661 goto err_destroy_encoder; 1662 } 1663 1664 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1665 dsi->dsi_host.dev = dev; 1666 1667 mipi_dsi_host_register(&dsi->dsi_host); 1668 1669 dev_set_drvdata(dev, dsi); 1670 1671 pm_runtime_enable(dev); 1672 1673 return 0; 1674 1675 err_destroy_encoder: 1676 vc4_dsi_encoder_destroy(dsi->encoder); 1677 1678 return ret; 1679 } 1680 1681 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1682 void *data) 1683 { 1684 struct drm_device *drm = dev_get_drvdata(master); 1685 struct vc4_dev *vc4 = to_vc4_dev(drm); 1686 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1687 1688 pm_runtime_disable(dev); 1689 1690 vc4_dsi_connector_destroy(dsi->connector); 1691 vc4_dsi_encoder_destroy(dsi->encoder); 1692 1693 mipi_dsi_host_unregister(&dsi->dsi_host); 1694 1695 clk_disable_unprepare(dsi->pll_phy_clock); 1696 clk_disable_unprepare(dsi->escape_clock); 1697 1698 if (dsi->port == 1) 1699 vc4->dsi1 = NULL; 1700 } 1701 1702 static const struct component_ops vc4_dsi_ops = { 1703 .bind = vc4_dsi_bind, 1704 .unbind = vc4_dsi_unbind, 1705 }; 1706 1707 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1708 { 1709 return component_add(&pdev->dev, &vc4_dsi_ops); 1710 } 1711 1712 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1713 { 1714 component_del(&pdev->dev, &vc4_dsi_ops); 1715 return 0; 1716 } 1717 1718 struct platform_driver vc4_dsi_driver = { 1719 .probe = vc4_dsi_dev_probe, 1720 .remove = vc4_dsi_dev_remove, 1721 .driver = { 1722 .name = "vc4_dsi", 1723 .of_match_table = vc4_dsi_dt_match, 1724 }, 1725 }; 1726