1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Copyright (C) 2018 Broadcom */ 3 4 /** 5 * DOC: Broadcom V3D scheduling 6 * 7 * The shared DRM GPU scheduler is used to coordinate submitting jobs 8 * to the hardware. Each DRM fd (roughly a client process) gets its 9 * own scheduler entity, which will process jobs in order. The GPU 10 * scheduler will schedule the clients with a FIFO scheduling algorithm. 11 * 12 * For simplicity, and in order to keep latency low for interactive 13 * jobs when bulk background jobs are queued up, we submit a new job 14 * to the HW only when it has completed the last one, instead of 15 * filling up the CT[01]Q FIFOs with jobs. Similarly, we use 16 * `drm_sched_job_add_dependency()` to manage the dependency between bin 17 * and render, instead of having the clients submit jobs using the HW's 18 * semaphores to interlock between them. 19 */ 20 21 #include <linux/sched/clock.h> 22 #include <linux/kthread.h> 23 24 #include <drm/drm_print.h> 25 #include <drm/drm_syncobj.h> 26 27 #include "v3d_drv.h" 28 #include "v3d_regs.h" 29 #include "v3d_trace.h" 30 31 #define V3D_CSD_CFG012_WG_COUNT_SHIFT 16 32 33 static struct v3d_job * 34 to_v3d_job(struct drm_sched_job *sched_job) 35 { 36 return container_of(sched_job, struct v3d_job, base); 37 } 38 39 static struct v3d_bin_job * 40 to_bin_job(struct drm_sched_job *sched_job) 41 { 42 return container_of(sched_job, struct v3d_bin_job, base.base); 43 } 44 45 static struct v3d_render_job * 46 to_render_job(struct drm_sched_job *sched_job) 47 { 48 return container_of(sched_job, struct v3d_render_job, base.base); 49 } 50 51 static struct v3d_tfu_job * 52 to_tfu_job(struct drm_sched_job *sched_job) 53 { 54 return container_of(sched_job, struct v3d_tfu_job, base.base); 55 } 56 57 static struct v3d_csd_job * 58 to_csd_job(struct drm_sched_job *sched_job) 59 { 60 return container_of(sched_job, struct v3d_csd_job, base.base); 61 } 62 63 static struct v3d_cpu_job * 64 to_cpu_job(struct drm_sched_job *sched_job) 65 { 66 return container_of(sched_job, struct v3d_cpu_job, base.base); 67 } 68 69 static void 70 v3d_sched_job_free(struct drm_sched_job *sched_job) 71 { 72 struct v3d_job *job = to_v3d_job(sched_job); 73 74 v3d_job_cleanup(job); 75 } 76 77 void 78 v3d_timestamp_query_info_free(struct v3d_timestamp_query_info *query_info, 79 unsigned int count) 80 { 81 if (query_info->queries) { 82 unsigned int i; 83 84 for (i = 0; i < count; i++) 85 drm_syncobj_put(query_info->queries[i].syncobj); 86 87 kvfree(query_info->queries); 88 } 89 } 90 91 void 92 v3d_performance_query_info_free(struct v3d_performance_query_info *query_info, 93 unsigned int count) 94 { 95 if (query_info->queries) { 96 unsigned int i; 97 98 for (i = 0; i < count; i++) { 99 drm_syncobj_put(query_info->queries[i].syncobj); 100 kvfree(query_info->queries[i].kperfmon_ids); 101 } 102 103 kvfree(query_info->queries); 104 } 105 } 106 107 static void 108 v3d_cpu_job_free(struct drm_sched_job *sched_job) 109 { 110 struct v3d_cpu_job *job = to_cpu_job(sched_job); 111 112 v3d_timestamp_query_info_free(&job->timestamp_query, 113 job->timestamp_query.count); 114 115 v3d_performance_query_info_free(&job->performance_query, 116 job->performance_query.count); 117 118 v3d_job_cleanup(&job->base); 119 } 120 121 static void 122 v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job) 123 { 124 struct v3d_perfmon *perfmon = v3d->global_perfmon; 125 126 if (!perfmon) 127 perfmon = job->perfmon; 128 129 if (perfmon == v3d->active_perfmon) 130 return; 131 132 if (perfmon != v3d->active_perfmon) 133 v3d_perfmon_stop(v3d, v3d->active_perfmon, true); 134 135 if (perfmon && v3d->active_perfmon != perfmon) 136 v3d_perfmon_start(v3d, perfmon); 137 } 138 139 static void 140 v3d_job_start_stats(struct v3d_job *job, enum v3d_queue queue) 141 { 142 struct v3d_dev *v3d = job->v3d; 143 struct v3d_file_priv *file = job->file_priv; 144 struct v3d_stats *global_stats = &v3d->queue[queue].stats; 145 struct v3d_stats *local_stats = &file->stats[queue]; 146 u64 now = local_clock(); 147 unsigned long flags; 148 149 /* 150 * We only need to disable local interrupts to appease lockdep who 151 * otherwise would think v3d_job_start_stats vs v3d_stats_update has an 152 * unsafe in-irq vs no-irq-off usage problem. This is a false positive 153 * because all the locks are per queue and stats type, and all jobs are 154 * completely one at a time serialised. More specifically: 155 * 156 * 1. Locks for GPU queues are updated from interrupt handlers under a 157 * spin lock and started here with preemption disabled. 158 * 159 * 2. Locks for CPU queues are updated from the worker with preemption 160 * disabled and equally started here with preemption disabled. 161 * 162 * Therefore both are consistent. 163 * 164 * 3. Because next job can only be queued after the previous one has 165 * been signaled, and locks are per queue, there is also no scope for 166 * the start part to race with the update part. 167 */ 168 if (IS_ENABLED(CONFIG_LOCKDEP)) 169 local_irq_save(flags); 170 else 171 preempt_disable(); 172 173 write_seqcount_begin(&local_stats->lock); 174 local_stats->start_ns = now; 175 write_seqcount_end(&local_stats->lock); 176 177 write_seqcount_begin(&global_stats->lock); 178 global_stats->start_ns = now; 179 write_seqcount_end(&global_stats->lock); 180 181 if (IS_ENABLED(CONFIG_LOCKDEP)) 182 local_irq_restore(flags); 183 else 184 preempt_enable(); 185 } 186 187 static void 188 v3d_stats_update(struct v3d_stats *stats, u64 now) 189 { 190 write_seqcount_begin(&stats->lock); 191 stats->enabled_ns += now - stats->start_ns; 192 stats->jobs_completed++; 193 stats->start_ns = 0; 194 write_seqcount_end(&stats->lock); 195 } 196 197 void 198 v3d_job_update_stats(struct v3d_job *job, enum v3d_queue q) 199 { 200 struct v3d_dev *v3d = job->v3d; 201 struct v3d_queue_state *queue = &v3d->queue[q]; 202 struct v3d_stats *global_stats = &queue->stats; 203 u64 now = local_clock(); 204 unsigned long flags; 205 206 /* See comment in v3d_job_start_stats() */ 207 if (IS_ENABLED(CONFIG_LOCKDEP)) 208 local_irq_save(flags); 209 else 210 preempt_disable(); 211 212 /* Don't update the local stats if the file context has already closed */ 213 spin_lock(&queue->queue_lock); 214 if (job->file_priv) 215 v3d_stats_update(&job->file_priv->stats[q], now); 216 spin_unlock(&queue->queue_lock); 217 218 v3d_stats_update(global_stats, now); 219 220 if (IS_ENABLED(CONFIG_LOCKDEP)) 221 local_irq_restore(flags); 222 else 223 preempt_enable(); 224 } 225 226 static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job) 227 { 228 struct v3d_bin_job *job = to_bin_job(sched_job); 229 struct v3d_dev *v3d = job->base.v3d; 230 struct v3d_queue_state *queue = &v3d->queue[V3D_BIN]; 231 struct drm_device *dev = &v3d->drm; 232 struct dma_fence *fence; 233 unsigned long irqflags; 234 235 if (unlikely(job->base.base.s_fence->finished.error)) { 236 spin_lock_irqsave(&queue->queue_lock, irqflags); 237 queue->active_job = NULL; 238 spin_unlock_irqrestore(&queue->queue_lock, irqflags); 239 return NULL; 240 } 241 242 /* Lock required around bin_job update vs 243 * v3d_overflow_mem_work(). 244 */ 245 spin_lock_irqsave(&queue->queue_lock, irqflags); 246 queue->active_job = &job->base; 247 /* Clear out the overflow allocation, so we don't 248 * reuse the overflow attached to a previous job. 249 */ 250 V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0); 251 spin_unlock_irqrestore(&queue->queue_lock, irqflags); 252 253 v3d_invalidate_caches(v3d); 254 255 fence = v3d_fence_create(v3d, V3D_BIN); 256 if (IS_ERR(fence)) 257 return NULL; 258 259 if (job->base.irq_fence) 260 dma_fence_put(job->base.irq_fence); 261 job->base.irq_fence = dma_fence_get(fence); 262 263 trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno, 264 job->start, job->end); 265 266 v3d_job_start_stats(&job->base, V3D_BIN); 267 v3d_switch_perfmon(v3d, &job->base); 268 269 /* Set the current and end address of the control list. 270 * Writing the end register is what starts the job. 271 */ 272 if (job->qma) { 273 V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma); 274 V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms); 275 } 276 if (job->qts) { 277 V3D_CORE_WRITE(0, V3D_CLE_CT0QTS, 278 V3D_CLE_CT0QTS_ENABLE | 279 job->qts); 280 } 281 V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start); 282 V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end); 283 284 return fence; 285 } 286 287 static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job) 288 { 289 struct v3d_render_job *job = to_render_job(sched_job); 290 struct v3d_dev *v3d = job->base.v3d; 291 struct drm_device *dev = &v3d->drm; 292 struct dma_fence *fence; 293 294 if (unlikely(job->base.base.s_fence->finished.error)) { 295 v3d->queue[V3D_RENDER].active_job = NULL; 296 return NULL; 297 } 298 299 v3d->queue[V3D_RENDER].active_job = &job->base; 300 301 /* Can we avoid this flush? We need to be careful of 302 * scheduling, though -- imagine job0 rendering to texture and 303 * job1 reading, and them being executed as bin0, bin1, 304 * render0, render1, so that render1's flush at bin time 305 * wasn't enough. 306 */ 307 v3d_invalidate_caches(v3d); 308 309 fence = v3d_fence_create(v3d, V3D_RENDER); 310 if (IS_ERR(fence)) 311 return NULL; 312 313 if (job->base.irq_fence) 314 dma_fence_put(job->base.irq_fence); 315 job->base.irq_fence = dma_fence_get(fence); 316 317 trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno, 318 job->start, job->end); 319 320 v3d_job_start_stats(&job->base, V3D_RENDER); 321 v3d_switch_perfmon(v3d, &job->base); 322 323 /* XXX: Set the QCFG */ 324 325 /* Set the current and end address of the control list. 326 * Writing the end register is what starts the job. 327 */ 328 V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start); 329 V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end); 330 331 return fence; 332 } 333 334 static struct dma_fence * 335 v3d_tfu_job_run(struct drm_sched_job *sched_job) 336 { 337 struct v3d_tfu_job *job = to_tfu_job(sched_job); 338 struct v3d_dev *v3d = job->base.v3d; 339 struct drm_device *dev = &v3d->drm; 340 struct dma_fence *fence; 341 342 if (unlikely(job->base.base.s_fence->finished.error)) { 343 v3d->queue[V3D_TFU].active_job = NULL; 344 return NULL; 345 } 346 347 v3d->queue[V3D_TFU].active_job = &job->base; 348 349 fence = v3d_fence_create(v3d, V3D_TFU); 350 if (IS_ERR(fence)) 351 return NULL; 352 353 if (job->base.irq_fence) 354 dma_fence_put(job->base.irq_fence); 355 job->base.irq_fence = dma_fence_get(fence); 356 357 trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno); 358 359 v3d_job_start_stats(&job->base, V3D_TFU); 360 361 V3D_WRITE(V3D_TFU_IIA(v3d->ver), job->args.iia); 362 V3D_WRITE(V3D_TFU_IIS(v3d->ver), job->args.iis); 363 V3D_WRITE(V3D_TFU_ICA(v3d->ver), job->args.ica); 364 V3D_WRITE(V3D_TFU_IUA(v3d->ver), job->args.iua); 365 V3D_WRITE(V3D_TFU_IOA(v3d->ver), job->args.ioa); 366 if (v3d->ver >= V3D_GEN_71) 367 V3D_WRITE(V3D_V7_TFU_IOC, job->args.v71.ioc); 368 V3D_WRITE(V3D_TFU_IOS(v3d->ver), job->args.ios); 369 V3D_WRITE(V3D_TFU_COEF0(v3d->ver), job->args.coef[0]); 370 if (v3d->ver >= V3D_GEN_71 || (job->args.coef[0] & V3D_TFU_COEF0_USECOEF)) { 371 V3D_WRITE(V3D_TFU_COEF1(v3d->ver), job->args.coef[1]); 372 V3D_WRITE(V3D_TFU_COEF2(v3d->ver), job->args.coef[2]); 373 V3D_WRITE(V3D_TFU_COEF3(v3d->ver), job->args.coef[3]); 374 } 375 /* ICFG kicks off the job. */ 376 V3D_WRITE(V3D_TFU_ICFG(v3d->ver), job->args.icfg | V3D_TFU_ICFG_IOC); 377 378 return fence; 379 } 380 381 static struct dma_fence * 382 v3d_csd_job_run(struct drm_sched_job *sched_job) 383 { 384 struct v3d_csd_job *job = to_csd_job(sched_job); 385 struct v3d_dev *v3d = job->base.v3d; 386 struct drm_device *dev = &v3d->drm; 387 struct dma_fence *fence; 388 int i, csd_cfg0_reg; 389 390 if (unlikely(job->base.base.s_fence->finished.error)) { 391 v3d->queue[V3D_CSD].active_job = NULL; 392 return NULL; 393 } 394 395 v3d->queue[V3D_CSD].active_job = &job->base; 396 397 v3d_invalidate_caches(v3d); 398 399 fence = v3d_fence_create(v3d, V3D_CSD); 400 if (IS_ERR(fence)) 401 return NULL; 402 403 if (job->base.irq_fence) 404 dma_fence_put(job->base.irq_fence); 405 job->base.irq_fence = dma_fence_get(fence); 406 407 trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno); 408 409 v3d_job_start_stats(&job->base, V3D_CSD); 410 v3d_switch_perfmon(v3d, &job->base); 411 412 csd_cfg0_reg = V3D_CSD_QUEUED_CFG0(v3d->ver); 413 for (i = 1; i <= 6; i++) 414 V3D_CORE_WRITE(0, csd_cfg0_reg + 4 * i, job->args.cfg[i]); 415 416 /* Although V3D 7.1 has an eighth configuration register, we are not 417 * using it. Therefore, make sure it remains unused. 418 * 419 * XXX: Set the CFG7 register 420 */ 421 if (v3d->ver >= V3D_GEN_71) 422 V3D_CORE_WRITE(0, V3D_V7_CSD_QUEUED_CFG7, 0); 423 424 /* CFG0 write kicks off the job. */ 425 V3D_CORE_WRITE(0, csd_cfg0_reg, job->args.cfg[0]); 426 427 return fence; 428 } 429 430 static void 431 v3d_rewrite_csd_job_wg_counts_from_indirect(struct v3d_cpu_job *job) 432 { 433 struct v3d_indirect_csd_info *indirect_csd = &job->indirect_csd; 434 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); 435 struct v3d_bo *indirect = to_v3d_bo(indirect_csd->indirect); 436 struct drm_v3d_submit_csd *args = &indirect_csd->job->args; 437 struct v3d_dev *v3d = job->base.v3d; 438 u32 num_batches, *wg_counts; 439 440 v3d_get_bo_vaddr(bo); 441 v3d_get_bo_vaddr(indirect); 442 443 wg_counts = (uint32_t *)(bo->vaddr + indirect_csd->offset); 444 445 if (wg_counts[0] == 0 || wg_counts[1] == 0 || wg_counts[2] == 0) 446 return; 447 448 args->cfg[0] = wg_counts[0] << V3D_CSD_CFG012_WG_COUNT_SHIFT; 449 args->cfg[1] = wg_counts[1] << V3D_CSD_CFG012_WG_COUNT_SHIFT; 450 args->cfg[2] = wg_counts[2] << V3D_CSD_CFG012_WG_COUNT_SHIFT; 451 452 num_batches = DIV_ROUND_UP(indirect_csd->wg_size, 16) * 453 (wg_counts[0] * wg_counts[1] * wg_counts[2]); 454 455 /* V3D 7.1.6 and later don't subtract 1 from the number of batches */ 456 if (v3d->ver < 71 || (v3d->ver == 71 && v3d->rev < 6)) 457 args->cfg[4] = num_batches - 1; 458 else 459 args->cfg[4] = num_batches; 460 461 WARN_ON(args->cfg[4] == ~0); 462 463 for (int i = 0; i < 3; i++) { 464 /* 0xffffffff indicates that the uniform rewrite is not needed */ 465 if (indirect_csd->wg_uniform_offsets[i] != 0xffffffff) { 466 u32 uniform_idx = indirect_csd->wg_uniform_offsets[i]; 467 ((uint32_t *)indirect->vaddr)[uniform_idx] = wg_counts[i]; 468 } 469 } 470 471 v3d_put_bo_vaddr(indirect); 472 v3d_put_bo_vaddr(bo); 473 } 474 475 static void 476 v3d_timestamp_query(struct v3d_cpu_job *job) 477 { 478 struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query; 479 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); 480 u8 *value_addr; 481 482 v3d_get_bo_vaddr(bo); 483 484 for (int i = 0; i < timestamp_query->count; i++) { 485 value_addr = ((u8 *)bo->vaddr) + timestamp_query->queries[i].offset; 486 *((u64 *)value_addr) = i == 0 ? ktime_get_ns() : 0ull; 487 488 drm_syncobj_replace_fence(timestamp_query->queries[i].syncobj, 489 job->base.done_fence); 490 } 491 492 v3d_put_bo_vaddr(bo); 493 } 494 495 static void 496 v3d_reset_timestamp_queries(struct v3d_cpu_job *job) 497 { 498 struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query; 499 struct v3d_timestamp_query *queries = timestamp_query->queries; 500 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); 501 u8 *value_addr; 502 503 v3d_get_bo_vaddr(bo); 504 505 for (int i = 0; i < timestamp_query->count; i++) { 506 value_addr = ((u8 *)bo->vaddr) + queries[i].offset; 507 *((u64 *)value_addr) = 0; 508 509 drm_syncobj_replace_fence(queries[i].syncobj, NULL); 510 } 511 512 v3d_put_bo_vaddr(bo); 513 } 514 515 static void write_to_buffer_32(u32 *dst, unsigned int idx, u32 value) 516 { 517 dst[idx] = value; 518 } 519 520 static void write_to_buffer_64(u64 *dst, unsigned int idx, u64 value) 521 { 522 dst[idx] = value; 523 } 524 525 static void 526 write_to_buffer(void *dst, unsigned int idx, bool do_64bit, u64 value) 527 { 528 if (do_64bit) 529 write_to_buffer_64(dst, idx, value); 530 else 531 write_to_buffer_32(dst, idx, value); 532 } 533 534 static void 535 v3d_copy_query_results(struct v3d_cpu_job *job) 536 { 537 struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query; 538 struct v3d_timestamp_query *queries = timestamp_query->queries; 539 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); 540 struct v3d_bo *timestamp = to_v3d_bo(job->base.bo[1]); 541 struct v3d_copy_query_results_info *copy = &job->copy; 542 struct dma_fence *fence; 543 u8 *query_addr; 544 bool available, write_result; 545 u8 *data; 546 int i; 547 548 v3d_get_bo_vaddr(bo); 549 v3d_get_bo_vaddr(timestamp); 550 551 data = ((u8 *)bo->vaddr) + copy->offset; 552 553 for (i = 0; i < timestamp_query->count; i++) { 554 fence = drm_syncobj_fence_get(queries[i].syncobj); 555 available = fence ? dma_fence_is_signaled(fence) : false; 556 557 write_result = available || copy->do_partial; 558 if (write_result) { 559 query_addr = ((u8 *)timestamp->vaddr) + queries[i].offset; 560 write_to_buffer(data, 0, copy->do_64bit, *((u64 *)query_addr)); 561 } 562 563 if (copy->availability_bit) 564 write_to_buffer(data, 1, copy->do_64bit, available ? 1u : 0u); 565 566 data += copy->stride; 567 568 dma_fence_put(fence); 569 } 570 571 v3d_put_bo_vaddr(timestamp); 572 v3d_put_bo_vaddr(bo); 573 } 574 575 static void 576 v3d_reset_performance_queries(struct v3d_cpu_job *job) 577 { 578 struct v3d_performance_query_info *performance_query = &job->performance_query; 579 struct v3d_file_priv *v3d_priv = job->base.file_priv; 580 struct v3d_dev *v3d = job->base.v3d; 581 struct v3d_perfmon *perfmon; 582 583 for (int i = 0; i < performance_query->count; i++) { 584 for (int j = 0; j < performance_query->nperfmons; j++) { 585 perfmon = v3d_perfmon_find(v3d_priv, 586 performance_query->queries[i].kperfmon_ids[j]); 587 if (!perfmon) { 588 DRM_DEBUG("Failed to find perfmon."); 589 continue; 590 } 591 592 v3d_perfmon_stop(v3d, perfmon, false); 593 594 memset(perfmon->values, 0, perfmon->ncounters * sizeof(u64)); 595 596 v3d_perfmon_put(perfmon); 597 } 598 599 drm_syncobj_replace_fence(performance_query->queries[i].syncobj, NULL); 600 } 601 } 602 603 static void 604 v3d_write_performance_query_result(struct v3d_cpu_job *job, void *data, 605 unsigned int query) 606 { 607 struct v3d_performance_query_info *performance_query = 608 &job->performance_query; 609 struct v3d_file_priv *v3d_priv = job->base.file_priv; 610 struct v3d_performance_query *perf_query = 611 &performance_query->queries[query]; 612 struct v3d_dev *v3d = job->base.v3d; 613 unsigned int i, j, offset; 614 615 for (i = 0, offset = 0; 616 i < performance_query->nperfmons; 617 i++, offset += DRM_V3D_MAX_PERF_COUNTERS) { 618 struct v3d_perfmon *perfmon; 619 620 perfmon = v3d_perfmon_find(v3d_priv, 621 perf_query->kperfmon_ids[i]); 622 if (!perfmon) { 623 DRM_DEBUG("Failed to find perfmon."); 624 continue; 625 } 626 627 v3d_perfmon_stop(v3d, perfmon, true); 628 629 if (job->copy.do_64bit) { 630 for (j = 0; j < perfmon->ncounters; j++) 631 write_to_buffer_64(data, offset + j, 632 perfmon->values[j]); 633 } else { 634 for (j = 0; j < perfmon->ncounters; j++) 635 write_to_buffer_32(data, offset + j, 636 perfmon->values[j]); 637 } 638 639 v3d_perfmon_put(perfmon); 640 } 641 } 642 643 static void 644 v3d_copy_performance_query(struct v3d_cpu_job *job) 645 { 646 struct v3d_performance_query_info *performance_query = &job->performance_query; 647 struct v3d_copy_query_results_info *copy = &job->copy; 648 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); 649 struct dma_fence *fence; 650 bool available, write_result; 651 u8 *data; 652 653 v3d_get_bo_vaddr(bo); 654 655 data = ((u8 *)bo->vaddr) + copy->offset; 656 657 for (int i = 0; i < performance_query->count; i++) { 658 fence = drm_syncobj_fence_get(performance_query->queries[i].syncobj); 659 available = fence ? dma_fence_is_signaled(fence) : false; 660 661 write_result = available || copy->do_partial; 662 if (write_result) 663 v3d_write_performance_query_result(job, data, i); 664 665 if (copy->availability_bit) 666 write_to_buffer(data, performance_query->ncounters, 667 copy->do_64bit, available ? 1u : 0u); 668 669 data += copy->stride; 670 671 dma_fence_put(fence); 672 } 673 674 v3d_put_bo_vaddr(bo); 675 } 676 677 static const v3d_cpu_job_fn cpu_job_function[] = { 678 [V3D_CPU_JOB_TYPE_INDIRECT_CSD] = v3d_rewrite_csd_job_wg_counts_from_indirect, 679 [V3D_CPU_JOB_TYPE_TIMESTAMP_QUERY] = v3d_timestamp_query, 680 [V3D_CPU_JOB_TYPE_RESET_TIMESTAMP_QUERY] = v3d_reset_timestamp_queries, 681 [V3D_CPU_JOB_TYPE_COPY_TIMESTAMP_QUERY] = v3d_copy_query_results, 682 [V3D_CPU_JOB_TYPE_RESET_PERFORMANCE_QUERY] = v3d_reset_performance_queries, 683 [V3D_CPU_JOB_TYPE_COPY_PERFORMANCE_QUERY] = v3d_copy_performance_query, 684 }; 685 686 static struct dma_fence * 687 v3d_cpu_job_run(struct drm_sched_job *sched_job) 688 { 689 struct v3d_cpu_job *job = to_cpu_job(sched_job); 690 struct v3d_dev *v3d = job->base.v3d; 691 692 if (job->job_type >= ARRAY_SIZE(cpu_job_function)) { 693 DRM_DEBUG_DRIVER("Unknown CPU job: %d\n", job->job_type); 694 return NULL; 695 } 696 697 v3d_job_start_stats(&job->base, V3D_CPU); 698 trace_v3d_cpu_job_begin(&v3d->drm, job->job_type); 699 700 cpu_job_function[job->job_type](job); 701 702 trace_v3d_cpu_job_end(&v3d->drm, job->job_type); 703 v3d_job_update_stats(&job->base, V3D_CPU); 704 705 /* Synchronous operation, so no fence to wait on. */ 706 return NULL; 707 } 708 709 static struct dma_fence * 710 v3d_cache_clean_job_run(struct drm_sched_job *sched_job) 711 { 712 struct v3d_job *job = to_v3d_job(sched_job); 713 struct v3d_dev *v3d = job->v3d; 714 715 v3d_job_start_stats(job, V3D_CACHE_CLEAN); 716 717 v3d_clean_caches(v3d); 718 719 v3d_job_update_stats(job, V3D_CACHE_CLEAN); 720 721 /* Synchronous operation, so no fence to wait on. */ 722 return NULL; 723 } 724 725 static enum drm_gpu_sched_stat 726 v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job, 727 enum v3d_queue q) 728 { 729 struct v3d_job *job = to_v3d_job(sched_job); 730 struct v3d_file_priv *v3d_priv = job->file_priv; 731 unsigned long irqflags; 732 enum v3d_queue i; 733 734 mutex_lock(&v3d->reset_lock); 735 736 /* block scheduler */ 737 for (i = 0; i < V3D_MAX_QUEUES; i++) 738 drm_sched_stop(&v3d->queue[i].sched, sched_job); 739 740 if (sched_job) 741 drm_sched_increase_karma(sched_job); 742 743 /* get the GPU back into the init state */ 744 v3d_reset(v3d); 745 746 v3d->reset_counter++; 747 spin_lock_irqsave(&v3d->queue[q].queue_lock, irqflags); 748 if (v3d_priv) 749 v3d_priv->reset_counter++; 750 spin_unlock_irqrestore(&v3d->queue[q].queue_lock, irqflags); 751 752 for (i = 0; i < V3D_MAX_QUEUES; i++) 753 drm_sched_resubmit_jobs(&v3d->queue[i].sched); 754 755 /* Unblock schedulers and restart their jobs. */ 756 for (i = 0; i < V3D_MAX_QUEUES; i++) 757 drm_sched_start(&v3d->queue[i].sched, 0); 758 759 mutex_unlock(&v3d->reset_lock); 760 761 return DRM_GPU_SCHED_STAT_RESET; 762 } 763 764 static enum drm_gpu_sched_stat 765 v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q, 766 u32 *timedout_ctca, u32 *timedout_ctra) 767 { 768 struct v3d_job *job = to_v3d_job(sched_job); 769 struct v3d_dev *v3d = job->v3d; 770 u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q)); 771 u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q)); 772 773 /* If the current address or return address have changed, then the GPU 774 * has probably made progress and we should delay the reset. This 775 * could fail if the GPU got in an infinite loop in the CL, but that 776 * is pretty unlikely outside of an i-g-t testcase. 777 */ 778 if (*timedout_ctca != ctca || *timedout_ctra != ctra) { 779 *timedout_ctca = ctca; 780 *timedout_ctra = ctra; 781 782 return DRM_GPU_SCHED_STAT_NO_HANG; 783 } 784 785 return v3d_gpu_reset_for_timeout(v3d, sched_job, q); 786 } 787 788 static enum drm_gpu_sched_stat 789 v3d_bin_job_timedout(struct drm_sched_job *sched_job) 790 { 791 struct v3d_bin_job *job = to_bin_job(sched_job); 792 793 return v3d_cl_job_timedout(sched_job, V3D_BIN, 794 &job->timedout_ctca, &job->timedout_ctra); 795 } 796 797 static enum drm_gpu_sched_stat 798 v3d_render_job_timedout(struct drm_sched_job *sched_job) 799 { 800 struct v3d_render_job *job = to_render_job(sched_job); 801 802 return v3d_cl_job_timedout(sched_job, V3D_RENDER, 803 &job->timedout_ctca, &job->timedout_ctra); 804 } 805 806 static enum drm_gpu_sched_stat 807 v3d_tfu_job_timedout(struct drm_sched_job *sched_job) 808 { 809 struct v3d_job *job = to_v3d_job(sched_job); 810 811 return v3d_gpu_reset_for_timeout(job->v3d, sched_job, V3D_TFU); 812 } 813 814 static enum drm_gpu_sched_stat 815 v3d_csd_job_timedout(struct drm_sched_job *sched_job) 816 { 817 struct v3d_csd_job *job = to_csd_job(sched_job); 818 struct v3d_dev *v3d = job->base.v3d; 819 u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4(v3d->ver)); 820 821 /* If we've made progress, skip reset, add the job to the pending 822 * list, and let the timer get rearmed. 823 */ 824 if (job->timedout_batches != batches) { 825 job->timedout_batches = batches; 826 827 return DRM_GPU_SCHED_STAT_NO_HANG; 828 } 829 830 return v3d_gpu_reset_for_timeout(v3d, sched_job, V3D_CSD); 831 } 832 833 static const struct drm_sched_backend_ops v3d_bin_sched_ops = { 834 .run_job = v3d_bin_job_run, 835 .timedout_job = v3d_bin_job_timedout, 836 .free_job = v3d_sched_job_free, 837 }; 838 839 static const struct drm_sched_backend_ops v3d_render_sched_ops = { 840 .run_job = v3d_render_job_run, 841 .timedout_job = v3d_render_job_timedout, 842 .free_job = v3d_sched_job_free, 843 }; 844 845 static const struct drm_sched_backend_ops v3d_tfu_sched_ops = { 846 .run_job = v3d_tfu_job_run, 847 .timedout_job = v3d_tfu_job_timedout, 848 .free_job = v3d_sched_job_free, 849 }; 850 851 static const struct drm_sched_backend_ops v3d_csd_sched_ops = { 852 .run_job = v3d_csd_job_run, 853 .timedout_job = v3d_csd_job_timedout, 854 .free_job = v3d_sched_job_free 855 }; 856 857 static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = { 858 .run_job = v3d_cache_clean_job_run, 859 .free_job = v3d_sched_job_free 860 }; 861 862 static const struct drm_sched_backend_ops v3d_cpu_sched_ops = { 863 .run_job = v3d_cpu_job_run, 864 .free_job = v3d_cpu_job_free 865 }; 866 867 static int 868 v3d_queue_sched_init(struct v3d_dev *v3d, const struct drm_sched_backend_ops *ops, 869 enum v3d_queue queue, const char *name) 870 { 871 struct drm_sched_init_args args = { 872 .num_rqs = DRM_SCHED_PRIORITY_COUNT, 873 .credit_limit = 1, 874 .timeout = msecs_to_jiffies(500), 875 .dev = v3d->drm.dev, 876 }; 877 878 args.ops = ops; 879 args.name = name; 880 881 return drm_sched_init(&v3d->queue[queue].sched, &args); 882 } 883 884 int 885 v3d_sched_init(struct v3d_dev *v3d) 886 { 887 int ret; 888 889 ret = v3d_queue_sched_init(v3d, &v3d_bin_sched_ops, V3D_BIN, "v3d_bin"); 890 if (ret) 891 return ret; 892 893 ret = v3d_queue_sched_init(v3d, &v3d_render_sched_ops, V3D_RENDER, 894 "v3d_render"); 895 if (ret) 896 goto fail; 897 898 ret = v3d_queue_sched_init(v3d, &v3d_tfu_sched_ops, V3D_TFU, "v3d_tfu"); 899 if (ret) 900 goto fail; 901 902 if (v3d_has_csd(v3d)) { 903 ret = v3d_queue_sched_init(v3d, &v3d_csd_sched_ops, V3D_CSD, 904 "v3d_csd"); 905 if (ret) 906 goto fail; 907 908 ret = v3d_queue_sched_init(v3d, &v3d_cache_clean_sched_ops, 909 V3D_CACHE_CLEAN, "v3d_cache_clean"); 910 if (ret) 911 goto fail; 912 } 913 914 ret = v3d_queue_sched_init(v3d, &v3d_cpu_sched_ops, V3D_CPU, "v3d_cpu"); 915 if (ret) 916 goto fail; 917 918 return 0; 919 920 fail: 921 v3d_sched_fini(v3d); 922 return ret; 923 } 924 925 void 926 v3d_sched_fini(struct v3d_dev *v3d) 927 { 928 enum v3d_queue q; 929 930 for (q = 0; q < V3D_MAX_QUEUES; q++) { 931 if (v3d->queue[q].sched.ready) 932 drm_sched_fini(&v3d->queue[q].sched); 933 } 934 } 935