1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of.h> 35 #include <linux/platform_device.h> 36 #include <linux/pm_runtime.h> 37 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_atomic_uapi.h> 41 #include <drm/drm_fb_dma_helper.h> 42 #include <drm/drm_framebuffer.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_print.h> 45 #include <drm/drm_probe_helper.h> 46 #include <drm/drm_vblank.h> 47 48 #include "vc4_drv.h" 49 #include "vc4_hdmi.h" 50 #include "vc4_regs.h" 51 52 #define HVS_FIFO_LATENCY_PIX 6 53 54 #define CRTC_WRITE(offset, val) \ 55 do { \ 56 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 57 writel(val, vc4_crtc->regs + (offset)); \ 58 } while (0) 59 60 #define CRTC_READ(offset) \ 61 ({ \ 62 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 63 readl(vc4_crtc->regs + (offset)); \ 64 }) 65 66 static const struct debugfs_reg32 crtc_regs[] = { 67 VC4_REG32(PV_CONTROL), 68 VC4_REG32(PV_V_CONTROL), 69 VC4_REG32(PV_VSYNCD_EVEN), 70 VC4_REG32(PV_HORZA), 71 VC4_REG32(PV_HORZB), 72 VC4_REG32(PV_VERTA), 73 VC4_REG32(PV_VERTB), 74 VC4_REG32(PV_VERTA_EVEN), 75 VC4_REG32(PV_VERTB_EVEN), 76 VC4_REG32(PV_INTEN), 77 VC4_REG32(PV_INTSTAT), 78 VC4_REG32(PV_STAT), 79 VC4_REG32(PV_HACT_ACT), 80 }; 81 82 static unsigned int 83 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) 84 { 85 struct vc4_hvs *hvs = vc4->hvs; 86 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); 87 /* Top/base are supposed to be 4-pixel aligned, but the 88 * Raspberry Pi firmware fills the low bits (which are 89 * presumably ignored). 90 */ 91 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 92 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 93 94 return top - base + 4; 95 } 96 97 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 98 bool in_vblank_irq, 99 int *vpos, int *hpos, 100 ktime_t *stime, ktime_t *etime, 101 const struct drm_display_mode *mode) 102 { 103 struct drm_device *dev = crtc->dev; 104 struct vc4_dev *vc4 = to_vc4_dev(dev); 105 struct vc4_hvs *hvs = vc4->hvs; 106 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 107 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 108 unsigned int cob_size; 109 u32 val; 110 int fifo_lines; 111 int vblank_lines; 112 bool ret = false; 113 114 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 115 116 /* Get optional system timestamp before query. */ 117 if (stime) 118 *stime = ktime_get(); 119 120 /* 121 * Read vertical scanline which is currently composed for our 122 * pixelvalve by the HVS, and also the scaler status. 123 */ 124 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); 125 126 /* Get optional system timestamp after query. */ 127 if (etime) 128 *etime = ktime_get(); 129 130 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 131 132 /* Vertical position of hvs composed scanline. */ 133 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 134 *hpos = 0; 135 136 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 137 *vpos /= 2; 138 139 /* Use hpos to correct for field offset in interlaced mode. */ 140 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2) 141 *hpos += mode->crtc_htotal / 2; 142 } 143 144 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); 145 /* This is the offset we need for translating hvs -> pv scanout pos. */ 146 fifo_lines = cob_size / mode->crtc_hdisplay; 147 148 if (fifo_lines > 0) 149 ret = true; 150 151 /* HVS more than fifo_lines into frame for compositing? */ 152 if (*vpos > fifo_lines) { 153 /* 154 * We are in active scanout and can get some meaningful results 155 * from HVS. The actual PV scanout can not trail behind more 156 * than fifo_lines as that is the fifo's capacity. Assume that 157 * in active scanout the HVS and PV work in lockstep wrt. HVS 158 * refilling the fifo and PV consuming from the fifo, ie. 159 * whenever the PV consumes and frees up a scanline in the 160 * fifo, the HVS will immediately refill it, therefore 161 * incrementing vpos. Therefore we choose HVS read position - 162 * fifo size in scanlines as a estimate of the real scanout 163 * position of the PV. 164 */ 165 *vpos -= fifo_lines + 1; 166 167 return ret; 168 } 169 170 /* 171 * Less: This happens when we are in vblank and the HVS, after getting 172 * the VSTART restart signal from the PV, just started refilling its 173 * fifo with new lines from the top-most lines of the new framebuffers. 174 * The PV does not scan out in vblank, so does not remove lines from 175 * the fifo, so the fifo will be full quickly and the HVS has to pause. 176 * We can't get meaningful readings wrt. scanline position of the PV 177 * and need to make things up in a approximative but consistent way. 178 */ 179 vblank_lines = mode->vtotal - mode->vdisplay; 180 181 if (in_vblank_irq) { 182 /* 183 * Assume the irq handler got called close to first 184 * line of vblank, so PV has about a full vblank 185 * scanlines to go, and as a base timestamp use the 186 * one taken at entry into vblank irq handler, so it 187 * is not affected by random delays due to lock 188 * contention on event_lock or vblank_time lock in 189 * the core. 190 */ 191 *vpos = -vblank_lines; 192 193 if (stime) 194 *stime = vc4_crtc->t_vblank; 195 if (etime) 196 *etime = vc4_crtc->t_vblank; 197 198 /* 199 * If the HVS fifo is not yet full then we know for certain 200 * we are at the very beginning of vblank, as the hvs just 201 * started refilling, and the stime and etime timestamps 202 * truly correspond to start of vblank. 203 * 204 * Unfortunately there's no way to report this to upper levels 205 * and make it more useful. 206 */ 207 } else { 208 /* 209 * No clue where we are inside vblank. Return a vpos of zero, 210 * which will cause calling code to just return the etime 211 * timestamp uncorrected. At least this is no worse than the 212 * standard fallback. 213 */ 214 *vpos = 0; 215 } 216 217 return ret; 218 } 219 220 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) 221 { 222 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 223 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 224 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); 225 u32 fifo_len_bytes = pv_data->fifo_depth; 226 227 /* 228 * Pixels are pulled from the HVS if the number of bytes is 229 * lower than the FIFO full level. 230 * 231 * The latency of the pixel fetch mechanism is 6 pixels, so we 232 * need to convert those 6 pixels in bytes, depending on the 233 * format, and then subtract that from the length of the FIFO 234 * to make sure we never end up in a situation where the FIFO 235 * is full. 236 */ 237 switch (format) { 238 case PV_CONTROL_FORMAT_DSIV_16: 239 case PV_CONTROL_FORMAT_DSIC_16: 240 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 241 case PV_CONTROL_FORMAT_DSIV_18: 242 return fifo_len_bytes - 14; 243 case PV_CONTROL_FORMAT_24: 244 case PV_CONTROL_FORMAT_DSIV_24: 245 default: 246 /* 247 * For some reason, the pixelvalve4 doesn't work with 248 * the usual formula and will only work with 32. 249 */ 250 if (crtc_data->hvs_output == 5) 251 return 32; 252 253 /* 254 * It looks like in some situations, we will overflow 255 * the PixelValve FIFO (with the bit 10 of PV stat being 256 * set) and stall the HVS / PV, eventually resulting in 257 * a page flip timeout. 258 * 259 * Displaying the video overlay during a playback with 260 * Kodi on an RPi3 seems to be a great solution with a 261 * failure rate around 50%. 262 * 263 * Removing 1 from the FIFO full level however 264 * seems to completely remove that issue. 265 */ 266 if (!vc4->is_vc5) 267 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; 268 269 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 270 } 271 } 272 273 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, 274 u32 format) 275 { 276 u32 level = vc4_get_fifo_full_level(vc4_crtc, format); 277 u32 ret = 0; 278 279 ret |= VC4_SET_FIELD((level >> 6), 280 PV5_CONTROL_FIFO_LEVEL_HIGH); 281 282 return ret | VC4_SET_FIELD(level & 0x3f, 283 PV_CONTROL_FIFO_LEVEL); 284 } 285 286 /* 287 * Returns the encoder attached to the CRTC. 288 * 289 * VC4 can only scan out to one encoder at a time, while the DRM core 290 * allows drivers to push pixels to more than one encoder from the 291 * same CRTC. 292 */ 293 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc, 294 struct drm_crtc_state *state) 295 { 296 struct drm_encoder *encoder; 297 298 WARN_ON(hweight32(state->encoder_mask) > 1); 299 300 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) 301 return encoder; 302 303 return NULL; 304 } 305 306 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) 307 { 308 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 309 struct drm_device *dev = crtc->dev; 310 int idx; 311 312 if (!drm_dev_enter(dev, &idx)) 313 return; 314 315 /* The PV needs to be disabled before it can be flushed */ 316 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); 317 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); 318 319 drm_dev_exit(idx); 320 } 321 322 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder, 323 struct drm_atomic_state *state) 324 { 325 struct drm_device *dev = crtc->dev; 326 struct vc4_dev *vc4 = to_vc4_dev(dev); 327 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 328 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 329 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 330 struct drm_crtc_state *crtc_state = crtc->state; 331 struct drm_display_mode *mode = &crtc_state->adjusted_mode; 332 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 333 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 || 334 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1; 335 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1; 336 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 337 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 338 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1; 339 bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC; 340 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 341 u8 ppc = pv_data->pixels_per_clock; 342 343 u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end; 344 u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start; 345 u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay; 346 347 bool debug_dump_regs = false; 348 int idx; 349 350 if (!drm_dev_enter(dev, &idx)) 351 return; 352 353 if (debug_dump_regs) { 354 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 355 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 356 drm_crtc_index(crtc)); 357 drm_print_regset32(&p, &vc4_crtc->regset); 358 } 359 360 vc4_crtc_pixelvalve_reset(crtc); 361 362 CRTC_WRITE(PV_HORZA, 363 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, 364 PV_HORZA_HBP) | 365 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, 366 PV_HORZA_HSYNC)); 367 368 CRTC_WRITE(PV_HORZB, 369 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, 370 PV_HORZB_HFP) | 371 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, 372 PV_HORZB_HACTIVE)); 373 374 if (interlace) { 375 bool odd_field_first = false; 376 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc); 377 u16 vert_bp_even = vert_bp; 378 u16 vert_fp_even = vert_fp; 379 380 if (is_vec) { 381 /* VEC (composite output) */ 382 ++field_delay; 383 if (mode->htotal == 858) { 384 /* 525-line mode (NTSC or PAL-M) */ 385 odd_field_first = true; 386 } 387 } 388 389 if (odd_field_first) 390 ++vert_fp_even; 391 else 392 ++vert_bp; 393 394 CRTC_WRITE(PV_VERTA_EVEN, 395 VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) | 396 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); 397 CRTC_WRITE(PV_VERTB_EVEN, 398 VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) | 399 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 400 401 /* We set up first field even mode for HDMI and VEC's PAL. 402 * For NTSC, we need first field odd. 403 */ 404 CRTC_WRITE(PV_V_CONTROL, 405 PV_VCONTROL_CONTINUOUS | 406 (is_dsi ? PV_VCONTROL_DSI : 0) | 407 PV_VCONTROL_INTERLACE | 408 (odd_field_first 409 ? PV_VCONTROL_ODD_FIRST 410 : VC4_SET_FIELD(field_delay, 411 PV_VCONTROL_ODD_DELAY))); 412 CRTC_WRITE(PV_VSYNCD_EVEN, 413 (odd_field_first ? field_delay : 0)); 414 } else { 415 CRTC_WRITE(PV_V_CONTROL, 416 PV_VCONTROL_CONTINUOUS | 417 (is_dsi ? PV_VCONTROL_DSI : 0)); 418 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 419 } 420 421 CRTC_WRITE(PV_VERTA, 422 VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) | 423 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); 424 CRTC_WRITE(PV_VERTB, 425 VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) | 426 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 427 428 if (is_dsi) 429 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 430 431 if (vc4->is_vc5) 432 CRTC_WRITE(PV_MUX_CFG, 433 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, 434 PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); 435 436 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | 437 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | 438 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 439 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 440 PV_CONTROL_CLR_AT_START | 441 PV_CONTROL_TRIGGER_UNDERFLOW | 442 PV_CONTROL_WAIT_HSTART | 443 VC4_SET_FIELD(vc4_encoder->clock_select, 444 PV_CONTROL_CLK_SELECT)); 445 446 if (debug_dump_regs) { 447 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 448 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 449 drm_crtc_index(crtc)); 450 drm_print_regset32(&p, &vc4_crtc->regset); 451 } 452 453 drm_dev_exit(idx); 454 } 455 456 static void require_hvs_enabled(struct drm_device *dev) 457 { 458 struct vc4_dev *vc4 = to_vc4_dev(dev); 459 struct vc4_hvs *hvs = vc4->hvs; 460 461 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 462 SCALER_DISPCTRL_ENABLE); 463 } 464 465 static int vc4_crtc_disable(struct drm_crtc *crtc, 466 struct drm_encoder *encoder, 467 struct drm_atomic_state *state, 468 unsigned int channel) 469 { 470 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 471 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 472 struct drm_device *dev = crtc->dev; 473 struct vc4_dev *vc4 = to_vc4_dev(dev); 474 int idx, ret; 475 476 if (!drm_dev_enter(dev, &idx)) 477 return -ENODEV; 478 479 CRTC_WRITE(PV_V_CONTROL, 480 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 481 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 482 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 483 484 /* 485 * This delay is needed to avoid to get a pixel stuck in an 486 * unflushable FIFO between the pixelvalve and the HDMI 487 * controllers on the BCM2711. 488 * 489 * Timing is fairly sensitive here, so mdelay is the safest 490 * approach. 491 * 492 * If it was to be reworked, the stuck pixel happens on a 493 * BCM2711 when changing mode with a good probability, so a 494 * script that changes mode on a regular basis should trigger 495 * the bug after less than 10 attempts. It manifests itself with 496 * every pixels being shifted by one to the right, and thus the 497 * last pixel of a line actually being displayed as the first 498 * pixel on the next line. 499 */ 500 mdelay(20); 501 502 if (vc4_encoder && vc4_encoder->post_crtc_disable) 503 vc4_encoder->post_crtc_disable(encoder, state); 504 505 vc4_crtc_pixelvalve_reset(crtc); 506 vc4_hvs_stop_channel(vc4->hvs, channel); 507 508 if (vc4_encoder && vc4_encoder->post_crtc_powerdown) 509 vc4_encoder->post_crtc_powerdown(encoder, state); 510 511 drm_dev_exit(idx); 512 513 return 0; 514 } 515 516 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) 517 { 518 struct drm_device *drm = crtc->dev; 519 struct vc4_dev *vc4 = to_vc4_dev(drm); 520 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 521 enum vc4_encoder_type encoder_type; 522 const struct vc4_pv_data *pv_data; 523 struct drm_encoder *encoder; 524 struct vc4_hdmi *vc4_hdmi; 525 unsigned encoder_sel; 526 int channel; 527 int ret; 528 529 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 530 "brcm,bcm2711-pixelvalve2") || 531 of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 532 "brcm,bcm2711-pixelvalve4"))) 533 return 0; 534 535 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) 536 return 0; 537 538 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) 539 return 0; 540 541 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output); 542 if (channel < 0) 543 return 0; 544 545 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT); 546 if (WARN_ON(encoder_sel != 0)) 547 return 0; 548 549 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 550 encoder_type = pv_data->encoder_types[encoder_sel]; 551 encoder = vc4_find_encoder_by_type(drm, encoder_type); 552 if (WARN_ON(!encoder)) 553 return 0; 554 555 vc4_hdmi = encoder_to_vc4_hdmi(encoder); 556 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); 557 if (ret) 558 return ret; 559 560 ret = vc4_crtc_disable(crtc, encoder, NULL, channel); 561 if (ret) 562 return ret; 563 564 /* 565 * post_crtc_powerdown will have called pm_runtime_put, so we 566 * don't need it here otherwise we'll get the reference counting 567 * wrong. 568 */ 569 570 return 0; 571 } 572 573 void vc4_crtc_send_vblank(struct drm_crtc *crtc) 574 { 575 struct drm_device *dev = crtc->dev; 576 unsigned long flags; 577 578 if (!crtc->state || !crtc->state->event) 579 return; 580 581 spin_lock_irqsave(&dev->event_lock, flags); 582 drm_crtc_send_vblank_event(crtc, crtc->state->event); 583 crtc->state->event = NULL; 584 spin_unlock_irqrestore(&dev->event_lock, flags); 585 } 586 587 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 588 struct drm_atomic_state *state) 589 { 590 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 591 crtc); 592 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); 593 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state); 594 struct drm_device *dev = crtc->dev; 595 596 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)", 597 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 598 599 require_hvs_enabled(dev); 600 601 /* Disable vblank irq handling before crtc is disabled. */ 602 drm_crtc_vblank_off(crtc); 603 604 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel); 605 606 /* 607 * Make sure we issue a vblank event after disabling the CRTC if 608 * someone was waiting it. 609 */ 610 vc4_crtc_send_vblank(crtc); 611 } 612 613 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 614 struct drm_atomic_state *state) 615 { 616 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 617 crtc); 618 struct drm_device *dev = crtc->dev; 619 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 620 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state); 621 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 622 int idx; 623 624 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)", 625 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 626 627 if (!drm_dev_enter(dev, &idx)) 628 return; 629 630 require_hvs_enabled(dev); 631 632 /* Enable vblank irq handling before crtc is started otherwise 633 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 634 */ 635 drm_crtc_vblank_on(crtc); 636 637 vc4_hvs_atomic_enable(crtc, state); 638 639 if (vc4_encoder->pre_crtc_configure) 640 vc4_encoder->pre_crtc_configure(encoder, state); 641 642 vc4_crtc_config_pv(crtc, encoder, state); 643 644 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); 645 646 if (vc4_encoder->pre_crtc_enable) 647 vc4_encoder->pre_crtc_enable(encoder, state); 648 649 /* When feeding the transposer block the pixelvalve is unneeded and 650 * should not be enabled. 651 */ 652 CRTC_WRITE(PV_V_CONTROL, 653 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 654 655 if (vc4_encoder->post_crtc_enable) 656 vc4_encoder->post_crtc_enable(encoder, state); 657 658 drm_dev_exit(idx); 659 } 660 661 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 662 const struct drm_display_mode *mode) 663 { 664 /* Do not allow doublescan modes from user space */ 665 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 666 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 667 crtc->base.id); 668 return MODE_NO_DBLESCAN; 669 } 670 671 return MODE_OK; 672 } 673 674 void vc4_crtc_get_margins(struct drm_crtc_state *state, 675 unsigned int *left, unsigned int *right, 676 unsigned int *top, unsigned int *bottom) 677 { 678 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 679 struct drm_connector_state *conn_state; 680 struct drm_connector *conn; 681 int i; 682 683 *left = vc4_state->margins.left; 684 *right = vc4_state->margins.right; 685 *top = vc4_state->margins.top; 686 *bottom = vc4_state->margins.bottom; 687 688 /* We have to interate over all new connector states because 689 * vc4_crtc_get_margins() might be called before 690 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 691 * might be outdated. 692 */ 693 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 694 if (conn_state->crtc != state->crtc) 695 continue; 696 697 *left = conn_state->tv.margins.left; 698 *right = conn_state->tv.margins.right; 699 *top = conn_state->tv.margins.top; 700 *bottom = conn_state->tv.margins.bottom; 701 break; 702 } 703 } 704 705 int vc4_crtc_atomic_check(struct drm_crtc *crtc, 706 struct drm_atomic_state *state) 707 { 708 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 709 crtc); 710 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 711 struct drm_connector *conn; 712 struct drm_connector_state *conn_state; 713 struct drm_encoder *encoder; 714 int ret, i; 715 716 ret = vc4_hvs_atomic_check(crtc, state); 717 if (ret) 718 return ret; 719 720 encoder = vc4_get_crtc_encoder(crtc, crtc_state); 721 if (encoder) { 722 const struct drm_display_mode *mode = &crtc_state->adjusted_mode; 723 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 724 725 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) { 726 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000, 727 mode->clock * 9 / 10) * 1000; 728 } else { 729 vc4_state->hvs_load = mode->clock * 1000; 730 } 731 } 732 733 for_each_new_connector_in_state(state, conn, conn_state, 734 i) { 735 if (conn_state->crtc != crtc) 736 continue; 737 738 vc4_state->margins.left = conn_state->tv.margins.left; 739 vc4_state->margins.right = conn_state->tv.margins.right; 740 vc4_state->margins.top = conn_state->tv.margins.top; 741 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 742 break; 743 } 744 745 return 0; 746 } 747 748 static int vc4_enable_vblank(struct drm_crtc *crtc) 749 { 750 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 751 struct drm_device *dev = crtc->dev; 752 int idx; 753 754 if (!drm_dev_enter(dev, &idx)) 755 return -ENODEV; 756 757 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 758 759 drm_dev_exit(idx); 760 761 return 0; 762 } 763 764 static void vc4_disable_vblank(struct drm_crtc *crtc) 765 { 766 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 767 struct drm_device *dev = crtc->dev; 768 int idx; 769 770 if (!drm_dev_enter(dev, &idx)) 771 return; 772 773 CRTC_WRITE(PV_INTEN, 0); 774 775 drm_dev_exit(idx); 776 } 777 778 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 779 { 780 struct drm_crtc *crtc = &vc4_crtc->base; 781 struct drm_device *dev = crtc->dev; 782 struct vc4_dev *vc4 = to_vc4_dev(dev); 783 struct vc4_hvs *hvs = vc4->hvs; 784 u32 chan = vc4_crtc->current_hvs_channel; 785 unsigned long flags; 786 787 spin_lock_irqsave(&dev->event_lock, flags); 788 spin_lock(&vc4_crtc->irq_lock); 789 if (vc4_crtc->event && 790 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) || 791 vc4_crtc->feeds_txp)) { 792 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 793 vc4_crtc->event = NULL; 794 drm_crtc_vblank_put(crtc); 795 796 /* Wait for the page flip to unmask the underrun to ensure that 797 * the display list was updated by the hardware. Before that 798 * happens, the HVS will be using the previous display list with 799 * the CRTC and encoder already reconfigured, leading to 800 * underruns. This can be seen when reconfiguring the CRTC. 801 */ 802 vc4_hvs_unmask_underrun(hvs, chan); 803 } 804 spin_unlock(&vc4_crtc->irq_lock); 805 spin_unlock_irqrestore(&dev->event_lock, flags); 806 } 807 808 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 809 { 810 crtc->t_vblank = ktime_get(); 811 drm_crtc_handle_vblank(&crtc->base); 812 vc4_crtc_handle_page_flip(crtc); 813 } 814 815 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 816 { 817 struct vc4_crtc *vc4_crtc = data; 818 u32 stat = CRTC_READ(PV_INTSTAT); 819 irqreturn_t ret = IRQ_NONE; 820 821 if (stat & PV_INT_VFP_START) { 822 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 823 vc4_crtc_handle_vblank(vc4_crtc); 824 ret = IRQ_HANDLED; 825 } 826 827 return ret; 828 } 829 830 struct vc4_async_flip_state { 831 struct drm_crtc *crtc; 832 struct drm_framebuffer *fb; 833 struct drm_framebuffer *old_fb; 834 struct drm_pending_vblank_event *event; 835 836 union { 837 struct dma_fence_cb fence; 838 struct vc4_seqno_cb seqno; 839 } cb; 840 }; 841 842 /* Called when the V3D execution for the BO being flipped to is done, so that 843 * we can actually update the plane's address to point to it. 844 */ 845 static void 846 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state) 847 { 848 struct drm_crtc *crtc = flip_state->crtc; 849 struct drm_device *dev = crtc->dev; 850 struct drm_plane *plane = crtc->primary; 851 852 vc4_plane_async_set_fb(plane, flip_state->fb); 853 if (flip_state->event) { 854 unsigned long flags; 855 856 spin_lock_irqsave(&dev->event_lock, flags); 857 drm_crtc_send_vblank_event(crtc, flip_state->event); 858 spin_unlock_irqrestore(&dev->event_lock, flags); 859 } 860 861 drm_crtc_vblank_put(crtc); 862 drm_framebuffer_put(flip_state->fb); 863 864 if (flip_state->old_fb) 865 drm_framebuffer_put(flip_state->old_fb); 866 867 kfree(flip_state); 868 } 869 870 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb) 871 { 872 struct vc4_async_flip_state *flip_state = 873 container_of(cb, struct vc4_async_flip_state, cb.seqno); 874 struct vc4_bo *bo = NULL; 875 876 if (flip_state->old_fb) { 877 struct drm_gem_dma_object *dma_bo = 878 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0); 879 bo = to_vc4_bo(&dma_bo->base); 880 } 881 882 vc4_async_page_flip_complete(flip_state); 883 884 /* 885 * Decrement the BO usecnt in order to keep the inc/dec 886 * calls balanced when the planes are updated through 887 * the async update path. 888 * 889 * FIXME: we should move to generic async-page-flip when 890 * it's available, so that we can get rid of this 891 * hand-made cleanup_fb() logic. 892 */ 893 if (bo) 894 vc4_bo_dec_usecnt(bo); 895 } 896 897 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence, 898 struct dma_fence_cb *cb) 899 { 900 struct vc4_async_flip_state *flip_state = 901 container_of(cb, struct vc4_async_flip_state, cb.fence); 902 903 vc4_async_page_flip_complete(flip_state); 904 dma_fence_put(fence); 905 } 906 907 static int vc4_async_set_fence_cb(struct drm_device *dev, 908 struct vc4_async_flip_state *flip_state) 909 { 910 struct drm_framebuffer *fb = flip_state->fb; 911 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); 912 struct vc4_dev *vc4 = to_vc4_dev(dev); 913 struct dma_fence *fence; 914 int ret; 915 916 if (!vc4->is_vc5) { 917 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); 918 919 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno, 920 vc4_async_page_flip_seqno_complete); 921 } 922 923 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence); 924 if (ret) 925 return ret; 926 927 /* If there's no fence, complete the page flip immediately */ 928 if (!fence) { 929 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 930 return 0; 931 } 932 933 /* If the fence has already been completed, complete the page flip */ 934 if (dma_fence_add_callback(fence, &flip_state->cb.fence, 935 vc4_async_page_flip_fence_complete)) 936 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 937 938 return 0; 939 } 940 941 static int 942 vc4_async_page_flip_common(struct drm_crtc *crtc, 943 struct drm_framebuffer *fb, 944 struct drm_pending_vblank_event *event, 945 uint32_t flags) 946 { 947 struct drm_device *dev = crtc->dev; 948 struct drm_plane *plane = crtc->primary; 949 struct vc4_async_flip_state *flip_state; 950 951 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 952 if (!flip_state) 953 return -ENOMEM; 954 955 drm_framebuffer_get(fb); 956 flip_state->fb = fb; 957 flip_state->crtc = crtc; 958 flip_state->event = event; 959 960 /* Save the current FB before it's replaced by the new one in 961 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 962 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 963 * it consistent. 964 * FIXME: we should move to generic async-page-flip when it's 965 * available, so that we can get rid of this hand-made cleanup_fb() 966 * logic. 967 */ 968 flip_state->old_fb = plane->state->fb; 969 if (flip_state->old_fb) 970 drm_framebuffer_get(flip_state->old_fb); 971 972 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 973 974 /* Immediately update the plane's legacy fb pointer, so that later 975 * modeset prep sees the state that will be present when the semaphore 976 * is released. 977 */ 978 drm_atomic_set_fb_for_plane(plane->state, fb); 979 980 vc4_async_set_fence_cb(dev, flip_state); 981 982 /* Driver takes ownership of state on successful async commit. */ 983 return 0; 984 } 985 986 /* Implements async (non-vblank-synced) page flips. 987 * 988 * The page flip ioctl needs to return immediately, so we grab the 989 * modeset semaphore on the pipe, and queue the address update for 990 * when V3D is done with the BO being flipped to. 991 */ 992 static int vc4_async_page_flip(struct drm_crtc *crtc, 993 struct drm_framebuffer *fb, 994 struct drm_pending_vblank_event *event, 995 uint32_t flags) 996 { 997 struct drm_device *dev = crtc->dev; 998 struct vc4_dev *vc4 = to_vc4_dev(dev); 999 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); 1000 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); 1001 int ret; 1002 1003 if (WARN_ON_ONCE(vc4->is_vc5)) 1004 return -ENODEV; 1005 1006 /* 1007 * Increment the BO usecnt here, so that we never end up with an 1008 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 1009 * plane is later updated through the non-async path. 1010 * 1011 * FIXME: we should move to generic async-page-flip when 1012 * it's available, so that we can get rid of this 1013 * hand-made prepare_fb() logic. 1014 */ 1015 ret = vc4_bo_inc_usecnt(bo); 1016 if (ret) 1017 return ret; 1018 1019 ret = vc4_async_page_flip_common(crtc, fb, event, flags); 1020 if (ret) { 1021 vc4_bo_dec_usecnt(bo); 1022 return ret; 1023 } 1024 1025 return 0; 1026 } 1027 1028 static int vc5_async_page_flip(struct drm_crtc *crtc, 1029 struct drm_framebuffer *fb, 1030 struct drm_pending_vblank_event *event, 1031 uint32_t flags) 1032 { 1033 return vc4_async_page_flip_common(crtc, fb, event, flags); 1034 } 1035 1036 int vc4_page_flip(struct drm_crtc *crtc, 1037 struct drm_framebuffer *fb, 1038 struct drm_pending_vblank_event *event, 1039 uint32_t flags, 1040 struct drm_modeset_acquire_ctx *ctx) 1041 { 1042 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) { 1043 struct drm_device *dev = crtc->dev; 1044 struct vc4_dev *vc4 = to_vc4_dev(dev); 1045 1046 if (vc4->is_vc5) 1047 return vc5_async_page_flip(crtc, fb, event, flags); 1048 else 1049 return vc4_async_page_flip(crtc, fb, event, flags); 1050 } else { 1051 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 1052 } 1053 } 1054 1055 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 1056 { 1057 struct vc4_crtc_state *vc4_state, *old_vc4_state; 1058 1059 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 1060 if (!vc4_state) 1061 return NULL; 1062 1063 old_vc4_state = to_vc4_crtc_state(crtc->state); 1064 vc4_state->margins = old_vc4_state->margins; 1065 vc4_state->assigned_channel = old_vc4_state->assigned_channel; 1066 1067 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 1068 return &vc4_state->base; 1069 } 1070 1071 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 1072 struct drm_crtc_state *state) 1073 { 1074 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 1075 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 1076 1077 if (drm_mm_node_allocated(&vc4_state->mm)) { 1078 unsigned long flags; 1079 1080 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 1081 drm_mm_remove_node(&vc4_state->mm); 1082 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 1083 1084 } 1085 1086 drm_atomic_helper_crtc_destroy_state(crtc, state); 1087 } 1088 1089 void vc4_crtc_reset(struct drm_crtc *crtc) 1090 { 1091 struct vc4_crtc_state *vc4_crtc_state; 1092 1093 if (crtc->state) 1094 vc4_crtc_destroy_state(crtc, crtc->state); 1095 1096 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); 1097 if (!vc4_crtc_state) { 1098 crtc->state = NULL; 1099 return; 1100 } 1101 1102 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 1103 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); 1104 } 1105 1106 int vc4_crtc_late_register(struct drm_crtc *crtc) 1107 { 1108 struct drm_device *drm = crtc->dev; 1109 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1110 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 1111 1112 vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name, 1113 &vc4_crtc->regset); 1114 1115 return 0; 1116 } 1117 1118 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1119 .set_config = drm_atomic_helper_set_config, 1120 .page_flip = vc4_page_flip, 1121 .set_property = NULL, 1122 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1123 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1124 .reset = vc4_crtc_reset, 1125 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1126 .atomic_destroy_state = vc4_crtc_destroy_state, 1127 .enable_vblank = vc4_enable_vblank, 1128 .disable_vblank = vc4_disable_vblank, 1129 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1130 .late_register = vc4_crtc_late_register, 1131 }; 1132 1133 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1134 .mode_valid = vc4_crtc_mode_valid, 1135 .atomic_check = vc4_crtc_atomic_check, 1136 .atomic_begin = vc4_hvs_atomic_begin, 1137 .atomic_flush = vc4_hvs_atomic_flush, 1138 .atomic_enable = vc4_crtc_atomic_enable, 1139 .atomic_disable = vc4_crtc_atomic_disable, 1140 .get_scanout_position = vc4_crtc_get_scanout_position, 1141 }; 1142 1143 const struct vc4_pv_data bcm2835_pv0_data = { 1144 .base = { 1145 .name = "pixelvalve-0", 1146 .debugfs_name = "crtc0_regs", 1147 .hvs_available_channels = BIT(0), 1148 .hvs_output = 0, 1149 }, 1150 .fifo_depth = 64, 1151 .pixels_per_clock = 1, 1152 .encoder_types = { 1153 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1154 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1155 }, 1156 }; 1157 1158 const struct vc4_pv_data bcm2835_pv1_data = { 1159 .base = { 1160 .name = "pixelvalve-1", 1161 .debugfs_name = "crtc1_regs", 1162 .hvs_available_channels = BIT(2), 1163 .hvs_output = 2, 1164 }, 1165 .fifo_depth = 64, 1166 .pixels_per_clock = 1, 1167 .encoder_types = { 1168 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1169 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1170 }, 1171 }; 1172 1173 const struct vc4_pv_data bcm2835_pv2_data = { 1174 .base = { 1175 .name = "pixelvalve-2", 1176 .debugfs_name = "crtc2_regs", 1177 .hvs_available_channels = BIT(1), 1178 .hvs_output = 1, 1179 }, 1180 .fifo_depth = 64, 1181 .pixels_per_clock = 1, 1182 .encoder_types = { 1183 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, 1184 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1185 }, 1186 }; 1187 1188 const struct vc4_pv_data bcm2711_pv0_data = { 1189 .base = { 1190 .name = "pixelvalve-0", 1191 .debugfs_name = "crtc0_regs", 1192 .hvs_available_channels = BIT(0), 1193 .hvs_output = 0, 1194 }, 1195 .fifo_depth = 64, 1196 .pixels_per_clock = 1, 1197 .encoder_types = { 1198 [0] = VC4_ENCODER_TYPE_DSI0, 1199 [1] = VC4_ENCODER_TYPE_DPI, 1200 }, 1201 }; 1202 1203 const struct vc4_pv_data bcm2711_pv1_data = { 1204 .base = { 1205 .name = "pixelvalve-1", 1206 .debugfs_name = "crtc1_regs", 1207 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1208 .hvs_output = 3, 1209 }, 1210 .fifo_depth = 64, 1211 .pixels_per_clock = 1, 1212 .encoder_types = { 1213 [0] = VC4_ENCODER_TYPE_DSI1, 1214 [1] = VC4_ENCODER_TYPE_SMI, 1215 }, 1216 }; 1217 1218 const struct vc4_pv_data bcm2711_pv2_data = { 1219 .base = { 1220 .name = "pixelvalve-2", 1221 .debugfs_name = "crtc2_regs", 1222 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1223 .hvs_output = 4, 1224 }, 1225 .fifo_depth = 256, 1226 .pixels_per_clock = 2, 1227 .encoder_types = { 1228 [0] = VC4_ENCODER_TYPE_HDMI0, 1229 }, 1230 }; 1231 1232 const struct vc4_pv_data bcm2711_pv3_data = { 1233 .base = { 1234 .name = "pixelvalve-3", 1235 .debugfs_name = "crtc3_regs", 1236 .hvs_available_channels = BIT(1), 1237 .hvs_output = 1, 1238 }, 1239 .fifo_depth = 64, 1240 .pixels_per_clock = 1, 1241 .encoder_types = { 1242 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1243 }, 1244 }; 1245 1246 const struct vc4_pv_data bcm2711_pv4_data = { 1247 .base = { 1248 .name = "pixelvalve-4", 1249 .debugfs_name = "crtc4_regs", 1250 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1251 .hvs_output = 5, 1252 }, 1253 .fifo_depth = 64, 1254 .pixels_per_clock = 2, 1255 .encoder_types = { 1256 [0] = VC4_ENCODER_TYPE_HDMI1, 1257 }, 1258 }; 1259 1260 static const struct of_device_id vc4_crtc_dt_match[] = { 1261 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 1262 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 1263 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 1264 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, 1265 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, 1266 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, 1267 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, 1268 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, 1269 {} 1270 }; 1271 1272 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1273 struct drm_crtc *crtc) 1274 { 1275 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1276 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 1277 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 1278 struct drm_encoder *encoder; 1279 1280 drm_for_each_encoder(encoder, drm) { 1281 struct vc4_encoder *vc4_encoder; 1282 int i; 1283 1284 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) 1285 continue; 1286 1287 vc4_encoder = to_vc4_encoder(encoder); 1288 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 1289 if (vc4_encoder->type == encoder_types[i]) { 1290 vc4_encoder->clock_select = i; 1291 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1292 break; 1293 } 1294 } 1295 } 1296 } 1297 1298 /** 1299 * __vc4_crtc_init - Initializes a CRTC 1300 * @drm: DRM Device 1301 * @pdev: CRTC Platform Device 1302 * @vc4_crtc: CRTC Object to Initialize 1303 * @data: Configuration data associated with this CRTC 1304 * @primary_plane: Primary plane for CRTC 1305 * @crtc_funcs: Callbacks for the new CRTC 1306 * @crtc_helper_funcs: Helper Callbacks for the new CRTC 1307 * @feeds_txp: Is this CRTC connected to the TXP? 1308 * 1309 * Initializes our private CRTC structure. This function is mostly 1310 * relevant for KUnit testing, all other users should use 1311 * vc4_crtc_init() instead. 1312 * 1313 * Returns: 1314 * 0 on success, a negative error code on failure. 1315 */ 1316 int __vc4_crtc_init(struct drm_device *drm, 1317 struct platform_device *pdev, 1318 struct vc4_crtc *vc4_crtc, 1319 const struct vc4_crtc_data *data, 1320 struct drm_plane *primary_plane, 1321 const struct drm_crtc_funcs *crtc_funcs, 1322 const struct drm_crtc_helper_funcs *crtc_helper_funcs, 1323 bool feeds_txp) 1324 { 1325 struct vc4_dev *vc4 = to_vc4_dev(drm); 1326 struct drm_crtc *crtc = &vc4_crtc->base; 1327 unsigned int i; 1328 int ret; 1329 1330 vc4_crtc->data = data; 1331 vc4_crtc->pdev = pdev; 1332 vc4_crtc->feeds_txp = feeds_txp; 1333 spin_lock_init(&vc4_crtc->irq_lock); 1334 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1335 crtc_funcs, data->name); 1336 if (ret) 1337 return ret; 1338 1339 drm_crtc_helper_add(crtc, crtc_helper_funcs); 1340 1341 if (!vc4->is_vc5) { 1342 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1343 1344 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1345 1346 /* We support CTM, but only for one CRTC at a time. It's therefore 1347 * implemented as private driver state in vc4_kms, not here. 1348 */ 1349 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1350 } 1351 1352 for (i = 0; i < crtc->gamma_size; i++) { 1353 vc4_crtc->lut_r[i] = i; 1354 vc4_crtc->lut_g[i] = i; 1355 vc4_crtc->lut_b[i] = i; 1356 } 1357 1358 return 0; 1359 } 1360 1361 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev, 1362 struct vc4_crtc *vc4_crtc, 1363 const struct vc4_crtc_data *data, 1364 const struct drm_crtc_funcs *crtc_funcs, 1365 const struct drm_crtc_helper_funcs *crtc_helper_funcs, 1366 bool feeds_txp) 1367 { 1368 struct drm_plane *primary_plane; 1369 1370 /* For now, we create just the primary and the legacy cursor 1371 * planes. We should be able to stack more planes on easily, 1372 * but to do that we would need to compute the bandwidth 1373 * requirement of the plane configuration, and reject ones 1374 * that will take too much. 1375 */ 1376 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0); 1377 if (IS_ERR(primary_plane)) { 1378 dev_err(drm->dev, "failed to construct primary plane\n"); 1379 return PTR_ERR(primary_plane); 1380 } 1381 1382 return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane, 1383 crtc_funcs, crtc_helper_funcs, feeds_txp); 1384 } 1385 1386 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1387 { 1388 struct platform_device *pdev = to_platform_device(dev); 1389 struct drm_device *drm = dev_get_drvdata(master); 1390 const struct vc4_pv_data *pv_data; 1391 struct vc4_crtc *vc4_crtc; 1392 struct drm_crtc *crtc; 1393 int ret; 1394 1395 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL); 1396 if (!vc4_crtc) 1397 return -ENOMEM; 1398 crtc = &vc4_crtc->base; 1399 1400 pv_data = of_device_get_match_data(dev); 1401 if (!pv_data) 1402 return -ENODEV; 1403 1404 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1405 if (IS_ERR(vc4_crtc->regs)) 1406 return PTR_ERR(vc4_crtc->regs); 1407 1408 vc4_crtc->regset.base = vc4_crtc->regs; 1409 vc4_crtc->regset.regs = crtc_regs; 1410 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1411 1412 ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base, 1413 &vc4_crtc_funcs, &vc4_crtc_helper_funcs, 1414 false); 1415 if (ret) 1416 return ret; 1417 vc4_set_crtc_possible_masks(drm, crtc); 1418 1419 CRTC_WRITE(PV_INTEN, 0); 1420 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1421 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1422 vc4_crtc_irq_handler, 1423 IRQF_SHARED, 1424 "vc4 crtc", vc4_crtc); 1425 if (ret) 1426 return ret; 1427 1428 platform_set_drvdata(pdev, vc4_crtc); 1429 1430 return 0; 1431 } 1432 1433 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1434 void *data) 1435 { 1436 struct platform_device *pdev = to_platform_device(dev); 1437 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1438 1439 CRTC_WRITE(PV_INTEN, 0); 1440 1441 platform_set_drvdata(pdev, NULL); 1442 } 1443 1444 static const struct component_ops vc4_crtc_ops = { 1445 .bind = vc4_crtc_bind, 1446 .unbind = vc4_crtc_unbind, 1447 }; 1448 1449 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1450 { 1451 return component_add(&pdev->dev, &vc4_crtc_ops); 1452 } 1453 1454 static void vc4_crtc_dev_remove(struct platform_device *pdev) 1455 { 1456 component_del(&pdev->dev, &vc4_crtc_ops); 1457 } 1458 1459 struct platform_driver vc4_crtc_driver = { 1460 .probe = vc4_crtc_dev_probe, 1461 .remove_new = vc4_crtc_dev_remove, 1462 .driver = { 1463 .name = "vc4_crtc", 1464 .of_match_table = vc4_crtc_dt_match, 1465 }, 1466 }; 1467