1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of.h> 35 #include <linux/platform_device.h> 36 #include <linux/pm_runtime.h> 37 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_atomic_uapi.h> 41 #include <drm/drm_fb_dma_helper.h> 42 #include <drm/drm_framebuffer.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_print.h> 45 #include <drm/drm_probe_helper.h> 46 #include <drm/drm_vblank.h> 47 48 #include "vc4_drv.h" 49 #include "vc4_hdmi.h" 50 #include "vc4_regs.h" 51 52 #define HVS_FIFO_LATENCY_PIX 6 53 54 #define CRTC_WRITE(offset, val) \ 55 do { \ 56 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 57 writel(val, vc4_crtc->regs + (offset)); \ 58 } while (0) 59 60 #define CRTC_READ(offset) \ 61 ({ \ 62 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 63 readl(vc4_crtc->regs + (offset)); \ 64 }) 65 66 static const struct debugfs_reg32 crtc_regs[] = { 67 VC4_REG32(PV_CONTROL), 68 VC4_REG32(PV_V_CONTROL), 69 VC4_REG32(PV_VSYNCD_EVEN), 70 VC4_REG32(PV_HORZA), 71 VC4_REG32(PV_HORZB), 72 VC4_REG32(PV_VERTA), 73 VC4_REG32(PV_VERTB), 74 VC4_REG32(PV_VERTA_EVEN), 75 VC4_REG32(PV_VERTB_EVEN), 76 VC4_REG32(PV_INTEN), 77 VC4_REG32(PV_INTSTAT), 78 VC4_REG32(PV_STAT), 79 VC4_REG32(PV_HACT_ACT), 80 }; 81 82 static unsigned int 83 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) 84 { 85 struct vc4_hvs *hvs = vc4->hvs; 86 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); 87 /* Top/base are supposed to be 4-pixel aligned, but the 88 * Raspberry Pi firmware fills the low bits (which are 89 * presumably ignored). 90 */ 91 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 92 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 93 94 return top - base + 4; 95 } 96 97 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 98 bool in_vblank_irq, 99 int *vpos, int *hpos, 100 ktime_t *stime, ktime_t *etime, 101 const struct drm_display_mode *mode) 102 { 103 struct drm_device *dev = crtc->dev; 104 struct vc4_dev *vc4 = to_vc4_dev(dev); 105 struct vc4_hvs *hvs = vc4->hvs; 106 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 107 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 108 unsigned int channel = vc4_crtc_state->assigned_channel; 109 unsigned int cob_size; 110 u32 val; 111 int fifo_lines; 112 int vblank_lines; 113 bool ret = false; 114 115 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 116 117 /* Get optional system timestamp before query. */ 118 if (stime) 119 *stime = ktime_get(); 120 121 /* 122 * Read vertical scanline which is currently composed for our 123 * pixelvalve by the HVS, and also the scaler status. 124 */ 125 val = HVS_READ(SCALER_DISPSTATX(channel)); 126 127 /* Get optional system timestamp after query. */ 128 if (etime) 129 *etime = ktime_get(); 130 131 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 132 133 /* Vertical position of hvs composed scanline. */ 134 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 135 *hpos = 0; 136 137 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 138 *vpos /= 2; 139 140 /* Use hpos to correct for field offset in interlaced mode. */ 141 if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2) 142 *hpos += mode->crtc_htotal / 2; 143 } 144 145 cob_size = vc4_crtc_get_cob_allocation(vc4, channel); 146 /* This is the offset we need for translating hvs -> pv scanout pos. */ 147 fifo_lines = cob_size / mode->crtc_hdisplay; 148 149 if (fifo_lines > 0) 150 ret = true; 151 152 /* HVS more than fifo_lines into frame for compositing? */ 153 if (*vpos > fifo_lines) { 154 /* 155 * We are in active scanout and can get some meaningful results 156 * from HVS. The actual PV scanout can not trail behind more 157 * than fifo_lines as that is the fifo's capacity. Assume that 158 * in active scanout the HVS and PV work in lockstep wrt. HVS 159 * refilling the fifo and PV consuming from the fifo, ie. 160 * whenever the PV consumes and frees up a scanline in the 161 * fifo, the HVS will immediately refill it, therefore 162 * incrementing vpos. Therefore we choose HVS read position - 163 * fifo size in scanlines as a estimate of the real scanout 164 * position of the PV. 165 */ 166 *vpos -= fifo_lines + 1; 167 168 return ret; 169 } 170 171 /* 172 * Less: This happens when we are in vblank and the HVS, after getting 173 * the VSTART restart signal from the PV, just started refilling its 174 * fifo with new lines from the top-most lines of the new framebuffers. 175 * The PV does not scan out in vblank, so does not remove lines from 176 * the fifo, so the fifo will be full quickly and the HVS has to pause. 177 * We can't get meaningful readings wrt. scanline position of the PV 178 * and need to make things up in a approximative but consistent way. 179 */ 180 vblank_lines = mode->vtotal - mode->vdisplay; 181 182 if (in_vblank_irq) { 183 /* 184 * Assume the irq handler got called close to first 185 * line of vblank, so PV has about a full vblank 186 * scanlines to go, and as a base timestamp use the 187 * one taken at entry into vblank irq handler, so it 188 * is not affected by random delays due to lock 189 * contention on event_lock or vblank_time lock in 190 * the core. 191 */ 192 *vpos = -vblank_lines; 193 194 if (stime) 195 *stime = vc4_crtc->t_vblank; 196 if (etime) 197 *etime = vc4_crtc->t_vblank; 198 199 /* 200 * If the HVS fifo is not yet full then we know for certain 201 * we are at the very beginning of vblank, as the hvs just 202 * started refilling, and the stime and etime timestamps 203 * truly correspond to start of vblank. 204 * 205 * Unfortunately there's no way to report this to upper levels 206 * and make it more useful. 207 */ 208 } else { 209 /* 210 * No clue where we are inside vblank. Return a vpos of zero, 211 * which will cause calling code to just return the etime 212 * timestamp uncorrected. At least this is no worse than the 213 * standard fallback. 214 */ 215 *vpos = 0; 216 } 217 218 return ret; 219 } 220 221 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) 222 { 223 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 224 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 225 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); 226 u32 fifo_len_bytes = pv_data->fifo_depth; 227 228 /* 229 * Pixels are pulled from the HVS if the number of bytes is 230 * lower than the FIFO full level. 231 * 232 * The latency of the pixel fetch mechanism is 6 pixels, so we 233 * need to convert those 6 pixels in bytes, depending on the 234 * format, and then subtract that from the length of the FIFO 235 * to make sure we never end up in a situation where the FIFO 236 * is full. 237 */ 238 switch (format) { 239 case PV_CONTROL_FORMAT_DSIV_16: 240 case PV_CONTROL_FORMAT_DSIC_16: 241 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 242 case PV_CONTROL_FORMAT_DSIV_18: 243 return fifo_len_bytes - 14; 244 case PV_CONTROL_FORMAT_24: 245 case PV_CONTROL_FORMAT_DSIV_24: 246 default: 247 /* 248 * For some reason, the pixelvalve4 doesn't work with 249 * the usual formula and will only work with 32. 250 */ 251 if (crtc_data->hvs_output == 5) 252 return 32; 253 254 /* 255 * It looks like in some situations, we will overflow 256 * the PixelValve FIFO (with the bit 10 of PV stat being 257 * set) and stall the HVS / PV, eventually resulting in 258 * a page flip timeout. 259 * 260 * Displaying the video overlay during a playback with 261 * Kodi on an RPi3 seems to be a great solution with a 262 * failure rate around 50%. 263 * 264 * Removing 1 from the FIFO full level however 265 * seems to completely remove that issue. 266 */ 267 if (vc4->gen == VC4_GEN_4) 268 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; 269 270 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 271 } 272 } 273 274 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, 275 u32 format) 276 { 277 u32 level = vc4_get_fifo_full_level(vc4_crtc, format); 278 u32 ret = 0; 279 280 ret |= VC4_SET_FIELD((level >> 6), 281 PV5_CONTROL_FIFO_LEVEL_HIGH); 282 283 return ret | VC4_SET_FIELD(level & 0x3f, 284 PV_CONTROL_FIFO_LEVEL); 285 } 286 287 /* 288 * Returns the encoder attached to the CRTC. 289 * 290 * VC4 can only scan out to one encoder at a time, while the DRM core 291 * allows drivers to push pixels to more than one encoder from the 292 * same CRTC. 293 */ 294 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc, 295 struct drm_crtc_state *state) 296 { 297 struct drm_encoder *encoder; 298 299 WARN_ON(hweight32(state->encoder_mask) > 1); 300 301 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) 302 return encoder; 303 304 return NULL; 305 } 306 307 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) 308 { 309 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 310 struct drm_device *dev = crtc->dev; 311 int idx; 312 313 if (!drm_dev_enter(dev, &idx)) 314 return; 315 316 /* The PV needs to be disabled before it can be flushed */ 317 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); 318 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); 319 320 drm_dev_exit(idx); 321 } 322 323 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder, 324 struct drm_atomic_state *state) 325 { 326 struct drm_device *dev = crtc->dev; 327 struct vc4_dev *vc4 = to_vc4_dev(dev); 328 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 329 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 330 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 331 struct drm_crtc_state *crtc_state = crtc->state; 332 struct drm_display_mode *mode = &crtc_state->adjusted_mode; 333 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 334 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 || 335 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1; 336 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1; 337 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 338 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 339 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1; 340 bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC; 341 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 342 u8 ppc = pv_data->pixels_per_clock; 343 344 u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end; 345 u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start; 346 u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay; 347 348 bool debug_dump_regs = false; 349 int idx; 350 351 if (!drm_dev_enter(dev, &idx)) 352 return; 353 354 if (debug_dump_regs) { 355 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 356 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 357 drm_crtc_index(crtc)); 358 drm_print_regset32(&p, &vc4_crtc->regset); 359 } 360 361 vc4_crtc_pixelvalve_reset(crtc); 362 363 CRTC_WRITE(PV_HORZA, 364 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, 365 PV_HORZA_HBP) | 366 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, 367 PV_HORZA_HSYNC)); 368 369 CRTC_WRITE(PV_HORZB, 370 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, 371 PV_HORZB_HFP) | 372 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, 373 PV_HORZB_HACTIVE)); 374 375 if (interlace) { 376 bool odd_field_first = false; 377 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc); 378 u16 vert_bp_even = vert_bp; 379 u16 vert_fp_even = vert_fp; 380 381 if (is_vec) { 382 /* VEC (composite output) */ 383 ++field_delay; 384 if (mode->htotal == 858) { 385 /* 525-line mode (NTSC or PAL-M) */ 386 odd_field_first = true; 387 } 388 } 389 390 if (odd_field_first) 391 ++vert_fp_even; 392 else 393 ++vert_bp; 394 395 CRTC_WRITE(PV_VERTA_EVEN, 396 VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) | 397 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); 398 CRTC_WRITE(PV_VERTB_EVEN, 399 VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) | 400 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 401 402 /* We set up first field even mode for HDMI and VEC's PAL. 403 * For NTSC, we need first field odd. 404 */ 405 CRTC_WRITE(PV_V_CONTROL, 406 PV_VCONTROL_CONTINUOUS | 407 (is_dsi ? PV_VCONTROL_DSI : 0) | 408 PV_VCONTROL_INTERLACE | 409 (odd_field_first 410 ? PV_VCONTROL_ODD_FIRST 411 : VC4_SET_FIELD(field_delay, 412 PV_VCONTROL_ODD_DELAY))); 413 CRTC_WRITE(PV_VSYNCD_EVEN, 414 (odd_field_first ? field_delay : 0)); 415 } else { 416 CRTC_WRITE(PV_V_CONTROL, 417 PV_VCONTROL_CONTINUOUS | 418 (is_dsi ? PV_VCONTROL_DSI : 0)); 419 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 420 } 421 422 CRTC_WRITE(PV_VERTA, 423 VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) | 424 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); 425 CRTC_WRITE(PV_VERTB, 426 VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) | 427 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 428 429 if (is_dsi) 430 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 431 432 if (vc4->gen == VC4_GEN_5) 433 CRTC_WRITE(PV_MUX_CFG, 434 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, 435 PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); 436 437 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | 438 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | 439 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 440 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 441 PV_CONTROL_CLR_AT_START | 442 PV_CONTROL_TRIGGER_UNDERFLOW | 443 PV_CONTROL_WAIT_HSTART | 444 VC4_SET_FIELD(vc4_encoder->clock_select, 445 PV_CONTROL_CLK_SELECT)); 446 447 if (debug_dump_regs) { 448 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 449 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 450 drm_crtc_index(crtc)); 451 drm_print_regset32(&p, &vc4_crtc->regset); 452 } 453 454 drm_dev_exit(idx); 455 } 456 457 static void require_hvs_enabled(struct drm_device *dev) 458 { 459 struct vc4_dev *vc4 = to_vc4_dev(dev); 460 struct vc4_hvs *hvs = vc4->hvs; 461 462 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 463 SCALER_DISPCTRL_ENABLE); 464 } 465 466 static int vc4_crtc_disable(struct drm_crtc *crtc, 467 struct drm_encoder *encoder, 468 struct drm_atomic_state *state, 469 unsigned int channel) 470 { 471 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 472 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 473 struct drm_device *dev = crtc->dev; 474 struct vc4_dev *vc4 = to_vc4_dev(dev); 475 int idx, ret; 476 477 if (!drm_dev_enter(dev, &idx)) 478 return -ENODEV; 479 480 CRTC_WRITE(PV_V_CONTROL, 481 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 482 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 483 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 484 485 /* 486 * This delay is needed to avoid to get a pixel stuck in an 487 * unflushable FIFO between the pixelvalve and the HDMI 488 * controllers on the BCM2711. 489 * 490 * Timing is fairly sensitive here, so mdelay is the safest 491 * approach. 492 * 493 * If it was to be reworked, the stuck pixel happens on a 494 * BCM2711 when changing mode with a good probability, so a 495 * script that changes mode on a regular basis should trigger 496 * the bug after less than 10 attempts. It manifests itself with 497 * every pixels being shifted by one to the right, and thus the 498 * last pixel of a line actually being displayed as the first 499 * pixel on the next line. 500 */ 501 mdelay(20); 502 503 if (vc4_encoder && vc4_encoder->post_crtc_disable) 504 vc4_encoder->post_crtc_disable(encoder, state); 505 506 vc4_crtc_pixelvalve_reset(crtc); 507 vc4_hvs_stop_channel(vc4->hvs, channel); 508 509 if (vc4_encoder && vc4_encoder->post_crtc_powerdown) 510 vc4_encoder->post_crtc_powerdown(encoder, state); 511 512 drm_dev_exit(idx); 513 514 return 0; 515 } 516 517 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) 518 { 519 struct drm_device *drm = crtc->dev; 520 struct vc4_dev *vc4 = to_vc4_dev(drm); 521 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 522 enum vc4_encoder_type encoder_type; 523 const struct vc4_pv_data *pv_data; 524 struct drm_encoder *encoder; 525 struct vc4_hdmi *vc4_hdmi; 526 unsigned encoder_sel; 527 int channel; 528 int ret; 529 530 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 531 "brcm,bcm2711-pixelvalve2") || 532 of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 533 "brcm,bcm2711-pixelvalve4"))) 534 return 0; 535 536 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) 537 return 0; 538 539 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) 540 return 0; 541 542 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output); 543 if (channel < 0) 544 return 0; 545 546 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT); 547 if (WARN_ON(encoder_sel != 0)) 548 return 0; 549 550 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 551 encoder_type = pv_data->encoder_types[encoder_sel]; 552 encoder = vc4_find_encoder_by_type(drm, encoder_type); 553 if (WARN_ON(!encoder)) 554 return 0; 555 556 vc4_hdmi = encoder_to_vc4_hdmi(encoder); 557 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); 558 if (ret) 559 return ret; 560 561 ret = vc4_crtc_disable(crtc, encoder, NULL, channel); 562 if (ret) 563 return ret; 564 565 /* 566 * post_crtc_powerdown will have called pm_runtime_put, so we 567 * don't need it here otherwise we'll get the reference counting 568 * wrong. 569 */ 570 571 return 0; 572 } 573 574 void vc4_crtc_send_vblank(struct drm_crtc *crtc) 575 { 576 struct drm_device *dev = crtc->dev; 577 unsigned long flags; 578 579 if (!crtc->state || !crtc->state->event) 580 return; 581 582 spin_lock_irqsave(&dev->event_lock, flags); 583 drm_crtc_send_vblank_event(crtc, crtc->state->event); 584 crtc->state->event = NULL; 585 spin_unlock_irqrestore(&dev->event_lock, flags); 586 } 587 588 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 589 struct drm_atomic_state *state) 590 { 591 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 592 crtc); 593 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); 594 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state); 595 struct drm_device *dev = crtc->dev; 596 597 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)", 598 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 599 600 require_hvs_enabled(dev); 601 602 /* Disable vblank irq handling before crtc is disabled. */ 603 drm_crtc_vblank_off(crtc); 604 605 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel); 606 607 /* 608 * Make sure we issue a vblank event after disabling the CRTC if 609 * someone was waiting it. 610 */ 611 vc4_crtc_send_vblank(crtc); 612 } 613 614 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 615 struct drm_atomic_state *state) 616 { 617 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 618 crtc); 619 struct drm_device *dev = crtc->dev; 620 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 621 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state); 622 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 623 int idx; 624 625 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)", 626 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 627 628 if (!drm_dev_enter(dev, &idx)) 629 return; 630 631 require_hvs_enabled(dev); 632 633 /* Enable vblank irq handling before crtc is started otherwise 634 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 635 */ 636 drm_crtc_vblank_on(crtc); 637 638 vc4_hvs_atomic_enable(crtc, state); 639 640 if (vc4_encoder->pre_crtc_configure) 641 vc4_encoder->pre_crtc_configure(encoder, state); 642 643 vc4_crtc_config_pv(crtc, encoder, state); 644 645 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); 646 647 if (vc4_encoder->pre_crtc_enable) 648 vc4_encoder->pre_crtc_enable(encoder, state); 649 650 /* When feeding the transposer block the pixelvalve is unneeded and 651 * should not be enabled. 652 */ 653 CRTC_WRITE(PV_V_CONTROL, 654 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 655 656 if (vc4_encoder->post_crtc_enable) 657 vc4_encoder->post_crtc_enable(encoder, state); 658 659 drm_dev_exit(idx); 660 } 661 662 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 663 const struct drm_display_mode *mode) 664 { 665 /* Do not allow doublescan modes from user space */ 666 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 667 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 668 crtc->base.id); 669 return MODE_NO_DBLESCAN; 670 } 671 672 return MODE_OK; 673 } 674 675 void vc4_crtc_get_margins(struct drm_crtc_state *state, 676 unsigned int *left, unsigned int *right, 677 unsigned int *top, unsigned int *bottom) 678 { 679 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 680 struct drm_connector_state *conn_state; 681 struct drm_connector *conn; 682 int i; 683 684 *left = vc4_state->margins.left; 685 *right = vc4_state->margins.right; 686 *top = vc4_state->margins.top; 687 *bottom = vc4_state->margins.bottom; 688 689 /* We have to interate over all new connector states because 690 * vc4_crtc_get_margins() might be called before 691 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 692 * might be outdated. 693 */ 694 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 695 if (conn_state->crtc != state->crtc) 696 continue; 697 698 *left = conn_state->tv.margins.left; 699 *right = conn_state->tv.margins.right; 700 *top = conn_state->tv.margins.top; 701 *bottom = conn_state->tv.margins.bottom; 702 break; 703 } 704 } 705 706 int vc4_crtc_atomic_check(struct drm_crtc *crtc, 707 struct drm_atomic_state *state) 708 { 709 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 710 crtc); 711 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 712 struct drm_connector *conn; 713 struct drm_connector_state *conn_state; 714 struct drm_encoder *encoder; 715 int ret, i; 716 717 ret = vc4_hvs_atomic_check(crtc, state); 718 if (ret) 719 return ret; 720 721 encoder = vc4_get_crtc_encoder(crtc, crtc_state); 722 if (encoder) { 723 const struct drm_display_mode *mode = &crtc_state->adjusted_mode; 724 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 725 726 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) { 727 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000, 728 mode->clock * 9 / 10) * 1000; 729 } else { 730 vc4_state->hvs_load = mode->clock * 1000; 731 } 732 } 733 734 for_each_new_connector_in_state(state, conn, conn_state, 735 i) { 736 if (conn_state->crtc != crtc) 737 continue; 738 739 if (memcmp(&vc4_state->margins, &conn_state->tv.margins, 740 sizeof(vc4_state->margins))) { 741 memcpy(&vc4_state->margins, &conn_state->tv.margins, 742 sizeof(vc4_state->margins)); 743 744 /* 745 * Need to force the dlist entries for all planes to be 746 * updated so that the dest rectangles are changed. 747 */ 748 crtc_state->zpos_changed = true; 749 } 750 break; 751 } 752 753 return 0; 754 } 755 756 static int vc4_enable_vblank(struct drm_crtc *crtc) 757 { 758 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 759 struct drm_device *dev = crtc->dev; 760 int idx; 761 762 if (!drm_dev_enter(dev, &idx)) 763 return -ENODEV; 764 765 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 766 767 drm_dev_exit(idx); 768 769 return 0; 770 } 771 772 static void vc4_disable_vblank(struct drm_crtc *crtc) 773 { 774 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 775 struct drm_device *dev = crtc->dev; 776 int idx; 777 778 if (!drm_dev_enter(dev, &idx)) 779 return; 780 781 CRTC_WRITE(PV_INTEN, 0); 782 783 drm_dev_exit(idx); 784 } 785 786 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 787 { 788 struct drm_crtc *crtc = &vc4_crtc->base; 789 struct drm_device *dev = crtc->dev; 790 struct vc4_dev *vc4 = to_vc4_dev(dev); 791 struct vc4_hvs *hvs = vc4->hvs; 792 u32 chan = vc4_crtc->current_hvs_channel; 793 unsigned long flags; 794 795 spin_lock_irqsave(&dev->event_lock, flags); 796 spin_lock(&vc4_crtc->irq_lock); 797 if (vc4_crtc->event && 798 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) || 799 vc4_crtc->feeds_txp)) { 800 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 801 vc4_crtc->event = NULL; 802 drm_crtc_vblank_put(crtc); 803 804 /* Wait for the page flip to unmask the underrun to ensure that 805 * the display list was updated by the hardware. Before that 806 * happens, the HVS will be using the previous display list with 807 * the CRTC and encoder already reconfigured, leading to 808 * underruns. This can be seen when reconfiguring the CRTC. 809 */ 810 vc4_hvs_unmask_underrun(hvs, chan); 811 } 812 spin_unlock(&vc4_crtc->irq_lock); 813 spin_unlock_irqrestore(&dev->event_lock, flags); 814 } 815 816 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 817 { 818 crtc->t_vblank = ktime_get(); 819 drm_crtc_handle_vblank(&crtc->base); 820 vc4_crtc_handle_page_flip(crtc); 821 } 822 823 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 824 { 825 struct vc4_crtc *vc4_crtc = data; 826 u32 stat = CRTC_READ(PV_INTSTAT); 827 irqreturn_t ret = IRQ_NONE; 828 829 if (stat & PV_INT_VFP_START) { 830 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 831 vc4_crtc_handle_vblank(vc4_crtc); 832 ret = IRQ_HANDLED; 833 } 834 835 return ret; 836 } 837 838 struct vc4_async_flip_state { 839 struct drm_crtc *crtc; 840 struct drm_framebuffer *fb; 841 struct drm_framebuffer *old_fb; 842 struct drm_pending_vblank_event *event; 843 844 union { 845 struct dma_fence_cb fence; 846 struct vc4_seqno_cb seqno; 847 } cb; 848 }; 849 850 /* Called when the V3D execution for the BO being flipped to is done, so that 851 * we can actually update the plane's address to point to it. 852 */ 853 static void 854 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state) 855 { 856 struct drm_crtc *crtc = flip_state->crtc; 857 struct drm_device *dev = crtc->dev; 858 struct drm_plane *plane = crtc->primary; 859 860 vc4_plane_async_set_fb(plane, flip_state->fb); 861 if (flip_state->event) { 862 unsigned long flags; 863 864 spin_lock_irqsave(&dev->event_lock, flags); 865 drm_crtc_send_vblank_event(crtc, flip_state->event); 866 spin_unlock_irqrestore(&dev->event_lock, flags); 867 } 868 869 drm_crtc_vblank_put(crtc); 870 drm_framebuffer_put(flip_state->fb); 871 872 if (flip_state->old_fb) 873 drm_framebuffer_put(flip_state->old_fb); 874 875 kfree(flip_state); 876 } 877 878 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb) 879 { 880 struct vc4_async_flip_state *flip_state = 881 container_of(cb, struct vc4_async_flip_state, cb.seqno); 882 struct vc4_bo *bo = NULL; 883 884 if (flip_state->old_fb) { 885 struct drm_gem_dma_object *dma_bo = 886 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0); 887 bo = to_vc4_bo(&dma_bo->base); 888 } 889 890 vc4_async_page_flip_complete(flip_state); 891 892 /* 893 * Decrement the BO usecnt in order to keep the inc/dec 894 * calls balanced when the planes are updated through 895 * the async update path. 896 * 897 * FIXME: we should move to generic async-page-flip when 898 * it's available, so that we can get rid of this 899 * hand-made cleanup_fb() logic. 900 */ 901 if (bo) 902 vc4_bo_dec_usecnt(bo); 903 } 904 905 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence, 906 struct dma_fence_cb *cb) 907 { 908 struct vc4_async_flip_state *flip_state = 909 container_of(cb, struct vc4_async_flip_state, cb.fence); 910 911 vc4_async_page_flip_complete(flip_state); 912 dma_fence_put(fence); 913 } 914 915 static int vc4_async_set_fence_cb(struct drm_device *dev, 916 struct vc4_async_flip_state *flip_state) 917 { 918 struct drm_framebuffer *fb = flip_state->fb; 919 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); 920 struct vc4_dev *vc4 = to_vc4_dev(dev); 921 struct dma_fence *fence; 922 int ret; 923 924 if (vc4->gen == VC4_GEN_4) { 925 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); 926 927 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno, 928 vc4_async_page_flip_seqno_complete); 929 } 930 931 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence); 932 if (ret) 933 return ret; 934 935 /* If there's no fence, complete the page flip immediately */ 936 if (!fence) { 937 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 938 return 0; 939 } 940 941 /* If the fence has already been completed, complete the page flip */ 942 if (dma_fence_add_callback(fence, &flip_state->cb.fence, 943 vc4_async_page_flip_fence_complete)) 944 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 945 946 return 0; 947 } 948 949 static int 950 vc4_async_page_flip_common(struct drm_crtc *crtc, 951 struct drm_framebuffer *fb, 952 struct drm_pending_vblank_event *event, 953 uint32_t flags) 954 { 955 struct drm_device *dev = crtc->dev; 956 struct drm_plane *plane = crtc->primary; 957 struct vc4_async_flip_state *flip_state; 958 959 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 960 if (!flip_state) 961 return -ENOMEM; 962 963 drm_framebuffer_get(fb); 964 flip_state->fb = fb; 965 flip_state->crtc = crtc; 966 flip_state->event = event; 967 968 /* Save the current FB before it's replaced by the new one in 969 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 970 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 971 * it consistent. 972 * FIXME: we should move to generic async-page-flip when it's 973 * available, so that we can get rid of this hand-made cleanup_fb() 974 * logic. 975 */ 976 flip_state->old_fb = plane->state->fb; 977 if (flip_state->old_fb) 978 drm_framebuffer_get(flip_state->old_fb); 979 980 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 981 982 /* Immediately update the plane's legacy fb pointer, so that later 983 * modeset prep sees the state that will be present when the semaphore 984 * is released. 985 */ 986 drm_atomic_set_fb_for_plane(plane->state, fb); 987 988 vc4_async_set_fence_cb(dev, flip_state); 989 990 /* Driver takes ownership of state on successful async commit. */ 991 return 0; 992 } 993 994 /* Implements async (non-vblank-synced) page flips. 995 * 996 * The page flip ioctl needs to return immediately, so we grab the 997 * modeset semaphore on the pipe, and queue the address update for 998 * when V3D is done with the BO being flipped to. 999 */ 1000 static int vc4_async_page_flip(struct drm_crtc *crtc, 1001 struct drm_framebuffer *fb, 1002 struct drm_pending_vblank_event *event, 1003 uint32_t flags) 1004 { 1005 struct drm_device *dev = crtc->dev; 1006 struct vc4_dev *vc4 = to_vc4_dev(dev); 1007 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); 1008 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); 1009 int ret; 1010 1011 if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4)) 1012 return -ENODEV; 1013 1014 /* 1015 * Increment the BO usecnt here, so that we never end up with an 1016 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 1017 * plane is later updated through the non-async path. 1018 * 1019 * FIXME: we should move to generic async-page-flip when 1020 * it's available, so that we can get rid of this 1021 * hand-made prepare_fb() logic. 1022 */ 1023 ret = vc4_bo_inc_usecnt(bo); 1024 if (ret) 1025 return ret; 1026 1027 ret = vc4_async_page_flip_common(crtc, fb, event, flags); 1028 if (ret) { 1029 vc4_bo_dec_usecnt(bo); 1030 return ret; 1031 } 1032 1033 return 0; 1034 } 1035 1036 static int vc5_async_page_flip(struct drm_crtc *crtc, 1037 struct drm_framebuffer *fb, 1038 struct drm_pending_vblank_event *event, 1039 uint32_t flags) 1040 { 1041 return vc4_async_page_flip_common(crtc, fb, event, flags); 1042 } 1043 1044 int vc4_page_flip(struct drm_crtc *crtc, 1045 struct drm_framebuffer *fb, 1046 struct drm_pending_vblank_event *event, 1047 uint32_t flags, 1048 struct drm_modeset_acquire_ctx *ctx) 1049 { 1050 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) { 1051 struct drm_device *dev = crtc->dev; 1052 struct vc4_dev *vc4 = to_vc4_dev(dev); 1053 1054 if (vc4->gen > VC4_GEN_4) 1055 return vc5_async_page_flip(crtc, fb, event, flags); 1056 else 1057 return vc4_async_page_flip(crtc, fb, event, flags); 1058 } else { 1059 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 1060 } 1061 } 1062 1063 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 1064 { 1065 struct vc4_crtc_state *vc4_state, *old_vc4_state; 1066 1067 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 1068 if (!vc4_state) 1069 return NULL; 1070 1071 old_vc4_state = to_vc4_crtc_state(crtc->state); 1072 vc4_state->margins = old_vc4_state->margins; 1073 vc4_state->assigned_channel = old_vc4_state->assigned_channel; 1074 1075 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 1076 return &vc4_state->base; 1077 } 1078 1079 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 1080 struct drm_crtc_state *state) 1081 { 1082 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 1083 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 1084 1085 if (drm_mm_node_allocated(&vc4_state->mm)) { 1086 unsigned long flags; 1087 1088 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 1089 drm_mm_remove_node(&vc4_state->mm); 1090 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 1091 1092 } 1093 1094 drm_atomic_helper_crtc_destroy_state(crtc, state); 1095 } 1096 1097 void vc4_crtc_reset(struct drm_crtc *crtc) 1098 { 1099 struct vc4_crtc_state *vc4_crtc_state; 1100 1101 if (crtc->state) 1102 vc4_crtc_destroy_state(crtc, crtc->state); 1103 1104 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); 1105 if (!vc4_crtc_state) { 1106 crtc->state = NULL; 1107 return; 1108 } 1109 1110 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 1111 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); 1112 } 1113 1114 int vc4_crtc_late_register(struct drm_crtc *crtc) 1115 { 1116 struct drm_device *drm = crtc->dev; 1117 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1118 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 1119 1120 vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name, 1121 &vc4_crtc->regset); 1122 1123 return 0; 1124 } 1125 1126 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1127 .set_config = drm_atomic_helper_set_config, 1128 .page_flip = vc4_page_flip, 1129 .set_property = NULL, 1130 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1131 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1132 .reset = vc4_crtc_reset, 1133 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1134 .atomic_destroy_state = vc4_crtc_destroy_state, 1135 .enable_vblank = vc4_enable_vblank, 1136 .disable_vblank = vc4_disable_vblank, 1137 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1138 .late_register = vc4_crtc_late_register, 1139 }; 1140 1141 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1142 .mode_valid = vc4_crtc_mode_valid, 1143 .atomic_check = vc4_crtc_atomic_check, 1144 .atomic_begin = vc4_hvs_atomic_begin, 1145 .atomic_flush = vc4_hvs_atomic_flush, 1146 .atomic_enable = vc4_crtc_atomic_enable, 1147 .atomic_disable = vc4_crtc_atomic_disable, 1148 .get_scanout_position = vc4_crtc_get_scanout_position, 1149 }; 1150 1151 const struct vc4_pv_data bcm2835_pv0_data = { 1152 .base = { 1153 .name = "pixelvalve-0", 1154 .debugfs_name = "crtc0_regs", 1155 .hvs_available_channels = BIT(0), 1156 .hvs_output = 0, 1157 }, 1158 .fifo_depth = 64, 1159 .pixels_per_clock = 1, 1160 .encoder_types = { 1161 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1162 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1163 }, 1164 }; 1165 1166 const struct vc4_pv_data bcm2835_pv1_data = { 1167 .base = { 1168 .name = "pixelvalve-1", 1169 .debugfs_name = "crtc1_regs", 1170 .hvs_available_channels = BIT(2), 1171 .hvs_output = 2, 1172 }, 1173 .fifo_depth = 64, 1174 .pixels_per_clock = 1, 1175 .encoder_types = { 1176 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1177 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1178 }, 1179 }; 1180 1181 const struct vc4_pv_data bcm2835_pv2_data = { 1182 .base = { 1183 .name = "pixelvalve-2", 1184 .debugfs_name = "crtc2_regs", 1185 .hvs_available_channels = BIT(1), 1186 .hvs_output = 1, 1187 }, 1188 .fifo_depth = 64, 1189 .pixels_per_clock = 1, 1190 .encoder_types = { 1191 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, 1192 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1193 }, 1194 }; 1195 1196 const struct vc4_pv_data bcm2711_pv0_data = { 1197 .base = { 1198 .name = "pixelvalve-0", 1199 .debugfs_name = "crtc0_regs", 1200 .hvs_available_channels = BIT(0), 1201 .hvs_output = 0, 1202 }, 1203 .fifo_depth = 64, 1204 .pixels_per_clock = 1, 1205 .encoder_types = { 1206 [0] = VC4_ENCODER_TYPE_DSI0, 1207 [1] = VC4_ENCODER_TYPE_DPI, 1208 }, 1209 }; 1210 1211 const struct vc4_pv_data bcm2711_pv1_data = { 1212 .base = { 1213 .name = "pixelvalve-1", 1214 .debugfs_name = "crtc1_regs", 1215 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1216 .hvs_output = 3, 1217 }, 1218 .fifo_depth = 64, 1219 .pixels_per_clock = 1, 1220 .encoder_types = { 1221 [0] = VC4_ENCODER_TYPE_DSI1, 1222 [1] = VC4_ENCODER_TYPE_SMI, 1223 }, 1224 }; 1225 1226 const struct vc4_pv_data bcm2711_pv2_data = { 1227 .base = { 1228 .name = "pixelvalve-2", 1229 .debugfs_name = "crtc2_regs", 1230 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1231 .hvs_output = 4, 1232 }, 1233 .fifo_depth = 256, 1234 .pixels_per_clock = 2, 1235 .encoder_types = { 1236 [0] = VC4_ENCODER_TYPE_HDMI0, 1237 }, 1238 }; 1239 1240 const struct vc4_pv_data bcm2711_pv3_data = { 1241 .base = { 1242 .name = "pixelvalve-3", 1243 .debugfs_name = "crtc3_regs", 1244 .hvs_available_channels = BIT(1), 1245 .hvs_output = 1, 1246 }, 1247 .fifo_depth = 64, 1248 .pixels_per_clock = 1, 1249 .encoder_types = { 1250 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1251 }, 1252 }; 1253 1254 const struct vc4_pv_data bcm2711_pv4_data = { 1255 .base = { 1256 .name = "pixelvalve-4", 1257 .debugfs_name = "crtc4_regs", 1258 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1259 .hvs_output = 5, 1260 }, 1261 .fifo_depth = 64, 1262 .pixels_per_clock = 2, 1263 .encoder_types = { 1264 [0] = VC4_ENCODER_TYPE_HDMI1, 1265 }, 1266 }; 1267 1268 static const struct of_device_id vc4_crtc_dt_match[] = { 1269 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 1270 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 1271 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 1272 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, 1273 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, 1274 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, 1275 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, 1276 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, 1277 {} 1278 }; 1279 1280 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1281 struct drm_crtc *crtc) 1282 { 1283 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1284 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 1285 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 1286 struct drm_encoder *encoder; 1287 1288 drm_for_each_encoder(encoder, drm) { 1289 struct vc4_encoder *vc4_encoder; 1290 int i; 1291 1292 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) 1293 continue; 1294 1295 vc4_encoder = to_vc4_encoder(encoder); 1296 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 1297 if (vc4_encoder->type == encoder_types[i]) { 1298 vc4_encoder->clock_select = i; 1299 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1300 break; 1301 } 1302 } 1303 } 1304 } 1305 1306 /** 1307 * __vc4_crtc_init - Initializes a CRTC 1308 * @drm: DRM Device 1309 * @pdev: CRTC Platform Device 1310 * @vc4_crtc: CRTC Object to Initialize 1311 * @data: Configuration data associated with this CRTC 1312 * @primary_plane: Primary plane for CRTC 1313 * @crtc_funcs: Callbacks for the new CRTC 1314 * @crtc_helper_funcs: Helper Callbacks for the new CRTC 1315 * @feeds_txp: Is this CRTC connected to the TXP? 1316 * 1317 * Initializes our private CRTC structure. This function is mostly 1318 * relevant for KUnit testing, all other users should use 1319 * vc4_crtc_init() instead. 1320 * 1321 * Returns: 1322 * 0 on success, a negative error code on failure. 1323 */ 1324 int __vc4_crtc_init(struct drm_device *drm, 1325 struct platform_device *pdev, 1326 struct vc4_crtc *vc4_crtc, 1327 const struct vc4_crtc_data *data, 1328 struct drm_plane *primary_plane, 1329 const struct drm_crtc_funcs *crtc_funcs, 1330 const struct drm_crtc_helper_funcs *crtc_helper_funcs, 1331 bool feeds_txp) 1332 { 1333 struct vc4_dev *vc4 = to_vc4_dev(drm); 1334 struct drm_crtc *crtc = &vc4_crtc->base; 1335 unsigned int i; 1336 int ret; 1337 1338 vc4_crtc->data = data; 1339 vc4_crtc->pdev = pdev; 1340 vc4_crtc->feeds_txp = feeds_txp; 1341 spin_lock_init(&vc4_crtc->irq_lock); 1342 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1343 crtc_funcs, data->name); 1344 if (ret) 1345 return ret; 1346 1347 drm_crtc_helper_add(crtc, crtc_helper_funcs); 1348 1349 if (vc4->gen == VC4_GEN_4) { 1350 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1351 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1352 1353 /* We support CTM, but only for one CRTC at a time. It's therefore 1354 * implemented as private driver state in vc4_kms, not here. 1355 */ 1356 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1357 } 1358 1359 for (i = 0; i < crtc->gamma_size; i++) { 1360 vc4_crtc->lut_r[i] = i; 1361 vc4_crtc->lut_g[i] = i; 1362 vc4_crtc->lut_b[i] = i; 1363 } 1364 1365 return 0; 1366 } 1367 1368 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev, 1369 struct vc4_crtc *vc4_crtc, 1370 const struct vc4_crtc_data *data, 1371 const struct drm_crtc_funcs *crtc_funcs, 1372 const struct drm_crtc_helper_funcs *crtc_helper_funcs, 1373 bool feeds_txp) 1374 { 1375 struct drm_plane *primary_plane; 1376 1377 /* For now, we create just the primary and the legacy cursor 1378 * planes. We should be able to stack more planes on easily, 1379 * but to do that we would need to compute the bandwidth 1380 * requirement of the plane configuration, and reject ones 1381 * that will take too much. 1382 */ 1383 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0); 1384 if (IS_ERR(primary_plane)) { 1385 dev_err(drm->dev, "failed to construct primary plane\n"); 1386 return PTR_ERR(primary_plane); 1387 } 1388 1389 return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane, 1390 crtc_funcs, crtc_helper_funcs, feeds_txp); 1391 } 1392 1393 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1394 { 1395 struct platform_device *pdev = to_platform_device(dev); 1396 struct drm_device *drm = dev_get_drvdata(master); 1397 const struct vc4_pv_data *pv_data; 1398 struct vc4_crtc *vc4_crtc; 1399 struct drm_crtc *crtc; 1400 int ret; 1401 1402 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL); 1403 if (!vc4_crtc) 1404 return -ENOMEM; 1405 crtc = &vc4_crtc->base; 1406 1407 pv_data = of_device_get_match_data(dev); 1408 if (!pv_data) 1409 return -ENODEV; 1410 1411 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1412 if (IS_ERR(vc4_crtc->regs)) 1413 return PTR_ERR(vc4_crtc->regs); 1414 1415 vc4_crtc->regset.base = vc4_crtc->regs; 1416 vc4_crtc->regset.regs = crtc_regs; 1417 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1418 1419 ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base, 1420 &vc4_crtc_funcs, &vc4_crtc_helper_funcs, 1421 false); 1422 if (ret) 1423 return ret; 1424 vc4_set_crtc_possible_masks(drm, crtc); 1425 1426 CRTC_WRITE(PV_INTEN, 0); 1427 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1428 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1429 vc4_crtc_irq_handler, 1430 IRQF_SHARED, 1431 "vc4 crtc", vc4_crtc); 1432 if (ret) 1433 return ret; 1434 1435 platform_set_drvdata(pdev, vc4_crtc); 1436 1437 return 0; 1438 } 1439 1440 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1441 void *data) 1442 { 1443 struct platform_device *pdev = to_platform_device(dev); 1444 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1445 1446 CRTC_WRITE(PV_INTEN, 0); 1447 1448 platform_set_drvdata(pdev, NULL); 1449 } 1450 1451 static const struct component_ops vc4_crtc_ops = { 1452 .bind = vc4_crtc_bind, 1453 .unbind = vc4_crtc_unbind, 1454 }; 1455 1456 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1457 { 1458 return component_add(&pdev->dev, &vc4_crtc_ops); 1459 } 1460 1461 static void vc4_crtc_dev_remove(struct platform_device *pdev) 1462 { 1463 component_del(&pdev->dev, &vc4_crtc_ops); 1464 } 1465 1466 struct platform_driver vc4_crtc_driver = { 1467 .probe = vc4_crtc_dev_probe, 1468 .remove = vc4_crtc_dev_remove, 1469 .driver = { 1470 .name = "vc4_crtc", 1471 .of_match_table = vc4_crtc_dt_match, 1472 }, 1473 }; 1474