1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/i2c.h> 28 #include <linux/io.h> 29 #include <linux/of_address.h> 30 #include <linux/of_platform.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 #define DSI_CMD_FIFO_DEPTH 16 45 #define DSI_PIX_FIFO_DEPTH 256 46 #define DSI_PIX_FIFO_WIDTH 4 47 48 #define DSI0_CTRL 0x00 49 50 /* Command packet control. */ 51 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 52 #define DSI1_TXPKT1C 0x04 53 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 54 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 55 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 56 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 57 58 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 59 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 60 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 61 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 62 /* Primary display where cmdfifo provides part of the payload and 63 * pixelvalve the rest. 64 */ 65 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 66 /* Secondary display where cmdfifo provides part of the payload and 67 * pixfifo the rest. 68 */ 69 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 70 71 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 72 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 73 74 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 75 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 76 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 77 # define DSI_TXPKT1C_CMD_CTRL_TX 0 78 /* Command with BTA for either ack or read data. */ 79 # define DSI_TXPKT1C_CMD_CTRL_RX 1 80 /* Trigger according to TRIG_CMD */ 81 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 82 /* BTA alone for getting error status after a command, or a TE trigger 83 * without a previous command. 84 */ 85 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 86 87 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 88 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 89 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 90 # define DSI_TXPKT1C_CMD_EN BIT(0) 91 92 /* Command packet header. */ 93 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 94 #define DSI1_TXPKT1H 0x08 95 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 96 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 97 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 98 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 99 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 100 # define DSI_TXPKT1H_BC_DT_SHIFT 0 101 102 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 103 #define DSI1_RXPKT1H 0x14 104 # define DSI_RXPKT1H_CRC_ERR BIT(31) 105 # define DSI_RXPKT1H_DET_ERR BIT(30) 106 # define DSI_RXPKT1H_ECC_ERR BIT(29) 107 # define DSI_RXPKT1H_COR_ERR BIT(28) 108 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 109 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 110 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 111 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 112 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 113 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 114 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 115 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 116 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 117 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 118 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 119 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 120 121 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 122 #define DSI1_RXPKT2H 0x18 123 # define DSI_RXPKT1H_DET_ERR BIT(30) 124 # define DSI_RXPKT1H_ECC_ERR BIT(29) 125 # define DSI_RXPKT1H_COR_ERR BIT(28) 126 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 127 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 128 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 129 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 130 # define DSI_RXPKT1H_DT_SHIFT 0 131 132 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 133 #define DSI1_TXPKT_CMD_FIFO 0x1c 134 135 #define DSI0_DISP0_CTRL 0x18 136 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 137 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 138 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 139 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 140 # define DSI_DISP0_LP_STOP_DISABLE 0 141 # define DSI_DISP0_LP_STOP_PERLINE 1 142 # define DSI_DISP0_LP_STOP_PERFRAME 2 143 144 /* Transmit RGB pixels and null packets only during HACTIVE, instead 145 * of going to LP-STOP. 146 */ 147 # define DSI_DISP_HACTIVE_NULL BIT(10) 148 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 149 # define DSI_DISP_VBLP_CTRL BIT(9) 150 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 151 # define DSI_DISP_HFP_CTRL BIT(8) 152 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 153 # define DSI_DISP_HBP_CTRL BIT(7) 154 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 155 # define DSI_DISP0_CHANNEL_SHIFT 5 156 /* Enables end events for HSYNC/VSYNC, not just start events. */ 157 # define DSI_DISP0_ST_END BIT(4) 158 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 159 # define DSI_DISP0_PFORMAT_SHIFT 2 160 # define DSI_PFORMAT_RGB565 0 161 # define DSI_PFORMAT_RGB666_PACKED 1 162 # define DSI_PFORMAT_RGB666 2 163 # define DSI_PFORMAT_RGB888 3 164 /* Default is VIDEO mode. */ 165 # define DSI_DISP0_COMMAND_MODE BIT(1) 166 # define DSI_DISP0_ENABLE BIT(0) 167 168 #define DSI0_DISP1_CTRL 0x1c 169 #define DSI1_DISP1_CTRL 0x2c 170 /* Format of the data written to TXPKT_PIX_FIFO. */ 171 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 172 # define DSI_DISP1_PFORMAT_SHIFT 1 173 # define DSI_DISP1_PFORMAT_16BIT 0 174 # define DSI_DISP1_PFORMAT_24BIT 1 175 # define DSI_DISP1_PFORMAT_32BIT_LE 2 176 # define DSI_DISP1_PFORMAT_32BIT_BE 3 177 178 /* DISP1 is always command mode. */ 179 # define DSI_DISP1_ENABLE BIT(0) 180 181 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 182 183 #define DSI0_INT_STAT 0x24 184 #define DSI0_INT_EN 0x28 185 # define DSI1_INT_PHY_D3_ULPS BIT(30) 186 # define DSI1_INT_PHY_D3_STOP BIT(29) 187 # define DSI1_INT_PHY_D2_ULPS BIT(28) 188 # define DSI1_INT_PHY_D2_STOP BIT(27) 189 # define DSI1_INT_PHY_D1_ULPS BIT(26) 190 # define DSI1_INT_PHY_D1_STOP BIT(25) 191 # define DSI1_INT_PHY_D0_ULPS BIT(24) 192 # define DSI1_INT_PHY_D0_STOP BIT(23) 193 # define DSI1_INT_FIFO_ERR BIT(22) 194 # define DSI1_INT_PHY_DIR_RTF BIT(21) 195 # define DSI1_INT_PHY_RXLPDT BIT(20) 196 # define DSI1_INT_PHY_RXTRIG BIT(19) 197 # define DSI1_INT_PHY_D0_LPDT BIT(18) 198 # define DSI1_INT_PHY_DIR_FTR BIT(17) 199 200 /* Signaled when the clock lane enters the given state. */ 201 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 202 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 203 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 204 205 /* Signaled on timeouts */ 206 # define DSI1_INT_PR_TO BIT(13) 207 # define DSI1_INT_TA_TO BIT(12) 208 # define DSI1_INT_LPRX_TO BIT(11) 209 # define DSI1_INT_HSTX_TO BIT(10) 210 211 /* Contention on a line when trying to drive the line low */ 212 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 213 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 214 215 /* Control error: incorrect line state sequence on data lane 0. */ 216 # define DSI1_INT_ERR_CONTROL BIT(7) 217 /* LPDT synchronization error (bits received not a multiple of 8. */ 218 219 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 220 /* Signaled after receiving an error packet from the display in 221 * response to a read. 222 */ 223 # define DSI1_INT_RXPKT2 BIT(5) 224 /* Signaled after receiving a packet. The header and optional short 225 * response will be in RXPKT1H, and a long response will be in the 226 * RXPKT_FIFO. 227 */ 228 # define DSI1_INT_RXPKT1 BIT(4) 229 # define DSI1_INT_TXPKT2_DONE BIT(3) 230 # define DSI1_INT_TXPKT2_END BIT(2) 231 /* Signaled after all repeats of TXPKT1 are transferred. */ 232 # define DSI1_INT_TXPKT1_DONE BIT(1) 233 /* Signaled after each TXPKT1 repeat is scheduled. */ 234 # define DSI1_INT_TXPKT1_END BIT(0) 235 236 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 237 DSI1_INT_ERR_CONTROL | \ 238 DSI1_INT_ERR_CONT_LP0 | \ 239 DSI1_INT_ERR_CONT_LP1 | \ 240 DSI1_INT_HSTX_TO | \ 241 DSI1_INT_LPRX_TO | \ 242 DSI1_INT_TA_TO | \ 243 DSI1_INT_PR_TO) 244 245 #define DSI0_STAT 0x2c 246 #define DSI0_HSTX_TO_CNT 0x30 247 #define DSI0_LPRX_TO_CNT 0x34 248 #define DSI0_TA_TO_CNT 0x38 249 #define DSI0_PR_TO_CNT 0x3c 250 #define DSI0_PHYC 0x40 251 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 252 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 253 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 254 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 255 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 256 # define DSI1_PHYC_CLANE_ULPS BIT(17) 257 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 258 # define DSI_PHYC_DLANE3_ULPS BIT(13) 259 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 260 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 261 # define DSI0_PHYC_CLANE_ULPS BIT(9) 262 # define DSI_PHYC_DLANE2_ULPS BIT(9) 263 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 264 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 265 # define DSI_PHYC_DLANE1_ULPS BIT(5) 266 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 267 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 268 # define DSI_PHYC_DLANE0_ULPS BIT(1) 269 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 270 271 #define DSI0_HS_CLT0 0x44 272 #define DSI0_HS_CLT1 0x48 273 #define DSI0_HS_CLT2 0x4c 274 #define DSI0_HS_DLT3 0x50 275 #define DSI0_HS_DLT4 0x54 276 #define DSI0_HS_DLT5 0x58 277 #define DSI0_HS_DLT6 0x5c 278 #define DSI0_HS_DLT7 0x60 279 280 #define DSI0_PHY_AFEC0 0x64 281 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 282 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 283 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 284 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 285 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 286 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 287 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 288 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 289 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 290 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 291 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 292 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 293 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 294 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 296 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 298 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 300 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 301 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 302 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 303 # define DSI1_PHY_AFEC0_RESET BIT(13) 304 # define DSI1_PHY_AFEC0_PD BIT(12) 305 # define DSI0_PHY_AFEC0_RESET BIT(11) 306 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 307 # define DSI0_PHY_AFEC0_PD BIT(10) 308 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 309 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 310 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 311 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 312 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 313 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 314 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 315 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 316 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 317 318 #define DSI0_PHY_AFEC1 0x68 319 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 320 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 321 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 322 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 323 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 324 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 325 326 #define DSI0_TST_SEL 0x6c 327 #define DSI0_TST_MON 0x70 328 #define DSI0_ID 0x74 329 # define DSI_ID_VALUE 0x00647369 330 331 #define DSI1_CTRL 0x00 332 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 333 # define DSI_CTRL_HS_CLKC_SHIFT 14 334 # define DSI_CTRL_HS_CLKC_BYTE 0 335 # define DSI_CTRL_HS_CLKC_DDR2 1 336 # define DSI_CTRL_HS_CLKC_DDR 2 337 338 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 339 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 340 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 341 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 342 # define DSI_CTRL_CAL_BYTE BIT(9) 343 # define DSI_CTRL_INV_BYTE BIT(8) 344 # define DSI_CTRL_CLR_LDF BIT(7) 345 # define DSI0_CTRL_CLR_PBCF BIT(6) 346 # define DSI1_CTRL_CLR_RXF BIT(6) 347 # define DSI0_CTRL_CLR_CPBCF BIT(5) 348 # define DSI1_CTRL_CLR_PDF BIT(5) 349 # define DSI0_CTRL_CLR_PDF BIT(4) 350 # define DSI1_CTRL_CLR_CDF BIT(4) 351 # define DSI0_CTRL_CLR_CDF BIT(3) 352 # define DSI0_CTRL_CTRL2 BIT(2) 353 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 354 # define DSI0_CTRL_CTRL1 BIT(1) 355 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 356 # define DSI0_CTRL_CTRL0 BIT(0) 357 # define DSI1_CTRL_EN BIT(0) 358 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 359 DSI0_CTRL_CLR_PBCF | \ 360 DSI0_CTRL_CLR_CPBCF | \ 361 DSI0_CTRL_CLR_PDF | \ 362 DSI0_CTRL_CLR_CDF) 363 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 364 DSI1_CTRL_CLR_RXF | \ 365 DSI1_CTRL_CLR_PDF | \ 366 DSI1_CTRL_CLR_CDF) 367 368 #define DSI1_TXPKT2C 0x0c 369 #define DSI1_TXPKT2H 0x10 370 #define DSI1_TXPKT_PIX_FIFO 0x20 371 #define DSI1_RXPKT_FIFO 0x24 372 #define DSI1_DISP0_CTRL 0x28 373 #define DSI1_INT_STAT 0x30 374 #define DSI1_INT_EN 0x34 375 /* State reporting bits. These mostly behave like INT_STAT, where 376 * writing a 1 clears the bit. 377 */ 378 #define DSI1_STAT 0x38 379 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 380 # define DSI1_STAT_PHY_D3_STOP BIT(30) 381 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 382 # define DSI1_STAT_PHY_D2_STOP BIT(28) 383 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 384 # define DSI1_STAT_PHY_D1_STOP BIT(26) 385 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 386 # define DSI1_STAT_PHY_D0_STOP BIT(24) 387 # define DSI1_STAT_FIFO_ERR BIT(23) 388 # define DSI1_STAT_PHY_RXLPDT BIT(22) 389 # define DSI1_STAT_PHY_RXTRIG BIT(21) 390 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 391 /* Set when in forward direction */ 392 # define DSI1_STAT_PHY_DIR BIT(19) 393 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 394 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 395 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 396 # define DSI1_STAT_PR_TO BIT(15) 397 # define DSI1_STAT_TA_TO BIT(14) 398 # define DSI1_STAT_LPRX_TO BIT(13) 399 # define DSI1_STAT_HSTX_TO BIT(12) 400 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 401 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 402 # define DSI1_STAT_ERR_CONTROL BIT(9) 403 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 404 # define DSI1_STAT_RXPKT2 BIT(7) 405 # define DSI1_STAT_RXPKT1 BIT(6) 406 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 407 # define DSI1_STAT_TXPKT2_DONE BIT(4) 408 # define DSI1_STAT_TXPKT2_END BIT(3) 409 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 410 # define DSI1_STAT_TXPKT1_DONE BIT(1) 411 # define DSI1_STAT_TXPKT1_END BIT(0) 412 413 #define DSI1_HSTX_TO_CNT 0x3c 414 #define DSI1_LPRX_TO_CNT 0x40 415 #define DSI1_TA_TO_CNT 0x44 416 #define DSI1_PR_TO_CNT 0x48 417 #define DSI1_PHYC 0x4c 418 419 #define DSI1_HS_CLT0 0x50 420 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 421 # define DSI_HS_CLT0_CZERO_SHIFT 18 422 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 423 # define DSI_HS_CLT0_CPRE_SHIFT 9 424 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 425 # define DSI_HS_CLT0_CPREP_SHIFT 0 426 427 #define DSI1_HS_CLT1 0x54 428 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 429 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 430 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 431 # define DSI_HS_CLT1_CPOST_SHIFT 0 432 433 #define DSI1_HS_CLT2 0x58 434 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 435 # define DSI_HS_CLT2_WUP_SHIFT 0 436 437 #define DSI1_HS_DLT3 0x5c 438 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 439 # define DSI_HS_DLT3_EXIT_SHIFT 18 440 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 441 # define DSI_HS_DLT3_ZERO_SHIFT 9 442 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 443 # define DSI_HS_DLT3_PRE_SHIFT 0 444 445 #define DSI1_HS_DLT4 0x60 446 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 447 # define DSI_HS_DLT4_ANLAT_SHIFT 18 448 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 449 # define DSI_HS_DLT4_TRAIL_SHIFT 9 450 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 451 # define DSI_HS_DLT4_LPX_SHIFT 0 452 453 #define DSI1_HS_DLT5 0x64 454 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 455 # define DSI_HS_DLT5_INIT_SHIFT 0 456 457 #define DSI1_HS_DLT6 0x68 458 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 459 # define DSI_HS_DLT6_TA_GET_SHIFT 24 460 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 461 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 462 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 463 # define DSI_HS_DLT6_TA_GO_SHIFT 8 464 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 465 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 466 467 #define DSI1_HS_DLT7 0x6c 468 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 469 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 470 471 #define DSI1_PHY_AFEC0 0x70 472 473 #define DSI1_PHY_AFEC1 0x74 474 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 476 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 478 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 480 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 482 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 484 485 #define DSI1_TST_SEL 0x78 486 #define DSI1_TST_MON 0x7c 487 #define DSI1_PHY_TST1 0x80 488 #define DSI1_PHY_TST2 0x84 489 #define DSI1_PHY_FIFO_STAT 0x88 490 /* Actually, all registers in the range that aren't otherwise claimed 491 * will return the ID. 492 */ 493 #define DSI1_ID 0x8c 494 495 /* General DSI hardware state. */ 496 struct vc4_dsi { 497 struct platform_device *pdev; 498 499 struct mipi_dsi_host dsi_host; 500 struct drm_encoder *encoder; 501 struct drm_bridge *bridge; 502 struct list_head bridge_chain; 503 504 void __iomem *regs; 505 506 struct dma_chan *reg_dma_chan; 507 dma_addr_t reg_dma_paddr; 508 u32 *reg_dma_mem; 509 dma_addr_t reg_paddr; 510 511 /* Whether we're on bcm2835's DSI0 or DSI1. */ 512 int port; 513 514 /* DSI channel for the panel we're connected to. */ 515 u32 channel; 516 u32 lanes; 517 u32 format; 518 u32 divider; 519 u32 mode_flags; 520 521 /* Input clock from CPRMAN to the digital PHY, for the DSI 522 * escape clock. 523 */ 524 struct clk *escape_clock; 525 526 /* Input clock to the analog PHY, used to generate the DSI bit 527 * clock. 528 */ 529 struct clk *pll_phy_clock; 530 531 /* HS Clocks generated within the DSI analog PHY. */ 532 struct clk_fixed_factor phy_clocks[3]; 533 534 struct clk_hw_onecell_data *clk_onecell; 535 536 /* Pixel clock output to the pixelvalve, generated from the HS 537 * clock. 538 */ 539 struct clk *pixel_clock; 540 541 struct completion xfer_completion; 542 int xfer_result; 543 544 struct debugfs_regset32 regset; 545 }; 546 547 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 548 549 static inline void 550 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 551 { 552 struct dma_chan *chan = dsi->reg_dma_chan; 553 struct dma_async_tx_descriptor *tx; 554 dma_cookie_t cookie; 555 int ret; 556 557 /* DSI0 should be able to write normally. */ 558 if (!chan) { 559 writel(val, dsi->regs + offset); 560 return; 561 } 562 563 *dsi->reg_dma_mem = val; 564 565 tx = chan->device->device_prep_dma_memcpy(chan, 566 dsi->reg_paddr + offset, 567 dsi->reg_dma_paddr, 568 4, 0); 569 if (!tx) { 570 DRM_ERROR("Failed to set up DMA register write\n"); 571 return; 572 } 573 574 cookie = tx->tx_submit(tx); 575 ret = dma_submit_error(cookie); 576 if (ret) { 577 DRM_ERROR("Failed to submit DMA: %d\n", ret); 578 return; 579 } 580 ret = dma_sync_wait(chan, cookie); 581 if (ret) 582 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 583 } 584 585 #define DSI_READ(offset) readl(dsi->regs + (offset)) 586 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 587 #define DSI_PORT_READ(offset) \ 588 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 589 #define DSI_PORT_WRITE(offset, val) \ 590 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 591 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 592 593 /* VC4 DSI encoder KMS struct */ 594 struct vc4_dsi_encoder { 595 struct vc4_encoder base; 596 struct vc4_dsi *dsi; 597 }; 598 599 static inline struct vc4_dsi_encoder * 600 to_vc4_dsi_encoder(struct drm_encoder *encoder) 601 { 602 return container_of(encoder, struct vc4_dsi_encoder, base.base); 603 } 604 605 static const struct debugfs_reg32 dsi0_regs[] = { 606 VC4_REG32(DSI0_CTRL), 607 VC4_REG32(DSI0_STAT), 608 VC4_REG32(DSI0_HSTX_TO_CNT), 609 VC4_REG32(DSI0_LPRX_TO_CNT), 610 VC4_REG32(DSI0_TA_TO_CNT), 611 VC4_REG32(DSI0_PR_TO_CNT), 612 VC4_REG32(DSI0_DISP0_CTRL), 613 VC4_REG32(DSI0_DISP1_CTRL), 614 VC4_REG32(DSI0_INT_STAT), 615 VC4_REG32(DSI0_INT_EN), 616 VC4_REG32(DSI0_PHYC), 617 VC4_REG32(DSI0_HS_CLT0), 618 VC4_REG32(DSI0_HS_CLT1), 619 VC4_REG32(DSI0_HS_CLT2), 620 VC4_REG32(DSI0_HS_DLT3), 621 VC4_REG32(DSI0_HS_DLT4), 622 VC4_REG32(DSI0_HS_DLT5), 623 VC4_REG32(DSI0_HS_DLT6), 624 VC4_REG32(DSI0_HS_DLT7), 625 VC4_REG32(DSI0_PHY_AFEC0), 626 VC4_REG32(DSI0_PHY_AFEC1), 627 VC4_REG32(DSI0_ID), 628 }; 629 630 static const struct debugfs_reg32 dsi1_regs[] = { 631 VC4_REG32(DSI1_CTRL), 632 VC4_REG32(DSI1_STAT), 633 VC4_REG32(DSI1_HSTX_TO_CNT), 634 VC4_REG32(DSI1_LPRX_TO_CNT), 635 VC4_REG32(DSI1_TA_TO_CNT), 636 VC4_REG32(DSI1_PR_TO_CNT), 637 VC4_REG32(DSI1_DISP0_CTRL), 638 VC4_REG32(DSI1_DISP1_CTRL), 639 VC4_REG32(DSI1_INT_STAT), 640 VC4_REG32(DSI1_INT_EN), 641 VC4_REG32(DSI1_PHYC), 642 VC4_REG32(DSI1_HS_CLT0), 643 VC4_REG32(DSI1_HS_CLT1), 644 VC4_REG32(DSI1_HS_CLT2), 645 VC4_REG32(DSI1_HS_DLT3), 646 VC4_REG32(DSI1_HS_DLT4), 647 VC4_REG32(DSI1_HS_DLT5), 648 VC4_REG32(DSI1_HS_DLT6), 649 VC4_REG32(DSI1_HS_DLT7), 650 VC4_REG32(DSI1_PHY_AFEC0), 651 VC4_REG32(DSI1_PHY_AFEC1), 652 VC4_REG32(DSI1_ID), 653 }; 654 655 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 656 { 657 drm_encoder_cleanup(encoder); 658 } 659 660 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 661 .destroy = vc4_dsi_encoder_destroy, 662 }; 663 664 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 665 { 666 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 667 668 if (latch) 669 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 670 else 671 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 672 673 DSI_PORT_WRITE(PHY_AFEC0, afec0); 674 } 675 676 /* Enters or exits Ultra Low Power State. */ 677 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 678 { 679 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 680 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 681 DSI_PHYC_DLANE0_ULPS | 682 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 683 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 684 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 685 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 686 DSI1_STAT_PHY_D0_ULPS | 687 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 688 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 689 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 690 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 691 DSI1_STAT_PHY_D0_STOP | 692 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 693 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 694 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 695 int ret; 696 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 697 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 698 699 if (ulps == ulps_currently_enabled) 700 return; 701 702 DSI_PORT_WRITE(STAT, stat_ulps); 703 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 704 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 705 if (ret) { 706 dev_warn(&dsi->pdev->dev, 707 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 708 DSI_PORT_READ(STAT)); 709 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 710 vc4_dsi_latch_ulps(dsi, false); 711 return; 712 } 713 714 /* The DSI module can't be disabled while the module is 715 * generating ULPS state. So, to be able to disable the 716 * module, we have the AFE latch the ULPS state and continue 717 * on to having the module enter STOP. 718 */ 719 vc4_dsi_latch_ulps(dsi, ulps); 720 721 DSI_PORT_WRITE(STAT, stat_stop); 722 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 723 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 724 if (ret) { 725 dev_warn(&dsi->pdev->dev, 726 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 727 DSI_PORT_READ(STAT)); 728 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 729 return; 730 } 731 } 732 733 static u32 734 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 735 { 736 /* The HS timings have to be rounded up to a multiple of 8 737 * because we're using the byte clock. 738 */ 739 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 740 } 741 742 /* ESC always runs at 100Mhz. */ 743 #define ESC_TIME_NS 10 744 745 static u32 746 dsi_esc_timing(u32 ns) 747 { 748 return DIV_ROUND_UP(ns, ESC_TIME_NS); 749 } 750 751 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 752 { 753 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 754 struct vc4_dsi *dsi = vc4_encoder->dsi; 755 struct device *dev = &dsi->pdev->dev; 756 757 drm_bridge_chain_disable(dsi->bridge); 758 vc4_dsi_ulps(dsi, true); 759 drm_bridge_chain_post_disable(dsi->bridge); 760 761 clk_disable_unprepare(dsi->pll_phy_clock); 762 clk_disable_unprepare(dsi->escape_clock); 763 clk_disable_unprepare(dsi->pixel_clock); 764 765 pm_runtime_put(dev); 766 } 767 768 /* Extends the mode's blank intervals to handle BCM2835's integer-only 769 * DSI PLL divider. 770 * 771 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 772 * driver since most peripherals are hanging off of the PLLD_PER 773 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 774 * the pixel clock), only has an integer divider off of DSI. 775 * 776 * To get our panel mode to refresh at the expected 60Hz, we need to 777 * extend the horizontal blank time. This means we drive a 778 * higher-than-expected clock rate to the panel, but that's what the 779 * firmware does too. 780 */ 781 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 782 const struct drm_display_mode *mode, 783 struct drm_display_mode *adjusted_mode) 784 { 785 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 786 struct vc4_dsi *dsi = vc4_encoder->dsi; 787 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 788 unsigned long parent_rate = clk_get_rate(phy_parent); 789 unsigned long pixel_clock_hz = mode->clock * 1000; 790 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 791 int divider; 792 793 /* Find what divider gets us a faster clock than the requested 794 * pixel clock. 795 */ 796 for (divider = 1; divider < 8; divider++) { 797 if (parent_rate / divider < pll_clock) { 798 divider--; 799 break; 800 } 801 } 802 803 /* Now that we've picked a PLL divider, calculate back to its 804 * pixel clock. 805 */ 806 pll_clock = parent_rate / divider; 807 pixel_clock_hz = pll_clock / dsi->divider; 808 809 adjusted_mode->clock = pixel_clock_hz / 1000; 810 811 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 812 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 813 mode->clock; 814 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 815 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 816 817 return true; 818 } 819 820 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 821 { 822 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 823 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 824 struct vc4_dsi *dsi = vc4_encoder->dsi; 825 struct device *dev = &dsi->pdev->dev; 826 bool debug_dump_regs = false; 827 unsigned long hs_clock; 828 u32 ui_ns; 829 /* Minimum LP state duration in escape clock cycles. */ 830 u32 lpx = dsi_esc_timing(60); 831 unsigned long pixel_clock_hz = mode->clock * 1000; 832 unsigned long dsip_clock; 833 unsigned long phy_clock; 834 int ret; 835 836 ret = pm_runtime_get_sync(dev); 837 if (ret) { 838 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 839 return; 840 } 841 842 if (debug_dump_regs) { 843 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 844 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 845 drm_print_regset32(&p, &dsi->regset); 846 } 847 848 /* Round up the clk_set_rate() request slightly, since 849 * PLLD_DSI1 is an integer divider and its rate selection will 850 * never round up. 851 */ 852 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 853 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 854 if (ret) { 855 dev_err(&dsi->pdev->dev, 856 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 857 } 858 859 /* Reset the DSI and all its fifos. */ 860 DSI_PORT_WRITE(CTRL, 861 DSI_CTRL_SOFT_RESET_CFG | 862 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 863 864 DSI_PORT_WRITE(CTRL, 865 DSI_CTRL_HSDT_EOT_DISABLE | 866 DSI_CTRL_RX_LPDT_EOT_DISABLE); 867 868 /* Clear all stat bits so we see what has happened during enable. */ 869 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 870 871 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 872 if (dsi->port == 0) { 873 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 874 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 875 876 if (dsi->lanes < 2) 877 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 878 879 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 880 afec0 |= DSI0_PHY_AFEC0_RESET; 881 882 DSI_PORT_WRITE(PHY_AFEC0, afec0); 883 884 DSI_PORT_WRITE(PHY_AFEC1, 885 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 886 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 887 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 888 } else { 889 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 890 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 891 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 892 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 893 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 894 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 895 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 896 897 if (dsi->lanes < 4) 898 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 899 if (dsi->lanes < 3) 900 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 901 if (dsi->lanes < 2) 902 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 903 904 afec0 |= DSI1_PHY_AFEC0_RESET; 905 906 DSI_PORT_WRITE(PHY_AFEC0, afec0); 907 908 DSI_PORT_WRITE(PHY_AFEC1, 0); 909 910 /* AFEC reset hold time */ 911 mdelay(1); 912 } 913 914 ret = clk_prepare_enable(dsi->escape_clock); 915 if (ret) { 916 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 917 return; 918 } 919 920 ret = clk_prepare_enable(dsi->pll_phy_clock); 921 if (ret) { 922 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 923 return; 924 } 925 926 hs_clock = clk_get_rate(dsi->pll_phy_clock); 927 928 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 929 * not the pixel clock rate. DSIxP take from the APHY's byte, 930 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 931 * that rate. Separately, a value derived from PIX_CLK_DIV 932 * and HS_CLKC is fed into the PV to divide down to the actual 933 * pixel clock for pushing pixels into DSI. 934 */ 935 dsip_clock = phy_clock / 8; 936 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 937 if (ret) { 938 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 939 dsip_clock, ret); 940 } 941 942 ret = clk_prepare_enable(dsi->pixel_clock); 943 if (ret) { 944 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 945 return; 946 } 947 948 /* How many ns one DSI unit interval is. Note that the clock 949 * is DDR, so there's an extra divide by 2. 950 */ 951 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 952 953 DSI_PORT_WRITE(HS_CLT0, 954 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 955 DSI_HS_CLT0_CZERO) | 956 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 957 DSI_HS_CLT0_CPRE) | 958 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 959 DSI_HS_CLT0_CPREP)); 960 961 DSI_PORT_WRITE(HS_CLT1, 962 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 963 DSI_HS_CLT1_CTRAIL) | 964 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 965 DSI_HS_CLT1_CPOST)); 966 967 DSI_PORT_WRITE(HS_CLT2, 968 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 969 DSI_HS_CLT2_WUP)); 970 971 DSI_PORT_WRITE(HS_DLT3, 972 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 973 DSI_HS_DLT3_EXIT) | 974 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 975 DSI_HS_DLT3_ZERO) | 976 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 977 DSI_HS_DLT3_PRE)); 978 979 DSI_PORT_WRITE(HS_DLT4, 980 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 981 DSI_HS_DLT4_LPX) | 982 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 983 dsi_hs_timing(ui_ns, 60, 4)), 984 DSI_HS_DLT4_TRAIL) | 985 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 986 987 /* T_INIT is how long STOP is driven after power-up to 988 * indicate to the slave (also coming out of power-up) that 989 * master init is complete, and should be greater than the 990 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 991 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 992 * T_INIT,SLAVE, while allowing protocols on top of it to give 993 * greater minimums. The vc4 firmware uses an extremely 994 * conservative 5ms, and we maintain that here. 995 */ 996 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 997 5 * 1000 * 1000, 0), 998 DSI_HS_DLT5_INIT)); 999 1000 DSI_PORT_WRITE(HS_DLT6, 1001 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1002 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1003 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1004 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1005 1006 DSI_PORT_WRITE(HS_DLT7, 1007 VC4_SET_FIELD(dsi_esc_timing(1000000), 1008 DSI_HS_DLT7_LP_WUP)); 1009 1010 DSI_PORT_WRITE(PHYC, 1011 DSI_PHYC_DLANE0_ENABLE | 1012 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1013 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1014 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1015 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1016 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1017 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1018 (dsi->port == 0 ? 1019 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1020 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1021 1022 DSI_PORT_WRITE(CTRL, 1023 DSI_PORT_READ(CTRL) | 1024 DSI_CTRL_CAL_BYTE); 1025 1026 /* HS timeout in HS clock cycles: disabled. */ 1027 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1028 /* LP receive timeout in HS clocks. */ 1029 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1030 /* Bus turnaround timeout */ 1031 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1032 /* Display reset sequence timeout */ 1033 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1034 1035 /* Set up DISP1 for transferring long command payloads through 1036 * the pixfifo. 1037 */ 1038 DSI_PORT_WRITE(DISP1_CTRL, 1039 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1040 DSI_DISP1_PFORMAT) | 1041 DSI_DISP1_ENABLE); 1042 1043 /* Ungate the block. */ 1044 if (dsi->port == 0) 1045 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1046 else 1047 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1048 1049 /* Bring AFE out of reset. */ 1050 if (dsi->port == 0) { 1051 } else { 1052 DSI_PORT_WRITE(PHY_AFEC0, 1053 DSI_PORT_READ(PHY_AFEC0) & 1054 ~DSI1_PHY_AFEC0_RESET); 1055 } 1056 1057 vc4_dsi_ulps(dsi, false); 1058 1059 drm_bridge_chain_pre_enable(dsi->bridge); 1060 1061 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1062 DSI_PORT_WRITE(DISP0_CTRL, 1063 VC4_SET_FIELD(dsi->divider, 1064 DSI_DISP0_PIX_CLK_DIV) | 1065 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1066 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1067 DSI_DISP0_LP_STOP_CTRL) | 1068 DSI_DISP0_ST_END | 1069 DSI_DISP0_ENABLE); 1070 } else { 1071 DSI_PORT_WRITE(DISP0_CTRL, 1072 DSI_DISP0_COMMAND_MODE | 1073 DSI_DISP0_ENABLE); 1074 } 1075 1076 drm_bridge_chain_enable(dsi->bridge); 1077 1078 if (debug_dump_regs) { 1079 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1080 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1081 drm_print_regset32(&p, &dsi->regset); 1082 } 1083 } 1084 1085 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1086 const struct mipi_dsi_msg *msg) 1087 { 1088 struct vc4_dsi *dsi = host_to_dsi(host); 1089 struct mipi_dsi_packet packet; 1090 u32 pkth = 0, pktc = 0; 1091 int i, ret; 1092 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1093 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1094 1095 mipi_dsi_create_packet(&packet, msg); 1096 1097 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1098 pkth |= VC4_SET_FIELD(packet.header[1] | 1099 (packet.header[2] << 8), 1100 DSI_TXPKT1H_BC_PARAM); 1101 if (is_long) { 1102 /* Divide data across the various FIFOs we have available. 1103 * The command FIFO takes byte-oriented data, but is of 1104 * limited size. The pixel FIFO (never actually used for 1105 * pixel data in reality) is word oriented, and substantially 1106 * larger. So, we use the pixel FIFO for most of the data, 1107 * sending the residual bytes in the command FIFO at the start. 1108 * 1109 * With this arrangement, the command FIFO will never get full. 1110 */ 1111 if (packet.payload_length <= 16) { 1112 cmd_fifo_len = packet.payload_length; 1113 pix_fifo_len = 0; 1114 } else { 1115 cmd_fifo_len = (packet.payload_length % 1116 DSI_PIX_FIFO_WIDTH); 1117 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1118 DSI_PIX_FIFO_WIDTH); 1119 } 1120 1121 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1122 1123 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1124 } 1125 1126 if (msg->rx_len) { 1127 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1128 DSI_TXPKT1C_CMD_CTRL); 1129 } else { 1130 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1131 DSI_TXPKT1C_CMD_CTRL); 1132 } 1133 1134 for (i = 0; i < cmd_fifo_len; i++) 1135 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1136 for (i = 0; i < pix_fifo_len; i++) { 1137 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1138 1139 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1140 pix[0] | 1141 pix[1] << 8 | 1142 pix[2] << 16 | 1143 pix[3] << 24); 1144 } 1145 1146 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1147 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1148 if (is_long) 1149 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1150 1151 /* Send one copy of the packet. Larger repeats are used for pixel 1152 * data in command mode. 1153 */ 1154 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1155 1156 pktc |= DSI_TXPKT1C_CMD_EN; 1157 if (pix_fifo_len) { 1158 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1159 DSI_TXPKT1C_DISPLAY_NO); 1160 } else { 1161 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1162 DSI_TXPKT1C_DISPLAY_NO); 1163 } 1164 1165 /* Enable the appropriate interrupt for the transfer completion. */ 1166 dsi->xfer_result = 0; 1167 reinit_completion(&dsi->xfer_completion); 1168 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1169 if (msg->rx_len) { 1170 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1171 DSI1_INT_PHY_DIR_RTF)); 1172 } else { 1173 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1174 DSI1_INT_TXPKT1_DONE)); 1175 } 1176 1177 /* Send the packet. */ 1178 DSI_PORT_WRITE(TXPKT1H, pkth); 1179 DSI_PORT_WRITE(TXPKT1C, pktc); 1180 1181 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1182 msecs_to_jiffies(1000))) { 1183 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1184 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1185 DSI_PORT_READ(INT_STAT)); 1186 ret = -ETIMEDOUT; 1187 } else { 1188 ret = dsi->xfer_result; 1189 } 1190 1191 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1192 1193 if (ret) 1194 goto reset_fifo_and_return; 1195 1196 if (ret == 0 && msg->rx_len) { 1197 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1198 u8 *msg_rx = msg->rx_buf; 1199 1200 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1201 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1202 DSI_RXPKT1H_BC_PARAM); 1203 1204 if (rxlen != msg->rx_len) { 1205 DRM_ERROR("DSI returned %db, expecting %db\n", 1206 rxlen, (int)msg->rx_len); 1207 ret = -ENXIO; 1208 goto reset_fifo_and_return; 1209 } 1210 1211 for (i = 0; i < msg->rx_len; i++) 1212 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1213 } else { 1214 /* FINISHME: Handle AWER */ 1215 1216 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1217 DSI_RXPKT1H_SHORT_0); 1218 if (msg->rx_len > 1) { 1219 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1220 DSI_RXPKT1H_SHORT_1); 1221 } 1222 } 1223 } 1224 1225 return ret; 1226 1227 reset_fifo_and_return: 1228 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1229 1230 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1231 udelay(1); 1232 DSI_PORT_WRITE(CTRL, 1233 DSI_PORT_READ(CTRL) | 1234 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1235 1236 DSI_PORT_WRITE(TXPKT1C, 0); 1237 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1238 return ret; 1239 } 1240 1241 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1242 struct mipi_dsi_device *device) 1243 { 1244 struct vc4_dsi *dsi = host_to_dsi(host); 1245 1246 dsi->lanes = device->lanes; 1247 dsi->channel = device->channel; 1248 dsi->mode_flags = device->mode_flags; 1249 1250 switch (device->format) { 1251 case MIPI_DSI_FMT_RGB888: 1252 dsi->format = DSI_PFORMAT_RGB888; 1253 dsi->divider = 24 / dsi->lanes; 1254 break; 1255 case MIPI_DSI_FMT_RGB666: 1256 dsi->format = DSI_PFORMAT_RGB666; 1257 dsi->divider = 24 / dsi->lanes; 1258 break; 1259 case MIPI_DSI_FMT_RGB666_PACKED: 1260 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1261 dsi->divider = 18 / dsi->lanes; 1262 break; 1263 case MIPI_DSI_FMT_RGB565: 1264 dsi->format = DSI_PFORMAT_RGB565; 1265 dsi->divider = 16 / dsi->lanes; 1266 break; 1267 default: 1268 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1269 dsi->format); 1270 return 0; 1271 } 1272 1273 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1274 dev_err(&dsi->pdev->dev, 1275 "Only VIDEO mode panels supported currently.\n"); 1276 return 0; 1277 } 1278 1279 return 0; 1280 } 1281 1282 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1283 struct mipi_dsi_device *device) 1284 { 1285 return 0; 1286 } 1287 1288 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1289 .attach = vc4_dsi_host_attach, 1290 .detach = vc4_dsi_host_detach, 1291 .transfer = vc4_dsi_host_transfer, 1292 }; 1293 1294 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1295 .disable = vc4_dsi_encoder_disable, 1296 .enable = vc4_dsi_encoder_enable, 1297 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1298 }; 1299 1300 static const struct of_device_id vc4_dsi_dt_match[] = { 1301 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1302 {} 1303 }; 1304 1305 static void dsi_handle_error(struct vc4_dsi *dsi, 1306 irqreturn_t *ret, u32 stat, u32 bit, 1307 const char *type) 1308 { 1309 if (!(stat & bit)) 1310 return; 1311 1312 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1313 *ret = IRQ_HANDLED; 1314 } 1315 1316 /* 1317 * Initial handler for port 1 where we need the reg_dma workaround. 1318 * The register DMA writes sleep, so we can't do it in the top half. 1319 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1320 * parent interrupt contrller until our interrupt thread is done. 1321 */ 1322 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1323 { 1324 struct vc4_dsi *dsi = data; 1325 u32 stat = DSI_PORT_READ(INT_STAT); 1326 1327 if (!stat) 1328 return IRQ_NONE; 1329 1330 return IRQ_WAKE_THREAD; 1331 } 1332 1333 /* 1334 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1335 * 1 where we need the reg_dma workaround. 1336 */ 1337 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1338 { 1339 struct vc4_dsi *dsi = data; 1340 u32 stat = DSI_PORT_READ(INT_STAT); 1341 irqreturn_t ret = IRQ_NONE; 1342 1343 DSI_PORT_WRITE(INT_STAT, stat); 1344 1345 dsi_handle_error(dsi, &ret, stat, 1346 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1347 dsi_handle_error(dsi, &ret, stat, 1348 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1349 dsi_handle_error(dsi, &ret, stat, 1350 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1351 dsi_handle_error(dsi, &ret, stat, 1352 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1353 dsi_handle_error(dsi, &ret, stat, 1354 DSI1_INT_HSTX_TO, "HSTX timeout"); 1355 dsi_handle_error(dsi, &ret, stat, 1356 DSI1_INT_LPRX_TO, "LPRX timeout"); 1357 dsi_handle_error(dsi, &ret, stat, 1358 DSI1_INT_TA_TO, "turnaround timeout"); 1359 dsi_handle_error(dsi, &ret, stat, 1360 DSI1_INT_PR_TO, "peripheral reset timeout"); 1361 1362 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1363 complete(&dsi->xfer_completion); 1364 ret = IRQ_HANDLED; 1365 } else if (stat & DSI1_INT_HSTX_TO) { 1366 complete(&dsi->xfer_completion); 1367 dsi->xfer_result = -ETIMEDOUT; 1368 ret = IRQ_HANDLED; 1369 } 1370 1371 return ret; 1372 } 1373 1374 /** 1375 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1376 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1377 * @dsi: DSI encoder 1378 */ 1379 static int 1380 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1381 { 1382 struct device *dev = &dsi->pdev->dev; 1383 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1384 static const struct { 1385 const char *dsi0_name, *dsi1_name; 1386 int div; 1387 } phy_clocks[] = { 1388 { "dsi0_byte", "dsi1_byte", 8 }, 1389 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1390 { "dsi0_ddr", "dsi1_ddr", 2 }, 1391 }; 1392 int i; 1393 1394 dsi->clk_onecell = devm_kzalloc(dev, 1395 sizeof(*dsi->clk_onecell) + 1396 ARRAY_SIZE(phy_clocks) * 1397 sizeof(struct clk_hw *), 1398 GFP_KERNEL); 1399 if (!dsi->clk_onecell) 1400 return -ENOMEM; 1401 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1402 1403 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1404 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1405 struct clk_init_data init; 1406 int ret; 1407 1408 /* We just use core fixed factor clock ops for the PHY 1409 * clocks. The clocks are actually gated by the 1410 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1411 * setting if we use the DDR/DDR2 clocks. However, 1412 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1413 * setting both our parent DSI PLL's rate and this 1414 * clock's rate, so it knows if DDR/DDR2 are going to 1415 * be used and could enable the gates itself. 1416 */ 1417 fix->mult = 1; 1418 fix->div = phy_clocks[i].div; 1419 fix->hw.init = &init; 1420 1421 memset(&init, 0, sizeof(init)); 1422 init.parent_names = &parent_name; 1423 init.num_parents = 1; 1424 if (dsi->port == 1) 1425 init.name = phy_clocks[i].dsi1_name; 1426 else 1427 init.name = phy_clocks[i].dsi0_name; 1428 init.ops = &clk_fixed_factor_ops; 1429 1430 ret = devm_clk_hw_register(dev, &fix->hw); 1431 if (ret) 1432 return ret; 1433 1434 dsi->clk_onecell->hws[i] = &fix->hw; 1435 } 1436 1437 return of_clk_add_hw_provider(dev->of_node, 1438 of_clk_hw_onecell_get, 1439 dsi->clk_onecell); 1440 } 1441 1442 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1443 { 1444 struct platform_device *pdev = to_platform_device(dev); 1445 struct drm_device *drm = dev_get_drvdata(master); 1446 struct vc4_dev *vc4 = to_vc4_dev(drm); 1447 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1448 struct vc4_dsi_encoder *vc4_dsi_encoder; 1449 struct drm_panel *panel; 1450 const struct of_device_id *match; 1451 dma_cap_mask_t dma_mask; 1452 int ret; 1453 1454 match = of_match_device(vc4_dsi_dt_match, dev); 1455 if (!match) 1456 return -ENODEV; 1457 1458 dsi->port = (uintptr_t)match->data; 1459 1460 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1461 GFP_KERNEL); 1462 if (!vc4_dsi_encoder) 1463 return -ENOMEM; 1464 1465 INIT_LIST_HEAD(&dsi->bridge_chain); 1466 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1467 vc4_dsi_encoder->dsi = dsi; 1468 dsi->encoder = &vc4_dsi_encoder->base.base; 1469 1470 dsi->regs = vc4_ioremap_regs(pdev, 0); 1471 if (IS_ERR(dsi->regs)) 1472 return PTR_ERR(dsi->regs); 1473 1474 dsi->regset.base = dsi->regs; 1475 if (dsi->port == 0) { 1476 dsi->regset.regs = dsi0_regs; 1477 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); 1478 } else { 1479 dsi->regset.regs = dsi1_regs; 1480 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); 1481 } 1482 1483 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1484 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1485 DSI_PORT_READ(ID), DSI_ID_VALUE); 1486 return -ENODEV; 1487 } 1488 1489 /* DSI1 has a broken AXI slave that doesn't respond to writes 1490 * from the ARM. It does handle writes from the DMA engine, 1491 * so set up a channel for talking to it. 1492 */ 1493 if (dsi->port == 1) { 1494 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1495 &dsi->reg_dma_paddr, 1496 GFP_KERNEL); 1497 if (!dsi->reg_dma_mem) { 1498 DRM_ERROR("Failed to get DMA memory\n"); 1499 return -ENOMEM; 1500 } 1501 1502 dma_cap_zero(dma_mask); 1503 dma_cap_set(DMA_MEMCPY, dma_mask); 1504 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1505 if (IS_ERR(dsi->reg_dma_chan)) { 1506 ret = PTR_ERR(dsi->reg_dma_chan); 1507 if (ret != -EPROBE_DEFER) 1508 DRM_ERROR("Failed to get DMA channel: %d\n", 1509 ret); 1510 return ret; 1511 } 1512 1513 /* Get the physical address of the device's registers. The 1514 * struct resource for the regs gives us the bus address 1515 * instead. 1516 */ 1517 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1518 0, NULL, NULL)); 1519 } 1520 1521 init_completion(&dsi->xfer_completion); 1522 /* At startup enable error-reporting interrupts and nothing else. */ 1523 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1524 /* Clear any existing interrupt state. */ 1525 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1526 1527 if (dsi->reg_dma_mem) 1528 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1529 vc4_dsi_irq_defer_to_thread_handler, 1530 vc4_dsi_irq_handler, 1531 IRQF_ONESHOT, 1532 "vc4 dsi", dsi); 1533 else 1534 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1535 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1536 if (ret) { 1537 if (ret != -EPROBE_DEFER) 1538 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1539 return ret; 1540 } 1541 1542 dsi->escape_clock = devm_clk_get(dev, "escape"); 1543 if (IS_ERR(dsi->escape_clock)) { 1544 ret = PTR_ERR(dsi->escape_clock); 1545 if (ret != -EPROBE_DEFER) 1546 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1547 return ret; 1548 } 1549 1550 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1551 if (IS_ERR(dsi->pll_phy_clock)) { 1552 ret = PTR_ERR(dsi->pll_phy_clock); 1553 if (ret != -EPROBE_DEFER) 1554 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1555 return ret; 1556 } 1557 1558 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1559 if (IS_ERR(dsi->pixel_clock)) { 1560 ret = PTR_ERR(dsi->pixel_clock); 1561 if (ret != -EPROBE_DEFER) 1562 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1563 return ret; 1564 } 1565 1566 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1567 &panel, &dsi->bridge); 1568 if (ret) { 1569 /* If the bridge or panel pointed by dev->of_node is not 1570 * enabled, just return 0 here so that we don't prevent the DRM 1571 * dev from being registered. Of course that means the DSI 1572 * encoder won't be exposed, but that's not a problem since 1573 * nothing is connected to it. 1574 */ 1575 if (ret == -ENODEV) 1576 return 0; 1577 1578 return ret; 1579 } 1580 1581 if (panel) { 1582 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel, 1583 DRM_MODE_CONNECTOR_DSI); 1584 if (IS_ERR(dsi->bridge)) 1585 return PTR_ERR(dsi->bridge); 1586 } 1587 1588 /* The esc clock rate is supposed to always be 100Mhz. */ 1589 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1590 if (ret) { 1591 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1592 return ret; 1593 } 1594 1595 ret = vc4_dsi_init_phy_clocks(dsi); 1596 if (ret) 1597 return ret; 1598 1599 if (dsi->port == 1) 1600 vc4->dsi1 = dsi; 1601 1602 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1603 DRM_MODE_ENCODER_DSI, NULL); 1604 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1605 1606 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL); 1607 if (ret) { 1608 dev_err(dev, "bridge attach failed: %d\n", ret); 1609 return ret; 1610 } 1611 /* Disable the atomic helper calls into the bridge. We 1612 * manually call the bridge pre_enable / enable / etc. calls 1613 * from our driver, since we need to sequence them within the 1614 * encoder's enable/disable paths. 1615 */ 1616 list_splice(&dsi->encoder->bridge_chain, &dsi->bridge_chain); 1617 1618 if (dsi->port == 0) 1619 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); 1620 else 1621 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); 1622 1623 pm_runtime_enable(dev); 1624 1625 return 0; 1626 } 1627 1628 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1629 void *data) 1630 { 1631 struct drm_device *drm = dev_get_drvdata(master); 1632 struct vc4_dev *vc4 = to_vc4_dev(drm); 1633 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1634 1635 if (dsi->bridge) 1636 pm_runtime_disable(dev); 1637 1638 /* 1639 * Restore the bridge_chain so the bridge detach procedure can happen 1640 * normally. 1641 */ 1642 list_splice(&dsi->bridge_chain, &dsi->encoder->bridge_chain); 1643 vc4_dsi_encoder_destroy(dsi->encoder); 1644 1645 if (dsi->port == 1) 1646 vc4->dsi1 = NULL; 1647 } 1648 1649 static const struct component_ops vc4_dsi_ops = { 1650 .bind = vc4_dsi_bind, 1651 .unbind = vc4_dsi_unbind, 1652 }; 1653 1654 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1655 { 1656 struct device *dev = &pdev->dev; 1657 struct vc4_dsi *dsi; 1658 int ret; 1659 1660 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1661 if (!dsi) 1662 return -ENOMEM; 1663 dev_set_drvdata(dev, dsi); 1664 1665 dsi->pdev = pdev; 1666 1667 /* Note, the initialization sequence for DSI and panels is 1668 * tricky. The component bind above won't get past its 1669 * -EPROBE_DEFER until the panel/bridge probes. The 1670 * panel/bridge will return -EPROBE_DEFER until it has a 1671 * mipi_dsi_host to register its device to. So, we register 1672 * the host during pdev probe time, so vc4 as a whole can then 1673 * -EPROBE_DEFER its component bind process until the panel 1674 * successfully attaches. 1675 */ 1676 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1677 dsi->dsi_host.dev = dev; 1678 mipi_dsi_host_register(&dsi->dsi_host); 1679 1680 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1681 if (ret) { 1682 mipi_dsi_host_unregister(&dsi->dsi_host); 1683 return ret; 1684 } 1685 1686 return 0; 1687 } 1688 1689 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1690 { 1691 struct device *dev = &pdev->dev; 1692 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1693 1694 component_del(&pdev->dev, &vc4_dsi_ops); 1695 mipi_dsi_host_unregister(&dsi->dsi_host); 1696 1697 return 0; 1698 } 1699 1700 struct platform_driver vc4_dsi_driver = { 1701 .probe = vc4_dsi_dev_probe, 1702 .remove = vc4_dsi_dev_remove, 1703 .driver = { 1704 .name = "vc4_dsi", 1705 .of_match_table = vc4_dsi_dt_match, 1706 }, 1707 }; 1708