1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of_device.h> 35 #include <linux/pm_runtime.h> 36 37 #include <drm/drm_atomic.h> 38 #include <drm/drm_atomic_helper.h> 39 #include <drm/drm_atomic_uapi.h> 40 #include <drm/drm_fb_dma_helper.h> 41 #include <drm/drm_framebuffer.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_print.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_vblank.h> 46 47 #include "vc4_drv.h" 48 #include "vc4_hdmi.h" 49 #include "vc4_regs.h" 50 51 #define HVS_FIFO_LATENCY_PIX 6 52 53 #define CRTC_WRITE(offset, val) \ 54 do { \ 55 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 56 writel(val, vc4_crtc->regs + (offset)); \ 57 } while (0) 58 59 #define CRTC_READ(offset) \ 60 ({ \ 61 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 62 readl(vc4_crtc->regs + (offset)); \ 63 }) 64 65 static const struct debugfs_reg32 crtc_regs[] = { 66 VC4_REG32(PV_CONTROL), 67 VC4_REG32(PV_V_CONTROL), 68 VC4_REG32(PV_VSYNCD_EVEN), 69 VC4_REG32(PV_HORZA), 70 VC4_REG32(PV_HORZB), 71 VC4_REG32(PV_VERTA), 72 VC4_REG32(PV_VERTB), 73 VC4_REG32(PV_VERTA_EVEN), 74 VC4_REG32(PV_VERTB_EVEN), 75 VC4_REG32(PV_INTEN), 76 VC4_REG32(PV_INTSTAT), 77 VC4_REG32(PV_STAT), 78 VC4_REG32(PV_HACT_ACT), 79 }; 80 81 static unsigned int 82 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) 83 { 84 struct vc4_hvs *hvs = vc4->hvs; 85 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); 86 /* Top/base are supposed to be 4-pixel aligned, but the 87 * Raspberry Pi firmware fills the low bits (which are 88 * presumably ignored). 89 */ 90 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 91 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 92 93 return top - base + 4; 94 } 95 96 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 97 bool in_vblank_irq, 98 int *vpos, int *hpos, 99 ktime_t *stime, ktime_t *etime, 100 const struct drm_display_mode *mode) 101 { 102 struct drm_device *dev = crtc->dev; 103 struct vc4_dev *vc4 = to_vc4_dev(dev); 104 struct vc4_hvs *hvs = vc4->hvs; 105 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 106 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 107 unsigned int cob_size; 108 u32 val; 109 int fifo_lines; 110 int vblank_lines; 111 bool ret = false; 112 113 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 114 115 /* Get optional system timestamp before query. */ 116 if (stime) 117 *stime = ktime_get(); 118 119 /* 120 * Read vertical scanline which is currently composed for our 121 * pixelvalve by the HVS, and also the scaler status. 122 */ 123 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); 124 125 /* Get optional system timestamp after query. */ 126 if (etime) 127 *etime = ktime_get(); 128 129 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 130 131 /* Vertical position of hvs composed scanline. */ 132 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 133 *hpos = 0; 134 135 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 136 *vpos /= 2; 137 138 /* Use hpos to correct for field offset in interlaced mode. */ 139 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2) 140 *hpos += mode->crtc_htotal / 2; 141 } 142 143 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); 144 /* This is the offset we need for translating hvs -> pv scanout pos. */ 145 fifo_lines = cob_size / mode->crtc_hdisplay; 146 147 if (fifo_lines > 0) 148 ret = true; 149 150 /* HVS more than fifo_lines into frame for compositing? */ 151 if (*vpos > fifo_lines) { 152 /* 153 * We are in active scanout and can get some meaningful results 154 * from HVS. The actual PV scanout can not trail behind more 155 * than fifo_lines as that is the fifo's capacity. Assume that 156 * in active scanout the HVS and PV work in lockstep wrt. HVS 157 * refilling the fifo and PV consuming from the fifo, ie. 158 * whenever the PV consumes and frees up a scanline in the 159 * fifo, the HVS will immediately refill it, therefore 160 * incrementing vpos. Therefore we choose HVS read position - 161 * fifo size in scanlines as a estimate of the real scanout 162 * position of the PV. 163 */ 164 *vpos -= fifo_lines + 1; 165 166 return ret; 167 } 168 169 /* 170 * Less: This happens when we are in vblank and the HVS, after getting 171 * the VSTART restart signal from the PV, just started refilling its 172 * fifo with new lines from the top-most lines of the new framebuffers. 173 * The PV does not scan out in vblank, so does not remove lines from 174 * the fifo, so the fifo will be full quickly and the HVS has to pause. 175 * We can't get meaningful readings wrt. scanline position of the PV 176 * and need to make things up in a approximative but consistent way. 177 */ 178 vblank_lines = mode->vtotal - mode->vdisplay; 179 180 if (in_vblank_irq) { 181 /* 182 * Assume the irq handler got called close to first 183 * line of vblank, so PV has about a full vblank 184 * scanlines to go, and as a base timestamp use the 185 * one taken at entry into vblank irq handler, so it 186 * is not affected by random delays due to lock 187 * contention on event_lock or vblank_time lock in 188 * the core. 189 */ 190 *vpos = -vblank_lines; 191 192 if (stime) 193 *stime = vc4_crtc->t_vblank; 194 if (etime) 195 *etime = vc4_crtc->t_vblank; 196 197 /* 198 * If the HVS fifo is not yet full then we know for certain 199 * we are at the very beginning of vblank, as the hvs just 200 * started refilling, and the stime and etime timestamps 201 * truly correspond to start of vblank. 202 * 203 * Unfortunately there's no way to report this to upper levels 204 * and make it more useful. 205 */ 206 } else { 207 /* 208 * No clue where we are inside vblank. Return a vpos of zero, 209 * which will cause calling code to just return the etime 210 * timestamp uncorrected. At least this is no worse than the 211 * standard fallback. 212 */ 213 *vpos = 0; 214 } 215 216 return ret; 217 } 218 219 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) 220 { 221 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 222 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 223 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); 224 u32 fifo_len_bytes = pv_data->fifo_depth; 225 226 /* 227 * Pixels are pulled from the HVS if the number of bytes is 228 * lower than the FIFO full level. 229 * 230 * The latency of the pixel fetch mechanism is 6 pixels, so we 231 * need to convert those 6 pixels in bytes, depending on the 232 * format, and then subtract that from the length of the FIFO 233 * to make sure we never end up in a situation where the FIFO 234 * is full. 235 */ 236 switch (format) { 237 case PV_CONTROL_FORMAT_DSIV_16: 238 case PV_CONTROL_FORMAT_DSIC_16: 239 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 240 case PV_CONTROL_FORMAT_DSIV_18: 241 return fifo_len_bytes - 14; 242 case PV_CONTROL_FORMAT_24: 243 case PV_CONTROL_FORMAT_DSIV_24: 244 default: 245 /* 246 * For some reason, the pixelvalve4 doesn't work with 247 * the usual formula and will only work with 32. 248 */ 249 if (crtc_data->hvs_output == 5) 250 return 32; 251 252 /* 253 * It looks like in some situations, we will overflow 254 * the PixelValve FIFO (with the bit 10 of PV stat being 255 * set) and stall the HVS / PV, eventually resulting in 256 * a page flip timeout. 257 * 258 * Displaying the video overlay during a playback with 259 * Kodi on an RPi3 seems to be a great solution with a 260 * failure rate around 50%. 261 * 262 * Removing 1 from the FIFO full level however 263 * seems to completely remove that issue. 264 */ 265 if (!vc4->is_vc5) 266 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; 267 268 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 269 } 270 } 271 272 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, 273 u32 format) 274 { 275 u32 level = vc4_get_fifo_full_level(vc4_crtc, format); 276 u32 ret = 0; 277 278 ret |= VC4_SET_FIELD((level >> 6), 279 PV5_CONTROL_FIFO_LEVEL_HIGH); 280 281 return ret | VC4_SET_FIELD(level & 0x3f, 282 PV_CONTROL_FIFO_LEVEL); 283 } 284 285 /* 286 * Returns the encoder attached to the CRTC. 287 * 288 * VC4 can only scan out to one encoder at a time, while the DRM core 289 * allows drivers to push pixels to more than one encoder from the 290 * same CRTC. 291 */ 292 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc, 293 struct drm_crtc_state *state) 294 { 295 struct drm_encoder *encoder; 296 297 WARN_ON(hweight32(state->encoder_mask) > 1); 298 299 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) 300 return encoder; 301 302 return NULL; 303 } 304 305 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) 306 { 307 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 308 struct drm_device *dev = crtc->dev; 309 int idx; 310 311 if (!drm_dev_enter(dev, &idx)) 312 return; 313 314 /* The PV needs to be disabled before it can be flushed */ 315 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); 316 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); 317 318 drm_dev_exit(idx); 319 } 320 321 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder, 322 struct drm_atomic_state *state) 323 { 324 struct drm_device *dev = crtc->dev; 325 struct vc4_dev *vc4 = to_vc4_dev(dev); 326 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 327 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 328 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 329 struct drm_crtc_state *crtc_state = crtc->state; 330 struct drm_display_mode *mode = &crtc_state->adjusted_mode; 331 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 332 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 || 333 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1; 334 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1; 335 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 336 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 337 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1; 338 bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC; 339 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 340 u8 ppc = pv_data->pixels_per_clock; 341 342 u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end; 343 u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start; 344 u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay; 345 346 bool debug_dump_regs = false; 347 int idx; 348 349 if (!drm_dev_enter(dev, &idx)) 350 return; 351 352 if (debug_dump_regs) { 353 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 354 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 355 drm_crtc_index(crtc)); 356 drm_print_regset32(&p, &vc4_crtc->regset); 357 } 358 359 vc4_crtc_pixelvalve_reset(crtc); 360 361 CRTC_WRITE(PV_HORZA, 362 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, 363 PV_HORZA_HBP) | 364 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, 365 PV_HORZA_HSYNC)); 366 367 CRTC_WRITE(PV_HORZB, 368 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, 369 PV_HORZB_HFP) | 370 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, 371 PV_HORZB_HACTIVE)); 372 373 if (interlace) { 374 bool odd_field_first = false; 375 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc); 376 u16 vert_bp_even = vert_bp; 377 u16 vert_fp_even = vert_fp; 378 379 if (is_vec) { 380 /* VEC (composite output) */ 381 ++field_delay; 382 if (mode->htotal == 858) { 383 /* 525-line mode (NTSC or PAL-M) */ 384 odd_field_first = true; 385 } 386 } 387 388 if (odd_field_first) 389 ++vert_fp_even; 390 else 391 ++vert_bp; 392 393 CRTC_WRITE(PV_VERTA_EVEN, 394 VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) | 395 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); 396 CRTC_WRITE(PV_VERTB_EVEN, 397 VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) | 398 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 399 400 /* We set up first field even mode for HDMI and VEC's PAL. 401 * For NTSC, we need first field odd. 402 */ 403 CRTC_WRITE(PV_V_CONTROL, 404 PV_VCONTROL_CONTINUOUS | 405 (is_dsi ? PV_VCONTROL_DSI : 0) | 406 PV_VCONTROL_INTERLACE | 407 (odd_field_first 408 ? PV_VCONTROL_ODD_FIRST 409 : VC4_SET_FIELD(field_delay, 410 PV_VCONTROL_ODD_DELAY))); 411 CRTC_WRITE(PV_VSYNCD_EVEN, 412 (odd_field_first ? field_delay : 0)); 413 } else { 414 CRTC_WRITE(PV_V_CONTROL, 415 PV_VCONTROL_CONTINUOUS | 416 (is_dsi ? PV_VCONTROL_DSI : 0)); 417 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 418 } 419 420 CRTC_WRITE(PV_VERTA, 421 VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) | 422 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); 423 CRTC_WRITE(PV_VERTB, 424 VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) | 425 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 426 427 if (is_dsi) 428 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 429 430 if (vc4->is_vc5) 431 CRTC_WRITE(PV_MUX_CFG, 432 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, 433 PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); 434 435 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | 436 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | 437 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 438 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 439 PV_CONTROL_CLR_AT_START | 440 PV_CONTROL_TRIGGER_UNDERFLOW | 441 PV_CONTROL_WAIT_HSTART | 442 VC4_SET_FIELD(vc4_encoder->clock_select, 443 PV_CONTROL_CLK_SELECT)); 444 445 if (debug_dump_regs) { 446 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 447 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 448 drm_crtc_index(crtc)); 449 drm_print_regset32(&p, &vc4_crtc->regset); 450 } 451 452 drm_dev_exit(idx); 453 } 454 455 static void require_hvs_enabled(struct drm_device *dev) 456 { 457 struct vc4_dev *vc4 = to_vc4_dev(dev); 458 struct vc4_hvs *hvs = vc4->hvs; 459 460 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 461 SCALER_DISPCTRL_ENABLE); 462 } 463 464 static int vc4_crtc_disable(struct drm_crtc *crtc, 465 struct drm_encoder *encoder, 466 struct drm_atomic_state *state, 467 unsigned int channel) 468 { 469 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 470 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 471 struct drm_device *dev = crtc->dev; 472 struct vc4_dev *vc4 = to_vc4_dev(dev); 473 int idx, ret; 474 475 if (!drm_dev_enter(dev, &idx)) 476 return -ENODEV; 477 478 CRTC_WRITE(PV_V_CONTROL, 479 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 480 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 481 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 482 483 /* 484 * This delay is needed to avoid to get a pixel stuck in an 485 * unflushable FIFO between the pixelvalve and the HDMI 486 * controllers on the BCM2711. 487 * 488 * Timing is fairly sensitive here, so mdelay is the safest 489 * approach. 490 * 491 * If it was to be reworked, the stuck pixel happens on a 492 * BCM2711 when changing mode with a good probability, so a 493 * script that changes mode on a regular basis should trigger 494 * the bug after less than 10 attempts. It manifests itself with 495 * every pixels being shifted by one to the right, and thus the 496 * last pixel of a line actually being displayed as the first 497 * pixel on the next line. 498 */ 499 mdelay(20); 500 501 if (vc4_encoder && vc4_encoder->post_crtc_disable) 502 vc4_encoder->post_crtc_disable(encoder, state); 503 504 vc4_crtc_pixelvalve_reset(crtc); 505 vc4_hvs_stop_channel(vc4->hvs, channel); 506 507 if (vc4_encoder && vc4_encoder->post_crtc_powerdown) 508 vc4_encoder->post_crtc_powerdown(encoder, state); 509 510 drm_dev_exit(idx); 511 512 return 0; 513 } 514 515 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) 516 { 517 struct drm_device *drm = crtc->dev; 518 struct vc4_dev *vc4 = to_vc4_dev(drm); 519 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 520 enum vc4_encoder_type encoder_type; 521 const struct vc4_pv_data *pv_data; 522 struct drm_encoder *encoder; 523 struct vc4_hdmi *vc4_hdmi; 524 unsigned encoder_sel; 525 int channel; 526 int ret; 527 528 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 529 "brcm,bcm2711-pixelvalve2") || 530 of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 531 "brcm,bcm2711-pixelvalve4"))) 532 return 0; 533 534 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) 535 return 0; 536 537 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) 538 return 0; 539 540 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output); 541 if (channel < 0) 542 return 0; 543 544 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT); 545 if (WARN_ON(encoder_sel != 0)) 546 return 0; 547 548 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 549 encoder_type = pv_data->encoder_types[encoder_sel]; 550 encoder = vc4_find_encoder_by_type(drm, encoder_type); 551 if (WARN_ON(!encoder)) 552 return 0; 553 554 vc4_hdmi = encoder_to_vc4_hdmi(encoder); 555 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); 556 if (ret) 557 return ret; 558 559 ret = vc4_crtc_disable(crtc, encoder, NULL, channel); 560 if (ret) 561 return ret; 562 563 /* 564 * post_crtc_powerdown will have called pm_runtime_put, so we 565 * don't need it here otherwise we'll get the reference counting 566 * wrong. 567 */ 568 569 return 0; 570 } 571 572 void vc4_crtc_send_vblank(struct drm_crtc *crtc) 573 { 574 struct drm_device *dev = crtc->dev; 575 unsigned long flags; 576 577 if (!crtc->state || !crtc->state->event) 578 return; 579 580 spin_lock_irqsave(&dev->event_lock, flags); 581 drm_crtc_send_vblank_event(crtc, crtc->state->event); 582 crtc->state->event = NULL; 583 spin_unlock_irqrestore(&dev->event_lock, flags); 584 } 585 586 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 587 struct drm_atomic_state *state) 588 { 589 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 590 crtc); 591 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); 592 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state); 593 struct drm_device *dev = crtc->dev; 594 595 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)", 596 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 597 598 require_hvs_enabled(dev); 599 600 /* Disable vblank irq handling before crtc is disabled. */ 601 drm_crtc_vblank_off(crtc); 602 603 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel); 604 605 /* 606 * Make sure we issue a vblank event after disabling the CRTC if 607 * someone was waiting it. 608 */ 609 vc4_crtc_send_vblank(crtc); 610 } 611 612 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 613 struct drm_atomic_state *state) 614 { 615 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 616 crtc); 617 struct drm_device *dev = crtc->dev; 618 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 619 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state); 620 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 621 int idx; 622 623 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)", 624 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 625 626 if (!drm_dev_enter(dev, &idx)) 627 return; 628 629 require_hvs_enabled(dev); 630 631 /* Enable vblank irq handling before crtc is started otherwise 632 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 633 */ 634 drm_crtc_vblank_on(crtc); 635 636 vc4_hvs_atomic_enable(crtc, state); 637 638 if (vc4_encoder->pre_crtc_configure) 639 vc4_encoder->pre_crtc_configure(encoder, state); 640 641 vc4_crtc_config_pv(crtc, encoder, state); 642 643 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); 644 645 if (vc4_encoder->pre_crtc_enable) 646 vc4_encoder->pre_crtc_enable(encoder, state); 647 648 /* When feeding the transposer block the pixelvalve is unneeded and 649 * should not be enabled. 650 */ 651 CRTC_WRITE(PV_V_CONTROL, 652 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 653 654 if (vc4_encoder->post_crtc_enable) 655 vc4_encoder->post_crtc_enable(encoder, state); 656 657 drm_dev_exit(idx); 658 } 659 660 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 661 const struct drm_display_mode *mode) 662 { 663 /* Do not allow doublescan modes from user space */ 664 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 665 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 666 crtc->base.id); 667 return MODE_NO_DBLESCAN; 668 } 669 670 return MODE_OK; 671 } 672 673 void vc4_crtc_get_margins(struct drm_crtc_state *state, 674 unsigned int *left, unsigned int *right, 675 unsigned int *top, unsigned int *bottom) 676 { 677 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 678 struct drm_connector_state *conn_state; 679 struct drm_connector *conn; 680 int i; 681 682 *left = vc4_state->margins.left; 683 *right = vc4_state->margins.right; 684 *top = vc4_state->margins.top; 685 *bottom = vc4_state->margins.bottom; 686 687 /* We have to interate over all new connector states because 688 * vc4_crtc_get_margins() might be called before 689 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 690 * might be outdated. 691 */ 692 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 693 if (conn_state->crtc != state->crtc) 694 continue; 695 696 *left = conn_state->tv.margins.left; 697 *right = conn_state->tv.margins.right; 698 *top = conn_state->tv.margins.top; 699 *bottom = conn_state->tv.margins.bottom; 700 break; 701 } 702 } 703 704 int vc4_crtc_atomic_check(struct drm_crtc *crtc, 705 struct drm_atomic_state *state) 706 { 707 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 708 crtc); 709 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 710 struct drm_connector *conn; 711 struct drm_connector_state *conn_state; 712 struct drm_encoder *encoder; 713 int ret, i; 714 715 ret = vc4_hvs_atomic_check(crtc, state); 716 if (ret) 717 return ret; 718 719 encoder = vc4_get_crtc_encoder(crtc, crtc_state); 720 if (encoder) { 721 const struct drm_display_mode *mode = &crtc_state->adjusted_mode; 722 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 723 724 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) { 725 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000, 726 mode->clock * 9 / 10) * 1000; 727 } else { 728 vc4_state->hvs_load = mode->clock * 1000; 729 } 730 } 731 732 for_each_new_connector_in_state(state, conn, conn_state, 733 i) { 734 if (conn_state->crtc != crtc) 735 continue; 736 737 vc4_state->margins.left = conn_state->tv.margins.left; 738 vc4_state->margins.right = conn_state->tv.margins.right; 739 vc4_state->margins.top = conn_state->tv.margins.top; 740 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 741 break; 742 } 743 744 return 0; 745 } 746 747 static int vc4_enable_vblank(struct drm_crtc *crtc) 748 { 749 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 750 struct drm_device *dev = crtc->dev; 751 int idx; 752 753 if (!drm_dev_enter(dev, &idx)) 754 return -ENODEV; 755 756 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 757 758 drm_dev_exit(idx); 759 760 return 0; 761 } 762 763 static void vc4_disable_vblank(struct drm_crtc *crtc) 764 { 765 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 766 struct drm_device *dev = crtc->dev; 767 int idx; 768 769 if (!drm_dev_enter(dev, &idx)) 770 return; 771 772 CRTC_WRITE(PV_INTEN, 0); 773 774 drm_dev_exit(idx); 775 } 776 777 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 778 { 779 struct drm_crtc *crtc = &vc4_crtc->base; 780 struct drm_device *dev = crtc->dev; 781 struct vc4_dev *vc4 = to_vc4_dev(dev); 782 struct vc4_hvs *hvs = vc4->hvs; 783 u32 chan = vc4_crtc->current_hvs_channel; 784 unsigned long flags; 785 786 spin_lock_irqsave(&dev->event_lock, flags); 787 spin_lock(&vc4_crtc->irq_lock); 788 if (vc4_crtc->event && 789 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) || 790 vc4_crtc->feeds_txp)) { 791 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 792 vc4_crtc->event = NULL; 793 drm_crtc_vblank_put(crtc); 794 795 /* Wait for the page flip to unmask the underrun to ensure that 796 * the display list was updated by the hardware. Before that 797 * happens, the HVS will be using the previous display list with 798 * the CRTC and encoder already reconfigured, leading to 799 * underruns. This can be seen when reconfiguring the CRTC. 800 */ 801 vc4_hvs_unmask_underrun(hvs, chan); 802 } 803 spin_unlock(&vc4_crtc->irq_lock); 804 spin_unlock_irqrestore(&dev->event_lock, flags); 805 } 806 807 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 808 { 809 crtc->t_vblank = ktime_get(); 810 drm_crtc_handle_vblank(&crtc->base); 811 vc4_crtc_handle_page_flip(crtc); 812 } 813 814 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 815 { 816 struct vc4_crtc *vc4_crtc = data; 817 u32 stat = CRTC_READ(PV_INTSTAT); 818 irqreturn_t ret = IRQ_NONE; 819 820 if (stat & PV_INT_VFP_START) { 821 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 822 vc4_crtc_handle_vblank(vc4_crtc); 823 ret = IRQ_HANDLED; 824 } 825 826 return ret; 827 } 828 829 struct vc4_async_flip_state { 830 struct drm_crtc *crtc; 831 struct drm_framebuffer *fb; 832 struct drm_framebuffer *old_fb; 833 struct drm_pending_vblank_event *event; 834 835 union { 836 struct dma_fence_cb fence; 837 struct vc4_seqno_cb seqno; 838 } cb; 839 }; 840 841 /* Called when the V3D execution for the BO being flipped to is done, so that 842 * we can actually update the plane's address to point to it. 843 */ 844 static void 845 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state) 846 { 847 struct drm_crtc *crtc = flip_state->crtc; 848 struct drm_device *dev = crtc->dev; 849 struct drm_plane *plane = crtc->primary; 850 851 vc4_plane_async_set_fb(plane, flip_state->fb); 852 if (flip_state->event) { 853 unsigned long flags; 854 855 spin_lock_irqsave(&dev->event_lock, flags); 856 drm_crtc_send_vblank_event(crtc, flip_state->event); 857 spin_unlock_irqrestore(&dev->event_lock, flags); 858 } 859 860 drm_crtc_vblank_put(crtc); 861 drm_framebuffer_put(flip_state->fb); 862 863 if (flip_state->old_fb) 864 drm_framebuffer_put(flip_state->old_fb); 865 866 kfree(flip_state); 867 } 868 869 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb) 870 { 871 struct vc4_async_flip_state *flip_state = 872 container_of(cb, struct vc4_async_flip_state, cb.seqno); 873 struct vc4_bo *bo = NULL; 874 875 if (flip_state->old_fb) { 876 struct drm_gem_dma_object *dma_bo = 877 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0); 878 bo = to_vc4_bo(&dma_bo->base); 879 } 880 881 vc4_async_page_flip_complete(flip_state); 882 883 /* 884 * Decrement the BO usecnt in order to keep the inc/dec 885 * calls balanced when the planes are updated through 886 * the async update path. 887 * 888 * FIXME: we should move to generic async-page-flip when 889 * it's available, so that we can get rid of this 890 * hand-made cleanup_fb() logic. 891 */ 892 if (bo) 893 vc4_bo_dec_usecnt(bo); 894 } 895 896 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence, 897 struct dma_fence_cb *cb) 898 { 899 struct vc4_async_flip_state *flip_state = 900 container_of(cb, struct vc4_async_flip_state, cb.fence); 901 902 vc4_async_page_flip_complete(flip_state); 903 dma_fence_put(fence); 904 } 905 906 static int vc4_async_set_fence_cb(struct drm_device *dev, 907 struct vc4_async_flip_state *flip_state) 908 { 909 struct drm_framebuffer *fb = flip_state->fb; 910 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); 911 struct vc4_dev *vc4 = to_vc4_dev(dev); 912 struct dma_fence *fence; 913 int ret; 914 915 if (!vc4->is_vc5) { 916 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); 917 918 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno, 919 vc4_async_page_flip_seqno_complete); 920 } 921 922 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence); 923 if (ret) 924 return ret; 925 926 /* If there's no fence, complete the page flip immediately */ 927 if (!fence) { 928 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 929 return 0; 930 } 931 932 /* If the fence has already been completed, complete the page flip */ 933 if (dma_fence_add_callback(fence, &flip_state->cb.fence, 934 vc4_async_page_flip_fence_complete)) 935 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 936 937 return 0; 938 } 939 940 static int 941 vc4_async_page_flip_common(struct drm_crtc *crtc, 942 struct drm_framebuffer *fb, 943 struct drm_pending_vblank_event *event, 944 uint32_t flags) 945 { 946 struct drm_device *dev = crtc->dev; 947 struct drm_plane *plane = crtc->primary; 948 struct vc4_async_flip_state *flip_state; 949 950 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 951 if (!flip_state) 952 return -ENOMEM; 953 954 drm_framebuffer_get(fb); 955 flip_state->fb = fb; 956 flip_state->crtc = crtc; 957 flip_state->event = event; 958 959 /* Save the current FB before it's replaced by the new one in 960 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 961 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 962 * it consistent. 963 * FIXME: we should move to generic async-page-flip when it's 964 * available, so that we can get rid of this hand-made cleanup_fb() 965 * logic. 966 */ 967 flip_state->old_fb = plane->state->fb; 968 if (flip_state->old_fb) 969 drm_framebuffer_get(flip_state->old_fb); 970 971 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 972 973 /* Immediately update the plane's legacy fb pointer, so that later 974 * modeset prep sees the state that will be present when the semaphore 975 * is released. 976 */ 977 drm_atomic_set_fb_for_plane(plane->state, fb); 978 979 vc4_async_set_fence_cb(dev, flip_state); 980 981 /* Driver takes ownership of state on successful async commit. */ 982 return 0; 983 } 984 985 /* Implements async (non-vblank-synced) page flips. 986 * 987 * The page flip ioctl needs to return immediately, so we grab the 988 * modeset semaphore on the pipe, and queue the address update for 989 * when V3D is done with the BO being flipped to. 990 */ 991 static int vc4_async_page_flip(struct drm_crtc *crtc, 992 struct drm_framebuffer *fb, 993 struct drm_pending_vblank_event *event, 994 uint32_t flags) 995 { 996 struct drm_device *dev = crtc->dev; 997 struct vc4_dev *vc4 = to_vc4_dev(dev); 998 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); 999 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); 1000 int ret; 1001 1002 if (WARN_ON_ONCE(vc4->is_vc5)) 1003 return -ENODEV; 1004 1005 /* 1006 * Increment the BO usecnt here, so that we never end up with an 1007 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 1008 * plane is later updated through the non-async path. 1009 * 1010 * FIXME: we should move to generic async-page-flip when 1011 * it's available, so that we can get rid of this 1012 * hand-made prepare_fb() logic. 1013 */ 1014 ret = vc4_bo_inc_usecnt(bo); 1015 if (ret) 1016 return ret; 1017 1018 ret = vc4_async_page_flip_common(crtc, fb, event, flags); 1019 if (ret) { 1020 vc4_bo_dec_usecnt(bo); 1021 return ret; 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int vc5_async_page_flip(struct drm_crtc *crtc, 1028 struct drm_framebuffer *fb, 1029 struct drm_pending_vblank_event *event, 1030 uint32_t flags) 1031 { 1032 return vc4_async_page_flip_common(crtc, fb, event, flags); 1033 } 1034 1035 int vc4_page_flip(struct drm_crtc *crtc, 1036 struct drm_framebuffer *fb, 1037 struct drm_pending_vblank_event *event, 1038 uint32_t flags, 1039 struct drm_modeset_acquire_ctx *ctx) 1040 { 1041 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) { 1042 struct drm_device *dev = crtc->dev; 1043 struct vc4_dev *vc4 = to_vc4_dev(dev); 1044 1045 if (vc4->is_vc5) 1046 return vc5_async_page_flip(crtc, fb, event, flags); 1047 else 1048 return vc4_async_page_flip(crtc, fb, event, flags); 1049 } else { 1050 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 1051 } 1052 } 1053 1054 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 1055 { 1056 struct vc4_crtc_state *vc4_state, *old_vc4_state; 1057 1058 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 1059 if (!vc4_state) 1060 return NULL; 1061 1062 old_vc4_state = to_vc4_crtc_state(crtc->state); 1063 vc4_state->margins = old_vc4_state->margins; 1064 vc4_state->assigned_channel = old_vc4_state->assigned_channel; 1065 1066 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 1067 return &vc4_state->base; 1068 } 1069 1070 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 1071 struct drm_crtc_state *state) 1072 { 1073 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 1074 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 1075 1076 if (drm_mm_node_allocated(&vc4_state->mm)) { 1077 unsigned long flags; 1078 1079 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 1080 drm_mm_remove_node(&vc4_state->mm); 1081 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 1082 1083 } 1084 1085 drm_atomic_helper_crtc_destroy_state(crtc, state); 1086 } 1087 1088 void vc4_crtc_reset(struct drm_crtc *crtc) 1089 { 1090 struct vc4_crtc_state *vc4_crtc_state; 1091 1092 if (crtc->state) 1093 vc4_crtc_destroy_state(crtc, crtc->state); 1094 1095 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); 1096 if (!vc4_crtc_state) { 1097 crtc->state = NULL; 1098 return; 1099 } 1100 1101 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 1102 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); 1103 } 1104 1105 int vc4_crtc_late_register(struct drm_crtc *crtc) 1106 { 1107 struct drm_device *drm = crtc->dev; 1108 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1109 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 1110 1111 vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name, 1112 &vc4_crtc->regset); 1113 1114 return 0; 1115 } 1116 1117 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1118 .set_config = drm_atomic_helper_set_config, 1119 .page_flip = vc4_page_flip, 1120 .set_property = NULL, 1121 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1122 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1123 .reset = vc4_crtc_reset, 1124 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1125 .atomic_destroy_state = vc4_crtc_destroy_state, 1126 .enable_vblank = vc4_enable_vblank, 1127 .disable_vblank = vc4_disable_vblank, 1128 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1129 .late_register = vc4_crtc_late_register, 1130 }; 1131 1132 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1133 .mode_valid = vc4_crtc_mode_valid, 1134 .atomic_check = vc4_crtc_atomic_check, 1135 .atomic_begin = vc4_hvs_atomic_begin, 1136 .atomic_flush = vc4_hvs_atomic_flush, 1137 .atomic_enable = vc4_crtc_atomic_enable, 1138 .atomic_disable = vc4_crtc_atomic_disable, 1139 .get_scanout_position = vc4_crtc_get_scanout_position, 1140 }; 1141 1142 const struct vc4_pv_data bcm2835_pv0_data = { 1143 .base = { 1144 .name = "pixelvalve-0", 1145 .debugfs_name = "crtc0_regs", 1146 .hvs_available_channels = BIT(0), 1147 .hvs_output = 0, 1148 }, 1149 .fifo_depth = 64, 1150 .pixels_per_clock = 1, 1151 .encoder_types = { 1152 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1153 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1154 }, 1155 }; 1156 1157 const struct vc4_pv_data bcm2835_pv1_data = { 1158 .base = { 1159 .name = "pixelvalve-1", 1160 .debugfs_name = "crtc1_regs", 1161 .hvs_available_channels = BIT(2), 1162 .hvs_output = 2, 1163 }, 1164 .fifo_depth = 64, 1165 .pixels_per_clock = 1, 1166 .encoder_types = { 1167 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1168 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1169 }, 1170 }; 1171 1172 const struct vc4_pv_data bcm2835_pv2_data = { 1173 .base = { 1174 .name = "pixelvalve-2", 1175 .debugfs_name = "crtc2_regs", 1176 .hvs_available_channels = BIT(1), 1177 .hvs_output = 1, 1178 }, 1179 .fifo_depth = 64, 1180 .pixels_per_clock = 1, 1181 .encoder_types = { 1182 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, 1183 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1184 }, 1185 }; 1186 1187 const struct vc4_pv_data bcm2711_pv0_data = { 1188 .base = { 1189 .name = "pixelvalve-0", 1190 .debugfs_name = "crtc0_regs", 1191 .hvs_available_channels = BIT(0), 1192 .hvs_output = 0, 1193 }, 1194 .fifo_depth = 64, 1195 .pixels_per_clock = 1, 1196 .encoder_types = { 1197 [0] = VC4_ENCODER_TYPE_DSI0, 1198 [1] = VC4_ENCODER_TYPE_DPI, 1199 }, 1200 }; 1201 1202 const struct vc4_pv_data bcm2711_pv1_data = { 1203 .base = { 1204 .name = "pixelvalve-1", 1205 .debugfs_name = "crtc1_regs", 1206 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1207 .hvs_output = 3, 1208 }, 1209 .fifo_depth = 64, 1210 .pixels_per_clock = 1, 1211 .encoder_types = { 1212 [0] = VC4_ENCODER_TYPE_DSI1, 1213 [1] = VC4_ENCODER_TYPE_SMI, 1214 }, 1215 }; 1216 1217 const struct vc4_pv_data bcm2711_pv2_data = { 1218 .base = { 1219 .name = "pixelvalve-2", 1220 .debugfs_name = "crtc2_regs", 1221 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1222 .hvs_output = 4, 1223 }, 1224 .fifo_depth = 256, 1225 .pixels_per_clock = 2, 1226 .encoder_types = { 1227 [0] = VC4_ENCODER_TYPE_HDMI0, 1228 }, 1229 }; 1230 1231 const struct vc4_pv_data bcm2711_pv3_data = { 1232 .base = { 1233 .name = "pixelvalve-3", 1234 .debugfs_name = "crtc3_regs", 1235 .hvs_available_channels = BIT(1), 1236 .hvs_output = 1, 1237 }, 1238 .fifo_depth = 64, 1239 .pixels_per_clock = 1, 1240 .encoder_types = { 1241 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1242 }, 1243 }; 1244 1245 const struct vc4_pv_data bcm2711_pv4_data = { 1246 .base = { 1247 .name = "pixelvalve-4", 1248 .debugfs_name = "crtc4_regs", 1249 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1250 .hvs_output = 5, 1251 }, 1252 .fifo_depth = 64, 1253 .pixels_per_clock = 2, 1254 .encoder_types = { 1255 [0] = VC4_ENCODER_TYPE_HDMI1, 1256 }, 1257 }; 1258 1259 static const struct of_device_id vc4_crtc_dt_match[] = { 1260 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 1261 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 1262 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 1263 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, 1264 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, 1265 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, 1266 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, 1267 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, 1268 {} 1269 }; 1270 1271 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1272 struct drm_crtc *crtc) 1273 { 1274 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1275 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 1276 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 1277 struct drm_encoder *encoder; 1278 1279 drm_for_each_encoder(encoder, drm) { 1280 struct vc4_encoder *vc4_encoder; 1281 int i; 1282 1283 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) 1284 continue; 1285 1286 vc4_encoder = to_vc4_encoder(encoder); 1287 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 1288 if (vc4_encoder->type == encoder_types[i]) { 1289 vc4_encoder->clock_select = i; 1290 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1291 break; 1292 } 1293 } 1294 } 1295 } 1296 1297 /** 1298 * __vc4_crtc_init - Initializes a CRTC 1299 * @drm: DRM Device 1300 * @pdev: CRTC Platform Device 1301 * @vc4_crtc: CRTC Object to Initialize 1302 * @data: Configuration data associated with this CRTC 1303 * @primary_plane: Primary plane for CRTC 1304 * @crtc_funcs: Callbacks for the new CRTC 1305 * @crtc_helper_funcs: Helper Callbacks for the new CRTC 1306 * @feeds_txp: Is this CRTC connected to the TXP? 1307 * 1308 * Initializes our private CRTC structure. This function is mostly 1309 * relevant for KUnit testing, all other users should use 1310 * vc4_crtc_init() instead. 1311 * 1312 * Returns: 1313 * 0 on success, a negative error code on failure. 1314 */ 1315 int __vc4_crtc_init(struct drm_device *drm, 1316 struct platform_device *pdev, 1317 struct vc4_crtc *vc4_crtc, 1318 const struct vc4_crtc_data *data, 1319 struct drm_plane *primary_plane, 1320 const struct drm_crtc_funcs *crtc_funcs, 1321 const struct drm_crtc_helper_funcs *crtc_helper_funcs, 1322 bool feeds_txp) 1323 { 1324 struct vc4_dev *vc4 = to_vc4_dev(drm); 1325 struct drm_crtc *crtc = &vc4_crtc->base; 1326 unsigned int i; 1327 int ret; 1328 1329 vc4_crtc->data = data; 1330 vc4_crtc->pdev = pdev; 1331 vc4_crtc->feeds_txp = feeds_txp; 1332 spin_lock_init(&vc4_crtc->irq_lock); 1333 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1334 crtc_funcs, data->name); 1335 if (ret) 1336 return ret; 1337 1338 drm_crtc_helper_add(crtc, crtc_helper_funcs); 1339 1340 if (!vc4->is_vc5) { 1341 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1342 1343 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1344 1345 /* We support CTM, but only for one CRTC at a time. It's therefore 1346 * implemented as private driver state in vc4_kms, not here. 1347 */ 1348 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1349 } 1350 1351 for (i = 0; i < crtc->gamma_size; i++) { 1352 vc4_crtc->lut_r[i] = i; 1353 vc4_crtc->lut_g[i] = i; 1354 vc4_crtc->lut_b[i] = i; 1355 } 1356 1357 return 0; 1358 } 1359 1360 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev, 1361 struct vc4_crtc *vc4_crtc, 1362 const struct vc4_crtc_data *data, 1363 const struct drm_crtc_funcs *crtc_funcs, 1364 const struct drm_crtc_helper_funcs *crtc_helper_funcs, 1365 bool feeds_txp) 1366 { 1367 struct drm_plane *primary_plane; 1368 1369 /* For now, we create just the primary and the legacy cursor 1370 * planes. We should be able to stack more planes on easily, 1371 * but to do that we would need to compute the bandwidth 1372 * requirement of the plane configuration, and reject ones 1373 * that will take too much. 1374 */ 1375 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0); 1376 if (IS_ERR(primary_plane)) { 1377 dev_err(drm->dev, "failed to construct primary plane\n"); 1378 return PTR_ERR(primary_plane); 1379 } 1380 1381 return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane, 1382 crtc_funcs, crtc_helper_funcs, feeds_txp); 1383 } 1384 1385 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1386 { 1387 struct platform_device *pdev = to_platform_device(dev); 1388 struct drm_device *drm = dev_get_drvdata(master); 1389 const struct vc4_pv_data *pv_data; 1390 struct vc4_crtc *vc4_crtc; 1391 struct drm_crtc *crtc; 1392 int ret; 1393 1394 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL); 1395 if (!vc4_crtc) 1396 return -ENOMEM; 1397 crtc = &vc4_crtc->base; 1398 1399 pv_data = of_device_get_match_data(dev); 1400 if (!pv_data) 1401 return -ENODEV; 1402 1403 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1404 if (IS_ERR(vc4_crtc->regs)) 1405 return PTR_ERR(vc4_crtc->regs); 1406 1407 vc4_crtc->regset.base = vc4_crtc->regs; 1408 vc4_crtc->regset.regs = crtc_regs; 1409 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1410 1411 ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base, 1412 &vc4_crtc_funcs, &vc4_crtc_helper_funcs, 1413 false); 1414 if (ret) 1415 return ret; 1416 vc4_set_crtc_possible_masks(drm, crtc); 1417 1418 CRTC_WRITE(PV_INTEN, 0); 1419 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1420 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1421 vc4_crtc_irq_handler, 1422 IRQF_SHARED, 1423 "vc4 crtc", vc4_crtc); 1424 if (ret) 1425 return ret; 1426 1427 platform_set_drvdata(pdev, vc4_crtc); 1428 1429 return 0; 1430 } 1431 1432 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1433 void *data) 1434 { 1435 struct platform_device *pdev = to_platform_device(dev); 1436 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1437 1438 CRTC_WRITE(PV_INTEN, 0); 1439 1440 platform_set_drvdata(pdev, NULL); 1441 } 1442 1443 static const struct component_ops vc4_crtc_ops = { 1444 .bind = vc4_crtc_bind, 1445 .unbind = vc4_crtc_unbind, 1446 }; 1447 1448 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1449 { 1450 return component_add(&pdev->dev, &vc4_crtc_ops); 1451 } 1452 1453 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1454 { 1455 component_del(&pdev->dev, &vc4_crtc_ops); 1456 return 0; 1457 } 1458 1459 struct platform_driver vc4_crtc_driver = { 1460 .probe = vc4_crtc_dev_probe, 1461 .remove = vc4_crtc_dev_remove, 1462 .driver = { 1463 .name = "vc4_crtc", 1464 .of_match_table = vc4_crtc_dt_match, 1465 }, 1466 }; 1467