xref: /linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_probe_helper.h>
39 #include <linux/clk.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <linux/component.h>
42 #include <linux/of_device.h>
43 #include "vc4_drv.h"
44 #include "vc4_regs.h"
45 
46 struct vc4_crtc_state {
47 	struct drm_crtc_state base;
48 	/* Dlist area for this CRTC configuration. */
49 	struct drm_mm_node mm;
50 	bool feed_txp;
51 	bool txp_armed;
52 
53 	struct {
54 		unsigned int left;
55 		unsigned int right;
56 		unsigned int top;
57 		unsigned int bottom;
58 	} margins;
59 };
60 
61 static inline struct vc4_crtc_state *
62 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
63 {
64 	return (struct vc4_crtc_state *)crtc_state;
65 }
66 
67 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
68 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
69 
70 #define CRTC_REG(reg) { reg, #reg }
71 static const struct {
72 	u32 reg;
73 	const char *name;
74 } crtc_regs[] = {
75 	CRTC_REG(PV_CONTROL),
76 	CRTC_REG(PV_V_CONTROL),
77 	CRTC_REG(PV_VSYNCD_EVEN),
78 	CRTC_REG(PV_HORZA),
79 	CRTC_REG(PV_HORZB),
80 	CRTC_REG(PV_VERTA),
81 	CRTC_REG(PV_VERTB),
82 	CRTC_REG(PV_VERTA_EVEN),
83 	CRTC_REG(PV_VERTB_EVEN),
84 	CRTC_REG(PV_INTEN),
85 	CRTC_REG(PV_INTSTAT),
86 	CRTC_REG(PV_STAT),
87 	CRTC_REG(PV_HACT_ACT),
88 };
89 
90 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
91 {
92 	int i;
93 
94 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
95 		DRM_INFO("0x%04x (%s): 0x%08x\n",
96 			 crtc_regs[i].reg, crtc_regs[i].name,
97 			 CRTC_READ(crtc_regs[i].reg));
98 	}
99 }
100 
101 #ifdef CONFIG_DEBUG_FS
102 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
103 {
104 	struct drm_info_node *node = (struct drm_info_node *)m->private;
105 	struct drm_device *dev = node->minor->dev;
106 	int crtc_index = (uintptr_t)node->info_ent->data;
107 	struct drm_crtc *crtc;
108 	struct vc4_crtc *vc4_crtc;
109 	int i;
110 
111 	i = 0;
112 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
113 		if (i == crtc_index)
114 			break;
115 		i++;
116 	}
117 	if (!crtc)
118 		return 0;
119 	vc4_crtc = to_vc4_crtc(crtc);
120 
121 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
122 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
123 			   crtc_regs[i].name, crtc_regs[i].reg,
124 			   CRTC_READ(crtc_regs[i].reg));
125 	}
126 
127 	return 0;
128 }
129 #endif
130 
131 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
132 			     bool in_vblank_irq, int *vpos, int *hpos,
133 			     ktime_t *stime, ktime_t *etime,
134 			     const struct drm_display_mode *mode)
135 {
136 	struct vc4_dev *vc4 = to_vc4_dev(dev);
137 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
138 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
139 	u32 val;
140 	int fifo_lines;
141 	int vblank_lines;
142 	bool ret = false;
143 
144 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
145 
146 	/* Get optional system timestamp before query. */
147 	if (stime)
148 		*stime = ktime_get();
149 
150 	/*
151 	 * Read vertical scanline which is currently composed for our
152 	 * pixelvalve by the HVS, and also the scaler status.
153 	 */
154 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
155 
156 	/* Get optional system timestamp after query. */
157 	if (etime)
158 		*etime = ktime_get();
159 
160 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
161 
162 	/* Vertical position of hvs composed scanline. */
163 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
164 	*hpos = 0;
165 
166 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
167 		*vpos /= 2;
168 
169 		/* Use hpos to correct for field offset in interlaced mode. */
170 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
171 			*hpos += mode->crtc_htotal / 2;
172 	}
173 
174 	/* This is the offset we need for translating hvs -> pv scanout pos. */
175 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
176 
177 	if (fifo_lines > 0)
178 		ret = true;
179 
180 	/* HVS more than fifo_lines into frame for compositing? */
181 	if (*vpos > fifo_lines) {
182 		/*
183 		 * We are in active scanout and can get some meaningful results
184 		 * from HVS. The actual PV scanout can not trail behind more
185 		 * than fifo_lines as that is the fifo's capacity. Assume that
186 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
187 		 * refilling the fifo and PV consuming from the fifo, ie.
188 		 * whenever the PV consumes and frees up a scanline in the
189 		 * fifo, the HVS will immediately refill it, therefore
190 		 * incrementing vpos. Therefore we choose HVS read position -
191 		 * fifo size in scanlines as a estimate of the real scanout
192 		 * position of the PV.
193 		 */
194 		*vpos -= fifo_lines + 1;
195 
196 		return ret;
197 	}
198 
199 	/*
200 	 * Less: This happens when we are in vblank and the HVS, after getting
201 	 * the VSTART restart signal from the PV, just started refilling its
202 	 * fifo with new lines from the top-most lines of the new framebuffers.
203 	 * The PV does not scan out in vblank, so does not remove lines from
204 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
205 	 * We can't get meaningful readings wrt. scanline position of the PV
206 	 * and need to make things up in a approximative but consistent way.
207 	 */
208 	vblank_lines = mode->vtotal - mode->vdisplay;
209 
210 	if (in_vblank_irq) {
211 		/*
212 		 * Assume the irq handler got called close to first
213 		 * line of vblank, so PV has about a full vblank
214 		 * scanlines to go, and as a base timestamp use the
215 		 * one taken at entry into vblank irq handler, so it
216 		 * is not affected by random delays due to lock
217 		 * contention on event_lock or vblank_time lock in
218 		 * the core.
219 		 */
220 		*vpos = -vblank_lines;
221 
222 		if (stime)
223 			*stime = vc4_crtc->t_vblank;
224 		if (etime)
225 			*etime = vc4_crtc->t_vblank;
226 
227 		/*
228 		 * If the HVS fifo is not yet full then we know for certain
229 		 * we are at the very beginning of vblank, as the hvs just
230 		 * started refilling, and the stime and etime timestamps
231 		 * truly correspond to start of vblank.
232 		 *
233 		 * Unfortunately there's no way to report this to upper levels
234 		 * and make it more useful.
235 		 */
236 	} else {
237 		/*
238 		 * No clue where we are inside vblank. Return a vpos of zero,
239 		 * which will cause calling code to just return the etime
240 		 * timestamp uncorrected. At least this is no worse than the
241 		 * standard fallback.
242 		 */
243 		*vpos = 0;
244 	}
245 
246 	return ret;
247 }
248 
249 static void vc4_crtc_destroy(struct drm_crtc *crtc)
250 {
251 	drm_crtc_cleanup(crtc);
252 }
253 
254 static void
255 vc4_crtc_lut_load(struct drm_crtc *crtc)
256 {
257 	struct drm_device *dev = crtc->dev;
258 	struct vc4_dev *vc4 = to_vc4_dev(dev);
259 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
260 	u32 i;
261 
262 	/* The LUT memory is laid out with each HVS channel in order,
263 	 * each of which takes 256 writes for R, 256 for G, then 256
264 	 * for B.
265 	 */
266 	HVS_WRITE(SCALER_GAMADDR,
267 		  SCALER_GAMADDR_AUTOINC |
268 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
269 
270 	for (i = 0; i < crtc->gamma_size; i++)
271 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
272 	for (i = 0; i < crtc->gamma_size; i++)
273 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
274 	for (i = 0; i < crtc->gamma_size; i++)
275 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
276 }
277 
278 static void
279 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
280 {
281 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
282 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
283 	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
284 	u32 i;
285 
286 	for (i = 0; i < length; i++) {
287 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
288 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
289 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
290 	}
291 
292 	vc4_crtc_lut_load(crtc);
293 }
294 
295 static u32 vc4_get_fifo_full_level(u32 format)
296 {
297 	static const u32 fifo_len_bytes = 64;
298 	static const u32 hvs_latency_pix = 6;
299 
300 	switch (format) {
301 	case PV_CONTROL_FORMAT_DSIV_16:
302 	case PV_CONTROL_FORMAT_DSIC_16:
303 		return fifo_len_bytes - 2 * hvs_latency_pix;
304 	case PV_CONTROL_FORMAT_DSIV_18:
305 		return fifo_len_bytes - 14;
306 	case PV_CONTROL_FORMAT_24:
307 	case PV_CONTROL_FORMAT_DSIV_24:
308 	default:
309 		return fifo_len_bytes - 3 * hvs_latency_pix;
310 	}
311 }
312 
313 /*
314  * Returns the encoder attached to the CRTC.
315  *
316  * VC4 can only scan out to one encoder at a time, while the DRM core
317  * allows drivers to push pixels to more than one encoder from the
318  * same CRTC.
319  */
320 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
321 {
322 	struct drm_connector *connector;
323 	struct drm_connector_list_iter conn_iter;
324 
325 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
326 	drm_for_each_connector_iter(connector, &conn_iter) {
327 		if (connector->state->crtc == crtc) {
328 			drm_connector_list_iter_end(&conn_iter);
329 			return connector->encoder;
330 		}
331 	}
332 	drm_connector_list_iter_end(&conn_iter);
333 
334 	return NULL;
335 }
336 
337 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
338 {
339 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
340 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
341 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
342 	struct drm_crtc_state *state = crtc->state;
343 	struct drm_display_mode *mode = &state->adjusted_mode;
344 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
345 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
346 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
347 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
348 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
349 
350 	/* Reset the PV fifo. */
351 	CRTC_WRITE(PV_CONTROL, 0);
352 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
353 	CRTC_WRITE(PV_CONTROL, 0);
354 
355 	CRTC_WRITE(PV_HORZA,
356 		   VC4_SET_FIELD((mode->htotal -
357 				  mode->hsync_end) * pixel_rep,
358 				 PV_HORZA_HBP) |
359 		   VC4_SET_FIELD((mode->hsync_end -
360 				  mode->hsync_start) * pixel_rep,
361 				 PV_HORZA_HSYNC));
362 	CRTC_WRITE(PV_HORZB,
363 		   VC4_SET_FIELD((mode->hsync_start -
364 				  mode->hdisplay) * pixel_rep,
365 				 PV_HORZB_HFP) |
366 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
367 
368 	CRTC_WRITE(PV_VERTA,
369 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
370 				 PV_VERTA_VBP) |
371 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
372 				 PV_VERTA_VSYNC));
373 	CRTC_WRITE(PV_VERTB,
374 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
375 				 PV_VERTB_VFP) |
376 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
377 
378 	if (interlace) {
379 		CRTC_WRITE(PV_VERTA_EVEN,
380 			   VC4_SET_FIELD(mode->crtc_vtotal -
381 					 mode->crtc_vsync_end - 1,
382 					 PV_VERTA_VBP) |
383 			   VC4_SET_FIELD(mode->crtc_vsync_end -
384 					 mode->crtc_vsync_start,
385 					 PV_VERTA_VSYNC));
386 		CRTC_WRITE(PV_VERTB_EVEN,
387 			   VC4_SET_FIELD(mode->crtc_vsync_start -
388 					 mode->crtc_vdisplay,
389 					 PV_VERTB_VFP) |
390 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
391 
392 		/* We set up first field even mode for HDMI.  VEC's
393 		 * NTSC mode would want first field odd instead, once
394 		 * we support it (to do so, set ODD_FIRST and put the
395 		 * delay in VSYNCD_EVEN instead).
396 		 */
397 		CRTC_WRITE(PV_V_CONTROL,
398 			   PV_VCONTROL_CONTINUOUS |
399 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
400 			   PV_VCONTROL_INTERLACE |
401 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
402 					 PV_VCONTROL_ODD_DELAY));
403 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
404 	} else {
405 		CRTC_WRITE(PV_V_CONTROL,
406 			   PV_VCONTROL_CONTINUOUS |
407 			   (is_dsi ? PV_VCONTROL_DSI : 0));
408 	}
409 
410 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
411 
412 	CRTC_WRITE(PV_CONTROL,
413 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
414 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
415 				 PV_CONTROL_FIFO_LEVEL) |
416 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
417 		   PV_CONTROL_CLR_AT_START |
418 		   PV_CONTROL_TRIGGER_UNDERFLOW |
419 		   PV_CONTROL_WAIT_HSTART |
420 		   VC4_SET_FIELD(vc4_encoder->clock_select,
421 				 PV_CONTROL_CLK_SELECT) |
422 		   PV_CONTROL_FIFO_CLR |
423 		   PV_CONTROL_EN);
424 }
425 
426 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
427 {
428 	struct drm_device *dev = crtc->dev;
429 	struct vc4_dev *vc4 = to_vc4_dev(dev);
430 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
431 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
432 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
433 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
434 	bool debug_dump_regs = false;
435 
436 	if (debug_dump_regs) {
437 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
438 		vc4_crtc_dump_regs(vc4_crtc);
439 	}
440 
441 	if (vc4_crtc->channel == 2) {
442 		u32 dispctrl;
443 		u32 dsp3_mux;
444 
445 		/*
446 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
447 		 * FIFO X'.
448 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
449 		 *
450 		 * DSP3 is connected to FIFO2 unless the transposer is
451 		 * enabled. In this case, FIFO 2 is directly accessed by the
452 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
453 		 * route.
454 		 */
455 		if (vc4_state->feed_txp)
456 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
457 		else
458 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
459 
460 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
461 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
462 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
463 	}
464 
465 	if (!vc4_state->feed_txp)
466 		vc4_crtc_config_pv(crtc);
467 
468 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
469 		  SCALER_DISPBKGND_AUTOHS |
470 		  SCALER_DISPBKGND_GAMMA |
471 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
472 
473 	/* Reload the LUT, since the SRAMs would have been disabled if
474 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
475 	 */
476 	vc4_crtc_lut_load(crtc);
477 
478 	if (debug_dump_regs) {
479 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
480 		vc4_crtc_dump_regs(vc4_crtc);
481 	}
482 }
483 
484 static void require_hvs_enabled(struct drm_device *dev)
485 {
486 	struct vc4_dev *vc4 = to_vc4_dev(dev);
487 
488 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
489 		     SCALER_DISPCTRL_ENABLE);
490 }
491 
492 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
493 				    struct drm_crtc_state *old_state)
494 {
495 	struct drm_device *dev = crtc->dev;
496 	struct vc4_dev *vc4 = to_vc4_dev(dev);
497 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
498 	u32 chan = vc4_crtc->channel;
499 	int ret;
500 	require_hvs_enabled(dev);
501 
502 	/* Disable vblank irq handling before crtc is disabled. */
503 	drm_crtc_vblank_off(crtc);
504 
505 	CRTC_WRITE(PV_V_CONTROL,
506 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
507 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
508 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
509 
510 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
511 	    SCALER_DISPCTRLX_ENABLE) {
512 		HVS_WRITE(SCALER_DISPCTRLX(chan),
513 			  SCALER_DISPCTRLX_RESET);
514 
515 		/* While the docs say that reset is self-clearing, it
516 		 * seems it doesn't actually.
517 		 */
518 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
519 	}
520 
521 	/* Once we leave, the scaler should be disabled and its fifo empty. */
522 
523 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
524 
525 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
526 				   SCALER_DISPSTATX_MODE) !=
527 		     SCALER_DISPSTATX_MODE_DISABLED);
528 
529 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
530 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
531 		     SCALER_DISPSTATX_EMPTY);
532 
533 	/*
534 	 * Make sure we issue a vblank event after disabling the CRTC if
535 	 * someone was waiting it.
536 	 */
537 	if (crtc->state->event) {
538 		unsigned long flags;
539 
540 		spin_lock_irqsave(&dev->event_lock, flags);
541 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
542 		crtc->state->event = NULL;
543 		spin_unlock_irqrestore(&dev->event_lock, flags);
544 	}
545 }
546 
547 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
548 {
549 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
550 
551 	vc4_state->txp_armed = true;
552 }
553 
554 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
555 {
556 	struct drm_device *dev = crtc->dev;
557 	struct vc4_dev *vc4 = to_vc4_dev(dev);
558 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
559 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
560 
561 	if (crtc->state->event) {
562 		unsigned long flags;
563 
564 		crtc->state->event->pipe = drm_crtc_index(crtc);
565 
566 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
567 
568 		spin_lock_irqsave(&dev->event_lock, flags);
569 
570 		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
571 			vc4_crtc->event = crtc->state->event;
572 			crtc->state->event = NULL;
573 		}
574 
575 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
576 			  vc4_state->mm.start);
577 
578 		spin_unlock_irqrestore(&dev->event_lock, flags);
579 	} else {
580 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
581 			  vc4_state->mm.start);
582 	}
583 }
584 
585 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
586 				   struct drm_crtc_state *old_state)
587 {
588 	struct drm_device *dev = crtc->dev;
589 	struct vc4_dev *vc4 = to_vc4_dev(dev);
590 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
591 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
592 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
593 
594 	require_hvs_enabled(dev);
595 
596 	/* Enable vblank irq handling before crtc is started otherwise
597 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
598 	 */
599 	drm_crtc_vblank_on(crtc);
600 	vc4_crtc_update_dlist(crtc);
601 
602 	/* Turn on the scaler, which will wait for vstart to start
603 	 * compositing.
604 	 * When feeding the transposer, we should operate in oneshot
605 	 * mode.
606 	 */
607 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
608 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
609 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
610 		  SCALER_DISPCTRLX_ENABLE |
611 		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
612 
613 	/* When feeding the transposer block the pixelvalve is unneeded and
614 	 * should not be enabled.
615 	 */
616 	if (!vc4_state->feed_txp)
617 		CRTC_WRITE(PV_V_CONTROL,
618 			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
619 }
620 
621 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
622 						const struct drm_display_mode *mode)
623 {
624 	/* Do not allow doublescan modes from user space */
625 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
626 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
627 			      crtc->base.id);
628 		return MODE_NO_DBLESCAN;
629 	}
630 
631 	return MODE_OK;
632 }
633 
634 void vc4_crtc_get_margins(struct drm_crtc_state *state,
635 			  unsigned int *left, unsigned int *right,
636 			  unsigned int *top, unsigned int *bottom)
637 {
638 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
639 	struct drm_connector_state *conn_state;
640 	struct drm_connector *conn;
641 	int i;
642 
643 	*left = vc4_state->margins.left;
644 	*right = vc4_state->margins.right;
645 	*top = vc4_state->margins.top;
646 	*bottom = vc4_state->margins.bottom;
647 
648 	/* We have to interate over all new connector states because
649 	 * vc4_crtc_get_margins() might be called before
650 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
651 	 * might be outdated.
652 	 */
653 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
654 		if (conn_state->crtc != state->crtc)
655 			continue;
656 
657 		*left = conn_state->tv.margins.left;
658 		*right = conn_state->tv.margins.right;
659 		*top = conn_state->tv.margins.top;
660 		*bottom = conn_state->tv.margins.bottom;
661 		break;
662 	}
663 }
664 
665 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
666 				 struct drm_crtc_state *state)
667 {
668 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
669 	struct drm_device *dev = crtc->dev;
670 	struct vc4_dev *vc4 = to_vc4_dev(dev);
671 	struct drm_plane *plane;
672 	unsigned long flags;
673 	const struct drm_plane_state *plane_state;
674 	struct drm_connector *conn;
675 	struct drm_connector_state *conn_state;
676 	u32 dlist_count = 0;
677 	int ret, i;
678 
679 	/* The pixelvalve can only feed one encoder (and encoders are
680 	 * 1:1 with connectors.)
681 	 */
682 	if (hweight32(state->connector_mask) > 1)
683 		return -EINVAL;
684 
685 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
686 		dlist_count += vc4_plane_dlist_size(plane_state);
687 
688 	dlist_count++; /* Account for SCALER_CTL0_END. */
689 
690 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
691 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
692 				 dlist_count);
693 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
694 	if (ret)
695 		return ret;
696 
697 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
698 		if (conn_state->crtc != crtc)
699 			continue;
700 
701 		/* The writeback connector is implemented using the transposer
702 		 * block which is directly taking its data from the HVS FIFO.
703 		 */
704 		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
705 			state->no_vblank = true;
706 			vc4_state->feed_txp = true;
707 		} else {
708 			state->no_vblank = false;
709 			vc4_state->feed_txp = false;
710 		}
711 
712 		vc4_state->margins.left = conn_state->tv.margins.left;
713 		vc4_state->margins.right = conn_state->tv.margins.right;
714 		vc4_state->margins.top = conn_state->tv.margins.top;
715 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
716 		break;
717 	}
718 
719 	return 0;
720 }
721 
722 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
723 				  struct drm_crtc_state *old_state)
724 {
725 	struct drm_device *dev = crtc->dev;
726 	struct vc4_dev *vc4 = to_vc4_dev(dev);
727 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
728 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
729 	struct drm_plane *plane;
730 	struct vc4_plane_state *vc4_plane_state;
731 	bool debug_dump_regs = false;
732 	bool enable_bg_fill = false;
733 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
734 	u32 __iomem *dlist_next = dlist_start;
735 
736 	if (debug_dump_regs) {
737 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
738 		vc4_hvs_dump_state(dev);
739 	}
740 
741 	/* Copy all the active planes' dlist contents to the hardware dlist. */
742 	drm_atomic_crtc_for_each_plane(plane, crtc) {
743 		/* Is this the first active plane? */
744 		if (dlist_next == dlist_start) {
745 			/* We need to enable background fill when a plane
746 			 * could be alpha blending from the background, i.e.
747 			 * where no other plane is underneath. It suffices to
748 			 * consider the first active plane here since we set
749 			 * needs_bg_fill such that either the first plane
750 			 * already needs it or all planes on top blend from
751 			 * the first or a lower plane.
752 			 */
753 			vc4_plane_state = to_vc4_plane_state(plane->state);
754 			enable_bg_fill = vc4_plane_state->needs_bg_fill;
755 		}
756 
757 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
758 	}
759 
760 	writel(SCALER_CTL0_END, dlist_next);
761 	dlist_next++;
762 
763 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
764 
765 	if (enable_bg_fill)
766 		/* This sets a black background color fill, as is the case
767 		 * with other DRM drivers.
768 		 */
769 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
770 			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
771 			  SCALER_DISPBKGND_FILL);
772 
773 	/* Only update DISPLIST if the CRTC was already running and is not
774 	 * being disabled.
775 	 * vc4_crtc_enable() takes care of updating the dlist just after
776 	 * re-enabling VBLANK interrupts and before enabling the engine.
777 	 * If the CRTC is being disabled, there's no point in updating this
778 	 * information.
779 	 */
780 	if (crtc->state->active && old_state->active)
781 		vc4_crtc_update_dlist(crtc);
782 
783 	if (crtc->state->color_mgmt_changed) {
784 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
785 
786 		if (crtc->state->gamma_lut) {
787 			vc4_crtc_update_gamma_lut(crtc);
788 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
789 		} else {
790 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
791 			 * in hardware, which is the same as a linear lut that
792 			 * DRM expects us to use in absence of a user lut.
793 			 */
794 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
795 		}
796 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
797 	}
798 
799 	if (debug_dump_regs) {
800 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
801 		vc4_hvs_dump_state(dev);
802 	}
803 }
804 
805 static int vc4_enable_vblank(struct drm_crtc *crtc)
806 {
807 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
808 
809 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
810 
811 	return 0;
812 }
813 
814 static void vc4_disable_vblank(struct drm_crtc *crtc)
815 {
816 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
817 
818 	CRTC_WRITE(PV_INTEN, 0);
819 }
820 
821 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
822 {
823 	struct drm_crtc *crtc = &vc4_crtc->base;
824 	struct drm_device *dev = crtc->dev;
825 	struct vc4_dev *vc4 = to_vc4_dev(dev);
826 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
827 	u32 chan = vc4_crtc->channel;
828 	unsigned long flags;
829 
830 	spin_lock_irqsave(&dev->event_lock, flags);
831 	if (vc4_crtc->event &&
832 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
833 	     vc4_state->feed_txp)) {
834 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
835 		vc4_crtc->event = NULL;
836 		drm_crtc_vblank_put(crtc);
837 	}
838 	spin_unlock_irqrestore(&dev->event_lock, flags);
839 }
840 
841 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
842 {
843 	crtc->t_vblank = ktime_get();
844 	drm_crtc_handle_vblank(&crtc->base);
845 	vc4_crtc_handle_page_flip(crtc);
846 }
847 
848 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
849 {
850 	struct vc4_crtc *vc4_crtc = data;
851 	u32 stat = CRTC_READ(PV_INTSTAT);
852 	irqreturn_t ret = IRQ_NONE;
853 
854 	if (stat & PV_INT_VFP_START) {
855 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
856 		vc4_crtc_handle_vblank(vc4_crtc);
857 		ret = IRQ_HANDLED;
858 	}
859 
860 	return ret;
861 }
862 
863 struct vc4_async_flip_state {
864 	struct drm_crtc *crtc;
865 	struct drm_framebuffer *fb;
866 	struct drm_framebuffer *old_fb;
867 	struct drm_pending_vblank_event *event;
868 
869 	struct vc4_seqno_cb cb;
870 };
871 
872 /* Called when the V3D execution for the BO being flipped to is done, so that
873  * we can actually update the plane's address to point to it.
874  */
875 static void
876 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
877 {
878 	struct vc4_async_flip_state *flip_state =
879 		container_of(cb, struct vc4_async_flip_state, cb);
880 	struct drm_crtc *crtc = flip_state->crtc;
881 	struct drm_device *dev = crtc->dev;
882 	struct vc4_dev *vc4 = to_vc4_dev(dev);
883 	struct drm_plane *plane = crtc->primary;
884 
885 	vc4_plane_async_set_fb(plane, flip_state->fb);
886 	if (flip_state->event) {
887 		unsigned long flags;
888 
889 		spin_lock_irqsave(&dev->event_lock, flags);
890 		drm_crtc_send_vblank_event(crtc, flip_state->event);
891 		spin_unlock_irqrestore(&dev->event_lock, flags);
892 	}
893 
894 	drm_crtc_vblank_put(crtc);
895 	drm_framebuffer_put(flip_state->fb);
896 
897 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
898 	 * when the planes are updated through the async update path.
899 	 * FIXME: we should move to generic async-page-flip when it's
900 	 * available, so that we can get rid of this hand-made cleanup_fb()
901 	 * logic.
902 	 */
903 	if (flip_state->old_fb) {
904 		struct drm_gem_cma_object *cma_bo;
905 		struct vc4_bo *bo;
906 
907 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
908 		bo = to_vc4_bo(&cma_bo->base);
909 		vc4_bo_dec_usecnt(bo);
910 		drm_framebuffer_put(flip_state->old_fb);
911 	}
912 
913 	kfree(flip_state);
914 
915 	up(&vc4->async_modeset);
916 }
917 
918 /* Implements async (non-vblank-synced) page flips.
919  *
920  * The page flip ioctl needs to return immediately, so we grab the
921  * modeset semaphore on the pipe, and queue the address update for
922  * when V3D is done with the BO being flipped to.
923  */
924 static int vc4_async_page_flip(struct drm_crtc *crtc,
925 			       struct drm_framebuffer *fb,
926 			       struct drm_pending_vblank_event *event,
927 			       uint32_t flags)
928 {
929 	struct drm_device *dev = crtc->dev;
930 	struct vc4_dev *vc4 = to_vc4_dev(dev);
931 	struct drm_plane *plane = crtc->primary;
932 	int ret = 0;
933 	struct vc4_async_flip_state *flip_state;
934 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
935 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
936 
937 	/* Increment the BO usecnt here, so that we never end up with an
938 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
939 	 * plane is later updated through the non-async path.
940 	 * FIXME: we should move to generic async-page-flip when it's
941 	 * available, so that we can get rid of this hand-made prepare_fb()
942 	 * logic.
943 	 */
944 	ret = vc4_bo_inc_usecnt(bo);
945 	if (ret)
946 		return ret;
947 
948 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
949 	if (!flip_state) {
950 		vc4_bo_dec_usecnt(bo);
951 		return -ENOMEM;
952 	}
953 
954 	drm_framebuffer_get(fb);
955 	flip_state->fb = fb;
956 	flip_state->crtc = crtc;
957 	flip_state->event = event;
958 
959 	/* Make sure all other async modesetes have landed. */
960 	ret = down_interruptible(&vc4->async_modeset);
961 	if (ret) {
962 		drm_framebuffer_put(fb);
963 		vc4_bo_dec_usecnt(bo);
964 		kfree(flip_state);
965 		return ret;
966 	}
967 
968 	/* Save the current FB before it's replaced by the new one in
969 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
970 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
971 	 * it consistent.
972 	 * FIXME: we should move to generic async-page-flip when it's
973 	 * available, so that we can get rid of this hand-made cleanup_fb()
974 	 * logic.
975 	 */
976 	flip_state->old_fb = plane->state->fb;
977 	if (flip_state->old_fb)
978 		drm_framebuffer_get(flip_state->old_fb);
979 
980 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
981 
982 	/* Immediately update the plane's legacy fb pointer, so that later
983 	 * modeset prep sees the state that will be present when the semaphore
984 	 * is released.
985 	 */
986 	drm_atomic_set_fb_for_plane(plane->state, fb);
987 
988 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
989 			   vc4_async_page_flip_complete);
990 
991 	/* Driver takes ownership of state on successful async commit. */
992 	return 0;
993 }
994 
995 static int vc4_page_flip(struct drm_crtc *crtc,
996 			 struct drm_framebuffer *fb,
997 			 struct drm_pending_vblank_event *event,
998 			 uint32_t flags,
999 			 struct drm_modeset_acquire_ctx *ctx)
1000 {
1001 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
1002 		return vc4_async_page_flip(crtc, fb, event, flags);
1003 	else
1004 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1005 }
1006 
1007 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1008 {
1009 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1010 
1011 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1012 	if (!vc4_state)
1013 		return NULL;
1014 
1015 	old_vc4_state = to_vc4_crtc_state(crtc->state);
1016 	vc4_state->feed_txp = old_vc4_state->feed_txp;
1017 	vc4_state->margins = old_vc4_state->margins;
1018 
1019 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1020 	return &vc4_state->base;
1021 }
1022 
1023 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1024 				   struct drm_crtc_state *state)
1025 {
1026 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1027 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1028 
1029 	if (vc4_state->mm.allocated) {
1030 		unsigned long flags;
1031 
1032 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1033 		drm_mm_remove_node(&vc4_state->mm);
1034 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1035 
1036 	}
1037 
1038 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1039 }
1040 
1041 static void
1042 vc4_crtc_reset(struct drm_crtc *crtc)
1043 {
1044 	if (crtc->state)
1045 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1046 
1047 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1048 	if (crtc->state)
1049 		crtc->state->crtc = crtc;
1050 }
1051 
1052 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1053 	.set_config = drm_atomic_helper_set_config,
1054 	.destroy = vc4_crtc_destroy,
1055 	.page_flip = vc4_page_flip,
1056 	.set_property = NULL,
1057 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1058 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1059 	.reset = vc4_crtc_reset,
1060 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1061 	.atomic_destroy_state = vc4_crtc_destroy_state,
1062 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1063 	.enable_vblank = vc4_enable_vblank,
1064 	.disable_vblank = vc4_disable_vblank,
1065 };
1066 
1067 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1068 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1069 	.mode_valid = vc4_crtc_mode_valid,
1070 	.atomic_check = vc4_crtc_atomic_check,
1071 	.atomic_flush = vc4_crtc_atomic_flush,
1072 	.atomic_enable = vc4_crtc_atomic_enable,
1073 	.atomic_disable = vc4_crtc_atomic_disable,
1074 };
1075 
1076 static const struct vc4_crtc_data pv0_data = {
1077 	.hvs_channel = 0,
1078 	.encoder_types = {
1079 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1080 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1081 	},
1082 };
1083 
1084 static const struct vc4_crtc_data pv1_data = {
1085 	.hvs_channel = 2,
1086 	.encoder_types = {
1087 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1088 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1089 	},
1090 };
1091 
1092 static const struct vc4_crtc_data pv2_data = {
1093 	.hvs_channel = 1,
1094 	.encoder_types = {
1095 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1096 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1097 	},
1098 };
1099 
1100 static const struct of_device_id vc4_crtc_dt_match[] = {
1101 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1102 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1103 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1104 	{}
1105 };
1106 
1107 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1108 					struct drm_crtc *crtc)
1109 {
1110 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1111 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1112 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1113 	struct drm_encoder *encoder;
1114 
1115 	drm_for_each_encoder(encoder, drm) {
1116 		struct vc4_encoder *vc4_encoder;
1117 		int i;
1118 
1119 		/* HVS FIFO2 can feed the TXP IP. */
1120 		if (crtc_data->hvs_channel == 2 &&
1121 		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1122 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
1123 			continue;
1124 		}
1125 
1126 		vc4_encoder = to_vc4_encoder(encoder);
1127 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1128 			if (vc4_encoder->type == encoder_types[i]) {
1129 				vc4_encoder->clock_select = i;
1130 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1131 				break;
1132 			}
1133 		}
1134 	}
1135 }
1136 
1137 static void
1138 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1139 {
1140 	struct drm_device *drm = vc4_crtc->base.dev;
1141 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1142 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1143 	/* Top/base are supposed to be 4-pixel aligned, but the
1144 	 * Raspberry Pi firmware fills the low bits (which are
1145 	 * presumably ignored).
1146 	 */
1147 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1148 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1149 
1150 	vc4_crtc->cob_size = top - base + 4;
1151 }
1152 
1153 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1154 {
1155 	struct platform_device *pdev = to_platform_device(dev);
1156 	struct drm_device *drm = dev_get_drvdata(master);
1157 	struct vc4_crtc *vc4_crtc;
1158 	struct drm_crtc *crtc;
1159 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1160 	const struct of_device_id *match;
1161 	int ret, i;
1162 
1163 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1164 	if (!vc4_crtc)
1165 		return -ENOMEM;
1166 	crtc = &vc4_crtc->base;
1167 
1168 	match = of_match_device(vc4_crtc_dt_match, dev);
1169 	if (!match)
1170 		return -ENODEV;
1171 	vc4_crtc->data = match->data;
1172 
1173 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1174 	if (IS_ERR(vc4_crtc->regs))
1175 		return PTR_ERR(vc4_crtc->regs);
1176 
1177 	/* For now, we create just the primary and the legacy cursor
1178 	 * planes.  We should be able to stack more planes on easily,
1179 	 * but to do that we would need to compute the bandwidth
1180 	 * requirement of the plane configuration, and reject ones
1181 	 * that will take too much.
1182 	 */
1183 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1184 	if (IS_ERR(primary_plane)) {
1185 		dev_err(dev, "failed to construct primary plane\n");
1186 		ret = PTR_ERR(primary_plane);
1187 		goto err;
1188 	}
1189 
1190 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1191 				  &vc4_crtc_funcs, NULL);
1192 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1193 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1194 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1195 	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1196 
1197 	/* We support CTM, but only for one CRTC at a time. It's therefore
1198 	 * implemented as private driver state in vc4_kms, not here.
1199 	 */
1200 	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1201 
1202 	/* Set up some arbitrary number of planes.  We're not limited
1203 	 * by a set number of physical registers, just the space in
1204 	 * the HVS (16k) and how small an plane can be (28 bytes).
1205 	 * However, each plane we set up takes up some memory, and
1206 	 * increases the cost of looping over planes, which atomic
1207 	 * modesetting does quite a bit.  As a result, we pick a
1208 	 * modest number of planes to expose, that should hopefully
1209 	 * still cover any sane usecase.
1210 	 */
1211 	for (i = 0; i < 8; i++) {
1212 		struct drm_plane *plane =
1213 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1214 
1215 		if (IS_ERR(plane))
1216 			continue;
1217 
1218 		plane->possible_crtcs = drm_crtc_mask(crtc);
1219 	}
1220 
1221 	/* Set up the legacy cursor after overlay initialization,
1222 	 * since we overlay planes on the CRTC in the order they were
1223 	 * initialized.
1224 	 */
1225 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1226 	if (!IS_ERR(cursor_plane)) {
1227 		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1228 		crtc->cursor = cursor_plane;
1229 	}
1230 
1231 	vc4_crtc_get_cob_allocation(vc4_crtc);
1232 
1233 	CRTC_WRITE(PV_INTEN, 0);
1234 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1235 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1236 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1237 	if (ret)
1238 		goto err_destroy_planes;
1239 
1240 	vc4_set_crtc_possible_masks(drm, crtc);
1241 
1242 	for (i = 0; i < crtc->gamma_size; i++) {
1243 		vc4_crtc->lut_r[i] = i;
1244 		vc4_crtc->lut_g[i] = i;
1245 		vc4_crtc->lut_b[i] = i;
1246 	}
1247 
1248 	platform_set_drvdata(pdev, vc4_crtc);
1249 
1250 	return 0;
1251 
1252 err_destroy_planes:
1253 	list_for_each_entry_safe(destroy_plane, temp,
1254 				 &drm->mode_config.plane_list, head) {
1255 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1256 		    destroy_plane->funcs->destroy(destroy_plane);
1257 	}
1258 err:
1259 	return ret;
1260 }
1261 
1262 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1263 			    void *data)
1264 {
1265 	struct platform_device *pdev = to_platform_device(dev);
1266 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1267 
1268 	vc4_crtc_destroy(&vc4_crtc->base);
1269 
1270 	CRTC_WRITE(PV_INTEN, 0);
1271 
1272 	platform_set_drvdata(pdev, NULL);
1273 }
1274 
1275 static const struct component_ops vc4_crtc_ops = {
1276 	.bind   = vc4_crtc_bind,
1277 	.unbind = vc4_crtc_unbind,
1278 };
1279 
1280 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1281 {
1282 	return component_add(&pdev->dev, &vc4_crtc_ops);
1283 }
1284 
1285 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1286 {
1287 	component_del(&pdev->dev, &vc4_crtc_ops);
1288 	return 0;
1289 }
1290 
1291 struct platform_driver vc4_crtc_driver = {
1292 	.probe = vc4_crtc_dev_probe,
1293 	.remove = vc4_crtc_dev_remove,
1294 	.driver = {
1295 		.name = "vc4_crtc",
1296 		.of_match_table = vc4_crtc_dt_match,
1297 	},
1298 };
1299