xref: /linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33 
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "linux/component.h"
39 #include "linux/of_device.h"
40 #include "vc4_drv.h"
41 #include "vc4_regs.h"
42 
43 struct vc4_crtc {
44 	struct drm_crtc base;
45 	const struct vc4_crtc_data *data;
46 	void __iomem *regs;
47 
48 	/* Which HVS channel we're using for our CRTC. */
49 	int channel;
50 
51 	/* Pointer to the actual hardware display list memory for the
52 	 * crtc.
53 	 */
54 	u32 __iomem *dlist;
55 
56 	u32 dlist_size; /* in dwords */
57 
58 	struct drm_pending_vblank_event *event;
59 };
60 
61 static inline struct vc4_crtc *
62 to_vc4_crtc(struct drm_crtc *crtc)
63 {
64 	return (struct vc4_crtc *)crtc;
65 }
66 
67 struct vc4_crtc_data {
68 	/* Which channel of the HVS this pixelvalve sources from. */
69 	int hvs_channel;
70 
71 	enum vc4_encoder_type encoder0_type;
72 	enum vc4_encoder_type encoder1_type;
73 };
74 
75 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
76 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
77 
78 #define CRTC_REG(reg) { reg, #reg }
79 static const struct {
80 	u32 reg;
81 	const char *name;
82 } crtc_regs[] = {
83 	CRTC_REG(PV_CONTROL),
84 	CRTC_REG(PV_V_CONTROL),
85 	CRTC_REG(PV_VSYNCD),
86 	CRTC_REG(PV_HORZA),
87 	CRTC_REG(PV_HORZB),
88 	CRTC_REG(PV_VERTA),
89 	CRTC_REG(PV_VERTB),
90 	CRTC_REG(PV_VERTA_EVEN),
91 	CRTC_REG(PV_VERTB_EVEN),
92 	CRTC_REG(PV_INTEN),
93 	CRTC_REG(PV_INTSTAT),
94 	CRTC_REG(PV_STAT),
95 	CRTC_REG(PV_HACT_ACT),
96 };
97 
98 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
99 {
100 	int i;
101 
102 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
103 		DRM_INFO("0x%04x (%s): 0x%08x\n",
104 			 crtc_regs[i].reg, crtc_regs[i].name,
105 			 CRTC_READ(crtc_regs[i].reg));
106 	}
107 }
108 
109 #ifdef CONFIG_DEBUG_FS
110 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
111 {
112 	struct drm_info_node *node = (struct drm_info_node *)m->private;
113 	struct drm_device *dev = node->minor->dev;
114 	int crtc_index = (uintptr_t)node->info_ent->data;
115 	struct drm_crtc *crtc;
116 	struct vc4_crtc *vc4_crtc;
117 	int i;
118 
119 	i = 0;
120 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
121 		if (i == crtc_index)
122 			break;
123 		i++;
124 	}
125 	if (!crtc)
126 		return 0;
127 	vc4_crtc = to_vc4_crtc(crtc);
128 
129 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
130 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
131 			   crtc_regs[i].name, crtc_regs[i].reg,
132 			   CRTC_READ(crtc_regs[i].reg));
133 	}
134 
135 	return 0;
136 }
137 #endif
138 
139 static void vc4_crtc_destroy(struct drm_crtc *crtc)
140 {
141 	drm_crtc_cleanup(crtc);
142 }
143 
144 static u32 vc4_get_fifo_full_level(u32 format)
145 {
146 	static const u32 fifo_len_bytes = 64;
147 	static const u32 hvs_latency_pix = 6;
148 
149 	switch (format) {
150 	case PV_CONTROL_FORMAT_DSIV_16:
151 	case PV_CONTROL_FORMAT_DSIC_16:
152 		return fifo_len_bytes - 2 * hvs_latency_pix;
153 	case PV_CONTROL_FORMAT_DSIV_18:
154 		return fifo_len_bytes - 14;
155 	case PV_CONTROL_FORMAT_24:
156 	case PV_CONTROL_FORMAT_DSIV_24:
157 	default:
158 		return fifo_len_bytes - 3 * hvs_latency_pix;
159 	}
160 }
161 
162 /*
163  * Returns the clock select bit for the connector attached to the
164  * CRTC.
165  */
166 static int vc4_get_clock_select(struct drm_crtc *crtc)
167 {
168 	struct drm_connector *connector;
169 
170 	drm_for_each_connector(connector, crtc->dev) {
171 		if (connector && connector->state->crtc == crtc) {
172 			struct drm_encoder *encoder = connector->encoder;
173 			struct vc4_encoder *vc4_encoder =
174 				to_vc4_encoder(encoder);
175 
176 			return vc4_encoder->clock_select;
177 		}
178 	}
179 
180 	return -1;
181 }
182 
183 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
184 {
185 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
186 	struct drm_crtc_state *state = crtc->state;
187 	struct drm_display_mode *mode = &state->adjusted_mode;
188 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
189 	u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
190 	u32 format = PV_CONTROL_FORMAT_24;
191 	bool debug_dump_regs = false;
192 	int clock_select = vc4_get_clock_select(crtc);
193 
194 	if (debug_dump_regs) {
195 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
196 		vc4_crtc_dump_regs(vc4_crtc);
197 	}
198 
199 	/* Reset the PV fifo. */
200 	CRTC_WRITE(PV_CONTROL, 0);
201 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
202 	CRTC_WRITE(PV_CONTROL, 0);
203 
204 	CRTC_WRITE(PV_HORZA,
205 		   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
206 				 PV_HORZA_HBP) |
207 		   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
208 				 PV_HORZA_HSYNC));
209 	CRTC_WRITE(PV_HORZB,
210 		   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
211 				 PV_HORZB_HFP) |
212 		   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
213 
214 	if (interlace) {
215 		CRTC_WRITE(PV_VERTA_EVEN,
216 			   VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
217 					 PV_VERTA_VBP) |
218 			   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
219 					 PV_VERTA_VSYNC));
220 		CRTC_WRITE(PV_VERTB_EVEN,
221 			   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
222 					 PV_VERTB_VFP) |
223 			   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
224 	}
225 
226 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
227 
228 	CRTC_WRITE(PV_V_CONTROL,
229 		   PV_VCONTROL_CONTINUOUS |
230 		   (interlace ? PV_VCONTROL_INTERLACE : 0));
231 
232 	CRTC_WRITE(PV_CONTROL,
233 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
234 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
235 				 PV_CONTROL_FIFO_LEVEL) |
236 		   PV_CONTROL_CLR_AT_START |
237 		   PV_CONTROL_TRIGGER_UNDERFLOW |
238 		   PV_CONTROL_WAIT_HSTART |
239 		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
240 		   PV_CONTROL_FIFO_CLR |
241 		   PV_CONTROL_EN);
242 
243 	if (debug_dump_regs) {
244 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
245 		vc4_crtc_dump_regs(vc4_crtc);
246 	}
247 }
248 
249 static void require_hvs_enabled(struct drm_device *dev)
250 {
251 	struct vc4_dev *vc4 = to_vc4_dev(dev);
252 
253 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
254 		     SCALER_DISPCTRL_ENABLE);
255 }
256 
257 static void vc4_crtc_disable(struct drm_crtc *crtc)
258 {
259 	struct drm_device *dev = crtc->dev;
260 	struct vc4_dev *vc4 = to_vc4_dev(dev);
261 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
262 	u32 chan = vc4_crtc->channel;
263 	int ret;
264 	require_hvs_enabled(dev);
265 
266 	CRTC_WRITE(PV_V_CONTROL,
267 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
268 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
269 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
270 
271 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
272 	    SCALER_DISPCTRLX_ENABLE) {
273 		HVS_WRITE(SCALER_DISPCTRLX(chan),
274 			  SCALER_DISPCTRLX_RESET);
275 
276 		/* While the docs say that reset is self-clearing, it
277 		 * seems it doesn't actually.
278 		 */
279 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
280 	}
281 
282 	/* Once we leave, the scaler should be disabled and its fifo empty. */
283 
284 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
285 
286 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
287 				   SCALER_DISPSTATX_MODE) !=
288 		     SCALER_DISPSTATX_MODE_DISABLED);
289 
290 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
291 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
292 		     SCALER_DISPSTATX_EMPTY);
293 }
294 
295 static void vc4_crtc_enable(struct drm_crtc *crtc)
296 {
297 	struct drm_device *dev = crtc->dev;
298 	struct vc4_dev *vc4 = to_vc4_dev(dev);
299 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
300 	struct drm_crtc_state *state = crtc->state;
301 	struct drm_display_mode *mode = &state->adjusted_mode;
302 
303 	require_hvs_enabled(dev);
304 
305 	/* Turn on the scaler, which will wait for vstart to start
306 	 * compositing.
307 	 */
308 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
309 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
310 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
311 		  SCALER_DISPCTRLX_ENABLE);
312 
313 	/* Turn on the pixel valve, which will emit the vstart signal. */
314 	CRTC_WRITE(PV_V_CONTROL,
315 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
316 }
317 
318 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
319 				 struct drm_crtc_state *state)
320 {
321 	struct drm_device *dev = crtc->dev;
322 	struct vc4_dev *vc4 = to_vc4_dev(dev);
323 	struct drm_plane *plane;
324 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
325 	u32 dlist_count = 0;
326 
327 	/* The pixelvalve can only feed one encoder (and encoders are
328 	 * 1:1 with connectors.)
329 	 */
330 	if (drm_atomic_connectors_for_crtc(state->state, crtc) > 1)
331 		return -EINVAL;
332 
333 	drm_atomic_crtc_state_for_each_plane(plane, state) {
334 		struct drm_plane_state *plane_state =
335 			state->state->plane_states[drm_plane_index(plane)];
336 
337 		/* plane might not have changed, in which case take
338 		 * current state:
339 		 */
340 		if (!plane_state)
341 			plane_state = plane->state;
342 
343 		dlist_count += vc4_plane_dlist_size(plane_state);
344 	}
345 
346 	dlist_count++; /* Account for SCALER_CTL0_END. */
347 
348 	if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) {
349 		vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist +
350 				   HVS_BOOTLOADER_DLIST_END);
351 		vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) -
352 					HVS_BOOTLOADER_DLIST_END);
353 
354 		if (dlist_count > vc4_crtc->dlist_size) {
355 			DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n",
356 				      dlist_count, vc4_crtc->dlist_size);
357 			return -EINVAL;
358 		}
359 	}
360 
361 	return 0;
362 }
363 
364 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
365 				  struct drm_crtc_state *old_state)
366 {
367 	struct drm_device *dev = crtc->dev;
368 	struct vc4_dev *vc4 = to_vc4_dev(dev);
369 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
370 	struct drm_plane *plane;
371 	bool debug_dump_regs = false;
372 	u32 __iomem *dlist_next = vc4_crtc->dlist;
373 
374 	if (debug_dump_regs) {
375 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
376 		vc4_hvs_dump_state(dev);
377 	}
378 
379 	/* Copy all the active planes' dlist contents to the hardware dlist.
380 	 *
381 	 * XXX: If the new display list was large enough that it
382 	 * overlapped a currently-read display list, we need to do
383 	 * something like disable scanout before putting in the new
384 	 * list.  For now, we're safe because we only have the two
385 	 * planes.
386 	 */
387 	drm_atomic_crtc_for_each_plane(plane, crtc) {
388 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
389 	}
390 
391 	if (dlist_next == vc4_crtc->dlist) {
392 		/* If no planes were enabled, use the SCALER_CTL0_END
393 		 * at the start of the display list memory (in the
394 		 * bootloader section).  We'll rewrite that
395 		 * SCALER_CTL0_END, just in case, though.
396 		 */
397 		writel(SCALER_CTL0_END, vc4->hvs->dlist);
398 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0);
399 	} else {
400 		writel(SCALER_CTL0_END, dlist_next);
401 		dlist_next++;
402 
403 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
404 			  (u32 *)vc4_crtc->dlist - (u32 *)vc4->hvs->dlist);
405 
406 		/* Make the next display list start after ours. */
407 		vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist);
408 		vc4_crtc->dlist = dlist_next;
409 	}
410 
411 	if (debug_dump_regs) {
412 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
413 		vc4_hvs_dump_state(dev);
414 	}
415 
416 	if (crtc->state->event) {
417 		unsigned long flags;
418 
419 		crtc->state->event->pipe = drm_crtc_index(crtc);
420 
421 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
422 
423 		spin_lock_irqsave(&dev->event_lock, flags);
424 		vc4_crtc->event = crtc->state->event;
425 		spin_unlock_irqrestore(&dev->event_lock, flags);
426 		crtc->state->event = NULL;
427 	}
428 }
429 
430 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
431 {
432 	struct vc4_dev *vc4 = to_vc4_dev(dev);
433 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
434 
435 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
436 
437 	return 0;
438 }
439 
440 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
441 {
442 	struct vc4_dev *vc4 = to_vc4_dev(dev);
443 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
444 
445 	CRTC_WRITE(PV_INTEN, 0);
446 }
447 
448 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
449 {
450 	struct drm_crtc *crtc = &vc4_crtc->base;
451 	struct drm_device *dev = crtc->dev;
452 	unsigned long flags;
453 
454 	spin_lock_irqsave(&dev->event_lock, flags);
455 	if (vc4_crtc->event) {
456 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
457 		vc4_crtc->event = NULL;
458 	}
459 	spin_unlock_irqrestore(&dev->event_lock, flags);
460 }
461 
462 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
463 {
464 	struct vc4_crtc *vc4_crtc = data;
465 	u32 stat = CRTC_READ(PV_INTSTAT);
466 	irqreturn_t ret = IRQ_NONE;
467 
468 	if (stat & PV_INT_VFP_START) {
469 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
470 		drm_crtc_handle_vblank(&vc4_crtc->base);
471 		vc4_crtc_handle_page_flip(vc4_crtc);
472 		ret = IRQ_HANDLED;
473 	}
474 
475 	return ret;
476 }
477 
478 static const struct drm_crtc_funcs vc4_crtc_funcs = {
479 	.set_config = drm_atomic_helper_set_config,
480 	.destroy = vc4_crtc_destroy,
481 	.page_flip = drm_atomic_helper_page_flip,
482 	.set_property = NULL,
483 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
484 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
485 	.reset = drm_atomic_helper_crtc_reset,
486 	.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
487 	.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
488 };
489 
490 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
491 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
492 	.disable = vc4_crtc_disable,
493 	.enable = vc4_crtc_enable,
494 	.atomic_check = vc4_crtc_atomic_check,
495 	.atomic_flush = vc4_crtc_atomic_flush,
496 };
497 
498 /* Frees the page flip event when the DRM device is closed with the
499  * event still outstanding.
500  */
501 void vc4_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
502 {
503 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
504 	struct drm_device *dev = crtc->dev;
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&dev->event_lock, flags);
508 
509 	if (vc4_crtc->event && vc4_crtc->event->base.file_priv == file) {
510 		vc4_crtc->event->base.destroy(&vc4_crtc->event->base);
511 		drm_crtc_vblank_put(crtc);
512 		vc4_crtc->event = NULL;
513 	}
514 
515 	spin_unlock_irqrestore(&dev->event_lock, flags);
516 }
517 
518 static const struct vc4_crtc_data pv0_data = {
519 	.hvs_channel = 0,
520 	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
521 	.encoder1_type = VC4_ENCODER_TYPE_DPI,
522 };
523 
524 static const struct vc4_crtc_data pv1_data = {
525 	.hvs_channel = 2,
526 	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
527 	.encoder1_type = VC4_ENCODER_TYPE_SMI,
528 };
529 
530 static const struct vc4_crtc_data pv2_data = {
531 	.hvs_channel = 1,
532 	.encoder0_type = VC4_ENCODER_TYPE_VEC,
533 	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
534 };
535 
536 static const struct of_device_id vc4_crtc_dt_match[] = {
537 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
538 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
539 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
540 	{}
541 };
542 
543 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
544 					struct drm_crtc *crtc)
545 {
546 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
547 	struct drm_encoder *encoder;
548 
549 	drm_for_each_encoder(encoder, drm) {
550 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
551 
552 		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
553 			vc4_encoder->clock_select = 0;
554 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
555 		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
556 			vc4_encoder->clock_select = 1;
557 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
558 		}
559 	}
560 }
561 
562 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
563 {
564 	struct platform_device *pdev = to_platform_device(dev);
565 	struct drm_device *drm = dev_get_drvdata(master);
566 	struct vc4_dev *vc4 = to_vc4_dev(drm);
567 	struct vc4_crtc *vc4_crtc;
568 	struct drm_crtc *crtc;
569 	struct drm_plane *primary_plane, *cursor_plane;
570 	const struct of_device_id *match;
571 	int ret;
572 
573 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
574 	if (!vc4_crtc)
575 		return -ENOMEM;
576 	crtc = &vc4_crtc->base;
577 
578 	match = of_match_device(vc4_crtc_dt_match, dev);
579 	if (!match)
580 		return -ENODEV;
581 	vc4_crtc->data = match->data;
582 
583 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
584 	if (IS_ERR(vc4_crtc->regs))
585 		return PTR_ERR(vc4_crtc->regs);
586 
587 	/* For now, we create just the primary and the legacy cursor
588 	 * planes.  We should be able to stack more planes on easily,
589 	 * but to do that we would need to compute the bandwidth
590 	 * requirement of the plane configuration, and reject ones
591 	 * that will take too much.
592 	 */
593 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
594 	if (!primary_plane) {
595 		dev_err(dev, "failed to construct primary plane\n");
596 		ret = PTR_ERR(primary_plane);
597 		goto err;
598 	}
599 
600 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
601 	if (!cursor_plane) {
602 		dev_err(dev, "failed to construct cursor plane\n");
603 		ret = PTR_ERR(cursor_plane);
604 		goto err_primary;
605 	}
606 
607 	drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane,
608 				  &vc4_crtc_funcs);
609 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
610 	primary_plane->crtc = crtc;
611 	cursor_plane->crtc = crtc;
612 	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
613 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
614 
615 	CRTC_WRITE(PV_INTEN, 0);
616 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
617 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
618 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
619 	if (ret)
620 		goto err_cursor;
621 
622 	vc4_set_crtc_possible_masks(drm, crtc);
623 
624 	platform_set_drvdata(pdev, vc4_crtc);
625 
626 	return 0;
627 
628 err_cursor:
629 	cursor_plane->funcs->destroy(cursor_plane);
630 err_primary:
631 	primary_plane->funcs->destroy(primary_plane);
632 err:
633 	return ret;
634 }
635 
636 static void vc4_crtc_unbind(struct device *dev, struct device *master,
637 			    void *data)
638 {
639 	struct platform_device *pdev = to_platform_device(dev);
640 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
641 
642 	vc4_crtc_destroy(&vc4_crtc->base);
643 
644 	CRTC_WRITE(PV_INTEN, 0);
645 
646 	platform_set_drvdata(pdev, NULL);
647 }
648 
649 static const struct component_ops vc4_crtc_ops = {
650 	.bind   = vc4_crtc_bind,
651 	.unbind = vc4_crtc_unbind,
652 };
653 
654 static int vc4_crtc_dev_probe(struct platform_device *pdev)
655 {
656 	return component_add(&pdev->dev, &vc4_crtc_ops);
657 }
658 
659 static int vc4_crtc_dev_remove(struct platform_device *pdev)
660 {
661 	component_del(&pdev->dev, &vc4_crtc_ops);
662 	return 0;
663 }
664 
665 struct platform_driver vc4_crtc_driver = {
666 	.probe = vc4_crtc_dev_probe,
667 	.remove = vc4_crtc_dev_remove,
668 	.driver = {
669 		.name = "vc4_crtc",
670 		.of_match_table = vc4_crtc_dt_match,
671 	},
672 };
673