xref: /linux/drivers/gpu/drm/v3d/v3d_sched.c (revision ce801e5d6c1bac228bf10f75e8bede4285c58282)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2018 Broadcom */
3 
4 /**
5  * DOC: Broadcom V3D scheduling
6  *
7  * The shared DRM GPU scheduler is used to coordinate submitting jobs
8  * to the hardware. Each DRM fd (roughly a client process) gets its
9  * own scheduler entity, which will process jobs in order. The GPU
10  * scheduler will schedule the clients with a FIFO scheduling algorithm.
11  *
12  * For simplicity, and in order to keep latency low for interactive
13  * jobs when bulk background jobs are queued up, we submit a new job
14  * to the HW only when it has completed the last one, instead of
15  * filling up the CT[01]Q FIFOs with jobs. Similarly, we use
16  * `drm_sched_job_add_dependency()` to manage the dependency between bin
17  * and render, instead of having the clients submit jobs using the HW's
18  * semaphores to interlock between them.
19  */
20 
21 #include <linux/sched/clock.h>
22 #include <linux/kthread.h>
23 
24 #include <drm/drm_syncobj.h>
25 
26 #include "v3d_drv.h"
27 #include "v3d_regs.h"
28 #include "v3d_trace.h"
29 
30 #define V3D_CSD_CFG012_WG_COUNT_SHIFT 16
31 
32 static struct v3d_job *
33 to_v3d_job(struct drm_sched_job *sched_job)
34 {
35 	return container_of(sched_job, struct v3d_job, base);
36 }
37 
38 static struct v3d_bin_job *
39 to_bin_job(struct drm_sched_job *sched_job)
40 {
41 	return container_of(sched_job, struct v3d_bin_job, base.base);
42 }
43 
44 static struct v3d_render_job *
45 to_render_job(struct drm_sched_job *sched_job)
46 {
47 	return container_of(sched_job, struct v3d_render_job, base.base);
48 }
49 
50 static struct v3d_tfu_job *
51 to_tfu_job(struct drm_sched_job *sched_job)
52 {
53 	return container_of(sched_job, struct v3d_tfu_job, base.base);
54 }
55 
56 static struct v3d_csd_job *
57 to_csd_job(struct drm_sched_job *sched_job)
58 {
59 	return container_of(sched_job, struct v3d_csd_job, base.base);
60 }
61 
62 static struct v3d_cpu_job *
63 to_cpu_job(struct drm_sched_job *sched_job)
64 {
65 	return container_of(sched_job, struct v3d_cpu_job, base.base);
66 }
67 
68 static void
69 v3d_sched_job_free(struct drm_sched_job *sched_job)
70 {
71 	struct v3d_job *job = to_v3d_job(sched_job);
72 
73 	v3d_job_cleanup(job);
74 }
75 
76 void
77 v3d_timestamp_query_info_free(struct v3d_timestamp_query_info *query_info,
78 			      unsigned int count)
79 {
80 	if (query_info->queries) {
81 		unsigned int i;
82 
83 		for (i = 0; i < count; i++)
84 			drm_syncobj_put(query_info->queries[i].syncobj);
85 
86 		kvfree(query_info->queries);
87 	}
88 }
89 
90 void
91 v3d_performance_query_info_free(struct v3d_performance_query_info *query_info,
92 				unsigned int count)
93 {
94 	if (query_info->queries) {
95 		unsigned int i;
96 
97 		for (i = 0; i < count; i++) {
98 			drm_syncobj_put(query_info->queries[i].syncobj);
99 			kvfree(query_info->queries[i].kperfmon_ids);
100 		}
101 
102 		kvfree(query_info->queries);
103 	}
104 }
105 
106 static void
107 v3d_cpu_job_free(struct drm_sched_job *sched_job)
108 {
109 	struct v3d_cpu_job *job = to_cpu_job(sched_job);
110 
111 	v3d_timestamp_query_info_free(&job->timestamp_query,
112 				      job->timestamp_query.count);
113 
114 	v3d_performance_query_info_free(&job->performance_query,
115 					job->performance_query.count);
116 
117 	v3d_job_cleanup(&job->base);
118 }
119 
120 static void
121 v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job)
122 {
123 	struct v3d_perfmon *perfmon = v3d->global_perfmon;
124 
125 	if (!perfmon)
126 		perfmon = job->perfmon;
127 
128 	if (perfmon == v3d->active_perfmon)
129 		return;
130 
131 	if (perfmon != v3d->active_perfmon)
132 		v3d_perfmon_stop(v3d, v3d->active_perfmon, true);
133 
134 	if (perfmon && v3d->active_perfmon != perfmon)
135 		v3d_perfmon_start(v3d, perfmon);
136 }
137 
138 static void
139 v3d_job_start_stats(struct v3d_job *job, enum v3d_queue queue)
140 {
141 	struct v3d_dev *v3d = job->v3d;
142 	struct v3d_file_priv *file = job->file->driver_priv;
143 	struct v3d_stats *global_stats = &v3d->queue[queue].stats;
144 	struct v3d_stats *local_stats = &file->stats[queue];
145 	u64 now = local_clock();
146 	unsigned long flags;
147 
148 	/*
149 	 * We only need to disable local interrupts to appease lockdep who
150 	 * otherwise would think v3d_job_start_stats vs v3d_stats_update has an
151 	 * unsafe in-irq vs no-irq-off usage problem. This is a false positive
152 	 * because all the locks are per queue and stats type, and all jobs are
153 	 * completely one at a time serialised. More specifically:
154 	 *
155 	 * 1. Locks for GPU queues are updated from interrupt handlers under a
156 	 *    spin lock and started here with preemption disabled.
157 	 *
158 	 * 2. Locks for CPU queues are updated from the worker with preemption
159 	 *    disabled and equally started here with preemption disabled.
160 	 *
161 	 * Therefore both are consistent.
162 	 *
163 	 * 3. Because next job can only be queued after the previous one has
164 	 *    been signaled, and locks are per queue, there is also no scope for
165 	 *    the start part to race with the update part.
166 	 */
167 	if (IS_ENABLED(CONFIG_LOCKDEP))
168 		local_irq_save(flags);
169 	else
170 		preempt_disable();
171 
172 	write_seqcount_begin(&local_stats->lock);
173 	local_stats->start_ns = now;
174 	write_seqcount_end(&local_stats->lock);
175 
176 	write_seqcount_begin(&global_stats->lock);
177 	global_stats->start_ns = now;
178 	write_seqcount_end(&global_stats->lock);
179 
180 	if (IS_ENABLED(CONFIG_LOCKDEP))
181 		local_irq_restore(flags);
182 	else
183 		preempt_enable();
184 }
185 
186 static void
187 v3d_stats_update(struct v3d_stats *stats, u64 now)
188 {
189 	write_seqcount_begin(&stats->lock);
190 	stats->enabled_ns += now - stats->start_ns;
191 	stats->jobs_completed++;
192 	stats->start_ns = 0;
193 	write_seqcount_end(&stats->lock);
194 }
195 
196 void
197 v3d_job_update_stats(struct v3d_job *job, enum v3d_queue queue)
198 {
199 	struct v3d_dev *v3d = job->v3d;
200 	struct v3d_file_priv *file = job->file->driver_priv;
201 	struct v3d_stats *global_stats = &v3d->queue[queue].stats;
202 	struct v3d_stats *local_stats = &file->stats[queue];
203 	u64 now = local_clock();
204 	unsigned long flags;
205 
206 	/* See comment in v3d_job_start_stats() */
207 	if (IS_ENABLED(CONFIG_LOCKDEP))
208 		local_irq_save(flags);
209 	else
210 		preempt_disable();
211 
212 	v3d_stats_update(local_stats, now);
213 	v3d_stats_update(global_stats, now);
214 
215 	if (IS_ENABLED(CONFIG_LOCKDEP))
216 		local_irq_restore(flags);
217 	else
218 		preempt_enable();
219 }
220 
221 static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job)
222 {
223 	struct v3d_bin_job *job = to_bin_job(sched_job);
224 	struct v3d_dev *v3d = job->base.v3d;
225 	struct drm_device *dev = &v3d->drm;
226 	struct dma_fence *fence;
227 	unsigned long irqflags;
228 
229 	if (unlikely(job->base.base.s_fence->finished.error))
230 		return NULL;
231 
232 	/* Lock required around bin_job update vs
233 	 * v3d_overflow_mem_work().
234 	 */
235 	spin_lock_irqsave(&v3d->job_lock, irqflags);
236 	v3d->bin_job = job;
237 	/* Clear out the overflow allocation, so we don't
238 	 * reuse the overflow attached to a previous job.
239 	 */
240 	V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0);
241 	spin_unlock_irqrestore(&v3d->job_lock, irqflags);
242 
243 	v3d_invalidate_caches(v3d);
244 
245 	fence = v3d_fence_create(v3d, V3D_BIN);
246 	if (IS_ERR(fence))
247 		return NULL;
248 
249 	if (job->base.irq_fence)
250 		dma_fence_put(job->base.irq_fence);
251 	job->base.irq_fence = dma_fence_get(fence);
252 
253 	trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno,
254 			    job->start, job->end);
255 
256 	v3d_job_start_stats(&job->base, V3D_BIN);
257 	v3d_switch_perfmon(v3d, &job->base);
258 
259 	/* Set the current and end address of the control list.
260 	 * Writing the end register is what starts the job.
261 	 */
262 	if (job->qma) {
263 		V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma);
264 		V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms);
265 	}
266 	if (job->qts) {
267 		V3D_CORE_WRITE(0, V3D_CLE_CT0QTS,
268 			       V3D_CLE_CT0QTS_ENABLE |
269 			       job->qts);
270 	}
271 	V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start);
272 	V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end);
273 
274 	return fence;
275 }
276 
277 static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job)
278 {
279 	struct v3d_render_job *job = to_render_job(sched_job);
280 	struct v3d_dev *v3d = job->base.v3d;
281 	struct drm_device *dev = &v3d->drm;
282 	struct dma_fence *fence;
283 
284 	if (unlikely(job->base.base.s_fence->finished.error))
285 		return NULL;
286 
287 	v3d->render_job = job;
288 
289 	/* Can we avoid this flush?  We need to be careful of
290 	 * scheduling, though -- imagine job0 rendering to texture and
291 	 * job1 reading, and them being executed as bin0, bin1,
292 	 * render0, render1, so that render1's flush at bin time
293 	 * wasn't enough.
294 	 */
295 	v3d_invalidate_caches(v3d);
296 
297 	fence = v3d_fence_create(v3d, V3D_RENDER);
298 	if (IS_ERR(fence))
299 		return NULL;
300 
301 	if (job->base.irq_fence)
302 		dma_fence_put(job->base.irq_fence);
303 	job->base.irq_fence = dma_fence_get(fence);
304 
305 	trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno,
306 			    job->start, job->end);
307 
308 	v3d_job_start_stats(&job->base, V3D_RENDER);
309 	v3d_switch_perfmon(v3d, &job->base);
310 
311 	/* XXX: Set the QCFG */
312 
313 	/* Set the current and end address of the control list.
314 	 * Writing the end register is what starts the job.
315 	 */
316 	V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start);
317 	V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end);
318 
319 	return fence;
320 }
321 
322 static struct dma_fence *
323 v3d_tfu_job_run(struct drm_sched_job *sched_job)
324 {
325 	struct v3d_tfu_job *job = to_tfu_job(sched_job);
326 	struct v3d_dev *v3d = job->base.v3d;
327 	struct drm_device *dev = &v3d->drm;
328 	struct dma_fence *fence;
329 
330 	fence = v3d_fence_create(v3d, V3D_TFU);
331 	if (IS_ERR(fence))
332 		return NULL;
333 
334 	v3d->tfu_job = job;
335 	if (job->base.irq_fence)
336 		dma_fence_put(job->base.irq_fence);
337 	job->base.irq_fence = dma_fence_get(fence);
338 
339 	trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno);
340 
341 	v3d_job_start_stats(&job->base, V3D_TFU);
342 
343 	V3D_WRITE(V3D_TFU_IIA(v3d->ver), job->args.iia);
344 	V3D_WRITE(V3D_TFU_IIS(v3d->ver), job->args.iis);
345 	V3D_WRITE(V3D_TFU_ICA(v3d->ver), job->args.ica);
346 	V3D_WRITE(V3D_TFU_IUA(v3d->ver), job->args.iua);
347 	V3D_WRITE(V3D_TFU_IOA(v3d->ver), job->args.ioa);
348 	if (v3d->ver >= 71)
349 		V3D_WRITE(V3D_V7_TFU_IOC, job->args.v71.ioc);
350 	V3D_WRITE(V3D_TFU_IOS(v3d->ver), job->args.ios);
351 	V3D_WRITE(V3D_TFU_COEF0(v3d->ver), job->args.coef[0]);
352 	if (v3d->ver >= 71 || (job->args.coef[0] & V3D_TFU_COEF0_USECOEF)) {
353 		V3D_WRITE(V3D_TFU_COEF1(v3d->ver), job->args.coef[1]);
354 		V3D_WRITE(V3D_TFU_COEF2(v3d->ver), job->args.coef[2]);
355 		V3D_WRITE(V3D_TFU_COEF3(v3d->ver), job->args.coef[3]);
356 	}
357 	/* ICFG kicks off the job. */
358 	V3D_WRITE(V3D_TFU_ICFG(v3d->ver), job->args.icfg | V3D_TFU_ICFG_IOC);
359 
360 	return fence;
361 }
362 
363 static struct dma_fence *
364 v3d_csd_job_run(struct drm_sched_job *sched_job)
365 {
366 	struct v3d_csd_job *job = to_csd_job(sched_job);
367 	struct v3d_dev *v3d = job->base.v3d;
368 	struct drm_device *dev = &v3d->drm;
369 	struct dma_fence *fence;
370 	int i, csd_cfg0_reg;
371 
372 	v3d->csd_job = job;
373 
374 	v3d_invalidate_caches(v3d);
375 
376 	fence = v3d_fence_create(v3d, V3D_CSD);
377 	if (IS_ERR(fence))
378 		return NULL;
379 
380 	if (job->base.irq_fence)
381 		dma_fence_put(job->base.irq_fence);
382 	job->base.irq_fence = dma_fence_get(fence);
383 
384 	trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno);
385 
386 	v3d_job_start_stats(&job->base, V3D_CSD);
387 	v3d_switch_perfmon(v3d, &job->base);
388 
389 	csd_cfg0_reg = V3D_CSD_QUEUED_CFG0(v3d->ver);
390 	for (i = 1; i <= 6; i++)
391 		V3D_CORE_WRITE(0, csd_cfg0_reg + 4 * i, job->args.cfg[i]);
392 
393 	/* Although V3D 7.1 has an eighth configuration register, we are not
394 	 * using it. Therefore, make sure it remains unused.
395 	 *
396 	 * XXX: Set the CFG7 register
397 	 */
398 	if (v3d->ver >= 71)
399 		V3D_CORE_WRITE(0, V3D_V7_CSD_QUEUED_CFG7, 0);
400 
401 	/* CFG0 write kicks off the job. */
402 	V3D_CORE_WRITE(0, csd_cfg0_reg, job->args.cfg[0]);
403 
404 	return fence;
405 }
406 
407 static void
408 v3d_rewrite_csd_job_wg_counts_from_indirect(struct v3d_cpu_job *job)
409 {
410 	struct v3d_indirect_csd_info *indirect_csd = &job->indirect_csd;
411 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
412 	struct v3d_bo *indirect = to_v3d_bo(indirect_csd->indirect);
413 	struct drm_v3d_submit_csd *args = &indirect_csd->job->args;
414 	u32 *wg_counts;
415 
416 	v3d_get_bo_vaddr(bo);
417 	v3d_get_bo_vaddr(indirect);
418 
419 	wg_counts = (uint32_t *)(bo->vaddr + indirect_csd->offset);
420 
421 	if (wg_counts[0] == 0 || wg_counts[1] == 0 || wg_counts[2] == 0)
422 		return;
423 
424 	args->cfg[0] = wg_counts[0] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
425 	args->cfg[1] = wg_counts[1] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
426 	args->cfg[2] = wg_counts[2] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
427 	args->cfg[4] = DIV_ROUND_UP(indirect_csd->wg_size, 16) *
428 		       (wg_counts[0] * wg_counts[1] * wg_counts[2]) - 1;
429 
430 	for (int i = 0; i < 3; i++) {
431 		/* 0xffffffff indicates that the uniform rewrite is not needed */
432 		if (indirect_csd->wg_uniform_offsets[i] != 0xffffffff) {
433 			u32 uniform_idx = indirect_csd->wg_uniform_offsets[i];
434 			((uint32_t *)indirect->vaddr)[uniform_idx] = wg_counts[i];
435 		}
436 	}
437 
438 	v3d_put_bo_vaddr(indirect);
439 	v3d_put_bo_vaddr(bo);
440 }
441 
442 static void
443 v3d_timestamp_query(struct v3d_cpu_job *job)
444 {
445 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
446 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
447 	u8 *value_addr;
448 
449 	v3d_get_bo_vaddr(bo);
450 
451 	for (int i = 0; i < timestamp_query->count; i++) {
452 		value_addr = ((u8 *)bo->vaddr) + timestamp_query->queries[i].offset;
453 		*((u64 *)value_addr) = i == 0 ? ktime_get_ns() : 0ull;
454 
455 		drm_syncobj_replace_fence(timestamp_query->queries[i].syncobj,
456 					  job->base.done_fence);
457 	}
458 
459 	v3d_put_bo_vaddr(bo);
460 }
461 
462 static void
463 v3d_reset_timestamp_queries(struct v3d_cpu_job *job)
464 {
465 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
466 	struct v3d_timestamp_query *queries = timestamp_query->queries;
467 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
468 	u8 *value_addr;
469 
470 	v3d_get_bo_vaddr(bo);
471 
472 	for (int i = 0; i < timestamp_query->count; i++) {
473 		value_addr = ((u8 *)bo->vaddr) + queries[i].offset;
474 		*((u64 *)value_addr) = 0;
475 
476 		drm_syncobj_replace_fence(queries[i].syncobj, NULL);
477 	}
478 
479 	v3d_put_bo_vaddr(bo);
480 }
481 
482 static void write_to_buffer_32(u32 *dst, unsigned int idx, u32 value)
483 {
484 	dst[idx] = value;
485 }
486 
487 static void write_to_buffer_64(u64 *dst, unsigned int idx, u64 value)
488 {
489 	dst[idx] = value;
490 }
491 
492 static void
493 write_to_buffer(void *dst, unsigned int idx, bool do_64bit, u64 value)
494 {
495 	if (do_64bit)
496 		write_to_buffer_64(dst, idx, value);
497 	else
498 		write_to_buffer_32(dst, idx, value);
499 }
500 
501 static void
502 v3d_copy_query_results(struct v3d_cpu_job *job)
503 {
504 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
505 	struct v3d_timestamp_query *queries = timestamp_query->queries;
506 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
507 	struct v3d_bo *timestamp = to_v3d_bo(job->base.bo[1]);
508 	struct v3d_copy_query_results_info *copy = &job->copy;
509 	struct dma_fence *fence;
510 	u8 *query_addr;
511 	bool available, write_result;
512 	u8 *data;
513 	int i;
514 
515 	v3d_get_bo_vaddr(bo);
516 	v3d_get_bo_vaddr(timestamp);
517 
518 	data = ((u8 *)bo->vaddr) + copy->offset;
519 
520 	for (i = 0; i < timestamp_query->count; i++) {
521 		fence = drm_syncobj_fence_get(queries[i].syncobj);
522 		available = fence ? dma_fence_is_signaled(fence) : false;
523 
524 		write_result = available || copy->do_partial;
525 		if (write_result) {
526 			query_addr = ((u8 *)timestamp->vaddr) + queries[i].offset;
527 			write_to_buffer(data, 0, copy->do_64bit, *((u64 *)query_addr));
528 		}
529 
530 		if (copy->availability_bit)
531 			write_to_buffer(data, 1, copy->do_64bit, available ? 1u : 0u);
532 
533 		data += copy->stride;
534 
535 		dma_fence_put(fence);
536 	}
537 
538 	v3d_put_bo_vaddr(timestamp);
539 	v3d_put_bo_vaddr(bo);
540 }
541 
542 static void
543 v3d_reset_performance_queries(struct v3d_cpu_job *job)
544 {
545 	struct v3d_performance_query_info *performance_query = &job->performance_query;
546 	struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
547 	struct v3d_dev *v3d = job->base.v3d;
548 	struct v3d_perfmon *perfmon;
549 
550 	for (int i = 0; i < performance_query->count; i++) {
551 		for (int j = 0; j < performance_query->nperfmons; j++) {
552 			perfmon = v3d_perfmon_find(v3d_priv,
553 						   performance_query->queries[i].kperfmon_ids[j]);
554 			if (!perfmon) {
555 				DRM_DEBUG("Failed to find perfmon.");
556 				continue;
557 			}
558 
559 			v3d_perfmon_stop(v3d, perfmon, false);
560 
561 			memset(perfmon->values, 0, perfmon->ncounters * sizeof(u64));
562 
563 			v3d_perfmon_put(perfmon);
564 		}
565 
566 		drm_syncobj_replace_fence(performance_query->queries[i].syncobj, NULL);
567 	}
568 }
569 
570 static void
571 v3d_write_performance_query_result(struct v3d_cpu_job *job, void *data,
572 				   unsigned int query)
573 {
574 	struct v3d_performance_query_info *performance_query =
575 						&job->performance_query;
576 	struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
577 	struct v3d_performance_query *perf_query =
578 			&performance_query->queries[query];
579 	struct v3d_dev *v3d = job->base.v3d;
580 	unsigned int i, j, offset;
581 
582 	for (i = 0, offset = 0;
583 	     i < performance_query->nperfmons;
584 	     i++, offset += DRM_V3D_MAX_PERF_COUNTERS) {
585 		struct v3d_perfmon *perfmon;
586 
587 		perfmon = v3d_perfmon_find(v3d_priv,
588 					   perf_query->kperfmon_ids[i]);
589 		if (!perfmon) {
590 			DRM_DEBUG("Failed to find perfmon.");
591 			continue;
592 		}
593 
594 		v3d_perfmon_stop(v3d, perfmon, true);
595 
596 		if (job->copy.do_64bit) {
597 			for (j = 0; j < perfmon->ncounters; j++)
598 				write_to_buffer_64(data, offset + j,
599 						   perfmon->values[j]);
600 		} else {
601 			for (j = 0; j < perfmon->ncounters; j++)
602 				write_to_buffer_32(data, offset + j,
603 						   perfmon->values[j]);
604 		}
605 
606 		v3d_perfmon_put(perfmon);
607 	}
608 }
609 
610 static void
611 v3d_copy_performance_query(struct v3d_cpu_job *job)
612 {
613 	struct v3d_performance_query_info *performance_query = &job->performance_query;
614 	struct v3d_copy_query_results_info *copy = &job->copy;
615 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
616 	struct dma_fence *fence;
617 	bool available, write_result;
618 	u8 *data;
619 
620 	v3d_get_bo_vaddr(bo);
621 
622 	data = ((u8 *)bo->vaddr) + copy->offset;
623 
624 	for (int i = 0; i < performance_query->count; i++) {
625 		fence = drm_syncobj_fence_get(performance_query->queries[i].syncobj);
626 		available = fence ? dma_fence_is_signaled(fence) : false;
627 
628 		write_result = available || copy->do_partial;
629 		if (write_result)
630 			v3d_write_performance_query_result(job, data, i);
631 
632 		if (copy->availability_bit)
633 			write_to_buffer(data, performance_query->ncounters,
634 					copy->do_64bit, available ? 1u : 0u);
635 
636 		data += copy->stride;
637 
638 		dma_fence_put(fence);
639 	}
640 
641 	v3d_put_bo_vaddr(bo);
642 }
643 
644 static const v3d_cpu_job_fn cpu_job_function[] = {
645 	[V3D_CPU_JOB_TYPE_INDIRECT_CSD] = v3d_rewrite_csd_job_wg_counts_from_indirect,
646 	[V3D_CPU_JOB_TYPE_TIMESTAMP_QUERY] = v3d_timestamp_query,
647 	[V3D_CPU_JOB_TYPE_RESET_TIMESTAMP_QUERY] = v3d_reset_timestamp_queries,
648 	[V3D_CPU_JOB_TYPE_COPY_TIMESTAMP_QUERY] = v3d_copy_query_results,
649 	[V3D_CPU_JOB_TYPE_RESET_PERFORMANCE_QUERY] = v3d_reset_performance_queries,
650 	[V3D_CPU_JOB_TYPE_COPY_PERFORMANCE_QUERY] = v3d_copy_performance_query,
651 };
652 
653 static struct dma_fence *
654 v3d_cpu_job_run(struct drm_sched_job *sched_job)
655 {
656 	struct v3d_cpu_job *job = to_cpu_job(sched_job);
657 	struct v3d_dev *v3d = job->base.v3d;
658 
659 	if (job->job_type >= ARRAY_SIZE(cpu_job_function)) {
660 		DRM_DEBUG_DRIVER("Unknown CPU job: %d\n", job->job_type);
661 		return NULL;
662 	}
663 
664 	v3d_job_start_stats(&job->base, V3D_CPU);
665 	trace_v3d_cpu_job_begin(&v3d->drm, job->job_type);
666 
667 	cpu_job_function[job->job_type](job);
668 
669 	trace_v3d_cpu_job_end(&v3d->drm, job->job_type);
670 	v3d_job_update_stats(&job->base, V3D_CPU);
671 
672 	return NULL;
673 }
674 
675 static struct dma_fence *
676 v3d_cache_clean_job_run(struct drm_sched_job *sched_job)
677 {
678 	struct v3d_job *job = to_v3d_job(sched_job);
679 	struct v3d_dev *v3d = job->v3d;
680 
681 	v3d_job_start_stats(job, V3D_CACHE_CLEAN);
682 
683 	v3d_clean_caches(v3d);
684 
685 	v3d_job_update_stats(job, V3D_CACHE_CLEAN);
686 
687 	return NULL;
688 }
689 
690 static enum drm_gpu_sched_stat
691 v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job)
692 {
693 	enum v3d_queue q;
694 
695 	mutex_lock(&v3d->reset_lock);
696 
697 	/* block scheduler */
698 	for (q = 0; q < V3D_MAX_QUEUES; q++)
699 		drm_sched_stop(&v3d->queue[q].sched, sched_job);
700 
701 	if (sched_job)
702 		drm_sched_increase_karma(sched_job);
703 
704 	/* get the GPU back into the init state */
705 	v3d_reset(v3d);
706 
707 	for (q = 0; q < V3D_MAX_QUEUES; q++)
708 		drm_sched_resubmit_jobs(&v3d->queue[q].sched);
709 
710 	/* Unblock schedulers and restart their jobs. */
711 	for (q = 0; q < V3D_MAX_QUEUES; q++) {
712 		drm_sched_start(&v3d->queue[q].sched, 0);
713 	}
714 
715 	mutex_unlock(&v3d->reset_lock);
716 
717 	return DRM_GPU_SCHED_STAT_NOMINAL;
718 }
719 
720 /* If the current address or return address have changed, then the GPU
721  * has probably made progress and we should delay the reset.  This
722  * could fail if the GPU got in an infinite loop in the CL, but that
723  * is pretty unlikely outside of an i-g-t testcase.
724  */
725 static enum drm_gpu_sched_stat
726 v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q,
727 		    u32 *timedout_ctca, u32 *timedout_ctra)
728 {
729 	struct v3d_job *job = to_v3d_job(sched_job);
730 	struct v3d_dev *v3d = job->v3d;
731 	u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q));
732 	u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q));
733 
734 	if (*timedout_ctca != ctca || *timedout_ctra != ctra) {
735 		*timedout_ctca = ctca;
736 		*timedout_ctra = ctra;
737 		return DRM_GPU_SCHED_STAT_NOMINAL;
738 	}
739 
740 	return v3d_gpu_reset_for_timeout(v3d, sched_job);
741 }
742 
743 static enum drm_gpu_sched_stat
744 v3d_bin_job_timedout(struct drm_sched_job *sched_job)
745 {
746 	struct v3d_bin_job *job = to_bin_job(sched_job);
747 
748 	return v3d_cl_job_timedout(sched_job, V3D_BIN,
749 				   &job->timedout_ctca, &job->timedout_ctra);
750 }
751 
752 static enum drm_gpu_sched_stat
753 v3d_render_job_timedout(struct drm_sched_job *sched_job)
754 {
755 	struct v3d_render_job *job = to_render_job(sched_job);
756 
757 	return v3d_cl_job_timedout(sched_job, V3D_RENDER,
758 				   &job->timedout_ctca, &job->timedout_ctra);
759 }
760 
761 static enum drm_gpu_sched_stat
762 v3d_generic_job_timedout(struct drm_sched_job *sched_job)
763 {
764 	struct v3d_job *job = to_v3d_job(sched_job);
765 
766 	return v3d_gpu_reset_for_timeout(job->v3d, sched_job);
767 }
768 
769 static enum drm_gpu_sched_stat
770 v3d_csd_job_timedout(struct drm_sched_job *sched_job)
771 {
772 	struct v3d_csd_job *job = to_csd_job(sched_job);
773 	struct v3d_dev *v3d = job->base.v3d;
774 	u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4(v3d->ver));
775 
776 	/* If we've made progress, skip reset and let the timer get
777 	 * rearmed.
778 	 */
779 	if (job->timedout_batches != batches) {
780 		job->timedout_batches = batches;
781 		return DRM_GPU_SCHED_STAT_NOMINAL;
782 	}
783 
784 	return v3d_gpu_reset_for_timeout(v3d, sched_job);
785 }
786 
787 static const struct drm_sched_backend_ops v3d_bin_sched_ops = {
788 	.run_job = v3d_bin_job_run,
789 	.timedout_job = v3d_bin_job_timedout,
790 	.free_job = v3d_sched_job_free,
791 };
792 
793 static const struct drm_sched_backend_ops v3d_render_sched_ops = {
794 	.run_job = v3d_render_job_run,
795 	.timedout_job = v3d_render_job_timedout,
796 	.free_job = v3d_sched_job_free,
797 };
798 
799 static const struct drm_sched_backend_ops v3d_tfu_sched_ops = {
800 	.run_job = v3d_tfu_job_run,
801 	.timedout_job = v3d_generic_job_timedout,
802 	.free_job = v3d_sched_job_free,
803 };
804 
805 static const struct drm_sched_backend_ops v3d_csd_sched_ops = {
806 	.run_job = v3d_csd_job_run,
807 	.timedout_job = v3d_csd_job_timedout,
808 	.free_job = v3d_sched_job_free
809 };
810 
811 static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = {
812 	.run_job = v3d_cache_clean_job_run,
813 	.timedout_job = v3d_generic_job_timedout,
814 	.free_job = v3d_sched_job_free
815 };
816 
817 static const struct drm_sched_backend_ops v3d_cpu_sched_ops = {
818 	.run_job = v3d_cpu_job_run,
819 	.timedout_job = v3d_generic_job_timedout,
820 	.free_job = v3d_cpu_job_free
821 };
822 
823 static int
824 v3d_queue_sched_init(struct v3d_dev *v3d, const struct drm_sched_backend_ops *ops,
825 		     enum v3d_queue queue, const char *name)
826 {
827 	struct drm_sched_init_args args = {
828 		.num_rqs = DRM_SCHED_PRIORITY_COUNT,
829 		.credit_limit = 1,
830 		.timeout = msecs_to_jiffies(500),
831 		.dev = v3d->drm.dev,
832 	};
833 
834 	args.ops = ops;
835 	args.name = name;
836 
837 	return drm_sched_init(&v3d->queue[queue].sched, &args);
838 }
839 
840 int
841 v3d_sched_init(struct v3d_dev *v3d)
842 {
843 	int ret;
844 
845 	ret = v3d_queue_sched_init(v3d, &v3d_bin_sched_ops, V3D_BIN, "v3d_bin");
846 	if (ret)
847 		return ret;
848 
849 	ret = v3d_queue_sched_init(v3d, &v3d_render_sched_ops, V3D_RENDER,
850 				   "v3d_render");
851 	if (ret)
852 		goto fail;
853 
854 	ret = v3d_queue_sched_init(v3d, &v3d_tfu_sched_ops, V3D_TFU, "v3d_tfu");
855 	if (ret)
856 		goto fail;
857 
858 	if (v3d_has_csd(v3d)) {
859 		ret = v3d_queue_sched_init(v3d, &v3d_csd_sched_ops, V3D_CSD,
860 					   "v3d_csd");
861 		if (ret)
862 			goto fail;
863 
864 		ret = v3d_queue_sched_init(v3d, &v3d_cache_clean_sched_ops,
865 					   V3D_CACHE_CLEAN, "v3d_cache_clean");
866 		if (ret)
867 			goto fail;
868 	}
869 
870 	ret = v3d_queue_sched_init(v3d, &v3d_cpu_sched_ops, V3D_CPU, "v3d_cpu");
871 	if (ret)
872 		goto fail;
873 
874 	return 0;
875 
876 fail:
877 	v3d_sched_fini(v3d);
878 	return ret;
879 }
880 
881 void
882 v3d_sched_fini(struct v3d_dev *v3d)
883 {
884 	enum v3d_queue q;
885 
886 	for (q = 0; q < V3D_MAX_QUEUES; q++) {
887 		if (v3d->queue[q].sched.ready)
888 			drm_sched_fini(&v3d->queue[q].sched);
889 	}
890 }
891