1 /* 2 * Copyright (C) 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 as published by 6 * the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program. If not, see <http://www.gnu.org/licenses/>. 15 */ 16 17 /** 18 * DOC: VC4 DSI0/DSI1 module 19 * 20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 22 * controller. 23 * 24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 25 * while the compute module brings both DSI0 and DSI1 out. 26 * 27 * This driver has been tested for DSI1 video-mode display only 28 * currently, with most of the information necessary for DSI0 29 * hopefully present. 30 */ 31 32 #include <drm/drm_atomic_helper.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_mipi_dsi.h> 35 #include <drm/drm_of.h> 36 #include <drm/drm_panel.h> 37 #include <drm/drm_probe_helper.h> 38 #include <linux/clk.h> 39 #include <linux/clk-provider.h> 40 #include <linux/completion.h> 41 #include <linux/component.h> 42 #include <linux/dmaengine.h> 43 #include <linux/i2c.h> 44 #include <linux/io.h> 45 #include <linux/of_address.h> 46 #include <linux/of_platform.h> 47 #include <linux/pm_runtime.h> 48 #include "vc4_drv.h" 49 #include "vc4_regs.h" 50 51 #define DSI_CMD_FIFO_DEPTH 16 52 #define DSI_PIX_FIFO_DEPTH 256 53 #define DSI_PIX_FIFO_WIDTH 4 54 55 #define DSI0_CTRL 0x00 56 57 /* Command packet control. */ 58 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 59 #define DSI1_TXPKT1C 0x04 60 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 61 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 62 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 63 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 64 65 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 66 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 67 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 68 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 69 /* Primary display where cmdfifo provides part of the payload and 70 * pixelvalve the rest. 71 */ 72 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 73 /* Secondary display where cmdfifo provides part of the payload and 74 * pixfifo the rest. 75 */ 76 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 77 78 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 79 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 80 81 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 82 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 83 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 84 # define DSI_TXPKT1C_CMD_CTRL_TX 0 85 /* Command with BTA for either ack or read data. */ 86 # define DSI_TXPKT1C_CMD_CTRL_RX 1 87 /* Trigger according to TRIG_CMD */ 88 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 89 /* BTA alone for getting error status after a command, or a TE trigger 90 * without a previous command. 91 */ 92 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 93 94 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 95 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 96 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 97 # define DSI_TXPKT1C_CMD_EN BIT(0) 98 99 /* Command packet header. */ 100 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 101 #define DSI1_TXPKT1H 0x08 102 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 103 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 104 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 105 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 106 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 107 # define DSI_TXPKT1H_BC_DT_SHIFT 0 108 109 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 110 #define DSI1_RXPKT1H 0x14 111 # define DSI_RXPKT1H_CRC_ERR BIT(31) 112 # define DSI_RXPKT1H_DET_ERR BIT(30) 113 # define DSI_RXPKT1H_ECC_ERR BIT(29) 114 # define DSI_RXPKT1H_COR_ERR BIT(28) 115 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 116 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 117 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 118 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 119 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 120 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 121 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 122 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 123 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 124 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 125 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 126 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 127 128 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 129 #define DSI1_RXPKT2H 0x18 130 # define DSI_RXPKT1H_DET_ERR BIT(30) 131 # define DSI_RXPKT1H_ECC_ERR BIT(29) 132 # define DSI_RXPKT1H_COR_ERR BIT(28) 133 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 134 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 135 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 136 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 137 # define DSI_RXPKT1H_DT_SHIFT 0 138 139 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 140 #define DSI1_TXPKT_CMD_FIFO 0x1c 141 142 #define DSI0_DISP0_CTRL 0x18 143 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 144 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 145 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 146 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 147 # define DSI_DISP0_LP_STOP_DISABLE 0 148 # define DSI_DISP0_LP_STOP_PERLINE 1 149 # define DSI_DISP0_LP_STOP_PERFRAME 2 150 151 /* Transmit RGB pixels and null packets only during HACTIVE, instead 152 * of going to LP-STOP. 153 */ 154 # define DSI_DISP_HACTIVE_NULL BIT(10) 155 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 156 # define DSI_DISP_VBLP_CTRL BIT(9) 157 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 158 # define DSI_DISP_HFP_CTRL BIT(8) 159 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 160 # define DSI_DISP_HBP_CTRL BIT(7) 161 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 162 # define DSI_DISP0_CHANNEL_SHIFT 5 163 /* Enables end events for HSYNC/VSYNC, not just start events. */ 164 # define DSI_DISP0_ST_END BIT(4) 165 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 166 # define DSI_DISP0_PFORMAT_SHIFT 2 167 # define DSI_PFORMAT_RGB565 0 168 # define DSI_PFORMAT_RGB666_PACKED 1 169 # define DSI_PFORMAT_RGB666 2 170 # define DSI_PFORMAT_RGB888 3 171 /* Default is VIDEO mode. */ 172 # define DSI_DISP0_COMMAND_MODE BIT(1) 173 # define DSI_DISP0_ENABLE BIT(0) 174 175 #define DSI0_DISP1_CTRL 0x1c 176 #define DSI1_DISP1_CTRL 0x2c 177 /* Format of the data written to TXPKT_PIX_FIFO. */ 178 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 179 # define DSI_DISP1_PFORMAT_SHIFT 1 180 # define DSI_DISP1_PFORMAT_16BIT 0 181 # define DSI_DISP1_PFORMAT_24BIT 1 182 # define DSI_DISP1_PFORMAT_32BIT_LE 2 183 # define DSI_DISP1_PFORMAT_32BIT_BE 3 184 185 /* DISP1 is always command mode. */ 186 # define DSI_DISP1_ENABLE BIT(0) 187 188 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 189 190 #define DSI0_INT_STAT 0x24 191 #define DSI0_INT_EN 0x28 192 # define DSI1_INT_PHY_D3_ULPS BIT(30) 193 # define DSI1_INT_PHY_D3_STOP BIT(29) 194 # define DSI1_INT_PHY_D2_ULPS BIT(28) 195 # define DSI1_INT_PHY_D2_STOP BIT(27) 196 # define DSI1_INT_PHY_D1_ULPS BIT(26) 197 # define DSI1_INT_PHY_D1_STOP BIT(25) 198 # define DSI1_INT_PHY_D0_ULPS BIT(24) 199 # define DSI1_INT_PHY_D0_STOP BIT(23) 200 # define DSI1_INT_FIFO_ERR BIT(22) 201 # define DSI1_INT_PHY_DIR_RTF BIT(21) 202 # define DSI1_INT_PHY_RXLPDT BIT(20) 203 # define DSI1_INT_PHY_RXTRIG BIT(19) 204 # define DSI1_INT_PHY_D0_LPDT BIT(18) 205 # define DSI1_INT_PHY_DIR_FTR BIT(17) 206 207 /* Signaled when the clock lane enters the given state. */ 208 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 209 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 210 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 211 212 /* Signaled on timeouts */ 213 # define DSI1_INT_PR_TO BIT(13) 214 # define DSI1_INT_TA_TO BIT(12) 215 # define DSI1_INT_LPRX_TO BIT(11) 216 # define DSI1_INT_HSTX_TO BIT(10) 217 218 /* Contention on a line when trying to drive the line low */ 219 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 220 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 221 222 /* Control error: incorrect line state sequence on data lane 0. */ 223 # define DSI1_INT_ERR_CONTROL BIT(7) 224 /* LPDT synchronization error (bits received not a multiple of 8. */ 225 226 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 227 /* Signaled after receiving an error packet from the display in 228 * response to a read. 229 */ 230 # define DSI1_INT_RXPKT2 BIT(5) 231 /* Signaled after receiving a packet. The header and optional short 232 * response will be in RXPKT1H, and a long response will be in the 233 * RXPKT_FIFO. 234 */ 235 # define DSI1_INT_RXPKT1 BIT(4) 236 # define DSI1_INT_TXPKT2_DONE BIT(3) 237 # define DSI1_INT_TXPKT2_END BIT(2) 238 /* Signaled after all repeats of TXPKT1 are transferred. */ 239 # define DSI1_INT_TXPKT1_DONE BIT(1) 240 /* Signaled after each TXPKT1 repeat is scheduled. */ 241 # define DSI1_INT_TXPKT1_END BIT(0) 242 243 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 244 DSI1_INT_ERR_CONTROL | \ 245 DSI1_INT_ERR_CONT_LP0 | \ 246 DSI1_INT_ERR_CONT_LP1 | \ 247 DSI1_INT_HSTX_TO | \ 248 DSI1_INT_LPRX_TO | \ 249 DSI1_INT_TA_TO | \ 250 DSI1_INT_PR_TO) 251 252 #define DSI0_STAT 0x2c 253 #define DSI0_HSTX_TO_CNT 0x30 254 #define DSI0_LPRX_TO_CNT 0x34 255 #define DSI0_TA_TO_CNT 0x38 256 #define DSI0_PR_TO_CNT 0x3c 257 #define DSI0_PHYC 0x40 258 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 259 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 260 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 261 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 262 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 263 # define DSI1_PHYC_CLANE_ULPS BIT(17) 264 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 265 # define DSI_PHYC_DLANE3_ULPS BIT(13) 266 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 267 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 268 # define DSI0_PHYC_CLANE_ULPS BIT(9) 269 # define DSI_PHYC_DLANE2_ULPS BIT(9) 270 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 271 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 272 # define DSI_PHYC_DLANE1_ULPS BIT(5) 273 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 274 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 275 # define DSI_PHYC_DLANE0_ULPS BIT(1) 276 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 277 278 #define DSI0_HS_CLT0 0x44 279 #define DSI0_HS_CLT1 0x48 280 #define DSI0_HS_CLT2 0x4c 281 #define DSI0_HS_DLT3 0x50 282 #define DSI0_HS_DLT4 0x54 283 #define DSI0_HS_DLT5 0x58 284 #define DSI0_HS_DLT6 0x5c 285 #define DSI0_HS_DLT7 0x60 286 287 #define DSI0_PHY_AFEC0 0x64 288 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 289 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 290 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 291 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 292 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 293 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 294 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 295 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 296 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 297 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 298 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 299 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 300 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 301 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 302 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 303 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 304 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 305 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 306 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 307 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 308 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 309 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 310 # define DSI1_PHY_AFEC0_RESET BIT(13) 311 # define DSI1_PHY_AFEC0_PD BIT(12) 312 # define DSI0_PHY_AFEC0_RESET BIT(11) 313 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 314 # define DSI0_PHY_AFEC0_PD BIT(10) 315 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 316 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 317 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 318 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 319 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 320 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 321 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 322 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 323 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 324 325 #define DSI0_PHY_AFEC1 0x68 326 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 327 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 328 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 329 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 330 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 331 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 332 333 #define DSI0_TST_SEL 0x6c 334 #define DSI0_TST_MON 0x70 335 #define DSI0_ID 0x74 336 # define DSI_ID_VALUE 0x00647369 337 338 #define DSI1_CTRL 0x00 339 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 340 # define DSI_CTRL_HS_CLKC_SHIFT 14 341 # define DSI_CTRL_HS_CLKC_BYTE 0 342 # define DSI_CTRL_HS_CLKC_DDR2 1 343 # define DSI_CTRL_HS_CLKC_DDR 2 344 345 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 346 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 347 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 348 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 349 # define DSI_CTRL_CAL_BYTE BIT(9) 350 # define DSI_CTRL_INV_BYTE BIT(8) 351 # define DSI_CTRL_CLR_LDF BIT(7) 352 # define DSI0_CTRL_CLR_PBCF BIT(6) 353 # define DSI1_CTRL_CLR_RXF BIT(6) 354 # define DSI0_CTRL_CLR_CPBCF BIT(5) 355 # define DSI1_CTRL_CLR_PDF BIT(5) 356 # define DSI0_CTRL_CLR_PDF BIT(4) 357 # define DSI1_CTRL_CLR_CDF BIT(4) 358 # define DSI0_CTRL_CLR_CDF BIT(3) 359 # define DSI0_CTRL_CTRL2 BIT(2) 360 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 361 # define DSI0_CTRL_CTRL1 BIT(1) 362 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 363 # define DSI0_CTRL_CTRL0 BIT(0) 364 # define DSI1_CTRL_EN BIT(0) 365 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 366 DSI0_CTRL_CLR_PBCF | \ 367 DSI0_CTRL_CLR_CPBCF | \ 368 DSI0_CTRL_CLR_PDF | \ 369 DSI0_CTRL_CLR_CDF) 370 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 371 DSI1_CTRL_CLR_RXF | \ 372 DSI1_CTRL_CLR_PDF | \ 373 DSI1_CTRL_CLR_CDF) 374 375 #define DSI1_TXPKT2C 0x0c 376 #define DSI1_TXPKT2H 0x10 377 #define DSI1_TXPKT_PIX_FIFO 0x20 378 #define DSI1_RXPKT_FIFO 0x24 379 #define DSI1_DISP0_CTRL 0x28 380 #define DSI1_INT_STAT 0x30 381 #define DSI1_INT_EN 0x34 382 /* State reporting bits. These mostly behave like INT_STAT, where 383 * writing a 1 clears the bit. 384 */ 385 #define DSI1_STAT 0x38 386 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 387 # define DSI1_STAT_PHY_D3_STOP BIT(30) 388 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 389 # define DSI1_STAT_PHY_D2_STOP BIT(28) 390 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 391 # define DSI1_STAT_PHY_D1_STOP BIT(26) 392 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 393 # define DSI1_STAT_PHY_D0_STOP BIT(24) 394 # define DSI1_STAT_FIFO_ERR BIT(23) 395 # define DSI1_STAT_PHY_RXLPDT BIT(22) 396 # define DSI1_STAT_PHY_RXTRIG BIT(21) 397 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 398 /* Set when in forward direction */ 399 # define DSI1_STAT_PHY_DIR BIT(19) 400 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 401 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 402 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 403 # define DSI1_STAT_PR_TO BIT(15) 404 # define DSI1_STAT_TA_TO BIT(14) 405 # define DSI1_STAT_LPRX_TO BIT(13) 406 # define DSI1_STAT_HSTX_TO BIT(12) 407 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 408 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 409 # define DSI1_STAT_ERR_CONTROL BIT(9) 410 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 411 # define DSI1_STAT_RXPKT2 BIT(7) 412 # define DSI1_STAT_RXPKT1 BIT(6) 413 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 414 # define DSI1_STAT_TXPKT2_DONE BIT(4) 415 # define DSI1_STAT_TXPKT2_END BIT(3) 416 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 417 # define DSI1_STAT_TXPKT1_DONE BIT(1) 418 # define DSI1_STAT_TXPKT1_END BIT(0) 419 420 #define DSI1_HSTX_TO_CNT 0x3c 421 #define DSI1_LPRX_TO_CNT 0x40 422 #define DSI1_TA_TO_CNT 0x44 423 #define DSI1_PR_TO_CNT 0x48 424 #define DSI1_PHYC 0x4c 425 426 #define DSI1_HS_CLT0 0x50 427 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 428 # define DSI_HS_CLT0_CZERO_SHIFT 18 429 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 430 # define DSI_HS_CLT0_CPRE_SHIFT 9 431 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 432 # define DSI_HS_CLT0_CPREP_SHIFT 0 433 434 #define DSI1_HS_CLT1 0x54 435 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 436 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 437 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 438 # define DSI_HS_CLT1_CPOST_SHIFT 0 439 440 #define DSI1_HS_CLT2 0x58 441 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 442 # define DSI_HS_CLT2_WUP_SHIFT 0 443 444 #define DSI1_HS_DLT3 0x5c 445 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 446 # define DSI_HS_DLT3_EXIT_SHIFT 18 447 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 448 # define DSI_HS_DLT3_ZERO_SHIFT 9 449 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 450 # define DSI_HS_DLT3_PRE_SHIFT 0 451 452 #define DSI1_HS_DLT4 0x60 453 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 454 # define DSI_HS_DLT4_ANLAT_SHIFT 18 455 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 456 # define DSI_HS_DLT4_TRAIL_SHIFT 9 457 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 458 # define DSI_HS_DLT4_LPX_SHIFT 0 459 460 #define DSI1_HS_DLT5 0x64 461 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 462 # define DSI_HS_DLT5_INIT_SHIFT 0 463 464 #define DSI1_HS_DLT6 0x68 465 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 466 # define DSI_HS_DLT6_TA_GET_SHIFT 24 467 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 468 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 469 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 470 # define DSI_HS_DLT6_TA_GO_SHIFT 8 471 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 472 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 473 474 #define DSI1_HS_DLT7 0x6c 475 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 476 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 477 478 #define DSI1_PHY_AFEC0 0x70 479 480 #define DSI1_PHY_AFEC1 0x74 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 482 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 483 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 484 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 485 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 486 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 487 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 488 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 489 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 490 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 491 492 #define DSI1_TST_SEL 0x78 493 #define DSI1_TST_MON 0x7c 494 #define DSI1_PHY_TST1 0x80 495 #define DSI1_PHY_TST2 0x84 496 #define DSI1_PHY_FIFO_STAT 0x88 497 /* Actually, all registers in the range that aren't otherwise claimed 498 * will return the ID. 499 */ 500 #define DSI1_ID 0x8c 501 502 /* General DSI hardware state. */ 503 struct vc4_dsi { 504 struct platform_device *pdev; 505 506 struct mipi_dsi_host dsi_host; 507 struct drm_encoder *encoder; 508 struct drm_bridge *bridge; 509 510 void __iomem *regs; 511 512 struct dma_chan *reg_dma_chan; 513 dma_addr_t reg_dma_paddr; 514 u32 *reg_dma_mem; 515 dma_addr_t reg_paddr; 516 517 /* Whether we're on bcm2835's DSI0 or DSI1. */ 518 int port; 519 520 /* DSI channel for the panel we're connected to. */ 521 u32 channel; 522 u32 lanes; 523 u32 format; 524 u32 divider; 525 u32 mode_flags; 526 527 /* Input clock from CPRMAN to the digital PHY, for the DSI 528 * escape clock. 529 */ 530 struct clk *escape_clock; 531 532 /* Input clock to the analog PHY, used to generate the DSI bit 533 * clock. 534 */ 535 struct clk *pll_phy_clock; 536 537 /* HS Clocks generated within the DSI analog PHY. */ 538 struct clk_fixed_factor phy_clocks[3]; 539 540 struct clk_hw_onecell_data *clk_onecell; 541 542 /* Pixel clock output to the pixelvalve, generated from the HS 543 * clock. 544 */ 545 struct clk *pixel_clock; 546 547 struct completion xfer_completion; 548 int xfer_result; 549 550 struct debugfs_regset32 regset; 551 }; 552 553 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 554 555 static inline void 556 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 557 { 558 struct dma_chan *chan = dsi->reg_dma_chan; 559 struct dma_async_tx_descriptor *tx; 560 dma_cookie_t cookie; 561 int ret; 562 563 /* DSI0 should be able to write normally. */ 564 if (!chan) { 565 writel(val, dsi->regs + offset); 566 return; 567 } 568 569 *dsi->reg_dma_mem = val; 570 571 tx = chan->device->device_prep_dma_memcpy(chan, 572 dsi->reg_paddr + offset, 573 dsi->reg_dma_paddr, 574 4, 0); 575 if (!tx) { 576 DRM_ERROR("Failed to set up DMA register write\n"); 577 return; 578 } 579 580 cookie = tx->tx_submit(tx); 581 ret = dma_submit_error(cookie); 582 if (ret) { 583 DRM_ERROR("Failed to submit DMA: %d\n", ret); 584 return; 585 } 586 ret = dma_sync_wait(chan, cookie); 587 if (ret) 588 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 589 } 590 591 #define DSI_READ(offset) readl(dsi->regs + (offset)) 592 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 593 #define DSI_PORT_READ(offset) \ 594 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 595 #define DSI_PORT_WRITE(offset, val) \ 596 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 597 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 598 599 /* VC4 DSI encoder KMS struct */ 600 struct vc4_dsi_encoder { 601 struct vc4_encoder base; 602 struct vc4_dsi *dsi; 603 }; 604 605 static inline struct vc4_dsi_encoder * 606 to_vc4_dsi_encoder(struct drm_encoder *encoder) 607 { 608 return container_of(encoder, struct vc4_dsi_encoder, base.base); 609 } 610 611 static const struct debugfs_reg32 dsi0_regs[] = { 612 VC4_REG32(DSI0_CTRL), 613 VC4_REG32(DSI0_STAT), 614 VC4_REG32(DSI0_HSTX_TO_CNT), 615 VC4_REG32(DSI0_LPRX_TO_CNT), 616 VC4_REG32(DSI0_TA_TO_CNT), 617 VC4_REG32(DSI0_PR_TO_CNT), 618 VC4_REG32(DSI0_DISP0_CTRL), 619 VC4_REG32(DSI0_DISP1_CTRL), 620 VC4_REG32(DSI0_INT_STAT), 621 VC4_REG32(DSI0_INT_EN), 622 VC4_REG32(DSI0_PHYC), 623 VC4_REG32(DSI0_HS_CLT0), 624 VC4_REG32(DSI0_HS_CLT1), 625 VC4_REG32(DSI0_HS_CLT2), 626 VC4_REG32(DSI0_HS_DLT3), 627 VC4_REG32(DSI0_HS_DLT4), 628 VC4_REG32(DSI0_HS_DLT5), 629 VC4_REG32(DSI0_HS_DLT6), 630 VC4_REG32(DSI0_HS_DLT7), 631 VC4_REG32(DSI0_PHY_AFEC0), 632 VC4_REG32(DSI0_PHY_AFEC1), 633 VC4_REG32(DSI0_ID), 634 }; 635 636 static const struct debugfs_reg32 dsi1_regs[] = { 637 VC4_REG32(DSI1_CTRL), 638 VC4_REG32(DSI1_STAT), 639 VC4_REG32(DSI1_HSTX_TO_CNT), 640 VC4_REG32(DSI1_LPRX_TO_CNT), 641 VC4_REG32(DSI1_TA_TO_CNT), 642 VC4_REG32(DSI1_PR_TO_CNT), 643 VC4_REG32(DSI1_DISP0_CTRL), 644 VC4_REG32(DSI1_DISP1_CTRL), 645 VC4_REG32(DSI1_INT_STAT), 646 VC4_REG32(DSI1_INT_EN), 647 VC4_REG32(DSI1_PHYC), 648 VC4_REG32(DSI1_HS_CLT0), 649 VC4_REG32(DSI1_HS_CLT1), 650 VC4_REG32(DSI1_HS_CLT2), 651 VC4_REG32(DSI1_HS_DLT3), 652 VC4_REG32(DSI1_HS_DLT4), 653 VC4_REG32(DSI1_HS_DLT5), 654 VC4_REG32(DSI1_HS_DLT6), 655 VC4_REG32(DSI1_HS_DLT7), 656 VC4_REG32(DSI1_PHY_AFEC0), 657 VC4_REG32(DSI1_PHY_AFEC1), 658 VC4_REG32(DSI1_ID), 659 }; 660 661 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 662 { 663 drm_encoder_cleanup(encoder); 664 } 665 666 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 667 .destroy = vc4_dsi_encoder_destroy, 668 }; 669 670 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 671 { 672 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 673 674 if (latch) 675 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 676 else 677 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 678 679 DSI_PORT_WRITE(PHY_AFEC0, afec0); 680 } 681 682 /* Enters or exits Ultra Low Power State. */ 683 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 684 { 685 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 686 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 687 DSI_PHYC_DLANE0_ULPS | 688 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 689 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 690 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 691 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 692 DSI1_STAT_PHY_D0_ULPS | 693 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 694 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 695 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 696 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 697 DSI1_STAT_PHY_D0_STOP | 698 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 699 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 700 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 701 int ret; 702 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 703 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 704 705 if (ulps == ulps_currently_enabled) 706 return; 707 708 DSI_PORT_WRITE(STAT, stat_ulps); 709 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 710 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 711 if (ret) { 712 dev_warn(&dsi->pdev->dev, 713 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 714 DSI_PORT_READ(STAT)); 715 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 716 vc4_dsi_latch_ulps(dsi, false); 717 return; 718 } 719 720 /* The DSI module can't be disabled while the module is 721 * generating ULPS state. So, to be able to disable the 722 * module, we have the AFE latch the ULPS state and continue 723 * on to having the module enter STOP. 724 */ 725 vc4_dsi_latch_ulps(dsi, ulps); 726 727 DSI_PORT_WRITE(STAT, stat_stop); 728 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 729 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 730 if (ret) { 731 dev_warn(&dsi->pdev->dev, 732 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 733 DSI_PORT_READ(STAT)); 734 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 735 return; 736 } 737 } 738 739 static u32 740 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 741 { 742 /* The HS timings have to be rounded up to a multiple of 8 743 * because we're using the byte clock. 744 */ 745 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 746 } 747 748 /* ESC always runs at 100Mhz. */ 749 #define ESC_TIME_NS 10 750 751 static u32 752 dsi_esc_timing(u32 ns) 753 { 754 return DIV_ROUND_UP(ns, ESC_TIME_NS); 755 } 756 757 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 758 { 759 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 760 struct vc4_dsi *dsi = vc4_encoder->dsi; 761 struct device *dev = &dsi->pdev->dev; 762 763 drm_bridge_disable(dsi->bridge); 764 vc4_dsi_ulps(dsi, true); 765 drm_bridge_post_disable(dsi->bridge); 766 767 clk_disable_unprepare(dsi->pll_phy_clock); 768 clk_disable_unprepare(dsi->escape_clock); 769 clk_disable_unprepare(dsi->pixel_clock); 770 771 pm_runtime_put(dev); 772 } 773 774 /* Extends the mode's blank intervals to handle BCM2835's integer-only 775 * DSI PLL divider. 776 * 777 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 778 * driver since most peripherals are hanging off of the PLLD_PER 779 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 780 * the pixel clock), only has an integer divider off of DSI. 781 * 782 * To get our panel mode to refresh at the expected 60Hz, we need to 783 * extend the horizontal blank time. This means we drive a 784 * higher-than-expected clock rate to the panel, but that's what the 785 * firmware does too. 786 */ 787 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 788 const struct drm_display_mode *mode, 789 struct drm_display_mode *adjusted_mode) 790 { 791 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 792 struct vc4_dsi *dsi = vc4_encoder->dsi; 793 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 794 unsigned long parent_rate = clk_get_rate(phy_parent); 795 unsigned long pixel_clock_hz = mode->clock * 1000; 796 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 797 int divider; 798 799 /* Find what divider gets us a faster clock than the requested 800 * pixel clock. 801 */ 802 for (divider = 1; divider < 8; divider++) { 803 if (parent_rate / divider < pll_clock) { 804 divider--; 805 break; 806 } 807 } 808 809 /* Now that we've picked a PLL divider, calculate back to its 810 * pixel clock. 811 */ 812 pll_clock = parent_rate / divider; 813 pixel_clock_hz = pll_clock / dsi->divider; 814 815 adjusted_mode->clock = pixel_clock_hz / 1000; 816 817 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 818 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 819 mode->clock; 820 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 821 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 822 823 return true; 824 } 825 826 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 827 { 828 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 829 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 830 struct vc4_dsi *dsi = vc4_encoder->dsi; 831 struct device *dev = &dsi->pdev->dev; 832 bool debug_dump_regs = false; 833 unsigned long hs_clock; 834 u32 ui_ns; 835 /* Minimum LP state duration in escape clock cycles. */ 836 u32 lpx = dsi_esc_timing(60); 837 unsigned long pixel_clock_hz = mode->clock * 1000; 838 unsigned long dsip_clock; 839 unsigned long phy_clock; 840 int ret; 841 842 ret = pm_runtime_get_sync(dev); 843 if (ret) { 844 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 845 return; 846 } 847 848 if (debug_dump_regs) { 849 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 850 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 851 drm_print_regset32(&p, &dsi->regset); 852 } 853 854 /* Round up the clk_set_rate() request slightly, since 855 * PLLD_DSI1 is an integer divider and its rate selection will 856 * never round up. 857 */ 858 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 859 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 860 if (ret) { 861 dev_err(&dsi->pdev->dev, 862 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 863 } 864 865 /* Reset the DSI and all its fifos. */ 866 DSI_PORT_WRITE(CTRL, 867 DSI_CTRL_SOFT_RESET_CFG | 868 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 869 870 DSI_PORT_WRITE(CTRL, 871 DSI_CTRL_HSDT_EOT_DISABLE | 872 DSI_CTRL_RX_LPDT_EOT_DISABLE); 873 874 /* Clear all stat bits so we see what has happened during enable. */ 875 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 876 877 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 878 if (dsi->port == 0) { 879 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 880 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 881 882 if (dsi->lanes < 2) 883 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 884 885 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 886 afec0 |= DSI0_PHY_AFEC0_RESET; 887 888 DSI_PORT_WRITE(PHY_AFEC0, afec0); 889 890 DSI_PORT_WRITE(PHY_AFEC1, 891 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 892 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 893 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 894 } else { 895 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 896 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 897 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 898 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 899 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 900 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 901 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 902 903 if (dsi->lanes < 4) 904 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 905 if (dsi->lanes < 3) 906 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 907 if (dsi->lanes < 2) 908 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 909 910 afec0 |= DSI1_PHY_AFEC0_RESET; 911 912 DSI_PORT_WRITE(PHY_AFEC0, afec0); 913 914 DSI_PORT_WRITE(PHY_AFEC1, 0); 915 916 /* AFEC reset hold time */ 917 mdelay(1); 918 } 919 920 ret = clk_prepare_enable(dsi->escape_clock); 921 if (ret) { 922 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 923 return; 924 } 925 926 ret = clk_prepare_enable(dsi->pll_phy_clock); 927 if (ret) { 928 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 929 return; 930 } 931 932 hs_clock = clk_get_rate(dsi->pll_phy_clock); 933 934 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 935 * not the pixel clock rate. DSIxP take from the APHY's byte, 936 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 937 * that rate. Separately, a value derived from PIX_CLK_DIV 938 * and HS_CLKC is fed into the PV to divide down to the actual 939 * pixel clock for pushing pixels into DSI. 940 */ 941 dsip_clock = phy_clock / 8; 942 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 943 if (ret) { 944 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 945 dsip_clock, ret); 946 } 947 948 ret = clk_prepare_enable(dsi->pixel_clock); 949 if (ret) { 950 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 951 return; 952 } 953 954 /* How many ns one DSI unit interval is. Note that the clock 955 * is DDR, so there's an extra divide by 2. 956 */ 957 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 958 959 DSI_PORT_WRITE(HS_CLT0, 960 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 961 DSI_HS_CLT0_CZERO) | 962 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 963 DSI_HS_CLT0_CPRE) | 964 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 965 DSI_HS_CLT0_CPREP)); 966 967 DSI_PORT_WRITE(HS_CLT1, 968 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 969 DSI_HS_CLT1_CTRAIL) | 970 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 971 DSI_HS_CLT1_CPOST)); 972 973 DSI_PORT_WRITE(HS_CLT2, 974 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 975 DSI_HS_CLT2_WUP)); 976 977 DSI_PORT_WRITE(HS_DLT3, 978 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 979 DSI_HS_DLT3_EXIT) | 980 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 981 DSI_HS_DLT3_ZERO) | 982 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 983 DSI_HS_DLT3_PRE)); 984 985 DSI_PORT_WRITE(HS_DLT4, 986 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 987 DSI_HS_DLT4_LPX) | 988 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 989 dsi_hs_timing(ui_ns, 60, 4)), 990 DSI_HS_DLT4_TRAIL) | 991 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 992 993 /* T_INIT is how long STOP is driven after power-up to 994 * indicate to the slave (also coming out of power-up) that 995 * master init is complete, and should be greater than the 996 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 997 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 998 * T_INIT,SLAVE, while allowing protocols on top of it to give 999 * greater minimums. The vc4 firmware uses an extremely 1000 * conservative 5ms, and we maintain that here. 1001 */ 1002 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1003 5 * 1000 * 1000, 0), 1004 DSI_HS_DLT5_INIT)); 1005 1006 DSI_PORT_WRITE(HS_DLT6, 1007 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1008 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1009 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1010 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1011 1012 DSI_PORT_WRITE(HS_DLT7, 1013 VC4_SET_FIELD(dsi_esc_timing(1000000), 1014 DSI_HS_DLT7_LP_WUP)); 1015 1016 DSI_PORT_WRITE(PHYC, 1017 DSI_PHYC_DLANE0_ENABLE | 1018 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1019 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1020 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1021 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1022 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1023 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1024 (dsi->port == 0 ? 1025 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1026 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1027 1028 DSI_PORT_WRITE(CTRL, 1029 DSI_PORT_READ(CTRL) | 1030 DSI_CTRL_CAL_BYTE); 1031 1032 /* HS timeout in HS clock cycles: disabled. */ 1033 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1034 /* LP receive timeout in HS clocks. */ 1035 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1036 /* Bus turnaround timeout */ 1037 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1038 /* Display reset sequence timeout */ 1039 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1040 1041 /* Set up DISP1 for transferring long command payloads through 1042 * the pixfifo. 1043 */ 1044 DSI_PORT_WRITE(DISP1_CTRL, 1045 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1046 DSI_DISP1_PFORMAT) | 1047 DSI_DISP1_ENABLE); 1048 1049 /* Ungate the block. */ 1050 if (dsi->port == 0) 1051 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1052 else 1053 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1054 1055 /* Bring AFE out of reset. */ 1056 if (dsi->port == 0) { 1057 } else { 1058 DSI_PORT_WRITE(PHY_AFEC0, 1059 DSI_PORT_READ(PHY_AFEC0) & 1060 ~DSI1_PHY_AFEC0_RESET); 1061 } 1062 1063 vc4_dsi_ulps(dsi, false); 1064 1065 drm_bridge_pre_enable(dsi->bridge); 1066 1067 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1068 DSI_PORT_WRITE(DISP0_CTRL, 1069 VC4_SET_FIELD(dsi->divider, 1070 DSI_DISP0_PIX_CLK_DIV) | 1071 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1072 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1073 DSI_DISP0_LP_STOP_CTRL) | 1074 DSI_DISP0_ST_END | 1075 DSI_DISP0_ENABLE); 1076 } else { 1077 DSI_PORT_WRITE(DISP0_CTRL, 1078 DSI_DISP0_COMMAND_MODE | 1079 DSI_DISP0_ENABLE); 1080 } 1081 1082 drm_bridge_enable(dsi->bridge); 1083 1084 if (debug_dump_regs) { 1085 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1086 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1087 drm_print_regset32(&p, &dsi->regset); 1088 } 1089 } 1090 1091 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1092 const struct mipi_dsi_msg *msg) 1093 { 1094 struct vc4_dsi *dsi = host_to_dsi(host); 1095 struct mipi_dsi_packet packet; 1096 u32 pkth = 0, pktc = 0; 1097 int i, ret; 1098 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1099 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1100 1101 mipi_dsi_create_packet(&packet, msg); 1102 1103 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1104 pkth |= VC4_SET_FIELD(packet.header[1] | 1105 (packet.header[2] << 8), 1106 DSI_TXPKT1H_BC_PARAM); 1107 if (is_long) { 1108 /* Divide data across the various FIFOs we have available. 1109 * The command FIFO takes byte-oriented data, but is of 1110 * limited size. The pixel FIFO (never actually used for 1111 * pixel data in reality) is word oriented, and substantially 1112 * larger. So, we use the pixel FIFO for most of the data, 1113 * sending the residual bytes in the command FIFO at the start. 1114 * 1115 * With this arrangement, the command FIFO will never get full. 1116 */ 1117 if (packet.payload_length <= 16) { 1118 cmd_fifo_len = packet.payload_length; 1119 pix_fifo_len = 0; 1120 } else { 1121 cmd_fifo_len = (packet.payload_length % 1122 DSI_PIX_FIFO_WIDTH); 1123 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1124 DSI_PIX_FIFO_WIDTH); 1125 } 1126 1127 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1128 1129 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1130 } 1131 1132 if (msg->rx_len) { 1133 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1134 DSI_TXPKT1C_CMD_CTRL); 1135 } else { 1136 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1137 DSI_TXPKT1C_CMD_CTRL); 1138 } 1139 1140 for (i = 0; i < cmd_fifo_len; i++) 1141 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1142 for (i = 0; i < pix_fifo_len; i++) { 1143 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1144 1145 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1146 pix[0] | 1147 pix[1] << 8 | 1148 pix[2] << 16 | 1149 pix[3] << 24); 1150 } 1151 1152 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1153 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1154 if (is_long) 1155 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1156 1157 /* Send one copy of the packet. Larger repeats are used for pixel 1158 * data in command mode. 1159 */ 1160 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1161 1162 pktc |= DSI_TXPKT1C_CMD_EN; 1163 if (pix_fifo_len) { 1164 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1165 DSI_TXPKT1C_DISPLAY_NO); 1166 } else { 1167 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1168 DSI_TXPKT1C_DISPLAY_NO); 1169 } 1170 1171 /* Enable the appropriate interrupt for the transfer completion. */ 1172 dsi->xfer_result = 0; 1173 reinit_completion(&dsi->xfer_completion); 1174 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1175 if (msg->rx_len) { 1176 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1177 DSI1_INT_PHY_DIR_RTF)); 1178 } else { 1179 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1180 DSI1_INT_TXPKT1_DONE)); 1181 } 1182 1183 /* Send the packet. */ 1184 DSI_PORT_WRITE(TXPKT1H, pkth); 1185 DSI_PORT_WRITE(TXPKT1C, pktc); 1186 1187 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1188 msecs_to_jiffies(1000))) { 1189 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1190 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1191 DSI_PORT_READ(INT_STAT)); 1192 ret = -ETIMEDOUT; 1193 } else { 1194 ret = dsi->xfer_result; 1195 } 1196 1197 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1198 1199 if (ret) 1200 goto reset_fifo_and_return; 1201 1202 if (ret == 0 && msg->rx_len) { 1203 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1204 u8 *msg_rx = msg->rx_buf; 1205 1206 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1207 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1208 DSI_RXPKT1H_BC_PARAM); 1209 1210 if (rxlen != msg->rx_len) { 1211 DRM_ERROR("DSI returned %db, expecting %db\n", 1212 rxlen, (int)msg->rx_len); 1213 ret = -ENXIO; 1214 goto reset_fifo_and_return; 1215 } 1216 1217 for (i = 0; i < msg->rx_len; i++) 1218 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1219 } else { 1220 /* FINISHME: Handle AWER */ 1221 1222 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1223 DSI_RXPKT1H_SHORT_0); 1224 if (msg->rx_len > 1) { 1225 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1226 DSI_RXPKT1H_SHORT_1); 1227 } 1228 } 1229 } 1230 1231 return ret; 1232 1233 reset_fifo_and_return: 1234 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1235 1236 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1237 udelay(1); 1238 DSI_PORT_WRITE(CTRL, 1239 DSI_PORT_READ(CTRL) | 1240 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1241 1242 DSI_PORT_WRITE(TXPKT1C, 0); 1243 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1244 return ret; 1245 } 1246 1247 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1248 struct mipi_dsi_device *device) 1249 { 1250 struct vc4_dsi *dsi = host_to_dsi(host); 1251 1252 dsi->lanes = device->lanes; 1253 dsi->channel = device->channel; 1254 dsi->mode_flags = device->mode_flags; 1255 1256 switch (device->format) { 1257 case MIPI_DSI_FMT_RGB888: 1258 dsi->format = DSI_PFORMAT_RGB888; 1259 dsi->divider = 24 / dsi->lanes; 1260 break; 1261 case MIPI_DSI_FMT_RGB666: 1262 dsi->format = DSI_PFORMAT_RGB666; 1263 dsi->divider = 24 / dsi->lanes; 1264 break; 1265 case MIPI_DSI_FMT_RGB666_PACKED: 1266 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1267 dsi->divider = 18 / dsi->lanes; 1268 break; 1269 case MIPI_DSI_FMT_RGB565: 1270 dsi->format = DSI_PFORMAT_RGB565; 1271 dsi->divider = 16 / dsi->lanes; 1272 break; 1273 default: 1274 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1275 dsi->format); 1276 return 0; 1277 } 1278 1279 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1280 dev_err(&dsi->pdev->dev, 1281 "Only VIDEO mode panels supported currently.\n"); 1282 return 0; 1283 } 1284 1285 return 0; 1286 } 1287 1288 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1289 struct mipi_dsi_device *device) 1290 { 1291 return 0; 1292 } 1293 1294 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1295 .attach = vc4_dsi_host_attach, 1296 .detach = vc4_dsi_host_detach, 1297 .transfer = vc4_dsi_host_transfer, 1298 }; 1299 1300 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1301 .disable = vc4_dsi_encoder_disable, 1302 .enable = vc4_dsi_encoder_enable, 1303 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1304 }; 1305 1306 static const struct of_device_id vc4_dsi_dt_match[] = { 1307 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1308 {} 1309 }; 1310 1311 static void dsi_handle_error(struct vc4_dsi *dsi, 1312 irqreturn_t *ret, u32 stat, u32 bit, 1313 const char *type) 1314 { 1315 if (!(stat & bit)) 1316 return; 1317 1318 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1319 *ret = IRQ_HANDLED; 1320 } 1321 1322 /* 1323 * Initial handler for port 1 where we need the reg_dma workaround. 1324 * The register DMA writes sleep, so we can't do it in the top half. 1325 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1326 * parent interrupt contrller until our interrupt thread is done. 1327 */ 1328 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1329 { 1330 struct vc4_dsi *dsi = data; 1331 u32 stat = DSI_PORT_READ(INT_STAT); 1332 1333 if (!stat) 1334 return IRQ_NONE; 1335 1336 return IRQ_WAKE_THREAD; 1337 } 1338 1339 /* 1340 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1341 * 1 where we need the reg_dma workaround. 1342 */ 1343 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1344 { 1345 struct vc4_dsi *dsi = data; 1346 u32 stat = DSI_PORT_READ(INT_STAT); 1347 irqreturn_t ret = IRQ_NONE; 1348 1349 DSI_PORT_WRITE(INT_STAT, stat); 1350 1351 dsi_handle_error(dsi, &ret, stat, 1352 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1353 dsi_handle_error(dsi, &ret, stat, 1354 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1355 dsi_handle_error(dsi, &ret, stat, 1356 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1357 dsi_handle_error(dsi, &ret, stat, 1358 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1359 dsi_handle_error(dsi, &ret, stat, 1360 DSI1_INT_HSTX_TO, "HSTX timeout"); 1361 dsi_handle_error(dsi, &ret, stat, 1362 DSI1_INT_LPRX_TO, "LPRX timeout"); 1363 dsi_handle_error(dsi, &ret, stat, 1364 DSI1_INT_TA_TO, "turnaround timeout"); 1365 dsi_handle_error(dsi, &ret, stat, 1366 DSI1_INT_PR_TO, "peripheral reset timeout"); 1367 1368 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1369 complete(&dsi->xfer_completion); 1370 ret = IRQ_HANDLED; 1371 } else if (stat & DSI1_INT_HSTX_TO) { 1372 complete(&dsi->xfer_completion); 1373 dsi->xfer_result = -ETIMEDOUT; 1374 ret = IRQ_HANDLED; 1375 } 1376 1377 return ret; 1378 } 1379 1380 /** 1381 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1382 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1383 * @dsi: DSI encoder 1384 */ 1385 static int 1386 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1387 { 1388 struct device *dev = &dsi->pdev->dev; 1389 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1390 static const struct { 1391 const char *dsi0_name, *dsi1_name; 1392 int div; 1393 } phy_clocks[] = { 1394 { "dsi0_byte", "dsi1_byte", 8 }, 1395 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1396 { "dsi0_ddr", "dsi1_ddr", 2 }, 1397 }; 1398 int i; 1399 1400 dsi->clk_onecell = devm_kzalloc(dev, 1401 sizeof(*dsi->clk_onecell) + 1402 ARRAY_SIZE(phy_clocks) * 1403 sizeof(struct clk_hw *), 1404 GFP_KERNEL); 1405 if (!dsi->clk_onecell) 1406 return -ENOMEM; 1407 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1408 1409 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1410 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1411 struct clk_init_data init; 1412 int ret; 1413 1414 /* We just use core fixed factor clock ops for the PHY 1415 * clocks. The clocks are actually gated by the 1416 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1417 * setting if we use the DDR/DDR2 clocks. However, 1418 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1419 * setting both our parent DSI PLL's rate and this 1420 * clock's rate, so it knows if DDR/DDR2 are going to 1421 * be used and could enable the gates itself. 1422 */ 1423 fix->mult = 1; 1424 fix->div = phy_clocks[i].div; 1425 fix->hw.init = &init; 1426 1427 memset(&init, 0, sizeof(init)); 1428 init.parent_names = &parent_name; 1429 init.num_parents = 1; 1430 if (dsi->port == 1) 1431 init.name = phy_clocks[i].dsi1_name; 1432 else 1433 init.name = phy_clocks[i].dsi0_name; 1434 init.ops = &clk_fixed_factor_ops; 1435 1436 ret = devm_clk_hw_register(dev, &fix->hw); 1437 if (ret) 1438 return ret; 1439 1440 dsi->clk_onecell->hws[i] = &fix->hw; 1441 } 1442 1443 return of_clk_add_hw_provider(dev->of_node, 1444 of_clk_hw_onecell_get, 1445 dsi->clk_onecell); 1446 } 1447 1448 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1449 { 1450 struct platform_device *pdev = to_platform_device(dev); 1451 struct drm_device *drm = dev_get_drvdata(master); 1452 struct vc4_dev *vc4 = to_vc4_dev(drm); 1453 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1454 struct vc4_dsi_encoder *vc4_dsi_encoder; 1455 struct drm_panel *panel; 1456 const struct of_device_id *match; 1457 dma_cap_mask_t dma_mask; 1458 int ret; 1459 1460 match = of_match_device(vc4_dsi_dt_match, dev); 1461 if (!match) 1462 return -ENODEV; 1463 1464 dsi->port = (uintptr_t)match->data; 1465 1466 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1467 GFP_KERNEL); 1468 if (!vc4_dsi_encoder) 1469 return -ENOMEM; 1470 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1471 vc4_dsi_encoder->dsi = dsi; 1472 dsi->encoder = &vc4_dsi_encoder->base.base; 1473 1474 dsi->regs = vc4_ioremap_regs(pdev, 0); 1475 if (IS_ERR(dsi->regs)) 1476 return PTR_ERR(dsi->regs); 1477 1478 dsi->regset.base = dsi->regs; 1479 if (dsi->port == 0) { 1480 dsi->regset.regs = dsi0_regs; 1481 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); 1482 } else { 1483 dsi->regset.regs = dsi1_regs; 1484 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); 1485 } 1486 1487 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1488 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1489 DSI_PORT_READ(ID), DSI_ID_VALUE); 1490 return -ENODEV; 1491 } 1492 1493 /* DSI1 has a broken AXI slave that doesn't respond to writes 1494 * from the ARM. It does handle writes from the DMA engine, 1495 * so set up a channel for talking to it. 1496 */ 1497 if (dsi->port == 1) { 1498 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1499 &dsi->reg_dma_paddr, 1500 GFP_KERNEL); 1501 if (!dsi->reg_dma_mem) { 1502 DRM_ERROR("Failed to get DMA memory\n"); 1503 return -ENOMEM; 1504 } 1505 1506 dma_cap_zero(dma_mask); 1507 dma_cap_set(DMA_MEMCPY, dma_mask); 1508 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1509 if (IS_ERR(dsi->reg_dma_chan)) { 1510 ret = PTR_ERR(dsi->reg_dma_chan); 1511 if (ret != -EPROBE_DEFER) 1512 DRM_ERROR("Failed to get DMA channel: %d\n", 1513 ret); 1514 return ret; 1515 } 1516 1517 /* Get the physical address of the device's registers. The 1518 * struct resource for the regs gives us the bus address 1519 * instead. 1520 */ 1521 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1522 0, NULL, NULL)); 1523 } 1524 1525 init_completion(&dsi->xfer_completion); 1526 /* At startup enable error-reporting interrupts and nothing else. */ 1527 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1528 /* Clear any existing interrupt state. */ 1529 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1530 1531 if (dsi->reg_dma_mem) 1532 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1533 vc4_dsi_irq_defer_to_thread_handler, 1534 vc4_dsi_irq_handler, 1535 IRQF_ONESHOT, 1536 "vc4 dsi", dsi); 1537 else 1538 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1539 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1540 if (ret) { 1541 if (ret != -EPROBE_DEFER) 1542 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1543 return ret; 1544 } 1545 1546 dsi->escape_clock = devm_clk_get(dev, "escape"); 1547 if (IS_ERR(dsi->escape_clock)) { 1548 ret = PTR_ERR(dsi->escape_clock); 1549 if (ret != -EPROBE_DEFER) 1550 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1551 return ret; 1552 } 1553 1554 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1555 if (IS_ERR(dsi->pll_phy_clock)) { 1556 ret = PTR_ERR(dsi->pll_phy_clock); 1557 if (ret != -EPROBE_DEFER) 1558 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1559 return ret; 1560 } 1561 1562 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1563 if (IS_ERR(dsi->pixel_clock)) { 1564 ret = PTR_ERR(dsi->pixel_clock); 1565 if (ret != -EPROBE_DEFER) 1566 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1567 return ret; 1568 } 1569 1570 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1571 &panel, &dsi->bridge); 1572 if (ret) { 1573 /* If the bridge or panel pointed by dev->of_node is not 1574 * enabled, just return 0 here so that we don't prevent the DRM 1575 * dev from being registered. Of course that means the DSI 1576 * encoder won't be exposed, but that's not a problem since 1577 * nothing is connected to it. 1578 */ 1579 if (ret == -ENODEV) 1580 return 0; 1581 1582 return ret; 1583 } 1584 1585 if (panel) { 1586 dsi->bridge = devm_drm_panel_bridge_add(dev, panel, 1587 DRM_MODE_CONNECTOR_DSI); 1588 if (IS_ERR(dsi->bridge)) 1589 return PTR_ERR(dsi->bridge); 1590 } 1591 1592 /* The esc clock rate is supposed to always be 100Mhz. */ 1593 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1594 if (ret) { 1595 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1596 return ret; 1597 } 1598 1599 ret = vc4_dsi_init_phy_clocks(dsi); 1600 if (ret) 1601 return ret; 1602 1603 if (dsi->port == 1) 1604 vc4->dsi1 = dsi; 1605 1606 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1607 DRM_MODE_ENCODER_DSI, NULL); 1608 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1609 1610 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL); 1611 if (ret) { 1612 dev_err(dev, "bridge attach failed: %d\n", ret); 1613 return ret; 1614 } 1615 /* Disable the atomic helper calls into the bridge. We 1616 * manually call the bridge pre_enable / enable / etc. calls 1617 * from our driver, since we need to sequence them within the 1618 * encoder's enable/disable paths. 1619 */ 1620 dsi->encoder->bridge = NULL; 1621 1622 if (dsi->port == 0) 1623 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); 1624 else 1625 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); 1626 1627 pm_runtime_enable(dev); 1628 1629 return 0; 1630 } 1631 1632 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1633 void *data) 1634 { 1635 struct drm_device *drm = dev_get_drvdata(master); 1636 struct vc4_dev *vc4 = to_vc4_dev(drm); 1637 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1638 1639 if (dsi->bridge) 1640 pm_runtime_disable(dev); 1641 1642 vc4_dsi_encoder_destroy(dsi->encoder); 1643 1644 if (dsi->port == 1) 1645 vc4->dsi1 = NULL; 1646 } 1647 1648 static const struct component_ops vc4_dsi_ops = { 1649 .bind = vc4_dsi_bind, 1650 .unbind = vc4_dsi_unbind, 1651 }; 1652 1653 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1654 { 1655 struct device *dev = &pdev->dev; 1656 struct vc4_dsi *dsi; 1657 int ret; 1658 1659 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1660 if (!dsi) 1661 return -ENOMEM; 1662 dev_set_drvdata(dev, dsi); 1663 1664 dsi->pdev = pdev; 1665 1666 /* Note, the initialization sequence for DSI and panels is 1667 * tricky. The component bind above won't get past its 1668 * -EPROBE_DEFER until the panel/bridge probes. The 1669 * panel/bridge will return -EPROBE_DEFER until it has a 1670 * mipi_dsi_host to register its device to. So, we register 1671 * the host during pdev probe time, so vc4 as a whole can then 1672 * -EPROBE_DEFER its component bind process until the panel 1673 * successfully attaches. 1674 */ 1675 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1676 dsi->dsi_host.dev = dev; 1677 mipi_dsi_host_register(&dsi->dsi_host); 1678 1679 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1680 if (ret) { 1681 mipi_dsi_host_unregister(&dsi->dsi_host); 1682 return ret; 1683 } 1684 1685 return 0; 1686 } 1687 1688 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1689 { 1690 struct device *dev = &pdev->dev; 1691 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1692 1693 component_del(&pdev->dev, &vc4_dsi_ops); 1694 mipi_dsi_host_unregister(&dsi->dsi_host); 1695 1696 return 0; 1697 } 1698 1699 struct platform_driver vc4_dsi_driver = { 1700 .probe = vc4_dsi_dev_probe, 1701 .remove = vc4_dsi_dev_remove, 1702 .driver = { 1703 .name = "vc4_dsi", 1704 .of_match_table = vc4_dsi_dt_match, 1705 }, 1706 }; 1707