xref: /linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33 
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43 
44 struct vc4_crtc {
45 	struct drm_crtc base;
46 	const struct vc4_crtc_data *data;
47 	void __iomem *regs;
48 
49 	/* Which HVS channel we're using for our CRTC. */
50 	int channel;
51 
52 	u8 lut_r[256];
53 	u8 lut_g[256];
54 	u8 lut_b[256];
55 
56 	struct drm_pending_vblank_event *event;
57 };
58 
59 struct vc4_crtc_state {
60 	struct drm_crtc_state base;
61 	/* Dlist area for this CRTC configuration. */
62 	struct drm_mm_node mm;
63 };
64 
65 static inline struct vc4_crtc *
66 to_vc4_crtc(struct drm_crtc *crtc)
67 {
68 	return (struct vc4_crtc *)crtc;
69 }
70 
71 static inline struct vc4_crtc_state *
72 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
73 {
74 	return (struct vc4_crtc_state *)crtc_state;
75 }
76 
77 struct vc4_crtc_data {
78 	/* Which channel of the HVS this pixelvalve sources from. */
79 	int hvs_channel;
80 
81 	enum vc4_encoder_type encoder0_type;
82 	enum vc4_encoder_type encoder1_type;
83 };
84 
85 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
86 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
87 
88 #define CRTC_REG(reg) { reg, #reg }
89 static const struct {
90 	u32 reg;
91 	const char *name;
92 } crtc_regs[] = {
93 	CRTC_REG(PV_CONTROL),
94 	CRTC_REG(PV_V_CONTROL),
95 	CRTC_REG(PV_VSYNCD_EVEN),
96 	CRTC_REG(PV_HORZA),
97 	CRTC_REG(PV_HORZB),
98 	CRTC_REG(PV_VERTA),
99 	CRTC_REG(PV_VERTB),
100 	CRTC_REG(PV_VERTA_EVEN),
101 	CRTC_REG(PV_VERTB_EVEN),
102 	CRTC_REG(PV_INTEN),
103 	CRTC_REG(PV_INTSTAT),
104 	CRTC_REG(PV_STAT),
105 	CRTC_REG(PV_HACT_ACT),
106 };
107 
108 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
109 {
110 	int i;
111 
112 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
113 		DRM_INFO("0x%04x (%s): 0x%08x\n",
114 			 crtc_regs[i].reg, crtc_regs[i].name,
115 			 CRTC_READ(crtc_regs[i].reg));
116 	}
117 }
118 
119 #ifdef CONFIG_DEBUG_FS
120 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
121 {
122 	struct drm_info_node *node = (struct drm_info_node *)m->private;
123 	struct drm_device *dev = node->minor->dev;
124 	int crtc_index = (uintptr_t)node->info_ent->data;
125 	struct drm_crtc *crtc;
126 	struct vc4_crtc *vc4_crtc;
127 	int i;
128 
129 	i = 0;
130 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
131 		if (i == crtc_index)
132 			break;
133 		i++;
134 	}
135 	if (!crtc)
136 		return 0;
137 	vc4_crtc = to_vc4_crtc(crtc);
138 
139 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
140 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
141 			   crtc_regs[i].name, crtc_regs[i].reg,
142 			   CRTC_READ(crtc_regs[i].reg));
143 	}
144 
145 	return 0;
146 }
147 #endif
148 
149 static void vc4_crtc_destroy(struct drm_crtc *crtc)
150 {
151 	drm_crtc_cleanup(crtc);
152 }
153 
154 static void
155 vc4_crtc_lut_load(struct drm_crtc *crtc)
156 {
157 	struct drm_device *dev = crtc->dev;
158 	struct vc4_dev *vc4 = to_vc4_dev(dev);
159 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
160 	u32 i;
161 
162 	/* The LUT memory is laid out with each HVS channel in order,
163 	 * each of which takes 256 writes for R, 256 for G, then 256
164 	 * for B.
165 	 */
166 	HVS_WRITE(SCALER_GAMADDR,
167 		  SCALER_GAMADDR_AUTOINC |
168 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
169 
170 	for (i = 0; i < crtc->gamma_size; i++)
171 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
172 	for (i = 0; i < crtc->gamma_size; i++)
173 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
174 	for (i = 0; i < crtc->gamma_size; i++)
175 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
176 }
177 
178 static void
179 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
180 		   uint32_t start, uint32_t size)
181 {
182 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
183 	u32 i;
184 
185 	for (i = start; i < start + size; i++) {
186 		vc4_crtc->lut_r[i] = r[i] >> 8;
187 		vc4_crtc->lut_g[i] = g[i] >> 8;
188 		vc4_crtc->lut_b[i] = b[i] >> 8;
189 	}
190 
191 	vc4_crtc_lut_load(crtc);
192 }
193 
194 static u32 vc4_get_fifo_full_level(u32 format)
195 {
196 	static const u32 fifo_len_bytes = 64;
197 	static const u32 hvs_latency_pix = 6;
198 
199 	switch (format) {
200 	case PV_CONTROL_FORMAT_DSIV_16:
201 	case PV_CONTROL_FORMAT_DSIC_16:
202 		return fifo_len_bytes - 2 * hvs_latency_pix;
203 	case PV_CONTROL_FORMAT_DSIV_18:
204 		return fifo_len_bytes - 14;
205 	case PV_CONTROL_FORMAT_24:
206 	case PV_CONTROL_FORMAT_DSIV_24:
207 	default:
208 		return fifo_len_bytes - 3 * hvs_latency_pix;
209 	}
210 }
211 
212 /*
213  * Returns the clock select bit for the connector attached to the
214  * CRTC.
215  */
216 static int vc4_get_clock_select(struct drm_crtc *crtc)
217 {
218 	struct drm_connector *connector;
219 
220 	drm_for_each_connector(connector, crtc->dev) {
221 		if (connector->state->crtc == crtc) {
222 			struct drm_encoder *encoder = connector->encoder;
223 			struct vc4_encoder *vc4_encoder =
224 				to_vc4_encoder(encoder);
225 
226 			return vc4_encoder->clock_select;
227 		}
228 	}
229 
230 	return -1;
231 }
232 
233 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
234 {
235 	struct drm_device *dev = crtc->dev;
236 	struct vc4_dev *vc4 = to_vc4_dev(dev);
237 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 	struct drm_crtc_state *state = crtc->state;
239 	struct drm_display_mode *mode = &state->adjusted_mode;
240 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
241 	u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
242 	u32 format = PV_CONTROL_FORMAT_24;
243 	bool debug_dump_regs = false;
244 	int clock_select = vc4_get_clock_select(crtc);
245 
246 	if (debug_dump_regs) {
247 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
248 		vc4_crtc_dump_regs(vc4_crtc);
249 	}
250 
251 	/* Reset the PV fifo. */
252 	CRTC_WRITE(PV_CONTROL, 0);
253 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
254 	CRTC_WRITE(PV_CONTROL, 0);
255 
256 	CRTC_WRITE(PV_HORZA,
257 		   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
258 				 PV_HORZA_HBP) |
259 		   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
260 				 PV_HORZA_HSYNC));
261 	CRTC_WRITE(PV_HORZB,
262 		   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
263 				 PV_HORZB_HFP) |
264 		   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
265 
266 	CRTC_WRITE(PV_VERTA,
267 		   VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
268 				 PV_VERTA_VBP) |
269 		   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
270 				 PV_VERTA_VSYNC));
271 	CRTC_WRITE(PV_VERTB,
272 		   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
273 				 PV_VERTB_VFP) |
274 		   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
275 
276 	if (interlace) {
277 		CRTC_WRITE(PV_VERTA_EVEN,
278 			   VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
279 					 PV_VERTA_VBP) |
280 			   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
281 					 PV_VERTA_VSYNC));
282 		CRTC_WRITE(PV_VERTB_EVEN,
283 			   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
284 					 PV_VERTB_VFP) |
285 			   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
286 	}
287 
288 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
289 
290 	CRTC_WRITE(PV_V_CONTROL,
291 		   PV_VCONTROL_CONTINUOUS |
292 		   (interlace ? PV_VCONTROL_INTERLACE : 0));
293 
294 	CRTC_WRITE(PV_CONTROL,
295 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
296 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
297 				 PV_CONTROL_FIFO_LEVEL) |
298 		   PV_CONTROL_CLR_AT_START |
299 		   PV_CONTROL_TRIGGER_UNDERFLOW |
300 		   PV_CONTROL_WAIT_HSTART |
301 		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
302 		   PV_CONTROL_FIFO_CLR |
303 		   PV_CONTROL_EN);
304 
305 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
306 		  SCALER_DISPBKGND_AUTOHS |
307 		  SCALER_DISPBKGND_GAMMA |
308 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
309 
310 	/* Reload the LUT, since the SRAMs would have been disabled if
311 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
312 	 */
313 	vc4_crtc_lut_load(crtc);
314 
315 	if (debug_dump_regs) {
316 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
317 		vc4_crtc_dump_regs(vc4_crtc);
318 	}
319 }
320 
321 static void require_hvs_enabled(struct drm_device *dev)
322 {
323 	struct vc4_dev *vc4 = to_vc4_dev(dev);
324 
325 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
326 		     SCALER_DISPCTRL_ENABLE);
327 }
328 
329 static void vc4_crtc_disable(struct drm_crtc *crtc)
330 {
331 	struct drm_device *dev = crtc->dev;
332 	struct vc4_dev *vc4 = to_vc4_dev(dev);
333 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
334 	u32 chan = vc4_crtc->channel;
335 	int ret;
336 	require_hvs_enabled(dev);
337 
338 	CRTC_WRITE(PV_V_CONTROL,
339 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
340 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
341 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
342 
343 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
344 	    SCALER_DISPCTRLX_ENABLE) {
345 		HVS_WRITE(SCALER_DISPCTRLX(chan),
346 			  SCALER_DISPCTRLX_RESET);
347 
348 		/* While the docs say that reset is self-clearing, it
349 		 * seems it doesn't actually.
350 		 */
351 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
352 	}
353 
354 	/* Once we leave, the scaler should be disabled and its fifo empty. */
355 
356 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
357 
358 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
359 				   SCALER_DISPSTATX_MODE) !=
360 		     SCALER_DISPSTATX_MODE_DISABLED);
361 
362 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
363 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
364 		     SCALER_DISPSTATX_EMPTY);
365 }
366 
367 static void vc4_crtc_enable(struct drm_crtc *crtc)
368 {
369 	struct drm_device *dev = crtc->dev;
370 	struct vc4_dev *vc4 = to_vc4_dev(dev);
371 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
372 	struct drm_crtc_state *state = crtc->state;
373 	struct drm_display_mode *mode = &state->adjusted_mode;
374 
375 	require_hvs_enabled(dev);
376 
377 	/* Turn on the scaler, which will wait for vstart to start
378 	 * compositing.
379 	 */
380 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
381 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
382 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
383 		  SCALER_DISPCTRLX_ENABLE);
384 
385 	/* Turn on the pixel valve, which will emit the vstart signal. */
386 	CRTC_WRITE(PV_V_CONTROL,
387 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
388 }
389 
390 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
391 				 struct drm_crtc_state *state)
392 {
393 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
394 	struct drm_device *dev = crtc->dev;
395 	struct vc4_dev *vc4 = to_vc4_dev(dev);
396 	struct drm_plane *plane;
397 	unsigned long flags;
398 	u32 dlist_count = 0;
399 	int ret;
400 
401 	/* The pixelvalve can only feed one encoder (and encoders are
402 	 * 1:1 with connectors.)
403 	 */
404 	if (hweight32(state->connector_mask) > 1)
405 		return -EINVAL;
406 
407 	drm_atomic_crtc_state_for_each_plane(plane, state) {
408 		struct drm_plane_state *plane_state =
409 			state->state->plane_states[drm_plane_index(plane)];
410 
411 		/* plane might not have changed, in which case take
412 		 * current state:
413 		 */
414 		if (!plane_state)
415 			plane_state = plane->state;
416 
417 		dlist_count += vc4_plane_dlist_size(plane_state);
418 	}
419 
420 	dlist_count++; /* Account for SCALER_CTL0_END. */
421 
422 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
423 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
424 				 dlist_count, 1, 0);
425 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
426 	if (ret)
427 		return ret;
428 
429 	return 0;
430 }
431 
432 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
433 				  struct drm_crtc_state *old_state)
434 {
435 	struct drm_device *dev = crtc->dev;
436 	struct vc4_dev *vc4 = to_vc4_dev(dev);
437 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
438 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
439 	struct drm_plane *plane;
440 	bool debug_dump_regs = false;
441 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
442 	u32 __iomem *dlist_next = dlist_start;
443 
444 	if (debug_dump_regs) {
445 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
446 		vc4_hvs_dump_state(dev);
447 	}
448 
449 	/* Copy all the active planes' dlist contents to the hardware dlist. */
450 	drm_atomic_crtc_for_each_plane(plane, crtc) {
451 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
452 	}
453 
454 	writel(SCALER_CTL0_END, dlist_next);
455 	dlist_next++;
456 
457 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
458 
459 	if (crtc->state->event) {
460 		unsigned long flags;
461 
462 		crtc->state->event->pipe = drm_crtc_index(crtc);
463 
464 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
465 
466 		spin_lock_irqsave(&dev->event_lock, flags);
467 		vc4_crtc->event = crtc->state->event;
468 		crtc->state->event = NULL;
469 
470 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
471 			  vc4_state->mm.start);
472 
473 		spin_unlock_irqrestore(&dev->event_lock, flags);
474 	} else {
475 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
476 			  vc4_state->mm.start);
477 	}
478 
479 	if (debug_dump_regs) {
480 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
481 		vc4_hvs_dump_state(dev);
482 	}
483 }
484 
485 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
486 {
487 	struct vc4_dev *vc4 = to_vc4_dev(dev);
488 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
489 
490 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
491 
492 	return 0;
493 }
494 
495 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
496 {
497 	struct vc4_dev *vc4 = to_vc4_dev(dev);
498 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
499 
500 	CRTC_WRITE(PV_INTEN, 0);
501 }
502 
503 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
504 {
505 	struct drm_crtc *crtc = &vc4_crtc->base;
506 	struct drm_device *dev = crtc->dev;
507 	struct vc4_dev *vc4 = to_vc4_dev(dev);
508 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
509 	u32 chan = vc4_crtc->channel;
510 	unsigned long flags;
511 
512 	spin_lock_irqsave(&dev->event_lock, flags);
513 	if (vc4_crtc->event &&
514 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
515 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
516 		vc4_crtc->event = NULL;
517 		drm_crtc_vblank_put(crtc);
518 	}
519 	spin_unlock_irqrestore(&dev->event_lock, flags);
520 }
521 
522 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
523 {
524 	struct vc4_crtc *vc4_crtc = data;
525 	u32 stat = CRTC_READ(PV_INTSTAT);
526 	irqreturn_t ret = IRQ_NONE;
527 
528 	if (stat & PV_INT_VFP_START) {
529 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
530 		drm_crtc_handle_vblank(&vc4_crtc->base);
531 		vc4_crtc_handle_page_flip(vc4_crtc);
532 		ret = IRQ_HANDLED;
533 	}
534 
535 	return ret;
536 }
537 
538 struct vc4_async_flip_state {
539 	struct drm_crtc *crtc;
540 	struct drm_framebuffer *fb;
541 	struct drm_pending_vblank_event *event;
542 
543 	struct vc4_seqno_cb cb;
544 };
545 
546 /* Called when the V3D execution for the BO being flipped to is done, so that
547  * we can actually update the plane's address to point to it.
548  */
549 static void
550 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
551 {
552 	struct vc4_async_flip_state *flip_state =
553 		container_of(cb, struct vc4_async_flip_state, cb);
554 	struct drm_crtc *crtc = flip_state->crtc;
555 	struct drm_device *dev = crtc->dev;
556 	struct vc4_dev *vc4 = to_vc4_dev(dev);
557 	struct drm_plane *plane = crtc->primary;
558 
559 	vc4_plane_async_set_fb(plane, flip_state->fb);
560 	if (flip_state->event) {
561 		unsigned long flags;
562 
563 		spin_lock_irqsave(&dev->event_lock, flags);
564 		drm_crtc_send_vblank_event(crtc, flip_state->event);
565 		spin_unlock_irqrestore(&dev->event_lock, flags);
566 	}
567 
568 	drm_crtc_vblank_put(crtc);
569 	drm_framebuffer_unreference(flip_state->fb);
570 	kfree(flip_state);
571 
572 	up(&vc4->async_modeset);
573 }
574 
575 /* Implements async (non-vblank-synced) page flips.
576  *
577  * The page flip ioctl needs to return immediately, so we grab the
578  * modeset semaphore on the pipe, and queue the address update for
579  * when V3D is done with the BO being flipped to.
580  */
581 static int vc4_async_page_flip(struct drm_crtc *crtc,
582 			       struct drm_framebuffer *fb,
583 			       struct drm_pending_vblank_event *event,
584 			       uint32_t flags)
585 {
586 	struct drm_device *dev = crtc->dev;
587 	struct vc4_dev *vc4 = to_vc4_dev(dev);
588 	struct drm_plane *plane = crtc->primary;
589 	int ret = 0;
590 	struct vc4_async_flip_state *flip_state;
591 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
592 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
593 
594 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
595 	if (!flip_state)
596 		return -ENOMEM;
597 
598 	drm_framebuffer_reference(fb);
599 	flip_state->fb = fb;
600 	flip_state->crtc = crtc;
601 	flip_state->event = event;
602 
603 	/* Make sure all other async modesetes have landed. */
604 	ret = down_interruptible(&vc4->async_modeset);
605 	if (ret) {
606 		drm_framebuffer_unreference(fb);
607 		kfree(flip_state);
608 		return ret;
609 	}
610 
611 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
612 
613 	/* Immediately update the plane's legacy fb pointer, so that later
614 	 * modeset prep sees the state that will be present when the semaphore
615 	 * is released.
616 	 */
617 	drm_atomic_set_fb_for_plane(plane->state, fb);
618 	plane->fb = fb;
619 
620 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
621 			   vc4_async_page_flip_complete);
622 
623 	/* Driver takes ownership of state on successful async commit. */
624 	return 0;
625 }
626 
627 static int vc4_page_flip(struct drm_crtc *crtc,
628 			 struct drm_framebuffer *fb,
629 			 struct drm_pending_vblank_event *event,
630 			 uint32_t flags)
631 {
632 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
633 		return vc4_async_page_flip(crtc, fb, event, flags);
634 	else
635 		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
636 }
637 
638 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
639 {
640 	struct vc4_crtc_state *vc4_state;
641 
642 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
643 	if (!vc4_state)
644 		return NULL;
645 
646 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
647 	return &vc4_state->base;
648 }
649 
650 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
651 				   struct drm_crtc_state *state)
652 {
653 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
654 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
655 
656 	if (vc4_state->mm.allocated) {
657 		unsigned long flags;
658 
659 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
660 		drm_mm_remove_node(&vc4_state->mm);
661 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
662 
663 	}
664 
665 	__drm_atomic_helper_crtc_destroy_state(state);
666 }
667 
668 static const struct drm_crtc_funcs vc4_crtc_funcs = {
669 	.set_config = drm_atomic_helper_set_config,
670 	.destroy = vc4_crtc_destroy,
671 	.page_flip = vc4_page_flip,
672 	.set_property = NULL,
673 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
674 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
675 	.reset = drm_atomic_helper_crtc_reset,
676 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
677 	.atomic_destroy_state = vc4_crtc_destroy_state,
678 	.gamma_set = vc4_crtc_gamma_set,
679 };
680 
681 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
682 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
683 	.disable = vc4_crtc_disable,
684 	.enable = vc4_crtc_enable,
685 	.atomic_check = vc4_crtc_atomic_check,
686 	.atomic_flush = vc4_crtc_atomic_flush,
687 };
688 
689 static const struct vc4_crtc_data pv0_data = {
690 	.hvs_channel = 0,
691 	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
692 	.encoder1_type = VC4_ENCODER_TYPE_DPI,
693 };
694 
695 static const struct vc4_crtc_data pv1_data = {
696 	.hvs_channel = 2,
697 	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
698 	.encoder1_type = VC4_ENCODER_TYPE_SMI,
699 };
700 
701 static const struct vc4_crtc_data pv2_data = {
702 	.hvs_channel = 1,
703 	.encoder0_type = VC4_ENCODER_TYPE_VEC,
704 	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
705 };
706 
707 static const struct of_device_id vc4_crtc_dt_match[] = {
708 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
709 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
710 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
711 	{}
712 };
713 
714 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
715 					struct drm_crtc *crtc)
716 {
717 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
718 	struct drm_encoder *encoder;
719 
720 	drm_for_each_encoder(encoder, drm) {
721 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
722 
723 		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
724 			vc4_encoder->clock_select = 0;
725 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
726 		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
727 			vc4_encoder->clock_select = 1;
728 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
729 		}
730 	}
731 }
732 
733 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
734 {
735 	struct platform_device *pdev = to_platform_device(dev);
736 	struct drm_device *drm = dev_get_drvdata(master);
737 	struct vc4_dev *vc4 = to_vc4_dev(drm);
738 	struct vc4_crtc *vc4_crtc;
739 	struct drm_crtc *crtc;
740 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
741 	const struct of_device_id *match;
742 	int ret, i;
743 
744 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
745 	if (!vc4_crtc)
746 		return -ENOMEM;
747 	crtc = &vc4_crtc->base;
748 
749 	match = of_match_device(vc4_crtc_dt_match, dev);
750 	if (!match)
751 		return -ENODEV;
752 	vc4_crtc->data = match->data;
753 
754 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
755 	if (IS_ERR(vc4_crtc->regs))
756 		return PTR_ERR(vc4_crtc->regs);
757 
758 	/* For now, we create just the primary and the legacy cursor
759 	 * planes.  We should be able to stack more planes on easily,
760 	 * but to do that we would need to compute the bandwidth
761 	 * requirement of the plane configuration, and reject ones
762 	 * that will take too much.
763 	 */
764 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
765 	if (IS_ERR(primary_plane)) {
766 		dev_err(dev, "failed to construct primary plane\n");
767 		ret = PTR_ERR(primary_plane);
768 		goto err;
769 	}
770 
771 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
772 				  &vc4_crtc_funcs, NULL);
773 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
774 	primary_plane->crtc = crtc;
775 	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
776 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
777 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
778 
779 	/* Set up some arbitrary number of planes.  We're not limited
780 	 * by a set number of physical registers, just the space in
781 	 * the HVS (16k) and how small an plane can be (28 bytes).
782 	 * However, each plane we set up takes up some memory, and
783 	 * increases the cost of looping over planes, which atomic
784 	 * modesetting does quite a bit.  As a result, we pick a
785 	 * modest number of planes to expose, that should hopefully
786 	 * still cover any sane usecase.
787 	 */
788 	for (i = 0; i < 8; i++) {
789 		struct drm_plane *plane =
790 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
791 
792 		if (IS_ERR(plane))
793 			continue;
794 
795 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
796 	}
797 
798 	/* Set up the legacy cursor after overlay initialization,
799 	 * since we overlay planes on the CRTC in the order they were
800 	 * initialized.
801 	 */
802 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
803 	if (!IS_ERR(cursor_plane)) {
804 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
805 		cursor_plane->crtc = crtc;
806 		crtc->cursor = cursor_plane;
807 	}
808 
809 	CRTC_WRITE(PV_INTEN, 0);
810 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
811 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
812 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
813 	if (ret)
814 		goto err_destroy_planes;
815 
816 	vc4_set_crtc_possible_masks(drm, crtc);
817 
818 	for (i = 0; i < crtc->gamma_size; i++) {
819 		vc4_crtc->lut_r[i] = i;
820 		vc4_crtc->lut_g[i] = i;
821 		vc4_crtc->lut_b[i] = i;
822 	}
823 
824 	platform_set_drvdata(pdev, vc4_crtc);
825 
826 	return 0;
827 
828 err_destroy_planes:
829 	list_for_each_entry_safe(destroy_plane, temp,
830 				 &drm->mode_config.plane_list, head) {
831 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
832 		    destroy_plane->funcs->destroy(destroy_plane);
833 	}
834 err:
835 	return ret;
836 }
837 
838 static void vc4_crtc_unbind(struct device *dev, struct device *master,
839 			    void *data)
840 {
841 	struct platform_device *pdev = to_platform_device(dev);
842 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
843 
844 	vc4_crtc_destroy(&vc4_crtc->base);
845 
846 	CRTC_WRITE(PV_INTEN, 0);
847 
848 	platform_set_drvdata(pdev, NULL);
849 }
850 
851 static const struct component_ops vc4_crtc_ops = {
852 	.bind   = vc4_crtc_bind,
853 	.unbind = vc4_crtc_unbind,
854 };
855 
856 static int vc4_crtc_dev_probe(struct platform_device *pdev)
857 {
858 	return component_add(&pdev->dev, &vc4_crtc_ops);
859 }
860 
861 static int vc4_crtc_dev_remove(struct platform_device *pdev)
862 {
863 	component_del(&pdev->dev, &vc4_crtc_ops);
864 	return 0;
865 }
866 
867 struct platform_driver vc4_crtc_driver = {
868 	.probe = vc4_crtc_dev_probe,
869 	.remove = vc4_crtc_dev_remove,
870 	.driver = {
871 		.name = "vc4_crtc",
872 		.of_match_table = vc4_crtc_dt_match,
873 	},
874 };
875