xref: /linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision c5738c861afc51856e8400e00a0ecd9ffa2633b8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 DSI0/DSI1 module
8  *
9  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11  * controller.
12  *
13  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14  * while the compute module brings both DSI0 and DSI1 out.
15  *
16  * This driver has been tested for DSI1 video-mode display only
17  * currently, with most of the information necessary for DSI0
18  * hopefully present.
19  */
20 
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
41 
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 #define DSI_CMD_FIFO_DEPTH  16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH   4
48 
49 #define DSI0_CTRL		0x00
50 
51 /* Command packet control. */
52 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C		0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
58 
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
63 /* Primary display where cmdfifo provides part of the payload and
64  * pixelvalve the rest.
65  */
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
67 /* Secondary display where cmdfifo provides part of the payload and
68  * pixfifo the rest.
69  */
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
71 
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
74 
75 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
77 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX	0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX	1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
83 /* BTA alone for getting error status after a command, or a TE trigger
84  * without a previous command.
85  */
86 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
87 
88 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
91 # define DSI_TXPKT1C_CMD_EN		BIT(0)
92 
93 /* Command packet header. */
94 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H		0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
98 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
100 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT	0
102 
103 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H		0x14
105 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
106 # define DSI_RXPKT1H_DET_ERR		BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
108 # define DSI_RXPKT1H_COR_ERR		BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
117 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
121 
122 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H		0x18
124 # define DSI_RXPKT1H_DET_ERR		BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
126 # define DSI_RXPKT1H_COR_ERR		BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
130 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT		0
132 
133 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO	0x1c
135 
136 #define DSI0_DISP0_CTRL		0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
141 # define DSI_DISP0_LP_STOP_DISABLE	0
142 # define DSI_DISP0_LP_STOP_PERLINE	1
143 # define DSI_DISP0_LP_STOP_PERFRAME	2
144 
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146  * of going to LP-STOP.
147  */
148 # define DSI_DISP_HACTIVE_NULL		BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL		BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL		BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL		BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT	5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END		BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT	2
161 # define DSI_PFORMAT_RGB565		0
162 # define DSI_PFORMAT_RGB666_PACKED	1
163 # define DSI_PFORMAT_RGB666		2
164 # define DSI_PFORMAT_RGB888		3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE		BIT(1)
167 # define DSI_DISP0_ENABLE		BIT(0)
168 
169 #define DSI0_DISP1_CTRL		0x1c
170 #define DSI1_DISP1_CTRL		0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT	1
174 # define DSI_DISP1_PFORMAT_16BIT	0
175 # define DSI_DISP1_PFORMAT_24BIT	1
176 # define DSI_DISP1_PFORMAT_32BIT_LE	2
177 # define DSI_DISP1_PFORMAT_32BIT_BE	3
178 
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE		BIT(0)
181 
182 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
183 
184 #define DSI0_INT_STAT			0x24
185 #define DSI0_INT_EN			0x28
186 # define DSI0_INT_FIFO_ERR		BIT(25)
187 # define DSI0_INT_CMDC_DONE_MASK	VC4_MASK(24, 23)
188 # define DSI0_INT_CMDC_DONE_SHIFT	23
189 #  define DSI0_INT_CMDC_DONE_NO_REPEAT		1
190 #  define DSI0_INT_CMDC_DONE_REPEAT		3
191 # define DSI0_INT_PHY_DIR_RTF		BIT(22)
192 # define DSI0_INT_PHY_D1_ULPS		BIT(21)
193 # define DSI0_INT_PHY_D1_STOP		BIT(20)
194 # define DSI0_INT_PHY_RXLPDT		BIT(19)
195 # define DSI0_INT_PHY_RXTRIG		BIT(18)
196 # define DSI0_INT_PHY_D0_ULPS		BIT(17)
197 # define DSI0_INT_PHY_D0_LPDT		BIT(16)
198 # define DSI0_INT_PHY_D0_FTR		BIT(15)
199 # define DSI0_INT_PHY_D0_STOP		BIT(14)
200 /* Signaled when the clock lane enters the given state. */
201 # define DSI0_INT_PHY_CLK_ULPS		BIT(13)
202 # define DSI0_INT_PHY_CLK_HS		BIT(12)
203 # define DSI0_INT_PHY_CLK_FTR		BIT(11)
204 /* Signaled on timeouts */
205 # define DSI0_INT_PR_TO			BIT(10)
206 # define DSI0_INT_TA_TO			BIT(9)
207 # define DSI0_INT_LPRX_TO		BIT(8)
208 # define DSI0_INT_HSTX_TO		BIT(7)
209 /* Contention on a line when trying to drive the line low */
210 # define DSI0_INT_ERR_CONT_LP1		BIT(6)
211 # define DSI0_INT_ERR_CONT_LP0		BIT(5)
212 /* Control error: incorrect line state sequence on data lane 0. */
213 # define DSI0_INT_ERR_CONTROL		BIT(4)
214 # define DSI0_INT_ERR_SYNC_ESC		BIT(3)
215 # define DSI0_INT_RX2_PKT		BIT(2)
216 # define DSI0_INT_RX1_PKT		BIT(1)
217 # define DSI0_INT_CMD_PKT		BIT(0)
218 
219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED	(DSI0_INT_ERR_SYNC_ESC | \
220 					 DSI0_INT_ERR_CONTROL |	 \
221 					 DSI0_INT_ERR_CONT_LP0 | \
222 					 DSI0_INT_ERR_CONT_LP1 | \
223 					 DSI0_INT_HSTX_TO |	 \
224 					 DSI0_INT_LPRX_TO |	 \
225 					 DSI0_INT_TA_TO |	 \
226 					 DSI0_INT_PR_TO)
227 
228 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
229 # define DSI1_INT_PHY_D3_STOP		BIT(29)
230 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
231 # define DSI1_INT_PHY_D2_STOP		BIT(27)
232 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
233 # define DSI1_INT_PHY_D1_STOP		BIT(25)
234 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
235 # define DSI1_INT_PHY_D0_STOP		BIT(23)
236 # define DSI1_INT_FIFO_ERR		BIT(22)
237 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
238 # define DSI1_INT_PHY_RXLPDT		BIT(20)
239 # define DSI1_INT_PHY_RXTRIG		BIT(19)
240 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
241 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
242 
243 /* Signaled when the clock lane enters the given state. */
244 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
245 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
246 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
247 
248 /* Signaled on timeouts */
249 # define DSI1_INT_PR_TO			BIT(13)
250 # define DSI1_INT_TA_TO			BIT(12)
251 # define DSI1_INT_LPRX_TO		BIT(11)
252 # define DSI1_INT_HSTX_TO		BIT(10)
253 
254 /* Contention on a line when trying to drive the line low */
255 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
256 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
257 
258 /* Control error: incorrect line state sequence on data lane 0. */
259 # define DSI1_INT_ERR_CONTROL		BIT(7)
260 /* LPDT synchronization error (bits received not a multiple of 8. */
261 
262 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
263 /* Signaled after receiving an error packet from the display in
264  * response to a read.
265  */
266 # define DSI1_INT_RXPKT2		BIT(5)
267 /* Signaled after receiving a packet.  The header and optional short
268  * response will be in RXPKT1H, and a long response will be in the
269  * RXPKT_FIFO.
270  */
271 # define DSI1_INT_RXPKT1		BIT(4)
272 # define DSI1_INT_TXPKT2_DONE		BIT(3)
273 # define DSI1_INT_TXPKT2_END		BIT(2)
274 /* Signaled after all repeats of TXPKT1 are transferred. */
275 # define DSI1_INT_TXPKT1_DONE		BIT(1)
276 /* Signaled after each TXPKT1 repeat is scheduled. */
277 # define DSI1_INT_TXPKT1_END		BIT(0)
278 
279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
280 					 DSI1_INT_ERR_CONTROL |	 \
281 					 DSI1_INT_ERR_CONT_LP0 | \
282 					 DSI1_INT_ERR_CONT_LP1 | \
283 					 DSI1_INT_HSTX_TO |	 \
284 					 DSI1_INT_LPRX_TO |	 \
285 					 DSI1_INT_TA_TO |	 \
286 					 DSI1_INT_PR_TO)
287 
288 #define DSI0_STAT		0x2c
289 #define DSI0_HSTX_TO_CNT	0x30
290 #define DSI0_LPRX_TO_CNT	0x34
291 #define DSI0_TA_TO_CNT		0x38
292 #define DSI0_PR_TO_CNT		0x3c
293 #define DSI0_PHYC		0x40
294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
296 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
299 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
300 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
301 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
302 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
303 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
304 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
305 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
306 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
307 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
308 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
309 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
310 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
311 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
312 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
313 
314 #define DSI0_HS_CLT0		0x44
315 #define DSI0_HS_CLT1		0x48
316 #define DSI0_HS_CLT2		0x4c
317 #define DSI0_HS_DLT3		0x50
318 #define DSI0_HS_DLT4		0x54
319 #define DSI0_HS_DLT5		0x58
320 #define DSI0_HS_DLT6		0x5c
321 #define DSI0_HS_DLT7		0x60
322 
323 #define DSI0_PHY_AFEC0		0x64
324 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
325 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
326 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
343 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
344 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
345 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
346 # define DSI1_PHY_AFEC0_RESET			BIT(13)
347 # define DSI1_PHY_AFEC0_PD			BIT(12)
348 # define DSI0_PHY_AFEC0_RESET			BIT(11)
349 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
350 # define DSI0_PHY_AFEC0_PD			BIT(10)
351 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
352 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
353 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
354 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
355 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
356 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
358 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
360 
361 #define DSI0_PHY_AFEC1		0x68
362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
368 
369 #define DSI0_TST_SEL		0x6c
370 #define DSI0_TST_MON		0x70
371 #define DSI0_ID			0x74
372 # define DSI_ID_VALUE		0x00647369
373 
374 #define DSI1_CTRL		0x00
375 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
376 # define DSI_CTRL_HS_CLKC_SHIFT		14
377 # define DSI_CTRL_HS_CLKC_BYTE		0
378 # define DSI_CTRL_HS_CLKC_DDR2		1
379 # define DSI_CTRL_HS_CLKC_DDR		2
380 
381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
382 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
383 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
384 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
385 # define DSI_CTRL_CAL_BYTE		BIT(9)
386 # define DSI_CTRL_INV_BYTE		BIT(8)
387 # define DSI_CTRL_CLR_LDF		BIT(7)
388 # define DSI0_CTRL_CLR_PBCF		BIT(6)
389 # define DSI1_CTRL_CLR_RXF		BIT(6)
390 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
391 # define DSI1_CTRL_CLR_PDF		BIT(5)
392 # define DSI0_CTRL_CLR_PDF		BIT(4)
393 # define DSI1_CTRL_CLR_CDF		BIT(4)
394 # define DSI0_CTRL_CLR_CDF		BIT(3)
395 # define DSI0_CTRL_CTRL2		BIT(2)
396 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
397 # define DSI0_CTRL_CTRL1		BIT(1)
398 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
399 # define DSI0_CTRL_CTRL0		BIT(0)
400 # define DSI1_CTRL_EN			BIT(0)
401 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
402 					 DSI0_CTRL_CLR_PBCF | \
403 					 DSI0_CTRL_CLR_CPBCF |	\
404 					 DSI0_CTRL_CLR_PDF | \
405 					 DSI0_CTRL_CLR_CDF)
406 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
407 					 DSI1_CTRL_CLR_RXF | \
408 					 DSI1_CTRL_CLR_PDF | \
409 					 DSI1_CTRL_CLR_CDF)
410 
411 #define DSI1_TXPKT2C		0x0c
412 #define DSI1_TXPKT2H		0x10
413 #define DSI1_TXPKT_PIX_FIFO	0x20
414 #define DSI1_RXPKT_FIFO		0x24
415 #define DSI1_DISP0_CTRL		0x28
416 #define DSI1_INT_STAT		0x30
417 #define DSI1_INT_EN		0x34
418 /* State reporting bits.  These mostly behave like INT_STAT, where
419  * writing a 1 clears the bit.
420  */
421 #define DSI1_STAT		0x38
422 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
423 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
424 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
425 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
426 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
427 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
428 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
429 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
430 # define DSI1_STAT_FIFO_ERR		BIT(23)
431 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
432 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
433 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
434 /* Set when in forward direction */
435 # define DSI1_STAT_PHY_DIR		BIT(19)
436 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
437 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
438 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
439 # define DSI1_STAT_PR_TO		BIT(15)
440 # define DSI1_STAT_TA_TO		BIT(14)
441 # define DSI1_STAT_LPRX_TO		BIT(13)
442 # define DSI1_STAT_HSTX_TO		BIT(12)
443 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
444 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
445 # define DSI1_STAT_ERR_CONTROL		BIT(9)
446 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
447 # define DSI1_STAT_RXPKT2		BIT(7)
448 # define DSI1_STAT_RXPKT1		BIT(6)
449 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
450 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
451 # define DSI1_STAT_TXPKT2_END		BIT(3)
452 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
453 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
454 # define DSI1_STAT_TXPKT1_END		BIT(0)
455 
456 #define DSI1_HSTX_TO_CNT	0x3c
457 #define DSI1_LPRX_TO_CNT	0x40
458 #define DSI1_TA_TO_CNT		0x44
459 #define DSI1_PR_TO_CNT		0x48
460 #define DSI1_PHYC		0x4c
461 
462 #define DSI1_HS_CLT0		0x50
463 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
464 # define DSI_HS_CLT0_CZERO_SHIFT	18
465 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
466 # define DSI_HS_CLT0_CPRE_SHIFT		9
467 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
468 # define DSI_HS_CLT0_CPREP_SHIFT	0
469 
470 #define DSI1_HS_CLT1		0x54
471 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
472 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
473 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
474 # define DSI_HS_CLT1_CPOST_SHIFT	0
475 
476 #define DSI1_HS_CLT2		0x58
477 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
478 # define DSI_HS_CLT2_WUP_SHIFT		0
479 
480 #define DSI1_HS_DLT3		0x5c
481 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
482 # define DSI_HS_DLT3_EXIT_SHIFT		18
483 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
484 # define DSI_HS_DLT3_ZERO_SHIFT		9
485 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
486 # define DSI_HS_DLT3_PRE_SHIFT		0
487 
488 #define DSI1_HS_DLT4		0x60
489 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
490 # define DSI_HS_DLT4_ANLAT_SHIFT	18
491 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
492 # define DSI_HS_DLT4_TRAIL_SHIFT	9
493 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
494 # define DSI_HS_DLT4_LPX_SHIFT		0
495 
496 #define DSI1_HS_DLT5		0x64
497 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
498 # define DSI_HS_DLT5_INIT_SHIFT		0
499 
500 #define DSI1_HS_DLT6		0x68
501 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
502 # define DSI_HS_DLT6_TA_GET_SHIFT	24
503 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
504 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
505 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
506 # define DSI_HS_DLT6_TA_GO_SHIFT	8
507 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
508 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
509 
510 #define DSI1_HS_DLT7		0x6c
511 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
512 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
513 
514 #define DSI1_PHY_AFEC0		0x70
515 
516 #define DSI1_PHY_AFEC1		0x74
517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
527 
528 #define DSI1_TST_SEL		0x78
529 #define DSI1_TST_MON		0x7c
530 #define DSI1_PHY_TST1		0x80
531 #define DSI1_PHY_TST2		0x84
532 #define DSI1_PHY_FIFO_STAT	0x88
533 /* Actually, all registers in the range that aren't otherwise claimed
534  * will return the ID.
535  */
536 #define DSI1_ID			0x8c
537 
538 struct vc4_dsi_variant {
539 	/* Whether we're on bcm2835's DSI0 or DSI1. */
540 	unsigned int port;
541 
542 	bool broken_axi_workaround;
543 
544 	const char *debugfs_name;
545 	const struct debugfs_reg32 *regs;
546 	size_t nregs;
547 
548 };
549 
550 /* General DSI hardware state. */
551 struct vc4_dsi {
552 	struct vc4_encoder encoder;
553 	struct mipi_dsi_host dsi_host;
554 
555 	struct kref kref;
556 
557 	struct platform_device *pdev;
558 
559 	struct drm_bridge *bridge;
560 	struct list_head bridge_chain;
561 
562 	void __iomem *regs;
563 
564 	struct dma_chan *reg_dma_chan;
565 	dma_addr_t reg_dma_paddr;
566 	u32 *reg_dma_mem;
567 	dma_addr_t reg_paddr;
568 
569 	const struct vc4_dsi_variant *variant;
570 
571 	/* DSI channel for the panel we're connected to. */
572 	u32 channel;
573 	u32 lanes;
574 	u32 format;
575 	u32 divider;
576 	u32 mode_flags;
577 
578 	/* Input clock from CPRMAN to the digital PHY, for the DSI
579 	 * escape clock.
580 	 */
581 	struct clk *escape_clock;
582 
583 	/* Input clock to the analog PHY, used to generate the DSI bit
584 	 * clock.
585 	 */
586 	struct clk *pll_phy_clock;
587 
588 	/* HS Clocks generated within the DSI analog PHY. */
589 	struct clk_fixed_factor phy_clocks[3];
590 
591 	struct clk_hw_onecell_data *clk_onecell;
592 
593 	/* Pixel clock output to the pixelvalve, generated from the HS
594 	 * clock.
595 	 */
596 	struct clk *pixel_clock;
597 
598 	struct completion xfer_completion;
599 	int xfer_result;
600 
601 	struct debugfs_regset32 regset;
602 };
603 
604 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
605 
606 static inline struct vc4_dsi *
607 to_vc4_dsi(struct drm_encoder *encoder)
608 {
609 	return container_of(encoder, struct vc4_dsi, encoder.base);
610 }
611 
612 static inline void
613 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
614 {
615 	struct dma_chan *chan = dsi->reg_dma_chan;
616 	struct dma_async_tx_descriptor *tx;
617 	dma_cookie_t cookie;
618 	int ret;
619 
620 	kunit_fail_current_test("Accessing a register in a unit test!\n");
621 
622 	/* DSI0 should be able to write normally. */
623 	if (!chan) {
624 		writel(val, dsi->regs + offset);
625 		return;
626 	}
627 
628 	*dsi->reg_dma_mem = val;
629 
630 	tx = chan->device->device_prep_dma_memcpy(chan,
631 						  dsi->reg_paddr + offset,
632 						  dsi->reg_dma_paddr,
633 						  4, 0);
634 	if (!tx) {
635 		DRM_ERROR("Failed to set up DMA register write\n");
636 		return;
637 	}
638 
639 	cookie = tx->tx_submit(tx);
640 	ret = dma_submit_error(cookie);
641 	if (ret) {
642 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
643 		return;
644 	}
645 	ret = dma_sync_wait(chan, cookie);
646 	if (ret)
647 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
648 }
649 
650 #define DSI_READ(offset)								\
651 	({										\
652 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
653 		readl(dsi->regs + (offset));						\
654 	})
655 
656 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
657 #define DSI_PORT_READ(offset) \
658 	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
659 #define DSI_PORT_WRITE(offset, val) \
660 	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
661 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
662 
663 static const struct debugfs_reg32 dsi0_regs[] = {
664 	VC4_REG32(DSI0_CTRL),
665 	VC4_REG32(DSI0_STAT),
666 	VC4_REG32(DSI0_HSTX_TO_CNT),
667 	VC4_REG32(DSI0_LPRX_TO_CNT),
668 	VC4_REG32(DSI0_TA_TO_CNT),
669 	VC4_REG32(DSI0_PR_TO_CNT),
670 	VC4_REG32(DSI0_DISP0_CTRL),
671 	VC4_REG32(DSI0_DISP1_CTRL),
672 	VC4_REG32(DSI0_INT_STAT),
673 	VC4_REG32(DSI0_INT_EN),
674 	VC4_REG32(DSI0_PHYC),
675 	VC4_REG32(DSI0_HS_CLT0),
676 	VC4_REG32(DSI0_HS_CLT1),
677 	VC4_REG32(DSI0_HS_CLT2),
678 	VC4_REG32(DSI0_HS_DLT3),
679 	VC4_REG32(DSI0_HS_DLT4),
680 	VC4_REG32(DSI0_HS_DLT5),
681 	VC4_REG32(DSI0_HS_DLT6),
682 	VC4_REG32(DSI0_HS_DLT7),
683 	VC4_REG32(DSI0_PHY_AFEC0),
684 	VC4_REG32(DSI0_PHY_AFEC1),
685 	VC4_REG32(DSI0_ID),
686 };
687 
688 static const struct debugfs_reg32 dsi1_regs[] = {
689 	VC4_REG32(DSI1_CTRL),
690 	VC4_REG32(DSI1_STAT),
691 	VC4_REG32(DSI1_HSTX_TO_CNT),
692 	VC4_REG32(DSI1_LPRX_TO_CNT),
693 	VC4_REG32(DSI1_TA_TO_CNT),
694 	VC4_REG32(DSI1_PR_TO_CNT),
695 	VC4_REG32(DSI1_DISP0_CTRL),
696 	VC4_REG32(DSI1_DISP1_CTRL),
697 	VC4_REG32(DSI1_INT_STAT),
698 	VC4_REG32(DSI1_INT_EN),
699 	VC4_REG32(DSI1_PHYC),
700 	VC4_REG32(DSI1_HS_CLT0),
701 	VC4_REG32(DSI1_HS_CLT1),
702 	VC4_REG32(DSI1_HS_CLT2),
703 	VC4_REG32(DSI1_HS_DLT3),
704 	VC4_REG32(DSI1_HS_DLT4),
705 	VC4_REG32(DSI1_HS_DLT5),
706 	VC4_REG32(DSI1_HS_DLT6),
707 	VC4_REG32(DSI1_HS_DLT7),
708 	VC4_REG32(DSI1_PHY_AFEC0),
709 	VC4_REG32(DSI1_PHY_AFEC1),
710 	VC4_REG32(DSI1_ID),
711 };
712 
713 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
714 {
715 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
716 
717 	if (latch)
718 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
719 	else
720 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
721 
722 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
723 }
724 
725 /* Enters or exits Ultra Low Power State. */
726 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
727 {
728 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
729 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
730 			 DSI_PHYC_DLANE0_ULPS |
731 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
732 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
733 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
734 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
735 			 DSI1_STAT_PHY_D0_ULPS |
736 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
737 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
738 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
739 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
740 			 DSI1_STAT_PHY_D0_STOP |
741 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
742 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
743 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
744 	int ret;
745 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
746 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
747 
748 	if (ulps == ulps_currently_enabled)
749 		return;
750 
751 	DSI_PORT_WRITE(STAT, stat_ulps);
752 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
753 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
754 	if (ret) {
755 		dev_warn(&dsi->pdev->dev,
756 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
757 			 DSI_PORT_READ(STAT));
758 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
759 		vc4_dsi_latch_ulps(dsi, false);
760 		return;
761 	}
762 
763 	/* The DSI module can't be disabled while the module is
764 	 * generating ULPS state.  So, to be able to disable the
765 	 * module, we have the AFE latch the ULPS state and continue
766 	 * on to having the module enter STOP.
767 	 */
768 	vc4_dsi_latch_ulps(dsi, ulps);
769 
770 	DSI_PORT_WRITE(STAT, stat_stop);
771 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
772 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
773 	if (ret) {
774 		dev_warn(&dsi->pdev->dev,
775 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
776 			 DSI_PORT_READ(STAT));
777 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
778 		return;
779 	}
780 }
781 
782 static u32
783 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
784 {
785 	/* The HS timings have to be rounded up to a multiple of 8
786 	 * because we're using the byte clock.
787 	 */
788 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
789 }
790 
791 /* ESC always runs at 100Mhz. */
792 #define ESC_TIME_NS 10
793 
794 static u32
795 dsi_esc_timing(u32 ns)
796 {
797 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
798 }
799 
800 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
801 {
802 	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
803 	struct device *dev = &dsi->pdev->dev;
804 	struct drm_bridge *iter;
805 
806 	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
807 		if (iter->funcs->disable)
808 			iter->funcs->disable(iter);
809 
810 		if (iter == dsi->bridge)
811 			break;
812 	}
813 
814 	vc4_dsi_ulps(dsi, true);
815 
816 	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
817 		if (iter->funcs->post_disable)
818 			iter->funcs->post_disable(iter);
819 	}
820 
821 	clk_disable_unprepare(dsi->pll_phy_clock);
822 	clk_disable_unprepare(dsi->escape_clock);
823 	clk_disable_unprepare(dsi->pixel_clock);
824 
825 	pm_runtime_put(dev);
826 }
827 
828 /* Extends the mode's blank intervals to handle BCM2835's integer-only
829  * DSI PLL divider.
830  *
831  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
832  * driver since most peripherals are hanging off of the PLLD_PER
833  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
834  * the pixel clock), only has an integer divider off of DSI.
835  *
836  * To get our panel mode to refresh at the expected 60Hz, we need to
837  * extend the horizontal blank time.  This means we drive a
838  * higher-than-expected clock rate to the panel, but that's what the
839  * firmware does too.
840  */
841 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
842 				       const struct drm_display_mode *mode,
843 				       struct drm_display_mode *adjusted_mode)
844 {
845 	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
846 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
847 	unsigned long parent_rate = clk_get_rate(phy_parent);
848 	unsigned long pixel_clock_hz = mode->clock * 1000;
849 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
850 	int divider;
851 
852 	/* Find what divider gets us a faster clock than the requested
853 	 * pixel clock.
854 	 */
855 	for (divider = 1; divider < 255; divider++) {
856 		if (parent_rate / (divider + 1) < pll_clock)
857 			break;
858 	}
859 
860 	/* Now that we've picked a PLL divider, calculate back to its
861 	 * pixel clock.
862 	 */
863 	pll_clock = parent_rate / divider;
864 	pixel_clock_hz = pll_clock / dsi->divider;
865 
866 	adjusted_mode->clock = pixel_clock_hz / 1000;
867 
868 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
869 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
870 				mode->clock;
871 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
872 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
873 
874 	return true;
875 }
876 
877 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
878 {
879 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
880 	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
881 	struct device *dev = &dsi->pdev->dev;
882 	bool debug_dump_regs = false;
883 	struct drm_bridge *iter;
884 	unsigned long hs_clock;
885 	u32 ui_ns;
886 	/* Minimum LP state duration in escape clock cycles. */
887 	u32 lpx = dsi_esc_timing(60);
888 	unsigned long pixel_clock_hz = mode->clock * 1000;
889 	unsigned long dsip_clock;
890 	unsigned long phy_clock;
891 	int ret;
892 
893 	ret = pm_runtime_resume_and_get(dev);
894 	if (ret) {
895 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
896 		return;
897 	}
898 
899 	if (debug_dump_regs) {
900 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
901 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
902 		drm_print_regset32(&p, &dsi->regset);
903 	}
904 
905 	/* Round up the clk_set_rate() request slightly, since
906 	 * PLLD_DSI1 is an integer divider and its rate selection will
907 	 * never round up.
908 	 */
909 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
910 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
911 	if (ret) {
912 		dev_err(&dsi->pdev->dev,
913 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
914 	}
915 
916 	/* Reset the DSI and all its fifos. */
917 	DSI_PORT_WRITE(CTRL,
918 		       DSI_CTRL_SOFT_RESET_CFG |
919 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
920 
921 	DSI_PORT_WRITE(CTRL,
922 		       DSI_CTRL_HSDT_EOT_DISABLE |
923 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
924 
925 	/* Clear all stat bits so we see what has happened during enable. */
926 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
927 
928 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
929 	if (dsi->variant->port == 0) {
930 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
931 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
932 
933 		if (dsi->lanes < 2)
934 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
935 
936 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
937 			afec0 |= DSI0_PHY_AFEC0_RESET;
938 
939 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
940 
941 		/* AFEC reset hold time */
942 		mdelay(1);
943 
944 		DSI_PORT_WRITE(PHY_AFEC1,
945 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
946 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
947 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
948 	} else {
949 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
950 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
951 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
952 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
953 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
954 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
955 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
956 
957 		if (dsi->lanes < 4)
958 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
959 		if (dsi->lanes < 3)
960 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
961 		if (dsi->lanes < 2)
962 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
963 
964 		afec0 |= DSI1_PHY_AFEC0_RESET;
965 
966 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
967 
968 		DSI_PORT_WRITE(PHY_AFEC1, 0);
969 
970 		/* AFEC reset hold time */
971 		mdelay(1);
972 	}
973 
974 	ret = clk_prepare_enable(dsi->escape_clock);
975 	if (ret) {
976 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
977 		return;
978 	}
979 
980 	ret = clk_prepare_enable(dsi->pll_phy_clock);
981 	if (ret) {
982 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
983 		return;
984 	}
985 
986 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
987 
988 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
989 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
990 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
991 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
992 	 * and HS_CLKC is fed into the PV to divide down to the actual
993 	 * pixel clock for pushing pixels into DSI.
994 	 */
995 	dsip_clock = phy_clock / 8;
996 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
997 	if (ret) {
998 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
999 			dsip_clock, ret);
1000 	}
1001 
1002 	ret = clk_prepare_enable(dsi->pixel_clock);
1003 	if (ret) {
1004 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1005 		return;
1006 	}
1007 
1008 	/* How many ns one DSI unit interval is.  Note that the clock
1009 	 * is DDR, so there's an extra divide by 2.
1010 	 */
1011 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1012 
1013 	DSI_PORT_WRITE(HS_CLT0,
1014 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1015 				     DSI_HS_CLT0_CZERO) |
1016 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1017 				     DSI_HS_CLT0_CPRE) |
1018 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1019 				     DSI_HS_CLT0_CPREP));
1020 
1021 	DSI_PORT_WRITE(HS_CLT1,
1022 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1023 				     DSI_HS_CLT1_CTRAIL) |
1024 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1025 				     DSI_HS_CLT1_CPOST));
1026 
1027 	DSI_PORT_WRITE(HS_CLT2,
1028 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1029 				     DSI_HS_CLT2_WUP));
1030 
1031 	DSI_PORT_WRITE(HS_DLT3,
1032 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1033 				     DSI_HS_DLT3_EXIT) |
1034 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1035 				     DSI_HS_DLT3_ZERO) |
1036 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1037 				     DSI_HS_DLT3_PRE));
1038 
1039 	DSI_PORT_WRITE(HS_DLT4,
1040 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1041 				     DSI_HS_DLT4_LPX) |
1042 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1043 					 dsi_hs_timing(ui_ns, 60, 4)),
1044 				     DSI_HS_DLT4_TRAIL) |
1045 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1046 
1047 	/* T_INIT is how long STOP is driven after power-up to
1048 	 * indicate to the slave (also coming out of power-up) that
1049 	 * master init is complete, and should be greater than the
1050 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1051 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1052 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1053 	 * greater minimums.  The vc4 firmware uses an extremely
1054 	 * conservative 5ms, and we maintain that here.
1055 	 */
1056 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1057 							    5 * 1000 * 1000, 0),
1058 					      DSI_HS_DLT5_INIT));
1059 
1060 	DSI_PORT_WRITE(HS_DLT6,
1061 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1062 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1063 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1064 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1065 
1066 	DSI_PORT_WRITE(HS_DLT7,
1067 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1068 				     DSI_HS_DLT7_LP_WUP));
1069 
1070 	DSI_PORT_WRITE(PHYC,
1071 		       DSI_PHYC_DLANE0_ENABLE |
1072 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1073 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1074 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1075 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1076 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1077 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1078 		       (dsi->variant->port == 0 ?
1079 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1080 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1081 
1082 	DSI_PORT_WRITE(CTRL,
1083 		       DSI_PORT_READ(CTRL) |
1084 		       DSI_CTRL_CAL_BYTE);
1085 
1086 	/* HS timeout in HS clock cycles: disabled. */
1087 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1088 	/* LP receive timeout in HS clocks. */
1089 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1090 	/* Bus turnaround timeout */
1091 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1092 	/* Display reset sequence timeout */
1093 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1094 
1095 	/* Set up DISP1 for transferring long command payloads through
1096 	 * the pixfifo.
1097 	 */
1098 	DSI_PORT_WRITE(DISP1_CTRL,
1099 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1100 				     DSI_DISP1_PFORMAT) |
1101 		       DSI_DISP1_ENABLE);
1102 
1103 	/* Ungate the block. */
1104 	if (dsi->variant->port == 0)
1105 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1106 	else
1107 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1108 
1109 	/* Bring AFE out of reset. */
1110 	DSI_PORT_WRITE(PHY_AFEC0,
1111 		       DSI_PORT_READ(PHY_AFEC0) &
1112 		       ~DSI_PORT_BIT(PHY_AFEC0_RESET));
1113 
1114 	vc4_dsi_ulps(dsi, false);
1115 
1116 	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1117 		if (iter->funcs->pre_enable)
1118 			iter->funcs->pre_enable(iter);
1119 	}
1120 
1121 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1122 		DSI_PORT_WRITE(DISP0_CTRL,
1123 			       VC4_SET_FIELD(dsi->divider,
1124 					     DSI_DISP0_PIX_CLK_DIV) |
1125 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1126 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1127 					     DSI_DISP0_LP_STOP_CTRL) |
1128 			       DSI_DISP0_ST_END |
1129 			       DSI_DISP0_ENABLE);
1130 	} else {
1131 		DSI_PORT_WRITE(DISP0_CTRL,
1132 			       DSI_DISP0_COMMAND_MODE |
1133 			       DSI_DISP0_ENABLE);
1134 	}
1135 
1136 	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1137 		if (iter->funcs->enable)
1138 			iter->funcs->enable(iter);
1139 	}
1140 
1141 	if (debug_dump_regs) {
1142 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1143 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1144 		drm_print_regset32(&p, &dsi->regset);
1145 	}
1146 }
1147 
1148 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1149 				     const struct mipi_dsi_msg *msg)
1150 {
1151 	struct vc4_dsi *dsi = host_to_dsi(host);
1152 	struct mipi_dsi_packet packet;
1153 	u32 pkth = 0, pktc = 0;
1154 	int i, ret;
1155 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1156 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1157 
1158 	mipi_dsi_create_packet(&packet, msg);
1159 
1160 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1161 	pkth |= VC4_SET_FIELD(packet.header[1] |
1162 			      (packet.header[2] << 8),
1163 			      DSI_TXPKT1H_BC_PARAM);
1164 	if (is_long) {
1165 		/* Divide data across the various FIFOs we have available.
1166 		 * The command FIFO takes byte-oriented data, but is of
1167 		 * limited size. The pixel FIFO (never actually used for
1168 		 * pixel data in reality) is word oriented, and substantially
1169 		 * larger. So, we use the pixel FIFO for most of the data,
1170 		 * sending the residual bytes in the command FIFO at the start.
1171 		 *
1172 		 * With this arrangement, the command FIFO will never get full.
1173 		 */
1174 		if (packet.payload_length <= 16) {
1175 			cmd_fifo_len = packet.payload_length;
1176 			pix_fifo_len = 0;
1177 		} else {
1178 			cmd_fifo_len = (packet.payload_length %
1179 					DSI_PIX_FIFO_WIDTH);
1180 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1181 					DSI_PIX_FIFO_WIDTH);
1182 		}
1183 
1184 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1185 
1186 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1187 	}
1188 
1189 	if (msg->rx_len) {
1190 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1191 				      DSI_TXPKT1C_CMD_CTRL);
1192 	} else {
1193 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1194 				      DSI_TXPKT1C_CMD_CTRL);
1195 	}
1196 
1197 	for (i = 0; i < cmd_fifo_len; i++)
1198 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1199 	for (i = 0; i < pix_fifo_len; i++) {
1200 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1201 
1202 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1203 			       pix[0] |
1204 			       pix[1] << 8 |
1205 			       pix[2] << 16 |
1206 			       pix[3] << 24);
1207 	}
1208 
1209 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1210 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1211 	if (is_long)
1212 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1213 
1214 	/* Send one copy of the packet.  Larger repeats are used for pixel
1215 	 * data in command mode.
1216 	 */
1217 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1218 
1219 	pktc |= DSI_TXPKT1C_CMD_EN;
1220 	if (pix_fifo_len) {
1221 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1222 				      DSI_TXPKT1C_DISPLAY_NO);
1223 	} else {
1224 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1225 				      DSI_TXPKT1C_DISPLAY_NO);
1226 	}
1227 
1228 	/* Enable the appropriate interrupt for the transfer completion. */
1229 	dsi->xfer_result = 0;
1230 	reinit_completion(&dsi->xfer_completion);
1231 	if (dsi->variant->port == 0) {
1232 		DSI_PORT_WRITE(INT_STAT,
1233 			       DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1234 		if (msg->rx_len) {
1235 			DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1236 						DSI0_INT_PHY_DIR_RTF));
1237 		} else {
1238 			DSI_PORT_WRITE(INT_EN,
1239 				       (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1240 					VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1241 						      DSI0_INT_CMDC_DONE)));
1242 		}
1243 	} else {
1244 		DSI_PORT_WRITE(INT_STAT,
1245 			       DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1246 		if (msg->rx_len) {
1247 			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1248 						DSI1_INT_PHY_DIR_RTF));
1249 		} else {
1250 			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1251 						DSI1_INT_TXPKT1_DONE));
1252 		}
1253 	}
1254 
1255 	/* Send the packet. */
1256 	DSI_PORT_WRITE(TXPKT1H, pkth);
1257 	DSI_PORT_WRITE(TXPKT1C, pktc);
1258 
1259 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1260 					 msecs_to_jiffies(1000))) {
1261 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1262 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1263 			DSI_PORT_READ(INT_STAT));
1264 		ret = -ETIMEDOUT;
1265 	} else {
1266 		ret = dsi->xfer_result;
1267 	}
1268 
1269 	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1270 
1271 	if (ret)
1272 		goto reset_fifo_and_return;
1273 
1274 	if (ret == 0 && msg->rx_len) {
1275 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1276 		u8 *msg_rx = msg->rx_buf;
1277 
1278 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1279 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1280 						  DSI_RXPKT1H_BC_PARAM);
1281 
1282 			if (rxlen != msg->rx_len) {
1283 				DRM_ERROR("DSI returned %db, expecting %db\n",
1284 					  rxlen, (int)msg->rx_len);
1285 				ret = -ENXIO;
1286 				goto reset_fifo_and_return;
1287 			}
1288 
1289 			for (i = 0; i < msg->rx_len; i++)
1290 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1291 		} else {
1292 			/* FINISHME: Handle AWER */
1293 
1294 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1295 						  DSI_RXPKT1H_SHORT_0);
1296 			if (msg->rx_len > 1) {
1297 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1298 							  DSI_RXPKT1H_SHORT_1);
1299 			}
1300 		}
1301 	}
1302 
1303 	return ret;
1304 
1305 reset_fifo_and_return:
1306 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1307 
1308 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1309 	udelay(1);
1310 	DSI_PORT_WRITE(CTRL,
1311 		       DSI_PORT_READ(CTRL) |
1312 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1313 
1314 	DSI_PORT_WRITE(TXPKT1C, 0);
1315 	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1316 	return ret;
1317 }
1318 
1319 static const struct component_ops vc4_dsi_ops;
1320 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1321 			       struct mipi_dsi_device *device)
1322 {
1323 	struct vc4_dsi *dsi = host_to_dsi(host);
1324 
1325 	dsi->lanes = device->lanes;
1326 	dsi->channel = device->channel;
1327 	dsi->mode_flags = device->mode_flags;
1328 
1329 	switch (device->format) {
1330 	case MIPI_DSI_FMT_RGB888:
1331 		dsi->format = DSI_PFORMAT_RGB888;
1332 		dsi->divider = 24 / dsi->lanes;
1333 		break;
1334 	case MIPI_DSI_FMT_RGB666:
1335 		dsi->format = DSI_PFORMAT_RGB666;
1336 		dsi->divider = 24 / dsi->lanes;
1337 		break;
1338 	case MIPI_DSI_FMT_RGB666_PACKED:
1339 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1340 		dsi->divider = 18 / dsi->lanes;
1341 		break;
1342 	case MIPI_DSI_FMT_RGB565:
1343 		dsi->format = DSI_PFORMAT_RGB565;
1344 		dsi->divider = 16 / dsi->lanes;
1345 		break;
1346 	default:
1347 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1348 			dsi->format);
1349 		return 0;
1350 	}
1351 
1352 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1353 		dev_err(&dsi->pdev->dev,
1354 			"Only VIDEO mode panels supported currently.\n");
1355 		return 0;
1356 	}
1357 
1358 	return component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1359 }
1360 
1361 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1362 			       struct mipi_dsi_device *device)
1363 {
1364 	struct vc4_dsi *dsi = host_to_dsi(host);
1365 
1366 	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1367 	return 0;
1368 }
1369 
1370 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1371 	.attach = vc4_dsi_host_attach,
1372 	.detach = vc4_dsi_host_detach,
1373 	.transfer = vc4_dsi_host_transfer,
1374 };
1375 
1376 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1377 	.disable = vc4_dsi_encoder_disable,
1378 	.enable = vc4_dsi_encoder_enable,
1379 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1380 };
1381 
1382 static int vc4_dsi_late_register(struct drm_encoder *encoder)
1383 {
1384 	struct drm_device *drm = encoder->dev;
1385 	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1386 	int ret;
1387 
1388 	ret = vc4_debugfs_add_regset32(drm->primary, dsi->variant->debugfs_name,
1389 				       &dsi->regset);
1390 	if (ret)
1391 		return ret;
1392 
1393 	return 0;
1394 }
1395 
1396 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1397 	.late_register = vc4_dsi_late_register,
1398 };
1399 
1400 static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1401 	.port			= 1,
1402 	.debugfs_name		= "dsi1_regs",
1403 	.regs			= dsi1_regs,
1404 	.nregs			= ARRAY_SIZE(dsi1_regs),
1405 };
1406 
1407 static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1408 	.port			= 0,
1409 	.debugfs_name		= "dsi0_regs",
1410 	.regs			= dsi0_regs,
1411 	.nregs			= ARRAY_SIZE(dsi0_regs),
1412 };
1413 
1414 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1415 	.port			= 1,
1416 	.broken_axi_workaround	= true,
1417 	.debugfs_name		= "dsi1_regs",
1418 	.regs			= dsi1_regs,
1419 	.nregs			= ARRAY_SIZE(dsi1_regs),
1420 };
1421 
1422 static const struct of_device_id vc4_dsi_dt_match[] = {
1423 	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1424 	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1425 	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1426 	{}
1427 };
1428 
1429 static void dsi_handle_error(struct vc4_dsi *dsi,
1430 			     irqreturn_t *ret, u32 stat, u32 bit,
1431 			     const char *type)
1432 {
1433 	if (!(stat & bit))
1434 		return;
1435 
1436 	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1437 	*ret = IRQ_HANDLED;
1438 }
1439 
1440 /*
1441  * Initial handler for port 1 where we need the reg_dma workaround.
1442  * The register DMA writes sleep, so we can't do it in the top half.
1443  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1444  * parent interrupt contrller until our interrupt thread is done.
1445  */
1446 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1447 {
1448 	struct vc4_dsi *dsi = data;
1449 	u32 stat = DSI_PORT_READ(INT_STAT);
1450 
1451 	if (!stat)
1452 		return IRQ_NONE;
1453 
1454 	return IRQ_WAKE_THREAD;
1455 }
1456 
1457 /*
1458  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1459  * 1 where we need the reg_dma workaround.
1460  */
1461 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1462 {
1463 	struct vc4_dsi *dsi = data;
1464 	u32 stat = DSI_PORT_READ(INT_STAT);
1465 	irqreturn_t ret = IRQ_NONE;
1466 
1467 	DSI_PORT_WRITE(INT_STAT, stat);
1468 
1469 	dsi_handle_error(dsi, &ret, stat,
1470 			 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1471 	dsi_handle_error(dsi, &ret, stat,
1472 			 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1473 	dsi_handle_error(dsi, &ret, stat,
1474 			 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1475 	dsi_handle_error(dsi, &ret, stat,
1476 			 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1477 	dsi_handle_error(dsi, &ret, stat,
1478 			 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1479 	dsi_handle_error(dsi, &ret, stat,
1480 			 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1481 	dsi_handle_error(dsi, &ret, stat,
1482 			 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1483 	dsi_handle_error(dsi, &ret, stat,
1484 			 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1485 
1486 	if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1487 					  DSI0_INT_CMDC_DONE_MASK) |
1488 		    DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1489 		complete(&dsi->xfer_completion);
1490 		ret = IRQ_HANDLED;
1491 	} else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1492 		complete(&dsi->xfer_completion);
1493 		dsi->xfer_result = -ETIMEDOUT;
1494 		ret = IRQ_HANDLED;
1495 	}
1496 
1497 	return ret;
1498 }
1499 
1500 /**
1501  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1502  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1503  * @dsi: DSI encoder
1504  */
1505 static int
1506 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1507 {
1508 	struct device *dev = &dsi->pdev->dev;
1509 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1510 	static const struct {
1511 		const char *name;
1512 		int div;
1513 	} phy_clocks[] = {
1514 		{ "byte", 8 },
1515 		{ "ddr2", 4 },
1516 		{ "ddr", 2 },
1517 	};
1518 	int i;
1519 
1520 	dsi->clk_onecell = devm_kzalloc(dev,
1521 					sizeof(*dsi->clk_onecell) +
1522 					ARRAY_SIZE(phy_clocks) *
1523 					sizeof(struct clk_hw *),
1524 					GFP_KERNEL);
1525 	if (!dsi->clk_onecell)
1526 		return -ENOMEM;
1527 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1528 
1529 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1530 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1531 		struct clk_init_data init;
1532 		char clk_name[16];
1533 		int ret;
1534 
1535 		snprintf(clk_name, sizeof(clk_name),
1536 			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1537 
1538 		/* We just use core fixed factor clock ops for the PHY
1539 		 * clocks.  The clocks are actually gated by the
1540 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1541 		 * setting if we use the DDR/DDR2 clocks.  However,
1542 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1543 		 * setting both our parent DSI PLL's rate and this
1544 		 * clock's rate, so it knows if DDR/DDR2 are going to
1545 		 * be used and could enable the gates itself.
1546 		 */
1547 		fix->mult = 1;
1548 		fix->div = phy_clocks[i].div;
1549 		fix->hw.init = &init;
1550 
1551 		memset(&init, 0, sizeof(init));
1552 		init.parent_names = &parent_name;
1553 		init.num_parents = 1;
1554 		init.name = clk_name;
1555 		init.ops = &clk_fixed_factor_ops;
1556 
1557 		ret = devm_clk_hw_register(dev, &fix->hw);
1558 		if (ret)
1559 			return ret;
1560 
1561 		dsi->clk_onecell->hws[i] = &fix->hw;
1562 	}
1563 
1564 	return of_clk_add_hw_provider(dev->of_node,
1565 				      of_clk_hw_onecell_get,
1566 				      dsi->clk_onecell);
1567 }
1568 
1569 static void vc4_dsi_dma_mem_release(void *ptr)
1570 {
1571 	struct vc4_dsi *dsi = ptr;
1572 	struct device *dev = &dsi->pdev->dev;
1573 
1574 	dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1575 	dsi->reg_dma_mem = NULL;
1576 }
1577 
1578 static void vc4_dsi_dma_chan_release(void *ptr)
1579 {
1580 	struct vc4_dsi *dsi = ptr;
1581 
1582 	dma_release_channel(dsi->reg_dma_chan);
1583 	dsi->reg_dma_chan = NULL;
1584 }
1585 
1586 static void vc4_dsi_release(struct kref *kref)
1587 {
1588 	struct vc4_dsi *dsi =
1589 		container_of(kref, struct vc4_dsi, kref);
1590 
1591 	kfree(dsi);
1592 }
1593 
1594 static void vc4_dsi_get(struct vc4_dsi *dsi)
1595 {
1596 	kref_get(&dsi->kref);
1597 }
1598 
1599 static void vc4_dsi_put(struct vc4_dsi *dsi)
1600 {
1601 	kref_put(&dsi->kref, &vc4_dsi_release);
1602 }
1603 
1604 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1605 {
1606 	struct vc4_dsi *dsi = ptr;
1607 
1608 	vc4_dsi_put(dsi);
1609 }
1610 
1611 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1612 {
1613 	struct platform_device *pdev = to_platform_device(dev);
1614 	struct drm_device *drm = dev_get_drvdata(master);
1615 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1616 	struct drm_encoder *encoder = &dsi->encoder.base;
1617 	int ret;
1618 
1619 	vc4_dsi_get(dsi);
1620 
1621 	ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1622 	if (ret)
1623 		return ret;
1624 
1625 	dsi->variant = of_device_get_match_data(dev);
1626 
1627 	INIT_LIST_HEAD(&dsi->bridge_chain);
1628 	dsi->encoder.type = dsi->variant->port ?
1629 		VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
1630 
1631 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1632 	if (IS_ERR(dsi->regs))
1633 		return PTR_ERR(dsi->regs);
1634 
1635 	dsi->regset.base = dsi->regs;
1636 	dsi->regset.regs = dsi->variant->regs;
1637 	dsi->regset.nregs = dsi->variant->nregs;
1638 
1639 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1640 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1641 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1642 		return -ENODEV;
1643 	}
1644 
1645 	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1646 	 * writes from the ARM.  It does handle writes from the DMA engine,
1647 	 * so set up a channel for talking to it.
1648 	 */
1649 	if (dsi->variant->broken_axi_workaround) {
1650 		dma_cap_mask_t dma_mask;
1651 
1652 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1653 						      &dsi->reg_dma_paddr,
1654 						      GFP_KERNEL);
1655 		if (!dsi->reg_dma_mem) {
1656 			DRM_ERROR("Failed to get DMA memory\n");
1657 			return -ENOMEM;
1658 		}
1659 
1660 		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1661 		if (ret)
1662 			return ret;
1663 
1664 		dma_cap_zero(dma_mask);
1665 		dma_cap_set(DMA_MEMCPY, dma_mask);
1666 
1667 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1668 		if (IS_ERR(dsi->reg_dma_chan)) {
1669 			ret = PTR_ERR(dsi->reg_dma_chan);
1670 			if (ret != -EPROBE_DEFER)
1671 				DRM_ERROR("Failed to get DMA channel: %d\n",
1672 					  ret);
1673 			return ret;
1674 		}
1675 
1676 		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1677 		if (ret)
1678 			return ret;
1679 
1680 		/* Get the physical address of the device's registers.  The
1681 		 * struct resource for the regs gives us the bus address
1682 		 * instead.
1683 		 */
1684 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1685 							     0, NULL, NULL));
1686 	}
1687 
1688 	init_completion(&dsi->xfer_completion);
1689 	/* At startup enable error-reporting interrupts and nothing else. */
1690 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1691 	/* Clear any existing interrupt state. */
1692 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1693 
1694 	if (dsi->reg_dma_mem)
1695 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1696 						vc4_dsi_irq_defer_to_thread_handler,
1697 						vc4_dsi_irq_handler,
1698 						IRQF_ONESHOT,
1699 						"vc4 dsi", dsi);
1700 	else
1701 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1702 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1703 	if (ret) {
1704 		if (ret != -EPROBE_DEFER)
1705 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1706 		return ret;
1707 	}
1708 
1709 	dsi->escape_clock = devm_clk_get(dev, "escape");
1710 	if (IS_ERR(dsi->escape_clock)) {
1711 		ret = PTR_ERR(dsi->escape_clock);
1712 		if (ret != -EPROBE_DEFER)
1713 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1714 		return ret;
1715 	}
1716 
1717 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1718 	if (IS_ERR(dsi->pll_phy_clock)) {
1719 		ret = PTR_ERR(dsi->pll_phy_clock);
1720 		if (ret != -EPROBE_DEFER)
1721 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1722 		return ret;
1723 	}
1724 
1725 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1726 	if (IS_ERR(dsi->pixel_clock)) {
1727 		ret = PTR_ERR(dsi->pixel_clock);
1728 		if (ret != -EPROBE_DEFER)
1729 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1730 		return ret;
1731 	}
1732 
1733 	dsi->bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1734 	if (IS_ERR(dsi->bridge))
1735 		return PTR_ERR(dsi->bridge);
1736 
1737 	/* The esc clock rate is supposed to always be 100Mhz. */
1738 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1739 	if (ret) {
1740 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1741 		return ret;
1742 	}
1743 
1744 	ret = vc4_dsi_init_phy_clocks(dsi);
1745 	if (ret)
1746 		return ret;
1747 
1748 	ret = drmm_encoder_init(drm, encoder,
1749 				&vc4_dsi_encoder_funcs,
1750 				DRM_MODE_ENCODER_DSI,
1751 				NULL);
1752 	if (ret)
1753 		return ret;
1754 
1755 	drm_encoder_helper_add(encoder, &vc4_dsi_encoder_helper_funcs);
1756 
1757 	ret = devm_pm_runtime_enable(dev);
1758 	if (ret)
1759 		return ret;
1760 
1761 	ret = drm_bridge_attach(encoder, dsi->bridge, NULL, 0);
1762 	if (ret)
1763 		return ret;
1764 	/* Disable the atomic helper calls into the bridge.  We
1765 	 * manually call the bridge pre_enable / enable / etc. calls
1766 	 * from our driver, since we need to sequence them within the
1767 	 * encoder's enable/disable paths.
1768 	 */
1769 	list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain);
1770 
1771 	return 0;
1772 }
1773 
1774 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1775 			   void *data)
1776 {
1777 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1778 	struct drm_encoder *encoder = &dsi->encoder.base;
1779 
1780 	/*
1781 	 * Restore the bridge_chain so the bridge detach procedure can happen
1782 	 * normally.
1783 	 */
1784 	list_splice_init(&dsi->bridge_chain, &encoder->bridge_chain);
1785 }
1786 
1787 static const struct component_ops vc4_dsi_ops = {
1788 	.bind   = vc4_dsi_bind,
1789 	.unbind = vc4_dsi_unbind,
1790 };
1791 
1792 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1793 {
1794 	struct device *dev = &pdev->dev;
1795 	struct vc4_dsi *dsi;
1796 
1797 	dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1798 	if (!dsi)
1799 		return -ENOMEM;
1800 	dev_set_drvdata(dev, dsi);
1801 
1802 	kref_init(&dsi->kref);
1803 	dsi->pdev = pdev;
1804 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1805 	dsi->dsi_host.dev = dev;
1806 	mipi_dsi_host_register(&dsi->dsi_host);
1807 
1808 	return 0;
1809 }
1810 
1811 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1812 {
1813 	struct device *dev = &pdev->dev;
1814 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1815 
1816 	mipi_dsi_host_unregister(&dsi->dsi_host);
1817 	vc4_dsi_put(dsi);
1818 
1819 	return 0;
1820 }
1821 
1822 struct platform_driver vc4_dsi_driver = {
1823 	.probe = vc4_dsi_dev_probe,
1824 	.remove = vc4_dsi_dev_remove,
1825 	.driver = {
1826 		.name = "vc4_dsi",
1827 		.of_match_table = vc4_dsi_dt_match,
1828 	},
1829 };
1830