xref: /linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_atomic_uapi.h>
41 #include <drm/drm_fb_dma_helper.h>
42 #include <drm/drm_framebuffer.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_print.h>
45 #include <drm/drm_probe_helper.h>
46 #include <drm/drm_vblank.h>
47 
48 #include "vc4_drv.h"
49 #include "vc4_hdmi.h"
50 #include "vc4_regs.h"
51 
52 #define HVS_FIFO_LATENCY_PIX	6
53 
54 #define CRTC_WRITE(offset, val)								\
55 	do {										\
56 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
57 		writel(val, vc4_crtc->regs + (offset));					\
58 	} while (0)
59 
60 #define CRTC_READ(offset)								\
61 	({										\
62 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
63 		readl(vc4_crtc->regs + (offset));					\
64 	})
65 
66 static const struct debugfs_reg32 crtc_regs[] = {
67 	VC4_REG32(PV_CONTROL),
68 	VC4_REG32(PV_V_CONTROL),
69 	VC4_REG32(PV_VSYNCD_EVEN),
70 	VC4_REG32(PV_HORZA),
71 	VC4_REG32(PV_HORZB),
72 	VC4_REG32(PV_VERTA),
73 	VC4_REG32(PV_VERTB),
74 	VC4_REG32(PV_VERTA_EVEN),
75 	VC4_REG32(PV_VERTB_EVEN),
76 	VC4_REG32(PV_INTEN),
77 	VC4_REG32(PV_INTSTAT),
78 	VC4_REG32(PV_STAT),
79 	VC4_REG32(PV_HACT_ACT),
80 };
81 
82 static unsigned int
83 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
84 {
85 	struct vc4_hvs *hvs = vc4->hvs;
86 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
87 	/* Top/base are supposed to be 4-pixel aligned, but the
88 	 * Raspberry Pi firmware fills the low bits (which are
89 	 * presumably ignored).
90 	 */
91 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
92 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
93 
94 	return top - base + 4;
95 }
96 
97 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
98 					  bool in_vblank_irq,
99 					  int *vpos, int *hpos,
100 					  ktime_t *stime, ktime_t *etime,
101 					  const struct drm_display_mode *mode)
102 {
103 	struct drm_device *dev = crtc->dev;
104 	struct vc4_dev *vc4 = to_vc4_dev(dev);
105 	struct vc4_hvs *hvs = vc4->hvs;
106 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
107 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
108 	unsigned int channel = vc4_crtc_state->assigned_channel;
109 	unsigned int cob_size;
110 	u32 val;
111 	int fifo_lines;
112 	int vblank_lines;
113 	bool ret = false;
114 
115 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
116 
117 	/* Get optional system timestamp before query. */
118 	if (stime)
119 		*stime = ktime_get();
120 
121 	/*
122 	 * Read vertical scanline which is currently composed for our
123 	 * pixelvalve by the HVS, and also the scaler status.
124 	 */
125 	val = HVS_READ(SCALER_DISPSTATX(channel));
126 
127 	/* Get optional system timestamp after query. */
128 	if (etime)
129 		*etime = ktime_get();
130 
131 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
132 
133 	/* Vertical position of hvs composed scanline. */
134 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
135 	*hpos = 0;
136 
137 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
138 		*vpos /= 2;
139 
140 		/* Use hpos to correct for field offset in interlaced mode. */
141 		if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2)
142 			*hpos += mode->crtc_htotal / 2;
143 	}
144 
145 	cob_size = vc4_crtc_get_cob_allocation(vc4, channel);
146 	/* This is the offset we need for translating hvs -> pv scanout pos. */
147 	fifo_lines = cob_size / mode->crtc_hdisplay;
148 
149 	if (fifo_lines > 0)
150 		ret = true;
151 
152 	/* HVS more than fifo_lines into frame for compositing? */
153 	if (*vpos > fifo_lines) {
154 		/*
155 		 * We are in active scanout and can get some meaningful results
156 		 * from HVS. The actual PV scanout can not trail behind more
157 		 * than fifo_lines as that is the fifo's capacity. Assume that
158 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
159 		 * refilling the fifo and PV consuming from the fifo, ie.
160 		 * whenever the PV consumes and frees up a scanline in the
161 		 * fifo, the HVS will immediately refill it, therefore
162 		 * incrementing vpos. Therefore we choose HVS read position -
163 		 * fifo size in scanlines as a estimate of the real scanout
164 		 * position of the PV.
165 		 */
166 		*vpos -= fifo_lines + 1;
167 
168 		return ret;
169 	}
170 
171 	/*
172 	 * Less: This happens when we are in vblank and the HVS, after getting
173 	 * the VSTART restart signal from the PV, just started refilling its
174 	 * fifo with new lines from the top-most lines of the new framebuffers.
175 	 * The PV does not scan out in vblank, so does not remove lines from
176 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
177 	 * We can't get meaningful readings wrt. scanline position of the PV
178 	 * and need to make things up in a approximative but consistent way.
179 	 */
180 	vblank_lines = mode->vtotal - mode->vdisplay;
181 
182 	if (in_vblank_irq) {
183 		/*
184 		 * Assume the irq handler got called close to first
185 		 * line of vblank, so PV has about a full vblank
186 		 * scanlines to go, and as a base timestamp use the
187 		 * one taken at entry into vblank irq handler, so it
188 		 * is not affected by random delays due to lock
189 		 * contention on event_lock or vblank_time lock in
190 		 * the core.
191 		 */
192 		*vpos = -vblank_lines;
193 
194 		if (stime)
195 			*stime = vc4_crtc->t_vblank;
196 		if (etime)
197 			*etime = vc4_crtc->t_vblank;
198 
199 		/*
200 		 * If the HVS fifo is not yet full then we know for certain
201 		 * we are at the very beginning of vblank, as the hvs just
202 		 * started refilling, and the stime and etime timestamps
203 		 * truly correspond to start of vblank.
204 		 *
205 		 * Unfortunately there's no way to report this to upper levels
206 		 * and make it more useful.
207 		 */
208 	} else {
209 		/*
210 		 * No clue where we are inside vblank. Return a vpos of zero,
211 		 * which will cause calling code to just return the etime
212 		 * timestamp uncorrected. At least this is no worse than the
213 		 * standard fallback.
214 		 */
215 		*vpos = 0;
216 	}
217 
218 	return ret;
219 }
220 
221 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
222 {
223 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
224 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
225 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
226 	u32 fifo_len_bytes = pv_data->fifo_depth;
227 
228 	/*
229 	 * Pixels are pulled from the HVS if the number of bytes is
230 	 * lower than the FIFO full level.
231 	 *
232 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
233 	 * need to convert those 6 pixels in bytes, depending on the
234 	 * format, and then subtract that from the length of the FIFO
235 	 * to make sure we never end up in a situation where the FIFO
236 	 * is full.
237 	 */
238 	switch (format) {
239 	case PV_CONTROL_FORMAT_DSIV_16:
240 	case PV_CONTROL_FORMAT_DSIC_16:
241 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
242 	case PV_CONTROL_FORMAT_DSIV_18:
243 		return fifo_len_bytes - 14;
244 	case PV_CONTROL_FORMAT_24:
245 	case PV_CONTROL_FORMAT_DSIV_24:
246 	default:
247 		/*
248 		 * For some reason, the pixelvalve4 doesn't work with
249 		 * the usual formula and will only work with 32.
250 		 */
251 		if (crtc_data->hvs_output == 5)
252 			return 32;
253 
254 		/*
255 		 * It looks like in some situations, we will overflow
256 		 * the PixelValve FIFO (with the bit 10 of PV stat being
257 		 * set) and stall the HVS / PV, eventually resulting in
258 		 * a page flip timeout.
259 		 *
260 		 * Displaying the video overlay during a playback with
261 		 * Kodi on an RPi3 seems to be a great solution with a
262 		 * failure rate around 50%.
263 		 *
264 		 * Removing 1 from the FIFO full level however
265 		 * seems to completely remove that issue.
266 		 */
267 		if (vc4->gen == VC4_GEN_4)
268 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
269 
270 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
271 	}
272 }
273 
274 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
275 					     u32 format)
276 {
277 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
278 	u32 ret = 0;
279 
280 	ret |= VC4_SET_FIELD((level >> 6),
281 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
282 
283 	return ret | VC4_SET_FIELD(level & 0x3f,
284 				   PV_CONTROL_FIFO_LEVEL);
285 }
286 
287 /*
288  * Returns the encoder attached to the CRTC.
289  *
290  * VC4 can only scan out to one encoder at a time, while the DRM core
291  * allows drivers to push pixels to more than one encoder from the
292  * same CRTC.
293  */
294 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
295 					 struct drm_crtc_state *state)
296 {
297 	struct drm_encoder *encoder;
298 
299 	WARN_ON(hweight32(state->encoder_mask) > 1);
300 
301 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
302 		return encoder;
303 
304 	return NULL;
305 }
306 
307 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
308 {
309 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
310 	struct drm_device *dev = crtc->dev;
311 	int idx;
312 
313 	if (!drm_dev_enter(dev, &idx))
314 		return;
315 
316 	/* The PV needs to be disabled before it can be flushed */
317 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
318 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
319 
320 	drm_dev_exit(idx);
321 }
322 
323 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
324 			       struct drm_atomic_state *state)
325 {
326 	struct drm_device *dev = crtc->dev;
327 	struct vc4_dev *vc4 = to_vc4_dev(dev);
328 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
329 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
330 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
331 	struct drm_crtc_state *crtc_state = crtc->state;
332 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
333 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
334 	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
335 		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
336 	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
337 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
338 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
339 	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
340 	bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
341 	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
342 	u8 ppc = pv_data->pixels_per_clock;
343 
344 	u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
345 	u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
346 	u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
347 
348 	bool debug_dump_regs = false;
349 	int idx;
350 
351 	if (!drm_dev_enter(dev, &idx))
352 		return;
353 
354 	if (debug_dump_regs) {
355 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
356 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
357 			 drm_crtc_index(crtc));
358 		drm_print_regset32(&p, &vc4_crtc->regset);
359 	}
360 
361 	vc4_crtc_pixelvalve_reset(crtc);
362 
363 	CRTC_WRITE(PV_HORZA,
364 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
365 				 PV_HORZA_HBP) |
366 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
367 				 PV_HORZA_HSYNC));
368 
369 	CRTC_WRITE(PV_HORZB,
370 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
371 				 PV_HORZB_HFP) |
372 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
373 				 PV_HORZB_HACTIVE));
374 
375 	if (interlace) {
376 		bool odd_field_first = false;
377 		u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
378 		u16 vert_bp_even = vert_bp;
379 		u16 vert_fp_even = vert_fp;
380 
381 		if (is_vec) {
382 			/* VEC (composite output) */
383 			++field_delay;
384 			if (mode->htotal == 858) {
385 				/* 525-line mode (NTSC or PAL-M) */
386 				odd_field_first = true;
387 			}
388 		}
389 
390 		if (odd_field_first)
391 			++vert_fp_even;
392 		else
393 			++vert_bp;
394 
395 		CRTC_WRITE(PV_VERTA_EVEN,
396 			   VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
397 			   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
398 		CRTC_WRITE(PV_VERTB_EVEN,
399 			   VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
400 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
401 
402 		/* We set up first field even mode for HDMI and VEC's PAL.
403 		 * For NTSC, we need first field odd.
404 		 */
405 		CRTC_WRITE(PV_V_CONTROL,
406 			   PV_VCONTROL_CONTINUOUS |
407 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
408 			   PV_VCONTROL_INTERLACE |
409 			   (odd_field_first
410 				   ? PV_VCONTROL_ODD_FIRST
411 				   : VC4_SET_FIELD(field_delay,
412 						   PV_VCONTROL_ODD_DELAY)));
413 		CRTC_WRITE(PV_VSYNCD_EVEN,
414 			   (odd_field_first ? field_delay : 0));
415 	} else {
416 		CRTC_WRITE(PV_V_CONTROL,
417 			   PV_VCONTROL_CONTINUOUS |
418 			   (is_dsi ? PV_VCONTROL_DSI : 0));
419 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
420 	}
421 
422 	CRTC_WRITE(PV_VERTA,
423 		   VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
424 		   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
425 	CRTC_WRITE(PV_VERTB,
426 		   VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
427 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
428 
429 	if (is_dsi)
430 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
431 
432 	if (vc4->gen == VC4_GEN_5)
433 		CRTC_WRITE(PV_MUX_CFG,
434 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
435 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
436 
437 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
438 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
439 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
440 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
441 		   PV_CONTROL_CLR_AT_START |
442 		   PV_CONTROL_TRIGGER_UNDERFLOW |
443 		   PV_CONTROL_WAIT_HSTART |
444 		   VC4_SET_FIELD(vc4_encoder->clock_select,
445 				 PV_CONTROL_CLK_SELECT));
446 
447 	if (debug_dump_regs) {
448 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
449 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
450 			 drm_crtc_index(crtc));
451 		drm_print_regset32(&p, &vc4_crtc->regset);
452 	}
453 
454 	drm_dev_exit(idx);
455 }
456 
457 static void require_hvs_enabled(struct drm_device *dev)
458 {
459 	struct vc4_dev *vc4 = to_vc4_dev(dev);
460 	struct vc4_hvs *hvs = vc4->hvs;
461 
462 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
463 		     SCALER_DISPCTRL_ENABLE);
464 }
465 
466 static int vc4_crtc_disable(struct drm_crtc *crtc,
467 			    struct drm_encoder *encoder,
468 			    struct drm_atomic_state *state,
469 			    unsigned int channel)
470 {
471 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
472 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
473 	struct drm_device *dev = crtc->dev;
474 	struct vc4_dev *vc4 = to_vc4_dev(dev);
475 	int idx, ret;
476 
477 	if (!drm_dev_enter(dev, &idx))
478 		return -ENODEV;
479 
480 	CRTC_WRITE(PV_V_CONTROL,
481 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
482 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
483 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
484 
485 	/*
486 	 * This delay is needed to avoid to get a pixel stuck in an
487 	 * unflushable FIFO between the pixelvalve and the HDMI
488 	 * controllers on the BCM2711.
489 	 *
490 	 * Timing is fairly sensitive here, so mdelay is the safest
491 	 * approach.
492 	 *
493 	 * If it was to be reworked, the stuck pixel happens on a
494 	 * BCM2711 when changing mode with a good probability, so a
495 	 * script that changes mode on a regular basis should trigger
496 	 * the bug after less than 10 attempts. It manifests itself with
497 	 * every pixels being shifted by one to the right, and thus the
498 	 * last pixel of a line actually being displayed as the first
499 	 * pixel on the next line.
500 	 */
501 	mdelay(20);
502 
503 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
504 		vc4_encoder->post_crtc_disable(encoder, state);
505 
506 	vc4_crtc_pixelvalve_reset(crtc);
507 	vc4_hvs_stop_channel(vc4->hvs, channel);
508 
509 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
510 		vc4_encoder->post_crtc_powerdown(encoder, state);
511 
512 	drm_dev_exit(idx);
513 
514 	return 0;
515 }
516 
517 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
518 {
519 	struct drm_device *drm = crtc->dev;
520 	struct vc4_dev *vc4 = to_vc4_dev(drm);
521 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522 	enum vc4_encoder_type encoder_type;
523 	const struct vc4_pv_data *pv_data;
524 	struct drm_encoder *encoder;
525 	struct vc4_hdmi *vc4_hdmi;
526 	unsigned encoder_sel;
527 	int channel;
528 	int ret;
529 
530 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
531 				      "brcm,bcm2711-pixelvalve2") ||
532 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
533 				      "brcm,bcm2711-pixelvalve4")))
534 		return 0;
535 
536 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
537 		return 0;
538 
539 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
540 		return 0;
541 
542 	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
543 	if (channel < 0)
544 		return 0;
545 
546 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
547 	if (WARN_ON(encoder_sel != 0))
548 		return 0;
549 
550 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
551 	encoder_type = pv_data->encoder_types[encoder_sel];
552 	encoder = vc4_find_encoder_by_type(drm, encoder_type);
553 	if (WARN_ON(!encoder))
554 		return 0;
555 
556 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
557 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
558 	if (ret)
559 		return ret;
560 
561 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
562 	if (ret)
563 		return ret;
564 
565 	/*
566 	 * post_crtc_powerdown will have called pm_runtime_put, so we
567 	 * don't need it here otherwise we'll get the reference counting
568 	 * wrong.
569 	 */
570 
571 	return 0;
572 }
573 
574 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
575 {
576 	struct drm_device *dev = crtc->dev;
577 	unsigned long flags;
578 
579 	if (!crtc->state || !crtc->state->event)
580 		return;
581 
582 	spin_lock_irqsave(&dev->event_lock, flags);
583 	drm_crtc_send_vblank_event(crtc, crtc->state->event);
584 	crtc->state->event = NULL;
585 	spin_unlock_irqrestore(&dev->event_lock, flags);
586 }
587 
588 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
589 				    struct drm_atomic_state *state)
590 {
591 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
592 									 crtc);
593 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
594 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
595 	struct drm_device *dev = crtc->dev;
596 
597 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
598 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
599 
600 	require_hvs_enabled(dev);
601 
602 	/* Disable vblank irq handling before crtc is disabled. */
603 	drm_crtc_vblank_off(crtc);
604 
605 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
606 
607 	/*
608 	 * Make sure we issue a vblank event after disabling the CRTC if
609 	 * someone was waiting it.
610 	 */
611 	vc4_crtc_send_vblank(crtc);
612 }
613 
614 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
615 				   struct drm_atomic_state *state)
616 {
617 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
618 									 crtc);
619 	struct drm_device *dev = crtc->dev;
620 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
621 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
622 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
623 	int idx;
624 
625 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
626 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
627 
628 	if (!drm_dev_enter(dev, &idx))
629 		return;
630 
631 	require_hvs_enabled(dev);
632 
633 	/* Enable vblank irq handling before crtc is started otherwise
634 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
635 	 */
636 	drm_crtc_vblank_on(crtc);
637 
638 	vc4_hvs_atomic_enable(crtc, state);
639 
640 	if (vc4_encoder->pre_crtc_configure)
641 		vc4_encoder->pre_crtc_configure(encoder, state);
642 
643 	vc4_crtc_config_pv(crtc, encoder, state);
644 
645 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
646 
647 	if (vc4_encoder->pre_crtc_enable)
648 		vc4_encoder->pre_crtc_enable(encoder, state);
649 
650 	/* When feeding the transposer block the pixelvalve is unneeded and
651 	 * should not be enabled.
652 	 */
653 	CRTC_WRITE(PV_V_CONTROL,
654 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
655 
656 	if (vc4_encoder->post_crtc_enable)
657 		vc4_encoder->post_crtc_enable(encoder, state);
658 
659 	drm_dev_exit(idx);
660 }
661 
662 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
663 						const struct drm_display_mode *mode)
664 {
665 	/* Do not allow doublescan modes from user space */
666 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
667 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
668 			      crtc->base.id);
669 		return MODE_NO_DBLESCAN;
670 	}
671 
672 	return MODE_OK;
673 }
674 
675 void vc4_crtc_get_margins(struct drm_crtc_state *state,
676 			  unsigned int *left, unsigned int *right,
677 			  unsigned int *top, unsigned int *bottom)
678 {
679 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
680 	struct drm_connector_state *conn_state;
681 	struct drm_connector *conn;
682 	int i;
683 
684 	*left = vc4_state->margins.left;
685 	*right = vc4_state->margins.right;
686 	*top = vc4_state->margins.top;
687 	*bottom = vc4_state->margins.bottom;
688 
689 	/* We have to interate over all new connector states because
690 	 * vc4_crtc_get_margins() might be called before
691 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
692 	 * might be outdated.
693 	 */
694 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
695 		if (conn_state->crtc != state->crtc)
696 			continue;
697 
698 		*left = conn_state->tv.margins.left;
699 		*right = conn_state->tv.margins.right;
700 		*top = conn_state->tv.margins.top;
701 		*bottom = conn_state->tv.margins.bottom;
702 		break;
703 	}
704 }
705 
706 int vc4_crtc_atomic_check(struct drm_crtc *crtc,
707 			  struct drm_atomic_state *state)
708 {
709 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
710 									  crtc);
711 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
712 	struct drm_connector *conn;
713 	struct drm_connector_state *conn_state;
714 	struct drm_encoder *encoder;
715 	int ret, i;
716 
717 	ret = vc4_hvs_atomic_check(crtc, state);
718 	if (ret)
719 		return ret;
720 
721 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
722 	if (encoder) {
723 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
724 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
725 
726 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
727 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
728 						  mode->clock * 9 / 10) * 1000;
729 		} else {
730 			vc4_state->hvs_load = mode->clock * 1000;
731 		}
732 	}
733 
734 	for_each_new_connector_in_state(state, conn, conn_state,
735 					i) {
736 		if (conn_state->crtc != crtc)
737 			continue;
738 
739 		if (memcmp(&vc4_state->margins, &conn_state->tv.margins,
740 			   sizeof(vc4_state->margins))) {
741 			memcpy(&vc4_state->margins, &conn_state->tv.margins,
742 			       sizeof(vc4_state->margins));
743 
744 			/*
745 			 * Need to force the dlist entries for all planes to be
746 			 * updated so that the dest rectangles are changed.
747 			 */
748 			crtc_state->zpos_changed = true;
749 		}
750 		break;
751 	}
752 
753 	return 0;
754 }
755 
756 static int vc4_enable_vblank(struct drm_crtc *crtc)
757 {
758 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
759 	struct drm_device *dev = crtc->dev;
760 	int idx;
761 
762 	if (!drm_dev_enter(dev, &idx))
763 		return -ENODEV;
764 
765 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
766 
767 	drm_dev_exit(idx);
768 
769 	return 0;
770 }
771 
772 static void vc4_disable_vblank(struct drm_crtc *crtc)
773 {
774 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
775 	struct drm_device *dev = crtc->dev;
776 	int idx;
777 
778 	if (!drm_dev_enter(dev, &idx))
779 		return;
780 
781 	CRTC_WRITE(PV_INTEN, 0);
782 
783 	drm_dev_exit(idx);
784 }
785 
786 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
787 {
788 	struct drm_crtc *crtc = &vc4_crtc->base;
789 	struct drm_device *dev = crtc->dev;
790 	struct vc4_dev *vc4 = to_vc4_dev(dev);
791 	struct vc4_hvs *hvs = vc4->hvs;
792 	u32 chan = vc4_crtc->current_hvs_channel;
793 	unsigned long flags;
794 
795 	spin_lock_irqsave(&dev->event_lock, flags);
796 	spin_lock(&vc4_crtc->irq_lock);
797 	if (vc4_crtc->event &&
798 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
799 	     vc4_crtc->feeds_txp)) {
800 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
801 		vc4_crtc->event = NULL;
802 		drm_crtc_vblank_put(crtc);
803 
804 		/* Wait for the page flip to unmask the underrun to ensure that
805 		 * the display list was updated by the hardware. Before that
806 		 * happens, the HVS will be using the previous display list with
807 		 * the CRTC and encoder already reconfigured, leading to
808 		 * underruns. This can be seen when reconfiguring the CRTC.
809 		 */
810 		vc4_hvs_unmask_underrun(hvs, chan);
811 	}
812 	spin_unlock(&vc4_crtc->irq_lock);
813 	spin_unlock_irqrestore(&dev->event_lock, flags);
814 }
815 
816 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
817 {
818 	crtc->t_vblank = ktime_get();
819 	drm_crtc_handle_vblank(&crtc->base);
820 	vc4_crtc_handle_page_flip(crtc);
821 }
822 
823 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
824 {
825 	struct vc4_crtc *vc4_crtc = data;
826 	u32 stat = CRTC_READ(PV_INTSTAT);
827 	irqreturn_t ret = IRQ_NONE;
828 
829 	if (stat & PV_INT_VFP_START) {
830 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
831 		vc4_crtc_handle_vblank(vc4_crtc);
832 		ret = IRQ_HANDLED;
833 	}
834 
835 	return ret;
836 }
837 
838 struct vc4_async_flip_state {
839 	struct drm_crtc *crtc;
840 	struct drm_framebuffer *fb;
841 	struct drm_framebuffer *old_fb;
842 	struct drm_pending_vblank_event *event;
843 
844 	union {
845 		struct dma_fence_cb fence;
846 		struct vc4_seqno_cb seqno;
847 	} cb;
848 };
849 
850 /* Called when the V3D execution for the BO being flipped to is done, so that
851  * we can actually update the plane's address to point to it.
852  */
853 static void
854 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
855 {
856 	struct drm_crtc *crtc = flip_state->crtc;
857 	struct drm_device *dev = crtc->dev;
858 	struct drm_plane *plane = crtc->primary;
859 
860 	vc4_plane_async_set_fb(plane, flip_state->fb);
861 	if (flip_state->event) {
862 		unsigned long flags;
863 
864 		spin_lock_irqsave(&dev->event_lock, flags);
865 		drm_crtc_send_vblank_event(crtc, flip_state->event);
866 		spin_unlock_irqrestore(&dev->event_lock, flags);
867 	}
868 
869 	drm_crtc_vblank_put(crtc);
870 	drm_framebuffer_put(flip_state->fb);
871 
872 	if (flip_state->old_fb)
873 		drm_framebuffer_put(flip_state->old_fb);
874 
875 	kfree(flip_state);
876 }
877 
878 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
879 {
880 	struct vc4_async_flip_state *flip_state =
881 		container_of(cb, struct vc4_async_flip_state, cb.seqno);
882 	struct vc4_bo *bo = NULL;
883 
884 	if (flip_state->old_fb) {
885 		struct drm_gem_dma_object *dma_bo =
886 			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
887 		bo = to_vc4_bo(&dma_bo->base);
888 	}
889 
890 	vc4_async_page_flip_complete(flip_state);
891 
892 	/*
893 	 * Decrement the BO usecnt in order to keep the inc/dec
894 	 * calls balanced when the planes are updated through
895 	 * the async update path.
896 	 *
897 	 * FIXME: we should move to generic async-page-flip when
898 	 * it's available, so that we can get rid of this
899 	 * hand-made cleanup_fb() logic.
900 	 */
901 	if (bo)
902 		vc4_bo_dec_usecnt(bo);
903 }
904 
905 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
906 					       struct dma_fence_cb *cb)
907 {
908 	struct vc4_async_flip_state *flip_state =
909 		container_of(cb, struct vc4_async_flip_state, cb.fence);
910 
911 	vc4_async_page_flip_complete(flip_state);
912 	dma_fence_put(fence);
913 }
914 
915 static int vc4_async_set_fence_cb(struct drm_device *dev,
916 				  struct vc4_async_flip_state *flip_state)
917 {
918 	struct drm_framebuffer *fb = flip_state->fb;
919 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
920 	struct vc4_dev *vc4 = to_vc4_dev(dev);
921 	struct dma_fence *fence;
922 	int ret;
923 
924 	if (vc4->gen == VC4_GEN_4) {
925 		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
926 
927 		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
928 					  vc4_async_page_flip_seqno_complete);
929 	}
930 
931 	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
932 	if (ret)
933 		return ret;
934 
935 	/* If there's no fence, complete the page flip immediately */
936 	if (!fence) {
937 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
938 		return 0;
939 	}
940 
941 	/* If the fence has already been completed, complete the page flip */
942 	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
943 				   vc4_async_page_flip_fence_complete))
944 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
945 
946 	return 0;
947 }
948 
949 static int
950 vc4_async_page_flip_common(struct drm_crtc *crtc,
951 			   struct drm_framebuffer *fb,
952 			   struct drm_pending_vblank_event *event,
953 			   uint32_t flags)
954 {
955 	struct drm_device *dev = crtc->dev;
956 	struct drm_plane *plane = crtc->primary;
957 	struct vc4_async_flip_state *flip_state;
958 
959 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
960 	if (!flip_state)
961 		return -ENOMEM;
962 
963 	drm_framebuffer_get(fb);
964 	flip_state->fb = fb;
965 	flip_state->crtc = crtc;
966 	flip_state->event = event;
967 
968 	/* Save the current FB before it's replaced by the new one in
969 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
970 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
971 	 * it consistent.
972 	 * FIXME: we should move to generic async-page-flip when it's
973 	 * available, so that we can get rid of this hand-made cleanup_fb()
974 	 * logic.
975 	 */
976 	flip_state->old_fb = plane->state->fb;
977 	if (flip_state->old_fb)
978 		drm_framebuffer_get(flip_state->old_fb);
979 
980 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
981 
982 	/* Immediately update the plane's legacy fb pointer, so that later
983 	 * modeset prep sees the state that will be present when the semaphore
984 	 * is released.
985 	 */
986 	drm_atomic_set_fb_for_plane(plane->state, fb);
987 
988 	vc4_async_set_fence_cb(dev, flip_state);
989 
990 	/* Driver takes ownership of state on successful async commit. */
991 	return 0;
992 }
993 
994 /* Implements async (non-vblank-synced) page flips.
995  *
996  * The page flip ioctl needs to return immediately, so we grab the
997  * modeset semaphore on the pipe, and queue the address update for
998  * when V3D is done with the BO being flipped to.
999  */
1000 static int vc4_async_page_flip(struct drm_crtc *crtc,
1001 			       struct drm_framebuffer *fb,
1002 			       struct drm_pending_vblank_event *event,
1003 			       uint32_t flags)
1004 {
1005 	struct drm_device *dev = crtc->dev;
1006 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1007 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1008 	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1009 	int ret;
1010 
1011 	if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
1012 		return -ENODEV;
1013 
1014 	/*
1015 	 * Increment the BO usecnt here, so that we never end up with an
1016 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1017 	 * plane is later updated through the non-async path.
1018 	 *
1019 	 * FIXME: we should move to generic async-page-flip when
1020 	 * it's available, so that we can get rid of this
1021 	 * hand-made prepare_fb() logic.
1022 	 */
1023 	ret = vc4_bo_inc_usecnt(bo);
1024 	if (ret)
1025 		return ret;
1026 
1027 	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1028 	if (ret) {
1029 		vc4_bo_dec_usecnt(bo);
1030 		return ret;
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static int vc5_async_page_flip(struct drm_crtc *crtc,
1037 			       struct drm_framebuffer *fb,
1038 			       struct drm_pending_vblank_event *event,
1039 			       uint32_t flags)
1040 {
1041 	return vc4_async_page_flip_common(crtc, fb, event, flags);
1042 }
1043 
1044 int vc4_page_flip(struct drm_crtc *crtc,
1045 		  struct drm_framebuffer *fb,
1046 		  struct drm_pending_vblank_event *event,
1047 		  uint32_t flags,
1048 		  struct drm_modeset_acquire_ctx *ctx)
1049 {
1050 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1051 		struct drm_device *dev = crtc->dev;
1052 		struct vc4_dev *vc4 = to_vc4_dev(dev);
1053 
1054 		if (vc4->gen > VC4_GEN_4)
1055 			return vc5_async_page_flip(crtc, fb, event, flags);
1056 		else
1057 			return vc4_async_page_flip(crtc, fb, event, flags);
1058 	} else {
1059 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1060 	}
1061 }
1062 
1063 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1064 {
1065 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1066 
1067 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1068 	if (!vc4_state)
1069 		return NULL;
1070 
1071 	old_vc4_state = to_vc4_crtc_state(crtc->state);
1072 	vc4_state->margins = old_vc4_state->margins;
1073 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1074 
1075 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1076 	return &vc4_state->base;
1077 }
1078 
1079 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1080 			    struct drm_crtc_state *state)
1081 {
1082 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1083 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1084 
1085 	if (drm_mm_node_allocated(&vc4_state->mm)) {
1086 		unsigned long flags;
1087 
1088 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1089 		drm_mm_remove_node(&vc4_state->mm);
1090 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1091 
1092 	}
1093 
1094 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1095 }
1096 
1097 void vc4_crtc_reset(struct drm_crtc *crtc)
1098 {
1099 	struct vc4_crtc_state *vc4_crtc_state;
1100 
1101 	if (crtc->state)
1102 		vc4_crtc_destroy_state(crtc, crtc->state);
1103 
1104 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1105 	if (!vc4_crtc_state) {
1106 		crtc->state = NULL;
1107 		return;
1108 	}
1109 
1110 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1111 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1112 }
1113 
1114 int vc4_crtc_late_register(struct drm_crtc *crtc)
1115 {
1116 	struct drm_device *drm = crtc->dev;
1117 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1118 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1119 
1120 	vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1121 				 &vc4_crtc->regset);
1122 
1123 	return 0;
1124 }
1125 
1126 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1127 	.set_config = drm_atomic_helper_set_config,
1128 	.page_flip = vc4_page_flip,
1129 	.set_property = NULL,
1130 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1131 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1132 	.reset = vc4_crtc_reset,
1133 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1134 	.atomic_destroy_state = vc4_crtc_destroy_state,
1135 	.enable_vblank = vc4_enable_vblank,
1136 	.disable_vblank = vc4_disable_vblank,
1137 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1138 	.late_register = vc4_crtc_late_register,
1139 };
1140 
1141 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1142 	.mode_valid = vc4_crtc_mode_valid,
1143 	.atomic_check = vc4_crtc_atomic_check,
1144 	.atomic_begin = vc4_hvs_atomic_begin,
1145 	.atomic_flush = vc4_hvs_atomic_flush,
1146 	.atomic_enable = vc4_crtc_atomic_enable,
1147 	.atomic_disable = vc4_crtc_atomic_disable,
1148 	.get_scanout_position = vc4_crtc_get_scanout_position,
1149 };
1150 
1151 const struct vc4_pv_data bcm2835_pv0_data = {
1152 	.base = {
1153 		.name = "pixelvalve-0",
1154 		.debugfs_name = "crtc0_regs",
1155 		.hvs_available_channels = BIT(0),
1156 		.hvs_output = 0,
1157 	},
1158 	.fifo_depth = 64,
1159 	.pixels_per_clock = 1,
1160 	.encoder_types = {
1161 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1162 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1163 	},
1164 };
1165 
1166 const struct vc4_pv_data bcm2835_pv1_data = {
1167 	.base = {
1168 		.name = "pixelvalve-1",
1169 		.debugfs_name = "crtc1_regs",
1170 		.hvs_available_channels = BIT(2),
1171 		.hvs_output = 2,
1172 	},
1173 	.fifo_depth = 64,
1174 	.pixels_per_clock = 1,
1175 	.encoder_types = {
1176 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1177 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1178 	},
1179 };
1180 
1181 const struct vc4_pv_data bcm2835_pv2_data = {
1182 	.base = {
1183 		.name = "pixelvalve-2",
1184 		.debugfs_name = "crtc2_regs",
1185 		.hvs_available_channels = BIT(1),
1186 		.hvs_output = 1,
1187 	},
1188 	.fifo_depth = 64,
1189 	.pixels_per_clock = 1,
1190 	.encoder_types = {
1191 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1192 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1193 	},
1194 };
1195 
1196 const struct vc4_pv_data bcm2711_pv0_data = {
1197 	.base = {
1198 		.name = "pixelvalve-0",
1199 		.debugfs_name = "crtc0_regs",
1200 		.hvs_available_channels = BIT(0),
1201 		.hvs_output = 0,
1202 	},
1203 	.fifo_depth = 64,
1204 	.pixels_per_clock = 1,
1205 	.encoder_types = {
1206 		[0] = VC4_ENCODER_TYPE_DSI0,
1207 		[1] = VC4_ENCODER_TYPE_DPI,
1208 	},
1209 };
1210 
1211 const struct vc4_pv_data bcm2711_pv1_data = {
1212 	.base = {
1213 		.name = "pixelvalve-1",
1214 		.debugfs_name = "crtc1_regs",
1215 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1216 		.hvs_output = 3,
1217 	},
1218 	.fifo_depth = 64,
1219 	.pixels_per_clock = 1,
1220 	.encoder_types = {
1221 		[0] = VC4_ENCODER_TYPE_DSI1,
1222 		[1] = VC4_ENCODER_TYPE_SMI,
1223 	},
1224 };
1225 
1226 const struct vc4_pv_data bcm2711_pv2_data = {
1227 	.base = {
1228 		.name = "pixelvalve-2",
1229 		.debugfs_name = "crtc2_regs",
1230 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1231 		.hvs_output = 4,
1232 	},
1233 	.fifo_depth = 256,
1234 	.pixels_per_clock = 2,
1235 	.encoder_types = {
1236 		[0] = VC4_ENCODER_TYPE_HDMI0,
1237 	},
1238 };
1239 
1240 const struct vc4_pv_data bcm2711_pv3_data = {
1241 	.base = {
1242 		.name = "pixelvalve-3",
1243 		.debugfs_name = "crtc3_regs",
1244 		.hvs_available_channels = BIT(1),
1245 		.hvs_output = 1,
1246 	},
1247 	.fifo_depth = 64,
1248 	.pixels_per_clock = 1,
1249 	.encoder_types = {
1250 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1251 	},
1252 };
1253 
1254 const struct vc4_pv_data bcm2711_pv4_data = {
1255 	.base = {
1256 		.name = "pixelvalve-4",
1257 		.debugfs_name = "crtc4_regs",
1258 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1259 		.hvs_output = 5,
1260 	},
1261 	.fifo_depth = 64,
1262 	.pixels_per_clock = 2,
1263 	.encoder_types = {
1264 		[0] = VC4_ENCODER_TYPE_HDMI1,
1265 	},
1266 };
1267 
1268 static const struct of_device_id vc4_crtc_dt_match[] = {
1269 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1270 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1271 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1272 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1273 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1274 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1275 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1276 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1277 	{}
1278 };
1279 
1280 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1281 					struct drm_crtc *crtc)
1282 {
1283 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1284 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1285 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1286 	struct drm_encoder *encoder;
1287 
1288 	drm_for_each_encoder(encoder, drm) {
1289 		struct vc4_encoder *vc4_encoder;
1290 		int i;
1291 
1292 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1293 			continue;
1294 
1295 		vc4_encoder = to_vc4_encoder(encoder);
1296 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1297 			if (vc4_encoder->type == encoder_types[i]) {
1298 				vc4_encoder->clock_select = i;
1299 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1300 				break;
1301 			}
1302 		}
1303 	}
1304 }
1305 
1306 /**
1307  * __vc4_crtc_init - Initializes a CRTC
1308  * @drm: DRM Device
1309  * @pdev: CRTC Platform Device
1310  * @vc4_crtc: CRTC Object to Initialize
1311  * @data: Configuration data associated with this CRTC
1312  * @primary_plane: Primary plane for CRTC
1313  * @crtc_funcs: Callbacks for the new CRTC
1314  * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1315  * @feeds_txp: Is this CRTC connected to the TXP?
1316  *
1317  * Initializes our private CRTC structure. This function is mostly
1318  * relevant for KUnit testing, all other users should use
1319  * vc4_crtc_init() instead.
1320  *
1321  * Returns:
1322  * 0 on success, a negative error code on failure.
1323  */
1324 int __vc4_crtc_init(struct drm_device *drm,
1325 		    struct platform_device *pdev,
1326 		    struct vc4_crtc *vc4_crtc,
1327 		    const struct vc4_crtc_data *data,
1328 		    struct drm_plane *primary_plane,
1329 		    const struct drm_crtc_funcs *crtc_funcs,
1330 		    const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1331 		    bool feeds_txp)
1332 {
1333 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1334 	struct drm_crtc *crtc = &vc4_crtc->base;
1335 	unsigned int i;
1336 	int ret;
1337 
1338 	vc4_crtc->data = data;
1339 	vc4_crtc->pdev = pdev;
1340 	vc4_crtc->feeds_txp = feeds_txp;
1341 	spin_lock_init(&vc4_crtc->irq_lock);
1342 	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1343 					 crtc_funcs, data->name);
1344 	if (ret)
1345 		return ret;
1346 
1347 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1348 
1349 	if (vc4->gen == VC4_GEN_4) {
1350 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1351 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1352 
1353 		/* We support CTM, but only for one CRTC at a time. It's therefore
1354 		 * implemented as private driver state in vc4_kms, not here.
1355 		 */
1356 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1357 	}
1358 
1359 	for (i = 0; i < crtc->gamma_size; i++) {
1360 		vc4_crtc->lut_r[i] = i;
1361 		vc4_crtc->lut_g[i] = i;
1362 		vc4_crtc->lut_b[i] = i;
1363 	}
1364 
1365 	return 0;
1366 }
1367 
1368 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1369 		  struct vc4_crtc *vc4_crtc,
1370 		  const struct vc4_crtc_data *data,
1371 		  const struct drm_crtc_funcs *crtc_funcs,
1372 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1373 		  bool feeds_txp)
1374 {
1375 	struct drm_plane *primary_plane;
1376 
1377 	/* For now, we create just the primary and the legacy cursor
1378 	 * planes.  We should be able to stack more planes on easily,
1379 	 * but to do that we would need to compute the bandwidth
1380 	 * requirement of the plane configuration, and reject ones
1381 	 * that will take too much.
1382 	 */
1383 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1384 	if (IS_ERR(primary_plane)) {
1385 		dev_err(drm->dev, "failed to construct primary plane\n");
1386 		return PTR_ERR(primary_plane);
1387 	}
1388 
1389 	return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1390 			       crtc_funcs, crtc_helper_funcs, feeds_txp);
1391 }
1392 
1393 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1394 {
1395 	struct platform_device *pdev = to_platform_device(dev);
1396 	struct drm_device *drm = dev_get_drvdata(master);
1397 	const struct vc4_pv_data *pv_data;
1398 	struct vc4_crtc *vc4_crtc;
1399 	struct drm_crtc *crtc;
1400 	int ret;
1401 
1402 	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1403 	if (!vc4_crtc)
1404 		return -ENOMEM;
1405 	crtc = &vc4_crtc->base;
1406 
1407 	pv_data = of_device_get_match_data(dev);
1408 	if (!pv_data)
1409 		return -ENODEV;
1410 
1411 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1412 	if (IS_ERR(vc4_crtc->regs))
1413 		return PTR_ERR(vc4_crtc->regs);
1414 
1415 	vc4_crtc->regset.base = vc4_crtc->regs;
1416 	vc4_crtc->regset.regs = crtc_regs;
1417 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1418 
1419 	ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1420 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1421 			    false);
1422 	if (ret)
1423 		return ret;
1424 	vc4_set_crtc_possible_masks(drm, crtc);
1425 
1426 	CRTC_WRITE(PV_INTEN, 0);
1427 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1428 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1429 			       vc4_crtc_irq_handler,
1430 			       IRQF_SHARED,
1431 			       "vc4 crtc", vc4_crtc);
1432 	if (ret)
1433 		return ret;
1434 
1435 	platform_set_drvdata(pdev, vc4_crtc);
1436 
1437 	return 0;
1438 }
1439 
1440 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1441 			    void *data)
1442 {
1443 	struct platform_device *pdev = to_platform_device(dev);
1444 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1445 
1446 	CRTC_WRITE(PV_INTEN, 0);
1447 
1448 	platform_set_drvdata(pdev, NULL);
1449 }
1450 
1451 static const struct component_ops vc4_crtc_ops = {
1452 	.bind   = vc4_crtc_bind,
1453 	.unbind = vc4_crtc_unbind,
1454 };
1455 
1456 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1457 {
1458 	return component_add(&pdev->dev, &vc4_crtc_ops);
1459 }
1460 
1461 static void vc4_crtc_dev_remove(struct platform_device *pdev)
1462 {
1463 	component_del(&pdev->dev, &vc4_crtc_ops);
1464 }
1465 
1466 struct platform_driver vc4_crtc_driver = {
1467 	.probe = vc4_crtc_dev_probe,
1468 	.remove = vc4_crtc_dev_remove,
1469 	.driver = {
1470 		.name = "vc4_crtc",
1471 		.of_match_table = vc4_crtc_dt_match,
1472 	},
1473 };
1474