1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/io.h> 28 #include <linux/of.h> 29 #include <linux/of_address.h> 30 #include <linux/platform_device.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 #include <drm/drm_simple_kms_helper.h> 41 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 #define DSI_CMD_FIFO_DEPTH 16 46 #define DSI_PIX_FIFO_DEPTH 256 47 #define DSI_PIX_FIFO_WIDTH 4 48 49 #define DSI0_CTRL 0x00 50 51 /* Command packet control. */ 52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53 #define DSI1_TXPKT1C 0x04 54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63 /* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67 /* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 78 # define DSI_TXPKT1C_CMD_CTRL_TX 0 79 /* Command with BTA for either ack or read data. */ 80 # define DSI_TXPKT1C_CMD_CTRL_RX 1 81 /* Trigger according to TRIG_CMD */ 82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83 /* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91 # define DSI_TXPKT1C_CMD_EN BIT(0) 92 93 /* Command packet header. */ 94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95 #define DSI1_TXPKT1H 0x08 96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101 # define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104 #define DSI1_RXPKT1H 0x14 105 # define DSI_RXPKT1H_CRC_ERR BIT(31) 106 # define DSI_RXPKT1H_DET_ERR BIT(30) 107 # define DSI_RXPKT1H_ECC_ERR BIT(29) 108 # define DSI_RXPKT1H_COR_ERR BIT(28) 109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123 #define DSI1_RXPKT2H 0x18 124 # define DSI_RXPKT1H_DET_ERR BIT(30) 125 # define DSI_RXPKT1H_ECC_ERR BIT(29) 126 # define DSI_RXPKT1H_COR_ERR BIT(28) 127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131 # define DSI_RXPKT1H_DT_SHIFT 0 132 133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134 #define DSI1_TXPKT_CMD_FIFO 0x1c 135 136 #define DSI0_DISP0_CTRL 0x18 137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141 # define DSI_DISP0_LP_STOP_DISABLE 0 142 # define DSI_DISP0_LP_STOP_PERLINE 1 143 # define DSI_DISP0_LP_STOP_PERFRAME 2 144 145 /* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148 # define DSI_DISP_HACTIVE_NULL BIT(10) 149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150 # define DSI_DISP_VBLP_CTRL BIT(9) 151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152 # define DSI_DISP_HFP_CTRL BIT(8) 153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154 # define DSI_DISP_HBP_CTRL BIT(7) 155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156 # define DSI_DISP0_CHANNEL_SHIFT 5 157 /* Enables end events for HSYNC/VSYNC, not just start events. */ 158 # define DSI_DISP0_ST_END BIT(4) 159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160 # define DSI_DISP0_PFORMAT_SHIFT 2 161 # define DSI_PFORMAT_RGB565 0 162 # define DSI_PFORMAT_RGB666_PACKED 1 163 # define DSI_PFORMAT_RGB666 2 164 # define DSI_PFORMAT_RGB888 3 165 /* Default is VIDEO mode. */ 166 # define DSI_DISP0_COMMAND_MODE BIT(1) 167 # define DSI_DISP0_ENABLE BIT(0) 168 169 #define DSI0_DISP1_CTRL 0x1c 170 #define DSI1_DISP1_CTRL 0x2c 171 /* Format of the data written to TXPKT_PIX_FIFO. */ 172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173 # define DSI_DISP1_PFORMAT_SHIFT 1 174 # define DSI_DISP1_PFORMAT_16BIT 0 175 # define DSI_DISP1_PFORMAT_24BIT 1 176 # define DSI_DISP1_PFORMAT_32BIT_LE 2 177 # define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179 /* DISP1 is always command mode. */ 180 # define DSI_DISP1_ENABLE BIT(0) 181 182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184 #define DSI0_INT_STAT 0x24 185 #define DSI0_INT_EN 0x28 186 # define DSI0_INT_FIFO_ERR BIT(25) 187 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23) 188 # define DSI0_INT_CMDC_DONE_SHIFT 23 189 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1 190 # define DSI0_INT_CMDC_DONE_REPEAT 3 191 # define DSI0_INT_PHY_DIR_RTF BIT(22) 192 # define DSI0_INT_PHY_D1_ULPS BIT(21) 193 # define DSI0_INT_PHY_D1_STOP BIT(20) 194 # define DSI0_INT_PHY_RXLPDT BIT(19) 195 # define DSI0_INT_PHY_RXTRIG BIT(18) 196 # define DSI0_INT_PHY_D0_ULPS BIT(17) 197 # define DSI0_INT_PHY_D0_LPDT BIT(16) 198 # define DSI0_INT_PHY_D0_FTR BIT(15) 199 # define DSI0_INT_PHY_D0_STOP BIT(14) 200 /* Signaled when the clock lane enters the given state. */ 201 # define DSI0_INT_PHY_CLK_ULPS BIT(13) 202 # define DSI0_INT_PHY_CLK_HS BIT(12) 203 # define DSI0_INT_PHY_CLK_FTR BIT(11) 204 /* Signaled on timeouts */ 205 # define DSI0_INT_PR_TO BIT(10) 206 # define DSI0_INT_TA_TO BIT(9) 207 # define DSI0_INT_LPRX_TO BIT(8) 208 # define DSI0_INT_HSTX_TO BIT(7) 209 /* Contention on a line when trying to drive the line low */ 210 # define DSI0_INT_ERR_CONT_LP1 BIT(6) 211 # define DSI0_INT_ERR_CONT_LP0 BIT(5) 212 /* Control error: incorrect line state sequence on data lane 0. */ 213 # define DSI0_INT_ERR_CONTROL BIT(4) 214 # define DSI0_INT_ERR_SYNC_ESC BIT(3) 215 # define DSI0_INT_RX2_PKT BIT(2) 216 # define DSI0_INT_RX1_PKT BIT(1) 217 # define DSI0_INT_CMD_PKT BIT(0) 218 219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \ 220 DSI0_INT_ERR_CONTROL | \ 221 DSI0_INT_ERR_CONT_LP0 | \ 222 DSI0_INT_ERR_CONT_LP1 | \ 223 DSI0_INT_HSTX_TO | \ 224 DSI0_INT_LPRX_TO | \ 225 DSI0_INT_TA_TO | \ 226 DSI0_INT_PR_TO) 227 228 # define DSI1_INT_PHY_D3_ULPS BIT(30) 229 # define DSI1_INT_PHY_D3_STOP BIT(29) 230 # define DSI1_INT_PHY_D2_ULPS BIT(28) 231 # define DSI1_INT_PHY_D2_STOP BIT(27) 232 # define DSI1_INT_PHY_D1_ULPS BIT(26) 233 # define DSI1_INT_PHY_D1_STOP BIT(25) 234 # define DSI1_INT_PHY_D0_ULPS BIT(24) 235 # define DSI1_INT_PHY_D0_STOP BIT(23) 236 # define DSI1_INT_FIFO_ERR BIT(22) 237 # define DSI1_INT_PHY_DIR_RTF BIT(21) 238 # define DSI1_INT_PHY_RXLPDT BIT(20) 239 # define DSI1_INT_PHY_RXTRIG BIT(19) 240 # define DSI1_INT_PHY_D0_LPDT BIT(18) 241 # define DSI1_INT_PHY_DIR_FTR BIT(17) 242 243 /* Signaled when the clock lane enters the given state. */ 244 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 245 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 246 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 247 248 /* Signaled on timeouts */ 249 # define DSI1_INT_PR_TO BIT(13) 250 # define DSI1_INT_TA_TO BIT(12) 251 # define DSI1_INT_LPRX_TO BIT(11) 252 # define DSI1_INT_HSTX_TO BIT(10) 253 254 /* Contention on a line when trying to drive the line low */ 255 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 256 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 257 258 /* Control error: incorrect line state sequence on data lane 0. */ 259 # define DSI1_INT_ERR_CONTROL BIT(7) 260 /* LPDT synchronization error (bits received not a multiple of 8. */ 261 262 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 263 /* Signaled after receiving an error packet from the display in 264 * response to a read. 265 */ 266 # define DSI1_INT_RXPKT2 BIT(5) 267 /* Signaled after receiving a packet. The header and optional short 268 * response will be in RXPKT1H, and a long response will be in the 269 * RXPKT_FIFO. 270 */ 271 # define DSI1_INT_RXPKT1 BIT(4) 272 # define DSI1_INT_TXPKT2_DONE BIT(3) 273 # define DSI1_INT_TXPKT2_END BIT(2) 274 /* Signaled after all repeats of TXPKT1 are transferred. */ 275 # define DSI1_INT_TXPKT1_DONE BIT(1) 276 /* Signaled after each TXPKT1 repeat is scheduled. */ 277 # define DSI1_INT_TXPKT1_END BIT(0) 278 279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 280 DSI1_INT_ERR_CONTROL | \ 281 DSI1_INT_ERR_CONT_LP0 | \ 282 DSI1_INT_ERR_CONT_LP1 | \ 283 DSI1_INT_HSTX_TO | \ 284 DSI1_INT_LPRX_TO | \ 285 DSI1_INT_TA_TO | \ 286 DSI1_INT_PR_TO) 287 288 #define DSI0_STAT 0x2c 289 #define DSI0_HSTX_TO_CNT 0x30 290 #define DSI0_LPRX_TO_CNT 0x34 291 #define DSI0_TA_TO_CNT 0x38 292 #define DSI0_PR_TO_CNT 0x3c 293 #define DSI0_PHYC 0x40 294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 296 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 299 # define DSI1_PHYC_CLANE_ULPS BIT(17) 300 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 301 # define DSI_PHYC_DLANE3_ULPS BIT(13) 302 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 303 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 304 # define DSI0_PHYC_CLANE_ULPS BIT(9) 305 # define DSI_PHYC_DLANE2_ULPS BIT(9) 306 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 307 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 308 # define DSI_PHYC_DLANE1_ULPS BIT(5) 309 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 310 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 311 # define DSI_PHYC_DLANE0_ULPS BIT(1) 312 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 313 314 #define DSI0_HS_CLT0 0x44 315 #define DSI0_HS_CLT1 0x48 316 #define DSI0_HS_CLT2 0x4c 317 #define DSI0_HS_DLT3 0x50 318 #define DSI0_HS_DLT4 0x54 319 #define DSI0_HS_DLT5 0x58 320 #define DSI0_HS_DLT6 0x5c 321 #define DSI0_HS_DLT7 0x60 322 323 #define DSI0_PHY_AFEC0 0x64 324 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 325 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 326 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 343 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 344 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 345 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 346 # define DSI1_PHY_AFEC0_RESET BIT(13) 347 # define DSI1_PHY_AFEC0_PD BIT(12) 348 # define DSI0_PHY_AFEC0_RESET BIT(11) 349 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 350 # define DSI0_PHY_AFEC0_PD BIT(10) 351 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) 352 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 353 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 354 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 355 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) 356 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 358 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 360 361 #define DSI0_PHY_AFEC1 0x68 362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 368 369 #define DSI0_TST_SEL 0x6c 370 #define DSI0_TST_MON 0x70 371 #define DSI0_ID 0x74 372 # define DSI_ID_VALUE 0x00647369 373 374 #define DSI1_CTRL 0x00 375 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 376 # define DSI_CTRL_HS_CLKC_SHIFT 14 377 # define DSI_CTRL_HS_CLKC_BYTE 0 378 # define DSI_CTRL_HS_CLKC_DDR2 1 379 # define DSI_CTRL_HS_CLKC_DDR 2 380 381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 382 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 383 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 384 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 385 # define DSI_CTRL_CAL_BYTE BIT(9) 386 # define DSI_CTRL_INV_BYTE BIT(8) 387 # define DSI_CTRL_CLR_LDF BIT(7) 388 # define DSI0_CTRL_CLR_PBCF BIT(6) 389 # define DSI1_CTRL_CLR_RXF BIT(6) 390 # define DSI0_CTRL_CLR_CPBCF BIT(5) 391 # define DSI1_CTRL_CLR_PDF BIT(5) 392 # define DSI0_CTRL_CLR_PDF BIT(4) 393 # define DSI1_CTRL_CLR_CDF BIT(4) 394 # define DSI0_CTRL_CLR_CDF BIT(3) 395 # define DSI0_CTRL_CTRL2 BIT(2) 396 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 397 # define DSI0_CTRL_CTRL1 BIT(1) 398 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 399 # define DSI0_CTRL_CTRL0 BIT(0) 400 # define DSI1_CTRL_EN BIT(0) 401 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 402 DSI0_CTRL_CLR_PBCF | \ 403 DSI0_CTRL_CLR_CPBCF | \ 404 DSI0_CTRL_CLR_PDF | \ 405 DSI0_CTRL_CLR_CDF) 406 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 407 DSI1_CTRL_CLR_RXF | \ 408 DSI1_CTRL_CLR_PDF | \ 409 DSI1_CTRL_CLR_CDF) 410 411 #define DSI1_TXPKT2C 0x0c 412 #define DSI1_TXPKT2H 0x10 413 #define DSI1_TXPKT_PIX_FIFO 0x20 414 #define DSI1_RXPKT_FIFO 0x24 415 #define DSI1_DISP0_CTRL 0x28 416 #define DSI1_INT_STAT 0x30 417 #define DSI1_INT_EN 0x34 418 /* State reporting bits. These mostly behave like INT_STAT, where 419 * writing a 1 clears the bit. 420 */ 421 #define DSI1_STAT 0x38 422 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 423 # define DSI1_STAT_PHY_D3_STOP BIT(30) 424 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 425 # define DSI1_STAT_PHY_D2_STOP BIT(28) 426 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 427 # define DSI1_STAT_PHY_D1_STOP BIT(26) 428 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 429 # define DSI1_STAT_PHY_D0_STOP BIT(24) 430 # define DSI1_STAT_FIFO_ERR BIT(23) 431 # define DSI1_STAT_PHY_RXLPDT BIT(22) 432 # define DSI1_STAT_PHY_RXTRIG BIT(21) 433 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 434 /* Set when in forward direction */ 435 # define DSI1_STAT_PHY_DIR BIT(19) 436 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 437 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 438 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 439 # define DSI1_STAT_PR_TO BIT(15) 440 # define DSI1_STAT_TA_TO BIT(14) 441 # define DSI1_STAT_LPRX_TO BIT(13) 442 # define DSI1_STAT_HSTX_TO BIT(12) 443 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 444 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 445 # define DSI1_STAT_ERR_CONTROL BIT(9) 446 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 447 # define DSI1_STAT_RXPKT2 BIT(7) 448 # define DSI1_STAT_RXPKT1 BIT(6) 449 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 450 # define DSI1_STAT_TXPKT2_DONE BIT(4) 451 # define DSI1_STAT_TXPKT2_END BIT(3) 452 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 453 # define DSI1_STAT_TXPKT1_DONE BIT(1) 454 # define DSI1_STAT_TXPKT1_END BIT(0) 455 456 #define DSI1_HSTX_TO_CNT 0x3c 457 #define DSI1_LPRX_TO_CNT 0x40 458 #define DSI1_TA_TO_CNT 0x44 459 #define DSI1_PR_TO_CNT 0x48 460 #define DSI1_PHYC 0x4c 461 462 #define DSI1_HS_CLT0 0x50 463 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 464 # define DSI_HS_CLT0_CZERO_SHIFT 18 465 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 466 # define DSI_HS_CLT0_CPRE_SHIFT 9 467 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 468 # define DSI_HS_CLT0_CPREP_SHIFT 0 469 470 #define DSI1_HS_CLT1 0x54 471 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 472 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 473 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 474 # define DSI_HS_CLT1_CPOST_SHIFT 0 475 476 #define DSI1_HS_CLT2 0x58 477 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 478 # define DSI_HS_CLT2_WUP_SHIFT 0 479 480 #define DSI1_HS_DLT3 0x5c 481 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 482 # define DSI_HS_DLT3_EXIT_SHIFT 18 483 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 484 # define DSI_HS_DLT3_ZERO_SHIFT 9 485 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 486 # define DSI_HS_DLT3_PRE_SHIFT 0 487 488 #define DSI1_HS_DLT4 0x60 489 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 490 # define DSI_HS_DLT4_ANLAT_SHIFT 18 491 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 492 # define DSI_HS_DLT4_TRAIL_SHIFT 9 493 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 494 # define DSI_HS_DLT4_LPX_SHIFT 0 495 496 #define DSI1_HS_DLT5 0x64 497 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 498 # define DSI_HS_DLT5_INIT_SHIFT 0 499 500 #define DSI1_HS_DLT6 0x68 501 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 502 # define DSI_HS_DLT6_TA_GET_SHIFT 24 503 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 504 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 505 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 506 # define DSI_HS_DLT6_TA_GO_SHIFT 8 507 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 508 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 509 510 #define DSI1_HS_DLT7 0x6c 511 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 512 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 513 514 #define DSI1_PHY_AFEC0 0x70 515 516 #define DSI1_PHY_AFEC1 0x74 517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 527 528 #define DSI1_TST_SEL 0x78 529 #define DSI1_TST_MON 0x7c 530 #define DSI1_PHY_TST1 0x80 531 #define DSI1_PHY_TST2 0x84 532 #define DSI1_PHY_FIFO_STAT 0x88 533 /* Actually, all registers in the range that aren't otherwise claimed 534 * will return the ID. 535 */ 536 #define DSI1_ID 0x8c 537 538 struct vc4_dsi_variant { 539 /* Whether we're on bcm2835's DSI0 or DSI1. */ 540 unsigned int port; 541 542 bool broken_axi_workaround; 543 544 const char *debugfs_name; 545 const struct debugfs_reg32 *regs; 546 size_t nregs; 547 548 }; 549 550 /* General DSI hardware state. */ 551 struct vc4_dsi { 552 struct vc4_encoder encoder; 553 struct mipi_dsi_host dsi_host; 554 555 struct kref kref; 556 557 struct platform_device *pdev; 558 559 struct drm_bridge *out_bridge; 560 struct drm_bridge bridge; 561 562 void __iomem *regs; 563 564 struct dma_chan *reg_dma_chan; 565 dma_addr_t reg_dma_paddr; 566 u32 *reg_dma_mem; 567 dma_addr_t reg_paddr; 568 569 const struct vc4_dsi_variant *variant; 570 571 /* DSI channel for the panel we're connected to. */ 572 u32 channel; 573 u32 lanes; 574 u32 format; 575 u32 divider; 576 u32 mode_flags; 577 578 /* Input clock from CPRMAN to the digital PHY, for the DSI 579 * escape clock. 580 */ 581 struct clk *escape_clock; 582 583 /* Input clock to the analog PHY, used to generate the DSI bit 584 * clock. 585 */ 586 struct clk *pll_phy_clock; 587 588 /* HS Clocks generated within the DSI analog PHY. */ 589 struct clk_fixed_factor phy_clocks[3]; 590 591 struct clk_hw_onecell_data *clk_onecell; 592 593 /* Pixel clock output to the pixelvalve, generated from the HS 594 * clock. 595 */ 596 struct clk *pixel_clock; 597 598 struct completion xfer_completion; 599 int xfer_result; 600 601 struct debugfs_regset32 regset; 602 }; 603 604 #define host_to_dsi(host) \ 605 container_of_const(host, struct vc4_dsi, dsi_host) 606 607 #define to_vc4_dsi(_encoder) \ 608 container_of_const(_encoder, struct vc4_dsi, encoder.base) 609 610 #define bridge_to_vc4_dsi(_bridge) \ 611 container_of_const(_bridge, struct vc4_dsi, bridge) 612 613 static inline void 614 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 615 { 616 struct drm_device *drm = dsi->bridge.dev; 617 struct dma_chan *chan = dsi->reg_dma_chan; 618 struct dma_async_tx_descriptor *tx; 619 dma_cookie_t cookie; 620 int ret; 621 622 kunit_fail_current_test("Accessing a register in a unit test!\n"); 623 624 /* DSI0 should be able to write normally. */ 625 if (!chan) { 626 writel(val, dsi->regs + offset); 627 return; 628 } 629 630 *dsi->reg_dma_mem = val; 631 632 tx = chan->device->device_prep_dma_memcpy(chan, 633 dsi->reg_paddr + offset, 634 dsi->reg_dma_paddr, 635 4, 0); 636 if (!tx) { 637 drm_err(drm, "Failed to set up DMA register write\n"); 638 return; 639 } 640 641 cookie = tx->tx_submit(tx); 642 ret = dma_submit_error(cookie); 643 if (ret) { 644 drm_err(drm, "Failed to submit DMA: %d\n", ret); 645 return; 646 } 647 ret = dma_sync_wait(chan, cookie); 648 if (ret) 649 drm_err(drm, "Failed to wait for DMA: %d\n", ret); 650 } 651 652 #define DSI_READ(offset) \ 653 ({ \ 654 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 655 readl(dsi->regs + (offset)); \ 656 }) 657 658 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 659 #define DSI_PORT_READ(offset) \ 660 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 661 #define DSI_PORT_WRITE(offset, val) \ 662 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 663 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 664 665 static const struct debugfs_reg32 dsi0_regs[] = { 666 VC4_REG32(DSI0_CTRL), 667 VC4_REG32(DSI0_STAT), 668 VC4_REG32(DSI0_HSTX_TO_CNT), 669 VC4_REG32(DSI0_LPRX_TO_CNT), 670 VC4_REG32(DSI0_TA_TO_CNT), 671 VC4_REG32(DSI0_PR_TO_CNT), 672 VC4_REG32(DSI0_DISP0_CTRL), 673 VC4_REG32(DSI0_DISP1_CTRL), 674 VC4_REG32(DSI0_INT_STAT), 675 VC4_REG32(DSI0_INT_EN), 676 VC4_REG32(DSI0_PHYC), 677 VC4_REG32(DSI0_HS_CLT0), 678 VC4_REG32(DSI0_HS_CLT1), 679 VC4_REG32(DSI0_HS_CLT2), 680 VC4_REG32(DSI0_HS_DLT3), 681 VC4_REG32(DSI0_HS_DLT4), 682 VC4_REG32(DSI0_HS_DLT5), 683 VC4_REG32(DSI0_HS_DLT6), 684 VC4_REG32(DSI0_HS_DLT7), 685 VC4_REG32(DSI0_PHY_AFEC0), 686 VC4_REG32(DSI0_PHY_AFEC1), 687 VC4_REG32(DSI0_ID), 688 }; 689 690 static const struct debugfs_reg32 dsi1_regs[] = { 691 VC4_REG32(DSI1_CTRL), 692 VC4_REG32(DSI1_STAT), 693 VC4_REG32(DSI1_HSTX_TO_CNT), 694 VC4_REG32(DSI1_LPRX_TO_CNT), 695 VC4_REG32(DSI1_TA_TO_CNT), 696 VC4_REG32(DSI1_PR_TO_CNT), 697 VC4_REG32(DSI1_DISP0_CTRL), 698 VC4_REG32(DSI1_DISP1_CTRL), 699 VC4_REG32(DSI1_INT_STAT), 700 VC4_REG32(DSI1_INT_EN), 701 VC4_REG32(DSI1_PHYC), 702 VC4_REG32(DSI1_HS_CLT0), 703 VC4_REG32(DSI1_HS_CLT1), 704 VC4_REG32(DSI1_HS_CLT2), 705 VC4_REG32(DSI1_HS_DLT3), 706 VC4_REG32(DSI1_HS_DLT4), 707 VC4_REG32(DSI1_HS_DLT5), 708 VC4_REG32(DSI1_HS_DLT6), 709 VC4_REG32(DSI1_HS_DLT7), 710 VC4_REG32(DSI1_PHY_AFEC0), 711 VC4_REG32(DSI1_PHY_AFEC1), 712 VC4_REG32(DSI1_ID), 713 }; 714 715 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 716 { 717 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 718 719 if (latch) 720 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 721 else 722 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 723 724 DSI_PORT_WRITE(PHY_AFEC0, afec0); 725 } 726 727 /* Enters or exits Ultra Low Power State. */ 728 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 729 { 730 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 731 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 732 DSI_PHYC_DLANE0_ULPS | 733 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 734 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 735 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 736 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 737 DSI1_STAT_PHY_D0_ULPS | 738 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 739 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 740 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 741 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 742 DSI1_STAT_PHY_D0_STOP | 743 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 744 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 745 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 746 int ret; 747 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 748 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 749 750 if (ulps == ulps_currently_enabled) 751 return; 752 753 DSI_PORT_WRITE(STAT, stat_ulps); 754 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 755 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 756 if (ret) { 757 dev_warn(&dsi->pdev->dev, 758 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 759 DSI_PORT_READ(STAT)); 760 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 761 vc4_dsi_latch_ulps(dsi, false); 762 return; 763 } 764 765 /* The DSI module can't be disabled while the module is 766 * generating ULPS state. So, to be able to disable the 767 * module, we have the AFE latch the ULPS state and continue 768 * on to having the module enter STOP. 769 */ 770 vc4_dsi_latch_ulps(dsi, ulps); 771 772 DSI_PORT_WRITE(STAT, stat_stop); 773 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 774 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 775 if (ret) { 776 dev_warn(&dsi->pdev->dev, 777 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 778 DSI_PORT_READ(STAT)); 779 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 780 return; 781 } 782 } 783 784 static u32 785 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 786 { 787 /* The HS timings have to be rounded up to a multiple of 8 788 * because we're using the byte clock. 789 */ 790 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 791 } 792 793 /* ESC always runs at 100Mhz. */ 794 #define ESC_TIME_NS 10 795 796 static u32 797 dsi_esc_timing(u32 ns) 798 { 799 return DIV_ROUND_UP(ns, ESC_TIME_NS); 800 } 801 802 static void vc4_dsi_bridge_disable(struct drm_bridge *bridge, 803 struct drm_bridge_state *state) 804 { 805 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 806 u32 disp0_ctrl; 807 808 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL); 809 disp0_ctrl &= ~DSI_DISP0_ENABLE; 810 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl); 811 } 812 813 static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge, 814 struct drm_bridge_state *state) 815 { 816 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 817 struct device *dev = &dsi->pdev->dev; 818 819 clk_disable_unprepare(dsi->pll_phy_clock); 820 clk_disable_unprepare(dsi->escape_clock); 821 clk_disable_unprepare(dsi->pixel_clock); 822 823 pm_runtime_put(dev); 824 } 825 826 /* Extends the mode's blank intervals to handle BCM2835's integer-only 827 * DSI PLL divider. 828 * 829 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 830 * driver since most peripherals are hanging off of the PLLD_PER 831 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 832 * the pixel clock), only has an integer divider off of DSI. 833 * 834 * To get our panel mode to refresh at the expected 60Hz, we need to 835 * extend the horizontal blank time. This means we drive a 836 * higher-than-expected clock rate to the panel, but that's what the 837 * firmware does too. 838 */ 839 static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge, 840 const struct drm_display_mode *mode, 841 struct drm_display_mode *adjusted_mode) 842 { 843 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 844 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 845 unsigned long parent_rate = clk_get_rate(phy_parent); 846 unsigned long pixel_clock_hz = mode->clock * 1000; 847 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 848 int divider; 849 850 /* Find what divider gets us a faster clock than the requested 851 * pixel clock. 852 */ 853 for (divider = 1; divider < 255; divider++) { 854 if (parent_rate / (divider + 1) < pll_clock) 855 break; 856 } 857 858 /* Now that we've picked a PLL divider, calculate back to its 859 * pixel clock. 860 */ 861 pll_clock = parent_rate / divider; 862 pixel_clock_hz = pll_clock / dsi->divider; 863 864 adjusted_mode->clock = pixel_clock_hz / 1000; 865 866 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 867 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 868 mode->clock; 869 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 870 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 871 872 return true; 873 } 874 875 static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge, 876 struct drm_bridge_state *old_state) 877 { 878 struct drm_atomic_state *state = old_state->base.state; 879 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 880 const struct drm_crtc_state *crtc_state; 881 struct device *dev = &dsi->pdev->dev; 882 const struct drm_display_mode *mode; 883 struct drm_connector *connector; 884 bool debug_dump_regs = false; 885 unsigned long hs_clock; 886 struct drm_crtc *crtc; 887 u32 ui_ns; 888 /* Minimum LP state duration in escape clock cycles. */ 889 u32 lpx = dsi_esc_timing(60); 890 unsigned long pixel_clock_hz; 891 unsigned long dsip_clock; 892 unsigned long phy_clock; 893 int ret; 894 895 ret = pm_runtime_resume_and_get(dev); 896 if (ret) { 897 drm_err(bridge->dev, "Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 898 return; 899 } 900 901 if (debug_dump_regs) { 902 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 903 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 904 drm_print_regset32(&p, &dsi->regset); 905 } 906 907 /* 908 * Retrieve the CRTC adjusted mode. This requires a little dance to go 909 * from the bridge to the encoder, to the connector and to the CRTC. 910 */ 911 connector = drm_atomic_get_new_connector_for_encoder(state, 912 bridge->encoder); 913 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; 914 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 915 mode = &crtc_state->adjusted_mode; 916 917 pixel_clock_hz = mode->clock * 1000; 918 919 /* Round up the clk_set_rate() request slightly, since 920 * PLLD_DSI1 is an integer divider and its rate selection will 921 * never round up. 922 */ 923 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 924 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 925 if (ret) { 926 dev_err(&dsi->pdev->dev, 927 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 928 } 929 930 /* Reset the DSI and all its fifos. */ 931 DSI_PORT_WRITE(CTRL, 932 DSI_CTRL_SOFT_RESET_CFG | 933 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 934 935 DSI_PORT_WRITE(CTRL, 936 DSI_CTRL_HSDT_EOT_DISABLE | 937 DSI_CTRL_RX_LPDT_EOT_DISABLE); 938 939 /* Clear all stat bits so we see what has happened during enable. */ 940 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 941 942 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 943 if (dsi->variant->port == 0) { 944 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 945 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 946 947 if (dsi->lanes < 2) 948 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 949 950 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 951 afec0 |= DSI0_PHY_AFEC0_RESET; 952 953 DSI_PORT_WRITE(PHY_AFEC0, afec0); 954 955 /* AFEC reset hold time */ 956 mdelay(1); 957 958 DSI_PORT_WRITE(PHY_AFEC1, 959 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 960 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 961 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 962 } else { 963 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 964 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 965 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 966 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 967 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 968 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 969 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 970 971 if (dsi->lanes < 4) 972 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 973 if (dsi->lanes < 3) 974 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 975 if (dsi->lanes < 2) 976 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 977 978 afec0 |= DSI1_PHY_AFEC0_RESET; 979 980 DSI_PORT_WRITE(PHY_AFEC0, afec0); 981 982 DSI_PORT_WRITE(PHY_AFEC1, 0); 983 984 /* AFEC reset hold time */ 985 mdelay(1); 986 } 987 988 ret = clk_prepare_enable(dsi->escape_clock); 989 if (ret) { 990 drm_err(bridge->dev, "Failed to turn on DSI escape clock: %d\n", 991 ret); 992 return; 993 } 994 995 ret = clk_prepare_enable(dsi->pll_phy_clock); 996 if (ret) { 997 drm_err(bridge->dev, "Failed to turn on DSI PLL: %d\n", ret); 998 return; 999 } 1000 1001 hs_clock = clk_get_rate(dsi->pll_phy_clock); 1002 1003 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 1004 * not the pixel clock rate. DSIxP take from the APHY's byte, 1005 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 1006 * that rate. Separately, a value derived from PIX_CLK_DIV 1007 * and HS_CLKC is fed into the PV to divide down to the actual 1008 * pixel clock for pushing pixels into DSI. 1009 */ 1010 dsip_clock = phy_clock / 8; 1011 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 1012 if (ret) { 1013 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 1014 dsip_clock, ret); 1015 } 1016 1017 ret = clk_prepare_enable(dsi->pixel_clock); 1018 if (ret) { 1019 drm_err(bridge->dev, "Failed to turn on DSI pixel clock: %d\n", ret); 1020 return; 1021 } 1022 1023 /* How many ns one DSI unit interval is. Note that the clock 1024 * is DDR, so there's an extra divide by 2. 1025 */ 1026 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1027 1028 DSI_PORT_WRITE(HS_CLT0, 1029 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1030 DSI_HS_CLT0_CZERO) | 1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1032 DSI_HS_CLT0_CPRE) | 1033 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1034 DSI_HS_CLT0_CPREP)); 1035 1036 DSI_PORT_WRITE(HS_CLT1, 1037 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1038 DSI_HS_CLT1_CTRAIL) | 1039 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1040 DSI_HS_CLT1_CPOST)); 1041 1042 DSI_PORT_WRITE(HS_CLT2, 1043 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1044 DSI_HS_CLT2_WUP)); 1045 1046 DSI_PORT_WRITE(HS_DLT3, 1047 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1048 DSI_HS_DLT3_EXIT) | 1049 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1050 DSI_HS_DLT3_ZERO) | 1051 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1052 DSI_HS_DLT3_PRE)); 1053 1054 DSI_PORT_WRITE(HS_DLT4, 1055 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1056 DSI_HS_DLT4_LPX) | 1057 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1058 dsi_hs_timing(ui_ns, 60, 4)), 1059 DSI_HS_DLT4_TRAIL) | 1060 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1061 1062 /* T_INIT is how long STOP is driven after power-up to 1063 * indicate to the slave (also coming out of power-up) that 1064 * master init is complete, and should be greater than the 1065 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1066 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1067 * T_INIT,SLAVE, while allowing protocols on top of it to give 1068 * greater minimums. The vc4 firmware uses an extremely 1069 * conservative 5ms, and we maintain that here. 1070 */ 1071 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1072 5 * 1000 * 1000, 0), 1073 DSI_HS_DLT5_INIT)); 1074 1075 DSI_PORT_WRITE(HS_DLT6, 1076 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1077 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1078 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1079 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1080 1081 DSI_PORT_WRITE(HS_DLT7, 1082 VC4_SET_FIELD(dsi_esc_timing(1000000), 1083 DSI_HS_DLT7_LP_WUP)); 1084 1085 DSI_PORT_WRITE(PHYC, 1086 DSI_PHYC_DLANE0_ENABLE | 1087 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1088 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1089 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1090 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1091 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1092 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1093 (dsi->variant->port == 0 ? 1094 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1095 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1096 1097 DSI_PORT_WRITE(CTRL, 1098 DSI_PORT_READ(CTRL) | 1099 DSI_CTRL_CAL_BYTE); 1100 1101 /* HS timeout in HS clock cycles: disabled. */ 1102 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1103 /* LP receive timeout in HS clocks. */ 1104 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1105 /* Bus turnaround timeout */ 1106 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1107 /* Display reset sequence timeout */ 1108 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1109 1110 /* Set up DISP1 for transferring long command payloads through 1111 * the pixfifo. 1112 */ 1113 DSI_PORT_WRITE(DISP1_CTRL, 1114 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1115 DSI_DISP1_PFORMAT) | 1116 DSI_DISP1_ENABLE); 1117 1118 /* Ungate the block. */ 1119 if (dsi->variant->port == 0) 1120 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1121 else 1122 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1123 1124 /* Bring AFE out of reset. */ 1125 DSI_PORT_WRITE(PHY_AFEC0, 1126 DSI_PORT_READ(PHY_AFEC0) & 1127 ~DSI_PORT_BIT(PHY_AFEC0_RESET)); 1128 1129 vc4_dsi_ulps(dsi, false); 1130 1131 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1132 DSI_PORT_WRITE(DISP0_CTRL, 1133 VC4_SET_FIELD(dsi->divider, 1134 DSI_DISP0_PIX_CLK_DIV) | 1135 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1136 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1137 DSI_DISP0_LP_STOP_CTRL) | 1138 DSI_DISP0_ST_END); 1139 } else { 1140 DSI_PORT_WRITE(DISP0_CTRL, 1141 DSI_DISP0_COMMAND_MODE); 1142 } 1143 } 1144 1145 static void vc4_dsi_bridge_enable(struct drm_bridge *bridge, 1146 struct drm_bridge_state *old_state) 1147 { 1148 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 1149 bool debug_dump_regs = false; 1150 u32 disp0_ctrl; 1151 1152 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL); 1153 disp0_ctrl |= DSI_DISP0_ENABLE; 1154 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl); 1155 1156 if (debug_dump_regs) { 1157 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1158 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1159 drm_print_regset32(&p, &dsi->regset); 1160 } 1161 } 1162 1163 static int vc4_dsi_bridge_attach(struct drm_bridge *bridge, 1164 enum drm_bridge_attach_flags flags) 1165 { 1166 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 1167 1168 /* Attach the panel or bridge to the dsi bridge */ 1169 return drm_bridge_attach(bridge->encoder, dsi->out_bridge, 1170 &dsi->bridge, flags); 1171 } 1172 1173 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1174 const struct mipi_dsi_msg *msg) 1175 { 1176 struct vc4_dsi *dsi = host_to_dsi(host); 1177 struct drm_device *drm = dsi->bridge.dev; 1178 struct mipi_dsi_packet packet; 1179 u32 pkth = 0, pktc = 0; 1180 int i, ret; 1181 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1182 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1183 1184 mipi_dsi_create_packet(&packet, msg); 1185 1186 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1187 pkth |= VC4_SET_FIELD(packet.header[1] | 1188 (packet.header[2] << 8), 1189 DSI_TXPKT1H_BC_PARAM); 1190 if (is_long) { 1191 /* Divide data across the various FIFOs we have available. 1192 * The command FIFO takes byte-oriented data, but is of 1193 * limited size. The pixel FIFO (never actually used for 1194 * pixel data in reality) is word oriented, and substantially 1195 * larger. So, we use the pixel FIFO for most of the data, 1196 * sending the residual bytes in the command FIFO at the start. 1197 * 1198 * With this arrangement, the command FIFO will never get full. 1199 */ 1200 if (packet.payload_length <= 16) { 1201 cmd_fifo_len = packet.payload_length; 1202 pix_fifo_len = 0; 1203 } else { 1204 cmd_fifo_len = (packet.payload_length % 1205 DSI_PIX_FIFO_WIDTH); 1206 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1207 DSI_PIX_FIFO_WIDTH); 1208 } 1209 1210 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1211 1212 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1213 } 1214 1215 if (msg->rx_len) { 1216 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1217 DSI_TXPKT1C_CMD_CTRL); 1218 } else { 1219 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1220 DSI_TXPKT1C_CMD_CTRL); 1221 } 1222 1223 for (i = 0; i < cmd_fifo_len; i++) 1224 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1225 for (i = 0; i < pix_fifo_len; i++) { 1226 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1227 1228 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1229 pix[0] | 1230 pix[1] << 8 | 1231 pix[2] << 16 | 1232 pix[3] << 24); 1233 } 1234 1235 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1236 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1237 if (is_long) 1238 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1239 1240 /* Send one copy of the packet. Larger repeats are used for pixel 1241 * data in command mode. 1242 */ 1243 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1244 1245 pktc |= DSI_TXPKT1C_CMD_EN; 1246 if (pix_fifo_len) { 1247 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1248 DSI_TXPKT1C_DISPLAY_NO); 1249 } else { 1250 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1251 DSI_TXPKT1C_DISPLAY_NO); 1252 } 1253 1254 /* Enable the appropriate interrupt for the transfer completion. */ 1255 dsi->xfer_result = 0; 1256 reinit_completion(&dsi->xfer_completion); 1257 if (dsi->variant->port == 0) { 1258 DSI_PORT_WRITE(INT_STAT, 1259 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF); 1260 if (msg->rx_len) { 1261 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1262 DSI0_INT_PHY_DIR_RTF)); 1263 } else { 1264 DSI_PORT_WRITE(INT_EN, 1265 (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1266 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT, 1267 DSI0_INT_CMDC_DONE))); 1268 } 1269 } else { 1270 DSI_PORT_WRITE(INT_STAT, 1271 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1272 if (msg->rx_len) { 1273 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1274 DSI1_INT_PHY_DIR_RTF)); 1275 } else { 1276 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1277 DSI1_INT_TXPKT1_DONE)); 1278 } 1279 } 1280 1281 /* Send the packet. */ 1282 DSI_PORT_WRITE(TXPKT1H, pkth); 1283 DSI_PORT_WRITE(TXPKT1C, pktc); 1284 1285 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1286 msecs_to_jiffies(1000))) { 1287 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1288 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1289 DSI_PORT_READ(INT_STAT)); 1290 ret = -ETIMEDOUT; 1291 } else { 1292 ret = dsi->xfer_result; 1293 } 1294 1295 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1296 1297 if (ret) 1298 goto reset_fifo_and_return; 1299 1300 if (ret == 0 && msg->rx_len) { 1301 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1302 u8 *msg_rx = msg->rx_buf; 1303 1304 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1305 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1306 DSI_RXPKT1H_BC_PARAM); 1307 1308 if (rxlen != msg->rx_len) { 1309 drm_err(drm, "DSI returned %db, expecting %db\n", 1310 rxlen, (int)msg->rx_len); 1311 ret = -ENXIO; 1312 goto reset_fifo_and_return; 1313 } 1314 1315 for (i = 0; i < msg->rx_len; i++) 1316 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1317 } else { 1318 /* FINISHME: Handle AWER */ 1319 1320 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1321 DSI_RXPKT1H_SHORT_0); 1322 if (msg->rx_len > 1) { 1323 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1324 DSI_RXPKT1H_SHORT_1); 1325 } 1326 } 1327 } 1328 1329 return ret; 1330 1331 reset_fifo_and_return: 1332 drm_err(drm, "DSI transfer failed, resetting: %d\n", ret); 1333 1334 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1335 udelay(1); 1336 DSI_PORT_WRITE(CTRL, 1337 DSI_PORT_READ(CTRL) | 1338 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1339 1340 DSI_PORT_WRITE(TXPKT1C, 0); 1341 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1342 return ret; 1343 } 1344 1345 static const struct component_ops vc4_dsi_ops; 1346 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1347 struct mipi_dsi_device *device) 1348 { 1349 struct vc4_dsi *dsi = host_to_dsi(host); 1350 int ret; 1351 1352 dsi->lanes = device->lanes; 1353 dsi->channel = device->channel; 1354 dsi->mode_flags = device->mode_flags; 1355 1356 switch (device->format) { 1357 case MIPI_DSI_FMT_RGB888: 1358 dsi->format = DSI_PFORMAT_RGB888; 1359 dsi->divider = 24 / dsi->lanes; 1360 break; 1361 case MIPI_DSI_FMT_RGB666: 1362 dsi->format = DSI_PFORMAT_RGB666; 1363 dsi->divider = 24 / dsi->lanes; 1364 break; 1365 case MIPI_DSI_FMT_RGB666_PACKED: 1366 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1367 dsi->divider = 18 / dsi->lanes; 1368 break; 1369 case MIPI_DSI_FMT_RGB565: 1370 dsi->format = DSI_PFORMAT_RGB565; 1371 dsi->divider = 16 / dsi->lanes; 1372 break; 1373 default: 1374 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1375 dsi->format); 1376 return 0; 1377 } 1378 1379 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1380 dev_err(&dsi->pdev->dev, 1381 "Only VIDEO mode panels supported currently.\n"); 1382 return 0; 1383 } 1384 1385 drm_bridge_add(&dsi->bridge); 1386 1387 ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops); 1388 if (ret) { 1389 drm_bridge_remove(&dsi->bridge); 1390 return ret; 1391 } 1392 1393 return 0; 1394 } 1395 1396 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1397 struct mipi_dsi_device *device) 1398 { 1399 struct vc4_dsi *dsi = host_to_dsi(host); 1400 1401 component_del(&dsi->pdev->dev, &vc4_dsi_ops); 1402 drm_bridge_remove(&dsi->bridge); 1403 return 0; 1404 } 1405 1406 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1407 .attach = vc4_dsi_host_attach, 1408 .detach = vc4_dsi_host_detach, 1409 .transfer = vc4_dsi_host_transfer, 1410 }; 1411 1412 static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = { 1413 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 1414 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 1415 .atomic_reset = drm_atomic_helper_bridge_reset, 1416 .atomic_pre_enable = vc4_dsi_bridge_pre_enable, 1417 .atomic_enable = vc4_dsi_bridge_enable, 1418 .atomic_disable = vc4_dsi_bridge_disable, 1419 .atomic_post_disable = vc4_dsi_bridge_post_disable, 1420 .attach = vc4_dsi_bridge_attach, 1421 .mode_fixup = vc4_dsi_bridge_mode_fixup, 1422 }; 1423 1424 static int vc4_dsi_late_register(struct drm_encoder *encoder) 1425 { 1426 struct drm_device *drm = encoder->dev; 1427 struct vc4_dsi *dsi = to_vc4_dsi(encoder); 1428 1429 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset); 1430 1431 return 0; 1432 } 1433 1434 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 1435 .late_register = vc4_dsi_late_register, 1436 }; 1437 1438 static const struct vc4_dsi_variant bcm2711_dsi1_variant = { 1439 .port = 1, 1440 .debugfs_name = "dsi1_regs", 1441 .regs = dsi1_regs, 1442 .nregs = ARRAY_SIZE(dsi1_regs), 1443 }; 1444 1445 static const struct vc4_dsi_variant bcm2835_dsi0_variant = { 1446 .port = 0, 1447 .debugfs_name = "dsi0_regs", 1448 .regs = dsi0_regs, 1449 .nregs = ARRAY_SIZE(dsi0_regs), 1450 }; 1451 1452 static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1453 .port = 1, 1454 .broken_axi_workaround = true, 1455 .debugfs_name = "dsi1_regs", 1456 .regs = dsi1_regs, 1457 .nregs = ARRAY_SIZE(dsi1_regs), 1458 }; 1459 1460 static const struct of_device_id vc4_dsi_dt_match[] = { 1461 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, 1462 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, 1463 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1464 {} 1465 }; 1466 1467 static void dsi_handle_error(struct vc4_dsi *dsi, 1468 irqreturn_t *ret, u32 stat, u32 bit, 1469 const char *type) 1470 { 1471 if (!(stat & bit)) 1472 return; 1473 1474 drm_err(dsi->bridge.dev, "DSI%d: %s error\n", dsi->variant->port, 1475 type); 1476 *ret = IRQ_HANDLED; 1477 } 1478 1479 /* 1480 * Initial handler for port 1 where we need the reg_dma workaround. 1481 * The register DMA writes sleep, so we can't do it in the top half. 1482 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1483 * parent interrupt contrller until our interrupt thread is done. 1484 */ 1485 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1486 { 1487 struct vc4_dsi *dsi = data; 1488 u32 stat = DSI_PORT_READ(INT_STAT); 1489 1490 if (!stat) 1491 return IRQ_NONE; 1492 1493 return IRQ_WAKE_THREAD; 1494 } 1495 1496 /* 1497 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1498 * 1 where we need the reg_dma workaround. 1499 */ 1500 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1501 { 1502 struct vc4_dsi *dsi = data; 1503 u32 stat = DSI_PORT_READ(INT_STAT); 1504 irqreturn_t ret = IRQ_NONE; 1505 1506 DSI_PORT_WRITE(INT_STAT, stat); 1507 1508 dsi_handle_error(dsi, &ret, stat, 1509 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync"); 1510 dsi_handle_error(dsi, &ret, stat, 1511 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence"); 1512 dsi_handle_error(dsi, &ret, stat, 1513 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention"); 1514 dsi_handle_error(dsi, &ret, stat, 1515 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention"); 1516 dsi_handle_error(dsi, &ret, stat, 1517 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout"); 1518 dsi_handle_error(dsi, &ret, stat, 1519 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout"); 1520 dsi_handle_error(dsi, &ret, stat, 1521 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout"); 1522 dsi_handle_error(dsi, &ret, stat, 1523 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout"); 1524 1525 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE : 1526 DSI0_INT_CMDC_DONE_MASK) | 1527 DSI_PORT_BIT(INT_PHY_DIR_RTF))) { 1528 complete(&dsi->xfer_completion); 1529 ret = IRQ_HANDLED; 1530 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) { 1531 complete(&dsi->xfer_completion); 1532 dsi->xfer_result = -ETIMEDOUT; 1533 ret = IRQ_HANDLED; 1534 } 1535 1536 return ret; 1537 } 1538 1539 /** 1540 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1541 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1542 * @dsi: DSI encoder 1543 */ 1544 static int 1545 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1546 { 1547 struct device *dev = &dsi->pdev->dev; 1548 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1549 static const struct { 1550 const char *name; 1551 int div; 1552 } phy_clocks[] = { 1553 { "byte", 8 }, 1554 { "ddr2", 4 }, 1555 { "ddr", 2 }, 1556 }; 1557 int i; 1558 1559 dsi->clk_onecell = devm_kzalloc(dev, 1560 sizeof(*dsi->clk_onecell) + 1561 ARRAY_SIZE(phy_clocks) * 1562 sizeof(struct clk_hw *), 1563 GFP_KERNEL); 1564 if (!dsi->clk_onecell) 1565 return -ENOMEM; 1566 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1567 1568 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1569 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1570 struct clk_init_data init; 1571 char clk_name[16]; 1572 int ret; 1573 1574 snprintf(clk_name, sizeof(clk_name), 1575 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1576 1577 /* We just use core fixed factor clock ops for the PHY 1578 * clocks. The clocks are actually gated by the 1579 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1580 * setting if we use the DDR/DDR2 clocks. However, 1581 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1582 * setting both our parent DSI PLL's rate and this 1583 * clock's rate, so it knows if DDR/DDR2 are going to 1584 * be used and could enable the gates itself. 1585 */ 1586 fix->mult = 1; 1587 fix->div = phy_clocks[i].div; 1588 fix->hw.init = &init; 1589 1590 memset(&init, 0, sizeof(init)); 1591 init.parent_names = &parent_name; 1592 init.num_parents = 1; 1593 init.name = clk_name; 1594 init.ops = &clk_fixed_factor_ops; 1595 1596 ret = devm_clk_hw_register(dev, &fix->hw); 1597 if (ret) 1598 return ret; 1599 1600 dsi->clk_onecell->hws[i] = &fix->hw; 1601 } 1602 1603 return of_clk_add_hw_provider(dev->of_node, 1604 of_clk_hw_onecell_get, 1605 dsi->clk_onecell); 1606 } 1607 1608 static void vc4_dsi_dma_mem_release(void *ptr) 1609 { 1610 struct vc4_dsi *dsi = ptr; 1611 struct device *dev = &dsi->pdev->dev; 1612 1613 dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr); 1614 dsi->reg_dma_mem = NULL; 1615 } 1616 1617 static void vc4_dsi_dma_chan_release(void *ptr) 1618 { 1619 struct vc4_dsi *dsi = ptr; 1620 1621 dma_release_channel(dsi->reg_dma_chan); 1622 dsi->reg_dma_chan = NULL; 1623 } 1624 1625 static void vc4_dsi_release(struct kref *kref) 1626 { 1627 struct vc4_dsi *dsi = 1628 container_of(kref, struct vc4_dsi, kref); 1629 1630 kfree(dsi); 1631 } 1632 1633 static void vc4_dsi_get(struct vc4_dsi *dsi) 1634 { 1635 kref_get(&dsi->kref); 1636 } 1637 1638 static void vc4_dsi_put(struct vc4_dsi *dsi) 1639 { 1640 kref_put(&dsi->kref, &vc4_dsi_release); 1641 } 1642 1643 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr) 1644 { 1645 struct vc4_dsi *dsi = ptr; 1646 1647 vc4_dsi_put(dsi); 1648 } 1649 1650 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1651 { 1652 struct platform_device *pdev = to_platform_device(dev); 1653 struct drm_device *drm = dev_get_drvdata(master); 1654 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1655 struct drm_encoder *encoder = &dsi->encoder.base; 1656 int ret; 1657 1658 vc4_dsi_get(dsi); 1659 1660 ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi); 1661 if (ret) 1662 return ret; 1663 1664 dsi->variant = of_device_get_match_data(dev); 1665 1666 dsi->encoder.type = dsi->variant->port ? 1667 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0; 1668 1669 dsi->regs = vc4_ioremap_regs(pdev, 0); 1670 if (IS_ERR(dsi->regs)) 1671 return PTR_ERR(dsi->regs); 1672 1673 dsi->regset.base = dsi->regs; 1674 dsi->regset.regs = dsi->variant->regs; 1675 dsi->regset.nregs = dsi->variant->nregs; 1676 1677 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1678 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1679 DSI_PORT_READ(ID), DSI_ID_VALUE); 1680 return -ENODEV; 1681 } 1682 1683 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to 1684 * writes from the ARM. It does handle writes from the DMA engine, 1685 * so set up a channel for talking to it. 1686 */ 1687 if (dsi->variant->broken_axi_workaround) { 1688 dma_cap_mask_t dma_mask; 1689 1690 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1691 &dsi->reg_dma_paddr, 1692 GFP_KERNEL); 1693 if (!dsi->reg_dma_mem) { 1694 drm_err(drm, "Failed to get DMA memory\n"); 1695 return -ENOMEM; 1696 } 1697 1698 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi); 1699 if (ret) 1700 return ret; 1701 1702 dma_cap_zero(dma_mask); 1703 dma_cap_set(DMA_MEMCPY, dma_mask); 1704 1705 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1706 if (IS_ERR(dsi->reg_dma_chan)) { 1707 ret = PTR_ERR(dsi->reg_dma_chan); 1708 if (ret != -EPROBE_DEFER) 1709 drm_err(drm, "Failed to get DMA channel: %d\n", 1710 ret); 1711 return ret; 1712 } 1713 1714 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi); 1715 if (ret) 1716 return ret; 1717 1718 /* Get the physical address of the device's registers. The 1719 * struct resource for the regs gives us the bus address 1720 * instead. 1721 */ 1722 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1723 0, NULL, NULL)); 1724 } 1725 1726 init_completion(&dsi->xfer_completion); 1727 /* At startup enable error-reporting interrupts and nothing else. */ 1728 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1729 /* Clear any existing interrupt state. */ 1730 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1731 1732 if (dsi->reg_dma_mem) 1733 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1734 vc4_dsi_irq_defer_to_thread_handler, 1735 vc4_dsi_irq_handler, 1736 IRQF_ONESHOT, 1737 "vc4 dsi", dsi); 1738 else 1739 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1740 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1741 if (ret) { 1742 if (ret != -EPROBE_DEFER) 1743 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1744 return ret; 1745 } 1746 1747 dsi->escape_clock = devm_clk_get(dev, "escape"); 1748 if (IS_ERR(dsi->escape_clock)) { 1749 ret = PTR_ERR(dsi->escape_clock); 1750 if (ret != -EPROBE_DEFER) 1751 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1752 return ret; 1753 } 1754 1755 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1756 if (IS_ERR(dsi->pll_phy_clock)) { 1757 ret = PTR_ERR(dsi->pll_phy_clock); 1758 if (ret != -EPROBE_DEFER) 1759 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1760 return ret; 1761 } 1762 1763 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1764 if (IS_ERR(dsi->pixel_clock)) { 1765 ret = PTR_ERR(dsi->pixel_clock); 1766 if (ret != -EPROBE_DEFER) 1767 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1768 return ret; 1769 } 1770 1771 dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0); 1772 if (IS_ERR(dsi->out_bridge)) 1773 return PTR_ERR(dsi->out_bridge); 1774 1775 /* The esc clock rate is supposed to always be 100Mhz. */ 1776 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1777 if (ret) { 1778 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1779 return ret; 1780 } 1781 1782 ret = vc4_dsi_init_phy_clocks(dsi); 1783 if (ret) 1784 return ret; 1785 1786 ret = drmm_encoder_init(drm, encoder, 1787 &vc4_dsi_encoder_funcs, 1788 DRM_MODE_ENCODER_DSI, 1789 NULL); 1790 if (ret) 1791 return ret; 1792 1793 ret = devm_pm_runtime_enable(dev); 1794 if (ret) 1795 return ret; 1796 1797 ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0); 1798 if (ret) 1799 return ret; 1800 1801 return 0; 1802 } 1803 1804 static const struct component_ops vc4_dsi_ops = { 1805 .bind = vc4_dsi_bind, 1806 }; 1807 1808 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1809 { 1810 struct device *dev = &pdev->dev; 1811 struct vc4_dsi *dsi; 1812 1813 dsi = kzalloc(sizeof(*dsi), GFP_KERNEL); 1814 if (!dsi) 1815 return -ENOMEM; 1816 dev_set_drvdata(dev, dsi); 1817 1818 kref_init(&dsi->kref); 1819 1820 dsi->pdev = pdev; 1821 dsi->bridge.funcs = &vc4_dsi_bridge_funcs; 1822 #ifdef CONFIG_OF 1823 dsi->bridge.of_node = dev->of_node; 1824 #endif 1825 dsi->bridge.type = DRM_MODE_CONNECTOR_DSI; 1826 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1827 dsi->dsi_host.dev = dev; 1828 mipi_dsi_host_register(&dsi->dsi_host); 1829 1830 return 0; 1831 } 1832 1833 static void vc4_dsi_dev_remove(struct platform_device *pdev) 1834 { 1835 struct device *dev = &pdev->dev; 1836 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1837 1838 mipi_dsi_host_unregister(&dsi->dsi_host); 1839 vc4_dsi_put(dsi); 1840 } 1841 1842 struct platform_driver vc4_dsi_driver = { 1843 .probe = vc4_dsi_dev_probe, 1844 .remove = vc4_dsi_dev_remove, 1845 .driver = { 1846 .name = "vc4_dsi", 1847 .of_match_table = vc4_dsi_dt_match, 1848 }, 1849 }; 1850