1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * output's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, this file also manages 19 * setup of the VC4 HVS's display elements on the CRTC. 20 * 21 * The 2835 has 3 different pixel valves. pv0 in the audio power 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 23 * image domain can feed either HDMI or the SDTV controller. The 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 25 * SDTV, etc.) according to which output type is chosen in the mux. 26 * 27 * For power management, the pixel valve's registers are all clocked 28 * by the AXI clock, while the timings and FIFOs make use of the 29 * output-specific clock. Since the encoders also directly consume 30 * the CPRMAN clocks, and know what timings they need, they are the 31 * ones that set the clock. 32 */ 33 34 #include "drm_atomic.h" 35 #include "drm_atomic_helper.h" 36 #include "drm_crtc_helper.h" 37 #include "linux/clk.h" 38 #include "drm_fb_cma_helper.h" 39 #include "linux/component.h" 40 #include "linux/of_device.h" 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 struct vc4_crtc { 45 struct drm_crtc base; 46 const struct vc4_crtc_data *data; 47 void __iomem *regs; 48 49 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 50 ktime_t t_vblank; 51 52 /* Which HVS channel we're using for our CRTC. */ 53 int channel; 54 55 u8 lut_r[256]; 56 u8 lut_g[256]; 57 u8 lut_b[256]; 58 /* Size in pixels of the COB memory allocated to this CRTC. */ 59 u32 cob_size; 60 61 struct drm_pending_vblank_event *event; 62 }; 63 64 struct vc4_crtc_state { 65 struct drm_crtc_state base; 66 /* Dlist area for this CRTC configuration. */ 67 struct drm_mm_node mm; 68 }; 69 70 static inline struct vc4_crtc * 71 to_vc4_crtc(struct drm_crtc *crtc) 72 { 73 return (struct vc4_crtc *)crtc; 74 } 75 76 static inline struct vc4_crtc_state * 77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 78 { 79 return (struct vc4_crtc_state *)crtc_state; 80 } 81 82 struct vc4_crtc_data { 83 /* Which channel of the HVS this pixelvalve sources from. */ 84 int hvs_channel; 85 86 enum vc4_encoder_type encoder0_type; 87 enum vc4_encoder_type encoder1_type; 88 }; 89 90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 92 93 #define CRTC_REG(reg) { reg, #reg } 94 static const struct { 95 u32 reg; 96 const char *name; 97 } crtc_regs[] = { 98 CRTC_REG(PV_CONTROL), 99 CRTC_REG(PV_V_CONTROL), 100 CRTC_REG(PV_VSYNCD_EVEN), 101 CRTC_REG(PV_HORZA), 102 CRTC_REG(PV_HORZB), 103 CRTC_REG(PV_VERTA), 104 CRTC_REG(PV_VERTB), 105 CRTC_REG(PV_VERTA_EVEN), 106 CRTC_REG(PV_VERTB_EVEN), 107 CRTC_REG(PV_INTEN), 108 CRTC_REG(PV_INTSTAT), 109 CRTC_REG(PV_STAT), 110 CRTC_REG(PV_HACT_ACT), 111 }; 112 113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 118 DRM_INFO("0x%04x (%s): 0x%08x\n", 119 crtc_regs[i].reg, crtc_regs[i].name, 120 CRTC_READ(crtc_regs[i].reg)); 121 } 122 } 123 124 #ifdef CONFIG_DEBUG_FS 125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 126 { 127 struct drm_info_node *node = (struct drm_info_node *)m->private; 128 struct drm_device *dev = node->minor->dev; 129 int crtc_index = (uintptr_t)node->info_ent->data; 130 struct drm_crtc *crtc; 131 struct vc4_crtc *vc4_crtc; 132 int i; 133 134 i = 0; 135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 136 if (i == crtc_index) 137 break; 138 i++; 139 } 140 if (!crtc) 141 return 0; 142 vc4_crtc = to_vc4_crtc(crtc); 143 144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 145 seq_printf(m, "%s (0x%04x): 0x%08x\n", 146 crtc_regs[i].name, crtc_regs[i].reg, 147 CRTC_READ(crtc_regs[i].reg)); 148 } 149 150 return 0; 151 } 152 #endif 153 154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 155 unsigned int flags, int *vpos, int *hpos, 156 ktime_t *stime, ktime_t *etime, 157 const struct drm_display_mode *mode) 158 { 159 struct vc4_dev *vc4 = to_vc4_dev(dev); 160 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 161 u32 val; 162 int fifo_lines; 163 int vblank_lines; 164 int ret = 0; 165 166 /* 167 * XXX Doesn't work well in interlaced mode yet, partially due 168 * to problems in vc4 kms or drm core interlaced mode handling, 169 * so disable for now in interlaced mode. 170 */ 171 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 172 return ret; 173 174 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 175 176 /* Get optional system timestamp before query. */ 177 if (stime) 178 *stime = ktime_get(); 179 180 /* 181 * Read vertical scanline which is currently composed for our 182 * pixelvalve by the HVS, and also the scaler status. 183 */ 184 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 185 186 /* Get optional system timestamp after query. */ 187 if (etime) 188 *etime = ktime_get(); 189 190 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 191 192 /* Vertical position of hvs composed scanline. */ 193 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 194 195 /* No hpos info available. */ 196 if (hpos) 197 *hpos = 0; 198 199 /* This is the offset we need for translating hvs -> pv scanout pos. */ 200 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 201 202 if (fifo_lines > 0) 203 ret |= DRM_SCANOUTPOS_VALID; 204 205 /* HVS more than fifo_lines into frame for compositing? */ 206 if (*vpos > fifo_lines) { 207 /* 208 * We are in active scanout and can get some meaningful results 209 * from HVS. The actual PV scanout can not trail behind more 210 * than fifo_lines as that is the fifo's capacity. Assume that 211 * in active scanout the HVS and PV work in lockstep wrt. HVS 212 * refilling the fifo and PV consuming from the fifo, ie. 213 * whenever the PV consumes and frees up a scanline in the 214 * fifo, the HVS will immediately refill it, therefore 215 * incrementing vpos. Therefore we choose HVS read position - 216 * fifo size in scanlines as a estimate of the real scanout 217 * position of the PV. 218 */ 219 *vpos -= fifo_lines + 1; 220 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 221 *vpos /= 2; 222 223 ret |= DRM_SCANOUTPOS_ACCURATE; 224 return ret; 225 } 226 227 /* 228 * Less: This happens when we are in vblank and the HVS, after getting 229 * the VSTART restart signal from the PV, just started refilling its 230 * fifo with new lines from the top-most lines of the new framebuffers. 231 * The PV does not scan out in vblank, so does not remove lines from 232 * the fifo, so the fifo will be full quickly and the HVS has to pause. 233 * We can't get meaningful readings wrt. scanline position of the PV 234 * and need to make things up in a approximative but consistent way. 235 */ 236 ret |= DRM_SCANOUTPOS_IN_VBLANK; 237 vblank_lines = mode->crtc_vtotal - mode->crtc_vdisplay; 238 239 if (flags & DRM_CALLED_FROM_VBLIRQ) { 240 /* 241 * Assume the irq handler got called close to first 242 * line of vblank, so PV has about a full vblank 243 * scanlines to go, and as a base timestamp use the 244 * one taken at entry into vblank irq handler, so it 245 * is not affected by random delays due to lock 246 * contention on event_lock or vblank_time lock in 247 * the core. 248 */ 249 *vpos = -vblank_lines; 250 251 if (stime) 252 *stime = vc4_crtc->t_vblank; 253 if (etime) 254 *etime = vc4_crtc->t_vblank; 255 256 /* 257 * If the HVS fifo is not yet full then we know for certain 258 * we are at the very beginning of vblank, as the hvs just 259 * started refilling, and the stime and etime timestamps 260 * truly correspond to start of vblank. 261 */ 262 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL) 263 ret |= DRM_SCANOUTPOS_ACCURATE; 264 } else { 265 /* 266 * No clue where we are inside vblank. Return a vpos of zero, 267 * which will cause calling code to just return the etime 268 * timestamp uncorrected. At least this is no worse than the 269 * standard fallback. 270 */ 271 *vpos = 0; 272 } 273 274 return ret; 275 } 276 277 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id, 278 int *max_error, struct timeval *vblank_time, 279 unsigned flags) 280 { 281 struct vc4_dev *vc4 = to_vc4_dev(dev); 282 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 283 struct drm_crtc *crtc = &vc4_crtc->base; 284 struct drm_crtc_state *state = crtc->state; 285 286 /* Helper routine in DRM core does all the work: */ 287 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error, 288 vblank_time, flags, 289 &state->adjusted_mode); 290 } 291 292 static void vc4_crtc_destroy(struct drm_crtc *crtc) 293 { 294 drm_crtc_cleanup(crtc); 295 } 296 297 static void 298 vc4_crtc_lut_load(struct drm_crtc *crtc) 299 { 300 struct drm_device *dev = crtc->dev; 301 struct vc4_dev *vc4 = to_vc4_dev(dev); 302 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 303 u32 i; 304 305 /* The LUT memory is laid out with each HVS channel in order, 306 * each of which takes 256 writes for R, 256 for G, then 256 307 * for B. 308 */ 309 HVS_WRITE(SCALER_GAMADDR, 310 SCALER_GAMADDR_AUTOINC | 311 (vc4_crtc->channel * 3 * crtc->gamma_size)); 312 313 for (i = 0; i < crtc->gamma_size; i++) 314 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 315 for (i = 0; i < crtc->gamma_size; i++) 316 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 317 for (i = 0; i < crtc->gamma_size; i++) 318 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 319 } 320 321 static int 322 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 323 uint32_t size) 324 { 325 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 326 u32 i; 327 328 for (i = 0; i < size; i++) { 329 vc4_crtc->lut_r[i] = r[i] >> 8; 330 vc4_crtc->lut_g[i] = g[i] >> 8; 331 vc4_crtc->lut_b[i] = b[i] >> 8; 332 } 333 334 vc4_crtc_lut_load(crtc); 335 336 return 0; 337 } 338 339 static u32 vc4_get_fifo_full_level(u32 format) 340 { 341 static const u32 fifo_len_bytes = 64; 342 static const u32 hvs_latency_pix = 6; 343 344 switch (format) { 345 case PV_CONTROL_FORMAT_DSIV_16: 346 case PV_CONTROL_FORMAT_DSIC_16: 347 return fifo_len_bytes - 2 * hvs_latency_pix; 348 case PV_CONTROL_FORMAT_DSIV_18: 349 return fifo_len_bytes - 14; 350 case PV_CONTROL_FORMAT_24: 351 case PV_CONTROL_FORMAT_DSIV_24: 352 default: 353 return fifo_len_bytes - 3 * hvs_latency_pix; 354 } 355 } 356 357 /* 358 * Returns the clock select bit for the connector attached to the 359 * CRTC. 360 */ 361 static int vc4_get_clock_select(struct drm_crtc *crtc) 362 { 363 struct drm_connector *connector; 364 365 drm_for_each_connector(connector, crtc->dev) { 366 if (connector->state->crtc == crtc) { 367 struct drm_encoder *encoder = connector->encoder; 368 struct vc4_encoder *vc4_encoder = 369 to_vc4_encoder(encoder); 370 371 return vc4_encoder->clock_select; 372 } 373 } 374 375 return -1; 376 } 377 378 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 379 { 380 struct drm_device *dev = crtc->dev; 381 struct vc4_dev *vc4 = to_vc4_dev(dev); 382 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 383 struct drm_crtc_state *state = crtc->state; 384 struct drm_display_mode *mode = &state->adjusted_mode; 385 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 386 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0)); 387 u32 format = PV_CONTROL_FORMAT_24; 388 bool debug_dump_regs = false; 389 int clock_select = vc4_get_clock_select(crtc); 390 391 if (debug_dump_regs) { 392 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 393 vc4_crtc_dump_regs(vc4_crtc); 394 } 395 396 /* Reset the PV fifo. */ 397 CRTC_WRITE(PV_CONTROL, 0); 398 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 399 CRTC_WRITE(PV_CONTROL, 0); 400 401 CRTC_WRITE(PV_HORZA, 402 VC4_SET_FIELD(mode->htotal - mode->hsync_end, 403 PV_HORZA_HBP) | 404 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start, 405 PV_HORZA_HSYNC)); 406 CRTC_WRITE(PV_HORZB, 407 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay, 408 PV_HORZB_HFP) | 409 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE)); 410 411 CRTC_WRITE(PV_VERTA, 412 VC4_SET_FIELD(mode->vtotal - mode->vsync_end, 413 PV_VERTA_VBP) | 414 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, 415 PV_VERTA_VSYNC)); 416 CRTC_WRITE(PV_VERTB, 417 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, 418 PV_VERTB_VFP) | 419 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); 420 421 if (interlace) { 422 CRTC_WRITE(PV_VERTA_EVEN, 423 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1, 424 PV_VERTA_VBP) | 425 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, 426 PV_VERTA_VSYNC)); 427 CRTC_WRITE(PV_VERTB_EVEN, 428 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, 429 PV_VERTB_VFP) | 430 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); 431 } 432 433 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay); 434 435 CRTC_WRITE(PV_V_CONTROL, 436 PV_VCONTROL_CONTINUOUS | 437 (interlace ? PV_VCONTROL_INTERLACE : 0)); 438 439 CRTC_WRITE(PV_CONTROL, 440 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 441 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 442 PV_CONTROL_FIFO_LEVEL) | 443 PV_CONTROL_CLR_AT_START | 444 PV_CONTROL_TRIGGER_UNDERFLOW | 445 PV_CONTROL_WAIT_HSTART | 446 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | 447 PV_CONTROL_FIFO_CLR | 448 PV_CONTROL_EN); 449 450 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 451 SCALER_DISPBKGND_AUTOHS | 452 SCALER_DISPBKGND_GAMMA | 453 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 454 455 /* Reload the LUT, since the SRAMs would have been disabled if 456 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 457 */ 458 vc4_crtc_lut_load(crtc); 459 460 if (debug_dump_regs) { 461 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 462 vc4_crtc_dump_regs(vc4_crtc); 463 } 464 } 465 466 static void require_hvs_enabled(struct drm_device *dev) 467 { 468 struct vc4_dev *vc4 = to_vc4_dev(dev); 469 470 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 471 SCALER_DISPCTRL_ENABLE); 472 } 473 474 static void vc4_crtc_disable(struct drm_crtc *crtc) 475 { 476 struct drm_device *dev = crtc->dev; 477 struct vc4_dev *vc4 = to_vc4_dev(dev); 478 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 479 u32 chan = vc4_crtc->channel; 480 int ret; 481 require_hvs_enabled(dev); 482 483 CRTC_WRITE(PV_V_CONTROL, 484 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 485 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 486 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 487 488 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 489 SCALER_DISPCTRLX_ENABLE) { 490 HVS_WRITE(SCALER_DISPCTRLX(chan), 491 SCALER_DISPCTRLX_RESET); 492 493 /* While the docs say that reset is self-clearing, it 494 * seems it doesn't actually. 495 */ 496 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 497 } 498 499 /* Once we leave, the scaler should be disabled and its fifo empty. */ 500 501 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 502 503 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 504 SCALER_DISPSTATX_MODE) != 505 SCALER_DISPSTATX_MODE_DISABLED); 506 507 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 508 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 509 SCALER_DISPSTATX_EMPTY); 510 } 511 512 static void vc4_crtc_enable(struct drm_crtc *crtc) 513 { 514 struct drm_device *dev = crtc->dev; 515 struct vc4_dev *vc4 = to_vc4_dev(dev); 516 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 517 struct drm_crtc_state *state = crtc->state; 518 struct drm_display_mode *mode = &state->adjusted_mode; 519 520 require_hvs_enabled(dev); 521 522 /* Turn on the scaler, which will wait for vstart to start 523 * compositing. 524 */ 525 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 526 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 527 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 528 SCALER_DISPCTRLX_ENABLE); 529 530 /* Turn on the pixel valve, which will emit the vstart signal. */ 531 CRTC_WRITE(PV_V_CONTROL, 532 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 533 } 534 535 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 536 struct drm_crtc_state *state) 537 { 538 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 539 struct drm_device *dev = crtc->dev; 540 struct vc4_dev *vc4 = to_vc4_dev(dev); 541 struct drm_plane *plane; 542 unsigned long flags; 543 const struct drm_plane_state *plane_state; 544 u32 dlist_count = 0; 545 int ret; 546 547 /* The pixelvalve can only feed one encoder (and encoders are 548 * 1:1 with connectors.) 549 */ 550 if (hweight32(state->connector_mask) > 1) 551 return -EINVAL; 552 553 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 554 dlist_count += vc4_plane_dlist_size(plane_state); 555 556 dlist_count++; /* Account for SCALER_CTL0_END. */ 557 558 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 559 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 560 dlist_count, 1, 0); 561 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 562 if (ret) 563 return ret; 564 565 return 0; 566 } 567 568 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 569 struct drm_crtc_state *old_state) 570 { 571 struct drm_device *dev = crtc->dev; 572 struct vc4_dev *vc4 = to_vc4_dev(dev); 573 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 574 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 575 struct drm_plane *plane; 576 bool debug_dump_regs = false; 577 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 578 u32 __iomem *dlist_next = dlist_start; 579 580 if (debug_dump_regs) { 581 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 582 vc4_hvs_dump_state(dev); 583 } 584 585 /* Copy all the active planes' dlist contents to the hardware dlist. */ 586 drm_atomic_crtc_for_each_plane(plane, crtc) { 587 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 588 } 589 590 writel(SCALER_CTL0_END, dlist_next); 591 dlist_next++; 592 593 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 594 595 if (crtc->state->event) { 596 unsigned long flags; 597 598 crtc->state->event->pipe = drm_crtc_index(crtc); 599 600 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 601 602 spin_lock_irqsave(&dev->event_lock, flags); 603 vc4_crtc->event = crtc->state->event; 604 crtc->state->event = NULL; 605 606 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 607 vc4_state->mm.start); 608 609 spin_unlock_irqrestore(&dev->event_lock, flags); 610 } else { 611 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 612 vc4_state->mm.start); 613 } 614 615 if (debug_dump_regs) { 616 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 617 vc4_hvs_dump_state(dev); 618 } 619 } 620 621 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) 622 { 623 struct vc4_dev *vc4 = to_vc4_dev(dev); 624 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 625 626 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 627 628 return 0; 629 } 630 631 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) 632 { 633 struct vc4_dev *vc4 = to_vc4_dev(dev); 634 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 635 636 CRTC_WRITE(PV_INTEN, 0); 637 } 638 639 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 640 { 641 struct drm_crtc *crtc = &vc4_crtc->base; 642 struct drm_device *dev = crtc->dev; 643 struct vc4_dev *vc4 = to_vc4_dev(dev); 644 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 645 u32 chan = vc4_crtc->channel; 646 unsigned long flags; 647 648 spin_lock_irqsave(&dev->event_lock, flags); 649 if (vc4_crtc->event && 650 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 651 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 652 vc4_crtc->event = NULL; 653 drm_crtc_vblank_put(crtc); 654 } 655 spin_unlock_irqrestore(&dev->event_lock, flags); 656 } 657 658 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 659 { 660 struct vc4_crtc *vc4_crtc = data; 661 u32 stat = CRTC_READ(PV_INTSTAT); 662 irqreturn_t ret = IRQ_NONE; 663 664 if (stat & PV_INT_VFP_START) { 665 vc4_crtc->t_vblank = ktime_get(); 666 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 667 drm_crtc_handle_vblank(&vc4_crtc->base); 668 vc4_crtc_handle_page_flip(vc4_crtc); 669 ret = IRQ_HANDLED; 670 } 671 672 return ret; 673 } 674 675 struct vc4_async_flip_state { 676 struct drm_crtc *crtc; 677 struct drm_framebuffer *fb; 678 struct drm_pending_vblank_event *event; 679 680 struct vc4_seqno_cb cb; 681 }; 682 683 /* Called when the V3D execution for the BO being flipped to is done, so that 684 * we can actually update the plane's address to point to it. 685 */ 686 static void 687 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 688 { 689 struct vc4_async_flip_state *flip_state = 690 container_of(cb, struct vc4_async_flip_state, cb); 691 struct drm_crtc *crtc = flip_state->crtc; 692 struct drm_device *dev = crtc->dev; 693 struct vc4_dev *vc4 = to_vc4_dev(dev); 694 struct drm_plane *plane = crtc->primary; 695 696 vc4_plane_async_set_fb(plane, flip_state->fb); 697 if (flip_state->event) { 698 unsigned long flags; 699 700 spin_lock_irqsave(&dev->event_lock, flags); 701 drm_crtc_send_vblank_event(crtc, flip_state->event); 702 spin_unlock_irqrestore(&dev->event_lock, flags); 703 } 704 705 drm_crtc_vblank_put(crtc); 706 drm_framebuffer_unreference(flip_state->fb); 707 kfree(flip_state); 708 709 up(&vc4->async_modeset); 710 } 711 712 /* Implements async (non-vblank-synced) page flips. 713 * 714 * The page flip ioctl needs to return immediately, so we grab the 715 * modeset semaphore on the pipe, and queue the address update for 716 * when V3D is done with the BO being flipped to. 717 */ 718 static int vc4_async_page_flip(struct drm_crtc *crtc, 719 struct drm_framebuffer *fb, 720 struct drm_pending_vblank_event *event, 721 uint32_t flags) 722 { 723 struct drm_device *dev = crtc->dev; 724 struct vc4_dev *vc4 = to_vc4_dev(dev); 725 struct drm_plane *plane = crtc->primary; 726 int ret = 0; 727 struct vc4_async_flip_state *flip_state; 728 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 729 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 730 731 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 732 if (!flip_state) 733 return -ENOMEM; 734 735 drm_framebuffer_reference(fb); 736 flip_state->fb = fb; 737 flip_state->crtc = crtc; 738 flip_state->event = event; 739 740 /* Make sure all other async modesetes have landed. */ 741 ret = down_interruptible(&vc4->async_modeset); 742 if (ret) { 743 drm_framebuffer_unreference(fb); 744 kfree(flip_state); 745 return ret; 746 } 747 748 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 749 750 /* Immediately update the plane's legacy fb pointer, so that later 751 * modeset prep sees the state that will be present when the semaphore 752 * is released. 753 */ 754 drm_atomic_set_fb_for_plane(plane->state, fb); 755 plane->fb = fb; 756 757 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 758 vc4_async_page_flip_complete); 759 760 /* Driver takes ownership of state on successful async commit. */ 761 return 0; 762 } 763 764 static int vc4_page_flip(struct drm_crtc *crtc, 765 struct drm_framebuffer *fb, 766 struct drm_pending_vblank_event *event, 767 uint32_t flags) 768 { 769 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 770 return vc4_async_page_flip(crtc, fb, event, flags); 771 else 772 return drm_atomic_helper_page_flip(crtc, fb, event, flags); 773 } 774 775 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 776 { 777 struct vc4_crtc_state *vc4_state; 778 779 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 780 if (!vc4_state) 781 return NULL; 782 783 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 784 return &vc4_state->base; 785 } 786 787 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 788 struct drm_crtc_state *state) 789 { 790 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 791 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 792 793 if (vc4_state->mm.allocated) { 794 unsigned long flags; 795 796 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 797 drm_mm_remove_node(&vc4_state->mm); 798 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 799 800 } 801 802 __drm_atomic_helper_crtc_destroy_state(state); 803 } 804 805 static const struct drm_crtc_funcs vc4_crtc_funcs = { 806 .set_config = drm_atomic_helper_set_config, 807 .destroy = vc4_crtc_destroy, 808 .page_flip = vc4_page_flip, 809 .set_property = NULL, 810 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 811 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 812 .reset = drm_atomic_helper_crtc_reset, 813 .atomic_duplicate_state = vc4_crtc_duplicate_state, 814 .atomic_destroy_state = vc4_crtc_destroy_state, 815 .gamma_set = vc4_crtc_gamma_set, 816 }; 817 818 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 819 .mode_set_nofb = vc4_crtc_mode_set_nofb, 820 .disable = vc4_crtc_disable, 821 .enable = vc4_crtc_enable, 822 .atomic_check = vc4_crtc_atomic_check, 823 .atomic_flush = vc4_crtc_atomic_flush, 824 }; 825 826 static const struct vc4_crtc_data pv0_data = { 827 .hvs_channel = 0, 828 .encoder0_type = VC4_ENCODER_TYPE_DSI0, 829 .encoder1_type = VC4_ENCODER_TYPE_DPI, 830 }; 831 832 static const struct vc4_crtc_data pv1_data = { 833 .hvs_channel = 2, 834 .encoder0_type = VC4_ENCODER_TYPE_DSI1, 835 .encoder1_type = VC4_ENCODER_TYPE_SMI, 836 }; 837 838 static const struct vc4_crtc_data pv2_data = { 839 .hvs_channel = 1, 840 .encoder0_type = VC4_ENCODER_TYPE_VEC, 841 .encoder1_type = VC4_ENCODER_TYPE_HDMI, 842 }; 843 844 static const struct of_device_id vc4_crtc_dt_match[] = { 845 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 846 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 847 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 848 {} 849 }; 850 851 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 852 struct drm_crtc *crtc) 853 { 854 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 855 struct drm_encoder *encoder; 856 857 drm_for_each_encoder(encoder, drm) { 858 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 859 860 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { 861 vc4_encoder->clock_select = 0; 862 encoder->possible_crtcs |= drm_crtc_mask(crtc); 863 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { 864 vc4_encoder->clock_select = 1; 865 encoder->possible_crtcs |= drm_crtc_mask(crtc); 866 } 867 } 868 } 869 870 static void 871 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 872 { 873 struct drm_device *drm = vc4_crtc->base.dev; 874 struct vc4_dev *vc4 = to_vc4_dev(drm); 875 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 876 /* Top/base are supposed to be 4-pixel aligned, but the 877 * Raspberry Pi firmware fills the low bits (which are 878 * presumably ignored). 879 */ 880 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 881 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 882 883 vc4_crtc->cob_size = top - base + 4; 884 } 885 886 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 887 { 888 struct platform_device *pdev = to_platform_device(dev); 889 struct drm_device *drm = dev_get_drvdata(master); 890 struct vc4_dev *vc4 = to_vc4_dev(drm); 891 struct vc4_crtc *vc4_crtc; 892 struct drm_crtc *crtc; 893 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 894 const struct of_device_id *match; 895 int ret, i; 896 897 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 898 if (!vc4_crtc) 899 return -ENOMEM; 900 crtc = &vc4_crtc->base; 901 902 match = of_match_device(vc4_crtc_dt_match, dev); 903 if (!match) 904 return -ENODEV; 905 vc4_crtc->data = match->data; 906 907 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 908 if (IS_ERR(vc4_crtc->regs)) 909 return PTR_ERR(vc4_crtc->regs); 910 911 /* For now, we create just the primary and the legacy cursor 912 * planes. We should be able to stack more planes on easily, 913 * but to do that we would need to compute the bandwidth 914 * requirement of the plane configuration, and reject ones 915 * that will take too much. 916 */ 917 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 918 if (IS_ERR(primary_plane)) { 919 dev_err(dev, "failed to construct primary plane\n"); 920 ret = PTR_ERR(primary_plane); 921 goto err; 922 } 923 924 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 925 &vc4_crtc_funcs, NULL); 926 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 927 primary_plane->crtc = crtc; 928 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; 929 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 930 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 931 932 /* Set up some arbitrary number of planes. We're not limited 933 * by a set number of physical registers, just the space in 934 * the HVS (16k) and how small an plane can be (28 bytes). 935 * However, each plane we set up takes up some memory, and 936 * increases the cost of looping over planes, which atomic 937 * modesetting does quite a bit. As a result, we pick a 938 * modest number of planes to expose, that should hopefully 939 * still cover any sane usecase. 940 */ 941 for (i = 0; i < 8; i++) { 942 struct drm_plane *plane = 943 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 944 945 if (IS_ERR(plane)) 946 continue; 947 948 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 949 } 950 951 /* Set up the legacy cursor after overlay initialization, 952 * since we overlay planes on the CRTC in the order they were 953 * initialized. 954 */ 955 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 956 if (!IS_ERR(cursor_plane)) { 957 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 958 cursor_plane->crtc = crtc; 959 crtc->cursor = cursor_plane; 960 } 961 962 vc4_crtc_get_cob_allocation(vc4_crtc); 963 964 CRTC_WRITE(PV_INTEN, 0); 965 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 966 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 967 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 968 if (ret) 969 goto err_destroy_planes; 970 971 vc4_set_crtc_possible_masks(drm, crtc); 972 973 for (i = 0; i < crtc->gamma_size; i++) { 974 vc4_crtc->lut_r[i] = i; 975 vc4_crtc->lut_g[i] = i; 976 vc4_crtc->lut_b[i] = i; 977 } 978 979 platform_set_drvdata(pdev, vc4_crtc); 980 981 return 0; 982 983 err_destroy_planes: 984 list_for_each_entry_safe(destroy_plane, temp, 985 &drm->mode_config.plane_list, head) { 986 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 987 destroy_plane->funcs->destroy(destroy_plane); 988 } 989 err: 990 return ret; 991 } 992 993 static void vc4_crtc_unbind(struct device *dev, struct device *master, 994 void *data) 995 { 996 struct platform_device *pdev = to_platform_device(dev); 997 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 998 999 vc4_crtc_destroy(&vc4_crtc->base); 1000 1001 CRTC_WRITE(PV_INTEN, 0); 1002 1003 platform_set_drvdata(pdev, NULL); 1004 } 1005 1006 static const struct component_ops vc4_crtc_ops = { 1007 .bind = vc4_crtc_bind, 1008 .unbind = vc4_crtc_unbind, 1009 }; 1010 1011 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1012 { 1013 return component_add(&pdev->dev, &vc4_crtc_ops); 1014 } 1015 1016 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1017 { 1018 component_del(&pdev->dev, &vc4_crtc_ops); 1019 return 0; 1020 } 1021 1022 struct platform_driver vc4_crtc_driver = { 1023 .probe = vc4_crtc_dev_probe, 1024 .remove = vc4_crtc_dev_remove, 1025 .driver = { 1026 .name = "vc4_crtc", 1027 .of_match_table = vc4_crtc_dt_match, 1028 }, 1029 }; 1030