xref: /linux/drivers/gpu/drm/v3d/v3d_sched.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2018 Broadcom */
3 
4 /**
5  * DOC: Broadcom V3D scheduling
6  *
7  * The shared DRM GPU scheduler is used to coordinate submitting jobs
8  * to the hardware. Each DRM fd (roughly a client process) gets its
9  * own scheduler entity, which will process jobs in order. The GPU
10  * scheduler will schedule the clients with a FIFO scheduling algorithm.
11  *
12  * For simplicity, and in order to keep latency low for interactive
13  * jobs when bulk background jobs are queued up, we submit a new job
14  * to the HW only when it has completed the last one, instead of
15  * filling up the CT[01]Q FIFOs with jobs. Similarly, we use
16  * `drm_sched_job_add_dependency()` to manage the dependency between bin
17  * and render, instead of having the clients submit jobs using the HW's
18  * semaphores to interlock between them.
19  */
20 
21 #include <linux/sched/clock.h>
22 #include <linux/kthread.h>
23 
24 #include <drm/drm_syncobj.h>
25 
26 #include "v3d_drv.h"
27 #include "v3d_regs.h"
28 #include "v3d_trace.h"
29 
30 #define V3D_CSD_CFG012_WG_COUNT_SHIFT 16
31 
32 static struct v3d_job *
33 to_v3d_job(struct drm_sched_job *sched_job)
34 {
35 	return container_of(sched_job, struct v3d_job, base);
36 }
37 
38 static struct v3d_bin_job *
39 to_bin_job(struct drm_sched_job *sched_job)
40 {
41 	return container_of(sched_job, struct v3d_bin_job, base.base);
42 }
43 
44 static struct v3d_render_job *
45 to_render_job(struct drm_sched_job *sched_job)
46 {
47 	return container_of(sched_job, struct v3d_render_job, base.base);
48 }
49 
50 static struct v3d_tfu_job *
51 to_tfu_job(struct drm_sched_job *sched_job)
52 {
53 	return container_of(sched_job, struct v3d_tfu_job, base.base);
54 }
55 
56 static struct v3d_csd_job *
57 to_csd_job(struct drm_sched_job *sched_job)
58 {
59 	return container_of(sched_job, struct v3d_csd_job, base.base);
60 }
61 
62 static struct v3d_cpu_job *
63 to_cpu_job(struct drm_sched_job *sched_job)
64 {
65 	return container_of(sched_job, struct v3d_cpu_job, base.base);
66 }
67 
68 static void
69 v3d_sched_job_free(struct drm_sched_job *sched_job)
70 {
71 	struct v3d_job *job = to_v3d_job(sched_job);
72 
73 	v3d_job_cleanup(job);
74 }
75 
76 void
77 v3d_timestamp_query_info_free(struct v3d_timestamp_query_info *query_info,
78 			      unsigned int count)
79 {
80 	if (query_info->queries) {
81 		unsigned int i;
82 
83 		for (i = 0; i < count; i++)
84 			drm_syncobj_put(query_info->queries[i].syncobj);
85 
86 		kvfree(query_info->queries);
87 	}
88 }
89 
90 void
91 v3d_performance_query_info_free(struct v3d_performance_query_info *query_info,
92 				unsigned int count)
93 {
94 	if (query_info->queries) {
95 		unsigned int i;
96 
97 		for (i = 0; i < count; i++) {
98 			drm_syncobj_put(query_info->queries[i].syncobj);
99 			kvfree(query_info->queries[i].kperfmon_ids);
100 		}
101 
102 		kvfree(query_info->queries);
103 	}
104 }
105 
106 static void
107 v3d_cpu_job_free(struct drm_sched_job *sched_job)
108 {
109 	struct v3d_cpu_job *job = to_cpu_job(sched_job);
110 
111 	v3d_timestamp_query_info_free(&job->timestamp_query,
112 				      job->timestamp_query.count);
113 
114 	v3d_performance_query_info_free(&job->performance_query,
115 					job->performance_query.count);
116 
117 	v3d_job_cleanup(&job->base);
118 }
119 
120 static void
121 v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job)
122 {
123 	struct v3d_perfmon *perfmon = v3d->global_perfmon;
124 
125 	if (!perfmon)
126 		perfmon = job->perfmon;
127 
128 	if (perfmon == v3d->active_perfmon)
129 		return;
130 
131 	if (perfmon != v3d->active_perfmon)
132 		v3d_perfmon_stop(v3d, v3d->active_perfmon, true);
133 
134 	if (perfmon && v3d->active_perfmon != perfmon)
135 		v3d_perfmon_start(v3d, perfmon);
136 }
137 
138 static void
139 v3d_job_start_stats(struct v3d_job *job, enum v3d_queue queue)
140 {
141 	struct v3d_dev *v3d = job->v3d;
142 	struct v3d_file_priv *file = job->file_priv;
143 	struct v3d_stats *global_stats = &v3d->queue[queue].stats;
144 	struct v3d_stats *local_stats = &file->stats[queue];
145 	u64 now = local_clock();
146 	unsigned long flags;
147 
148 	/*
149 	 * We only need to disable local interrupts to appease lockdep who
150 	 * otherwise would think v3d_job_start_stats vs v3d_stats_update has an
151 	 * unsafe in-irq vs no-irq-off usage problem. This is a false positive
152 	 * because all the locks are per queue and stats type, and all jobs are
153 	 * completely one at a time serialised. More specifically:
154 	 *
155 	 * 1. Locks for GPU queues are updated from interrupt handlers under a
156 	 *    spin lock and started here with preemption disabled.
157 	 *
158 	 * 2. Locks for CPU queues are updated from the worker with preemption
159 	 *    disabled and equally started here with preemption disabled.
160 	 *
161 	 * Therefore both are consistent.
162 	 *
163 	 * 3. Because next job can only be queued after the previous one has
164 	 *    been signaled, and locks are per queue, there is also no scope for
165 	 *    the start part to race with the update part.
166 	 */
167 	if (IS_ENABLED(CONFIG_LOCKDEP))
168 		local_irq_save(flags);
169 	else
170 		preempt_disable();
171 
172 	write_seqcount_begin(&local_stats->lock);
173 	local_stats->start_ns = now;
174 	write_seqcount_end(&local_stats->lock);
175 
176 	write_seqcount_begin(&global_stats->lock);
177 	global_stats->start_ns = now;
178 	write_seqcount_end(&global_stats->lock);
179 
180 	if (IS_ENABLED(CONFIG_LOCKDEP))
181 		local_irq_restore(flags);
182 	else
183 		preempt_enable();
184 }
185 
186 static void
187 v3d_stats_update(struct v3d_stats *stats, u64 now)
188 {
189 	write_seqcount_begin(&stats->lock);
190 	stats->enabled_ns += now - stats->start_ns;
191 	stats->jobs_completed++;
192 	stats->start_ns = 0;
193 	write_seqcount_end(&stats->lock);
194 }
195 
196 void
197 v3d_job_update_stats(struct v3d_job *job, enum v3d_queue q)
198 {
199 	struct v3d_dev *v3d = job->v3d;
200 	struct v3d_queue_state *queue = &v3d->queue[q];
201 	struct v3d_stats *global_stats = &queue->stats;
202 	u64 now = local_clock();
203 	unsigned long flags;
204 
205 	/* See comment in v3d_job_start_stats() */
206 	if (IS_ENABLED(CONFIG_LOCKDEP))
207 		local_irq_save(flags);
208 	else
209 		preempt_disable();
210 
211 	/* Don't update the local stats if the file context has already closed */
212 	spin_lock(&queue->queue_lock);
213 	if (job->file_priv)
214 		v3d_stats_update(&job->file_priv->stats[q], now);
215 	spin_unlock(&queue->queue_lock);
216 
217 	v3d_stats_update(global_stats, now);
218 
219 	if (IS_ENABLED(CONFIG_LOCKDEP))
220 		local_irq_restore(flags);
221 	else
222 		preempt_enable();
223 }
224 
225 static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job)
226 {
227 	struct v3d_bin_job *job = to_bin_job(sched_job);
228 	struct v3d_dev *v3d = job->base.v3d;
229 	struct v3d_queue_state *queue = &v3d->queue[V3D_BIN];
230 	struct drm_device *dev = &v3d->drm;
231 	struct dma_fence *fence;
232 	unsigned long irqflags;
233 
234 	if (unlikely(job->base.base.s_fence->finished.error)) {
235 		spin_lock_irqsave(&queue->queue_lock, irqflags);
236 		queue->active_job = NULL;
237 		spin_unlock_irqrestore(&queue->queue_lock, irqflags);
238 		return NULL;
239 	}
240 
241 	/* Lock required around bin_job update vs
242 	 * v3d_overflow_mem_work().
243 	 */
244 	spin_lock_irqsave(&queue->queue_lock, irqflags);
245 	queue->active_job = &job->base;
246 	/* Clear out the overflow allocation, so we don't
247 	 * reuse the overflow attached to a previous job.
248 	 */
249 	V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0);
250 	spin_unlock_irqrestore(&queue->queue_lock, irqflags);
251 
252 	v3d_invalidate_caches(v3d);
253 
254 	fence = v3d_fence_create(v3d, V3D_BIN);
255 	if (IS_ERR(fence))
256 		return NULL;
257 
258 	if (job->base.irq_fence)
259 		dma_fence_put(job->base.irq_fence);
260 	job->base.irq_fence = dma_fence_get(fence);
261 
262 	trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno,
263 			    job->start, job->end);
264 
265 	v3d_job_start_stats(&job->base, V3D_BIN);
266 	v3d_switch_perfmon(v3d, &job->base);
267 
268 	/* Set the current and end address of the control list.
269 	 * Writing the end register is what starts the job.
270 	 */
271 	if (job->qma) {
272 		V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma);
273 		V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms);
274 	}
275 	if (job->qts) {
276 		V3D_CORE_WRITE(0, V3D_CLE_CT0QTS,
277 			       V3D_CLE_CT0QTS_ENABLE |
278 			       job->qts);
279 	}
280 	V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start);
281 	V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end);
282 
283 	return fence;
284 }
285 
286 static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job)
287 {
288 	struct v3d_render_job *job = to_render_job(sched_job);
289 	struct v3d_dev *v3d = job->base.v3d;
290 	struct drm_device *dev = &v3d->drm;
291 	struct dma_fence *fence;
292 
293 	if (unlikely(job->base.base.s_fence->finished.error)) {
294 		v3d->queue[V3D_RENDER].active_job = NULL;
295 		return NULL;
296 	}
297 
298 	v3d->queue[V3D_RENDER].active_job = &job->base;
299 
300 	/* Can we avoid this flush?  We need to be careful of
301 	 * scheduling, though -- imagine job0 rendering to texture and
302 	 * job1 reading, and them being executed as bin0, bin1,
303 	 * render0, render1, so that render1's flush at bin time
304 	 * wasn't enough.
305 	 */
306 	v3d_invalidate_caches(v3d);
307 
308 	fence = v3d_fence_create(v3d, V3D_RENDER);
309 	if (IS_ERR(fence))
310 		return NULL;
311 
312 	if (job->base.irq_fence)
313 		dma_fence_put(job->base.irq_fence);
314 	job->base.irq_fence = dma_fence_get(fence);
315 
316 	trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno,
317 			    job->start, job->end);
318 
319 	v3d_job_start_stats(&job->base, V3D_RENDER);
320 	v3d_switch_perfmon(v3d, &job->base);
321 
322 	/* XXX: Set the QCFG */
323 
324 	/* Set the current and end address of the control list.
325 	 * Writing the end register is what starts the job.
326 	 */
327 	V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start);
328 	V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end);
329 
330 	return fence;
331 }
332 
333 static struct dma_fence *
334 v3d_tfu_job_run(struct drm_sched_job *sched_job)
335 {
336 	struct v3d_tfu_job *job = to_tfu_job(sched_job);
337 	struct v3d_dev *v3d = job->base.v3d;
338 	struct drm_device *dev = &v3d->drm;
339 	struct dma_fence *fence;
340 
341 	if (unlikely(job->base.base.s_fence->finished.error)) {
342 		v3d->queue[V3D_TFU].active_job = NULL;
343 		return NULL;
344 	}
345 
346 	v3d->queue[V3D_TFU].active_job = &job->base;
347 
348 	fence = v3d_fence_create(v3d, V3D_TFU);
349 	if (IS_ERR(fence))
350 		return NULL;
351 
352 	if (job->base.irq_fence)
353 		dma_fence_put(job->base.irq_fence);
354 	job->base.irq_fence = dma_fence_get(fence);
355 
356 	trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno);
357 
358 	v3d_job_start_stats(&job->base, V3D_TFU);
359 
360 	V3D_WRITE(V3D_TFU_IIA(v3d->ver), job->args.iia);
361 	V3D_WRITE(V3D_TFU_IIS(v3d->ver), job->args.iis);
362 	V3D_WRITE(V3D_TFU_ICA(v3d->ver), job->args.ica);
363 	V3D_WRITE(V3D_TFU_IUA(v3d->ver), job->args.iua);
364 	V3D_WRITE(V3D_TFU_IOA(v3d->ver), job->args.ioa);
365 	if (v3d->ver >= V3D_GEN_71)
366 		V3D_WRITE(V3D_V7_TFU_IOC, job->args.v71.ioc);
367 	V3D_WRITE(V3D_TFU_IOS(v3d->ver), job->args.ios);
368 	V3D_WRITE(V3D_TFU_COEF0(v3d->ver), job->args.coef[0]);
369 	if (v3d->ver >= V3D_GEN_71 || (job->args.coef[0] & V3D_TFU_COEF0_USECOEF)) {
370 		V3D_WRITE(V3D_TFU_COEF1(v3d->ver), job->args.coef[1]);
371 		V3D_WRITE(V3D_TFU_COEF2(v3d->ver), job->args.coef[2]);
372 		V3D_WRITE(V3D_TFU_COEF3(v3d->ver), job->args.coef[3]);
373 	}
374 	/* ICFG kicks off the job. */
375 	V3D_WRITE(V3D_TFU_ICFG(v3d->ver), job->args.icfg | V3D_TFU_ICFG_IOC);
376 
377 	return fence;
378 }
379 
380 static struct dma_fence *
381 v3d_csd_job_run(struct drm_sched_job *sched_job)
382 {
383 	struct v3d_csd_job *job = to_csd_job(sched_job);
384 	struct v3d_dev *v3d = job->base.v3d;
385 	struct drm_device *dev = &v3d->drm;
386 	struct dma_fence *fence;
387 	int i, csd_cfg0_reg;
388 
389 	if (unlikely(job->base.base.s_fence->finished.error)) {
390 		v3d->queue[V3D_CSD].active_job = NULL;
391 		return NULL;
392 	}
393 
394 	v3d->queue[V3D_CSD].active_job = &job->base;
395 
396 	v3d_invalidate_caches(v3d);
397 
398 	fence = v3d_fence_create(v3d, V3D_CSD);
399 	if (IS_ERR(fence))
400 		return NULL;
401 
402 	if (job->base.irq_fence)
403 		dma_fence_put(job->base.irq_fence);
404 	job->base.irq_fence = dma_fence_get(fence);
405 
406 	trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno);
407 
408 	v3d_job_start_stats(&job->base, V3D_CSD);
409 	v3d_switch_perfmon(v3d, &job->base);
410 
411 	csd_cfg0_reg = V3D_CSD_QUEUED_CFG0(v3d->ver);
412 	for (i = 1; i <= 6; i++)
413 		V3D_CORE_WRITE(0, csd_cfg0_reg + 4 * i, job->args.cfg[i]);
414 
415 	/* Although V3D 7.1 has an eighth configuration register, we are not
416 	 * using it. Therefore, make sure it remains unused.
417 	 *
418 	 * XXX: Set the CFG7 register
419 	 */
420 	if (v3d->ver >= V3D_GEN_71)
421 		V3D_CORE_WRITE(0, V3D_V7_CSD_QUEUED_CFG7, 0);
422 
423 	/* CFG0 write kicks off the job. */
424 	V3D_CORE_WRITE(0, csd_cfg0_reg, job->args.cfg[0]);
425 
426 	return fence;
427 }
428 
429 static void
430 v3d_rewrite_csd_job_wg_counts_from_indirect(struct v3d_cpu_job *job)
431 {
432 	struct v3d_indirect_csd_info *indirect_csd = &job->indirect_csd;
433 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
434 	struct v3d_bo *indirect = to_v3d_bo(indirect_csd->indirect);
435 	struct drm_v3d_submit_csd *args = &indirect_csd->job->args;
436 	struct v3d_dev *v3d = job->base.v3d;
437 	u32 num_batches, *wg_counts;
438 
439 	v3d_get_bo_vaddr(bo);
440 	v3d_get_bo_vaddr(indirect);
441 
442 	wg_counts = (uint32_t *)(bo->vaddr + indirect_csd->offset);
443 
444 	if (wg_counts[0] == 0 || wg_counts[1] == 0 || wg_counts[2] == 0)
445 		return;
446 
447 	args->cfg[0] = wg_counts[0] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
448 	args->cfg[1] = wg_counts[1] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
449 	args->cfg[2] = wg_counts[2] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
450 
451 	num_batches = DIV_ROUND_UP(indirect_csd->wg_size, 16) *
452 		      (wg_counts[0] * wg_counts[1] * wg_counts[2]);
453 
454 	/* V3D 7.1.6 and later don't subtract 1 from the number of batches */
455 	if (v3d->ver < 71 || (v3d->ver == 71 && v3d->rev < 6))
456 		args->cfg[4] = num_batches - 1;
457 	else
458 		args->cfg[4] = num_batches;
459 
460 	WARN_ON(args->cfg[4] == ~0);
461 
462 	for (int i = 0; i < 3; i++) {
463 		/* 0xffffffff indicates that the uniform rewrite is not needed */
464 		if (indirect_csd->wg_uniform_offsets[i] != 0xffffffff) {
465 			u32 uniform_idx = indirect_csd->wg_uniform_offsets[i];
466 			((uint32_t *)indirect->vaddr)[uniform_idx] = wg_counts[i];
467 		}
468 	}
469 
470 	v3d_put_bo_vaddr(indirect);
471 	v3d_put_bo_vaddr(bo);
472 }
473 
474 static void
475 v3d_timestamp_query(struct v3d_cpu_job *job)
476 {
477 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
478 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
479 	u8 *value_addr;
480 
481 	v3d_get_bo_vaddr(bo);
482 
483 	for (int i = 0; i < timestamp_query->count; i++) {
484 		value_addr = ((u8 *)bo->vaddr) + timestamp_query->queries[i].offset;
485 		*((u64 *)value_addr) = i == 0 ? ktime_get_ns() : 0ull;
486 
487 		drm_syncobj_replace_fence(timestamp_query->queries[i].syncobj,
488 					  job->base.done_fence);
489 	}
490 
491 	v3d_put_bo_vaddr(bo);
492 }
493 
494 static void
495 v3d_reset_timestamp_queries(struct v3d_cpu_job *job)
496 {
497 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
498 	struct v3d_timestamp_query *queries = timestamp_query->queries;
499 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
500 	u8 *value_addr;
501 
502 	v3d_get_bo_vaddr(bo);
503 
504 	for (int i = 0; i < timestamp_query->count; i++) {
505 		value_addr = ((u8 *)bo->vaddr) + queries[i].offset;
506 		*((u64 *)value_addr) = 0;
507 
508 		drm_syncobj_replace_fence(queries[i].syncobj, NULL);
509 	}
510 
511 	v3d_put_bo_vaddr(bo);
512 }
513 
514 static void write_to_buffer_32(u32 *dst, unsigned int idx, u32 value)
515 {
516 	dst[idx] = value;
517 }
518 
519 static void write_to_buffer_64(u64 *dst, unsigned int idx, u64 value)
520 {
521 	dst[idx] = value;
522 }
523 
524 static void
525 write_to_buffer(void *dst, unsigned int idx, bool do_64bit, u64 value)
526 {
527 	if (do_64bit)
528 		write_to_buffer_64(dst, idx, value);
529 	else
530 		write_to_buffer_32(dst, idx, value);
531 }
532 
533 static void
534 v3d_copy_query_results(struct v3d_cpu_job *job)
535 {
536 	struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
537 	struct v3d_timestamp_query *queries = timestamp_query->queries;
538 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
539 	struct v3d_bo *timestamp = to_v3d_bo(job->base.bo[1]);
540 	struct v3d_copy_query_results_info *copy = &job->copy;
541 	struct dma_fence *fence;
542 	u8 *query_addr;
543 	bool available, write_result;
544 	u8 *data;
545 	int i;
546 
547 	v3d_get_bo_vaddr(bo);
548 	v3d_get_bo_vaddr(timestamp);
549 
550 	data = ((u8 *)bo->vaddr) + copy->offset;
551 
552 	for (i = 0; i < timestamp_query->count; i++) {
553 		fence = drm_syncobj_fence_get(queries[i].syncobj);
554 		available = fence ? dma_fence_is_signaled(fence) : false;
555 
556 		write_result = available || copy->do_partial;
557 		if (write_result) {
558 			query_addr = ((u8 *)timestamp->vaddr) + queries[i].offset;
559 			write_to_buffer(data, 0, copy->do_64bit, *((u64 *)query_addr));
560 		}
561 
562 		if (copy->availability_bit)
563 			write_to_buffer(data, 1, copy->do_64bit, available ? 1u : 0u);
564 
565 		data += copy->stride;
566 
567 		dma_fence_put(fence);
568 	}
569 
570 	v3d_put_bo_vaddr(timestamp);
571 	v3d_put_bo_vaddr(bo);
572 }
573 
574 static void
575 v3d_reset_performance_queries(struct v3d_cpu_job *job)
576 {
577 	struct v3d_performance_query_info *performance_query = &job->performance_query;
578 	struct v3d_file_priv *v3d_priv = job->base.file_priv;
579 	struct v3d_dev *v3d = job->base.v3d;
580 	struct v3d_perfmon *perfmon;
581 
582 	for (int i = 0; i < performance_query->count; i++) {
583 		for (int j = 0; j < performance_query->nperfmons; j++) {
584 			perfmon = v3d_perfmon_find(v3d_priv,
585 						   performance_query->queries[i].kperfmon_ids[j]);
586 			if (!perfmon) {
587 				DRM_DEBUG("Failed to find perfmon.");
588 				continue;
589 			}
590 
591 			v3d_perfmon_stop(v3d, perfmon, false);
592 
593 			memset(perfmon->values, 0, perfmon->ncounters * sizeof(u64));
594 
595 			v3d_perfmon_put(perfmon);
596 		}
597 
598 		drm_syncobj_replace_fence(performance_query->queries[i].syncobj, NULL);
599 	}
600 }
601 
602 static void
603 v3d_write_performance_query_result(struct v3d_cpu_job *job, void *data,
604 				   unsigned int query)
605 {
606 	struct v3d_performance_query_info *performance_query =
607 						&job->performance_query;
608 	struct v3d_file_priv *v3d_priv = job->base.file_priv;
609 	struct v3d_performance_query *perf_query =
610 			&performance_query->queries[query];
611 	struct v3d_dev *v3d = job->base.v3d;
612 	unsigned int i, j, offset;
613 
614 	for (i = 0, offset = 0;
615 	     i < performance_query->nperfmons;
616 	     i++, offset += DRM_V3D_MAX_PERF_COUNTERS) {
617 		struct v3d_perfmon *perfmon;
618 
619 		perfmon = v3d_perfmon_find(v3d_priv,
620 					   perf_query->kperfmon_ids[i]);
621 		if (!perfmon) {
622 			DRM_DEBUG("Failed to find perfmon.");
623 			continue;
624 		}
625 
626 		v3d_perfmon_stop(v3d, perfmon, true);
627 
628 		if (job->copy.do_64bit) {
629 			for (j = 0; j < perfmon->ncounters; j++)
630 				write_to_buffer_64(data, offset + j,
631 						   perfmon->values[j]);
632 		} else {
633 			for (j = 0; j < perfmon->ncounters; j++)
634 				write_to_buffer_32(data, offset + j,
635 						   perfmon->values[j]);
636 		}
637 
638 		v3d_perfmon_put(perfmon);
639 	}
640 }
641 
642 static void
643 v3d_copy_performance_query(struct v3d_cpu_job *job)
644 {
645 	struct v3d_performance_query_info *performance_query = &job->performance_query;
646 	struct v3d_copy_query_results_info *copy = &job->copy;
647 	struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
648 	struct dma_fence *fence;
649 	bool available, write_result;
650 	u8 *data;
651 
652 	v3d_get_bo_vaddr(bo);
653 
654 	data = ((u8 *)bo->vaddr) + copy->offset;
655 
656 	for (int i = 0; i < performance_query->count; i++) {
657 		fence = drm_syncobj_fence_get(performance_query->queries[i].syncobj);
658 		available = fence ? dma_fence_is_signaled(fence) : false;
659 
660 		write_result = available || copy->do_partial;
661 		if (write_result)
662 			v3d_write_performance_query_result(job, data, i);
663 
664 		if (copy->availability_bit)
665 			write_to_buffer(data, performance_query->ncounters,
666 					copy->do_64bit, available ? 1u : 0u);
667 
668 		data += copy->stride;
669 
670 		dma_fence_put(fence);
671 	}
672 
673 	v3d_put_bo_vaddr(bo);
674 }
675 
676 static const v3d_cpu_job_fn cpu_job_function[] = {
677 	[V3D_CPU_JOB_TYPE_INDIRECT_CSD] = v3d_rewrite_csd_job_wg_counts_from_indirect,
678 	[V3D_CPU_JOB_TYPE_TIMESTAMP_QUERY] = v3d_timestamp_query,
679 	[V3D_CPU_JOB_TYPE_RESET_TIMESTAMP_QUERY] = v3d_reset_timestamp_queries,
680 	[V3D_CPU_JOB_TYPE_COPY_TIMESTAMP_QUERY] = v3d_copy_query_results,
681 	[V3D_CPU_JOB_TYPE_RESET_PERFORMANCE_QUERY] = v3d_reset_performance_queries,
682 	[V3D_CPU_JOB_TYPE_COPY_PERFORMANCE_QUERY] = v3d_copy_performance_query,
683 };
684 
685 static struct dma_fence *
686 v3d_cpu_job_run(struct drm_sched_job *sched_job)
687 {
688 	struct v3d_cpu_job *job = to_cpu_job(sched_job);
689 	struct v3d_dev *v3d = job->base.v3d;
690 
691 	if (job->job_type >= ARRAY_SIZE(cpu_job_function)) {
692 		DRM_DEBUG_DRIVER("Unknown CPU job: %d\n", job->job_type);
693 		return NULL;
694 	}
695 
696 	v3d_job_start_stats(&job->base, V3D_CPU);
697 	trace_v3d_cpu_job_begin(&v3d->drm, job->job_type);
698 
699 	cpu_job_function[job->job_type](job);
700 
701 	trace_v3d_cpu_job_end(&v3d->drm, job->job_type);
702 	v3d_job_update_stats(&job->base, V3D_CPU);
703 
704 	/* Synchronous operation, so no fence to wait on. */
705 	return NULL;
706 }
707 
708 static struct dma_fence *
709 v3d_cache_clean_job_run(struct drm_sched_job *sched_job)
710 {
711 	struct v3d_job *job = to_v3d_job(sched_job);
712 	struct v3d_dev *v3d = job->v3d;
713 
714 	v3d_job_start_stats(job, V3D_CACHE_CLEAN);
715 
716 	v3d_clean_caches(v3d);
717 
718 	v3d_job_update_stats(job, V3D_CACHE_CLEAN);
719 
720 	/* Synchronous operation, so no fence to wait on. */
721 	return NULL;
722 }
723 
724 static enum drm_gpu_sched_stat
725 v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job,
726 			  enum v3d_queue q)
727 {
728 	struct v3d_job *job = to_v3d_job(sched_job);
729 	struct v3d_file_priv *v3d_priv = job->file_priv;
730 	unsigned long irqflags;
731 	enum v3d_queue i;
732 
733 	mutex_lock(&v3d->reset_lock);
734 
735 	/* block scheduler */
736 	for (i = 0; i < V3D_MAX_QUEUES; i++)
737 		drm_sched_stop(&v3d->queue[i].sched, sched_job);
738 
739 	if (sched_job)
740 		drm_sched_increase_karma(sched_job);
741 
742 	/* get the GPU back into the init state */
743 	v3d_reset(v3d);
744 
745 	v3d->reset_counter++;
746 	spin_lock_irqsave(&v3d->queue[q].queue_lock, irqflags);
747 	if (v3d_priv)
748 		v3d_priv->reset_counter++;
749 	spin_unlock_irqrestore(&v3d->queue[q].queue_lock, irqflags);
750 
751 	for (i = 0; i < V3D_MAX_QUEUES; i++)
752 		drm_sched_resubmit_jobs(&v3d->queue[i].sched);
753 
754 	/* Unblock schedulers and restart their jobs. */
755 	for (i = 0; i < V3D_MAX_QUEUES; i++)
756 		drm_sched_start(&v3d->queue[i].sched, 0);
757 
758 	mutex_unlock(&v3d->reset_lock);
759 
760 	return DRM_GPU_SCHED_STAT_RESET;
761 }
762 
763 static enum drm_gpu_sched_stat
764 v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q,
765 		    u32 *timedout_ctca, u32 *timedout_ctra)
766 {
767 	struct v3d_job *job = to_v3d_job(sched_job);
768 	struct v3d_dev *v3d = job->v3d;
769 	u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q));
770 	u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q));
771 
772 	/* If the current address or return address have changed, then the GPU
773 	 * has probably made progress and we should delay the reset. This
774 	 * could fail if the GPU got in an infinite loop in the CL, but that
775 	 * is pretty unlikely outside of an i-g-t testcase.
776 	 */
777 	if (*timedout_ctca != ctca || *timedout_ctra != ctra) {
778 		*timedout_ctca = ctca;
779 		*timedout_ctra = ctra;
780 
781 		return DRM_GPU_SCHED_STAT_NO_HANG;
782 	}
783 
784 	return v3d_gpu_reset_for_timeout(v3d, sched_job, q);
785 }
786 
787 static enum drm_gpu_sched_stat
788 v3d_bin_job_timedout(struct drm_sched_job *sched_job)
789 {
790 	struct v3d_bin_job *job = to_bin_job(sched_job);
791 
792 	return v3d_cl_job_timedout(sched_job, V3D_BIN,
793 				   &job->timedout_ctca, &job->timedout_ctra);
794 }
795 
796 static enum drm_gpu_sched_stat
797 v3d_render_job_timedout(struct drm_sched_job *sched_job)
798 {
799 	struct v3d_render_job *job = to_render_job(sched_job);
800 
801 	return v3d_cl_job_timedout(sched_job, V3D_RENDER,
802 				   &job->timedout_ctca, &job->timedout_ctra);
803 }
804 
805 static enum drm_gpu_sched_stat
806 v3d_tfu_job_timedout(struct drm_sched_job *sched_job)
807 {
808 	struct v3d_job *job = to_v3d_job(sched_job);
809 
810 	return v3d_gpu_reset_for_timeout(job->v3d, sched_job, V3D_TFU);
811 }
812 
813 static enum drm_gpu_sched_stat
814 v3d_csd_job_timedout(struct drm_sched_job *sched_job)
815 {
816 	struct v3d_csd_job *job = to_csd_job(sched_job);
817 	struct v3d_dev *v3d = job->base.v3d;
818 	u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4(v3d->ver));
819 
820 	/* If we've made progress, skip reset, add the job to the pending
821 	 * list, and let the timer get rearmed.
822 	 */
823 	if (job->timedout_batches != batches) {
824 		job->timedout_batches = batches;
825 
826 		return DRM_GPU_SCHED_STAT_NO_HANG;
827 	}
828 
829 	return v3d_gpu_reset_for_timeout(v3d, sched_job, V3D_CSD);
830 }
831 
832 static const struct drm_sched_backend_ops v3d_bin_sched_ops = {
833 	.run_job = v3d_bin_job_run,
834 	.timedout_job = v3d_bin_job_timedout,
835 	.free_job = v3d_sched_job_free,
836 };
837 
838 static const struct drm_sched_backend_ops v3d_render_sched_ops = {
839 	.run_job = v3d_render_job_run,
840 	.timedout_job = v3d_render_job_timedout,
841 	.free_job = v3d_sched_job_free,
842 };
843 
844 static const struct drm_sched_backend_ops v3d_tfu_sched_ops = {
845 	.run_job = v3d_tfu_job_run,
846 	.timedout_job = v3d_tfu_job_timedout,
847 	.free_job = v3d_sched_job_free,
848 };
849 
850 static const struct drm_sched_backend_ops v3d_csd_sched_ops = {
851 	.run_job = v3d_csd_job_run,
852 	.timedout_job = v3d_csd_job_timedout,
853 	.free_job = v3d_sched_job_free
854 };
855 
856 static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = {
857 	.run_job = v3d_cache_clean_job_run,
858 	.free_job = v3d_sched_job_free
859 };
860 
861 static const struct drm_sched_backend_ops v3d_cpu_sched_ops = {
862 	.run_job = v3d_cpu_job_run,
863 	.free_job = v3d_cpu_job_free
864 };
865 
866 static int
867 v3d_queue_sched_init(struct v3d_dev *v3d, const struct drm_sched_backend_ops *ops,
868 		     enum v3d_queue queue, const char *name)
869 {
870 	struct drm_sched_init_args args = {
871 		.num_rqs = DRM_SCHED_PRIORITY_COUNT,
872 		.credit_limit = 1,
873 		.timeout = msecs_to_jiffies(500),
874 		.dev = v3d->drm.dev,
875 	};
876 
877 	args.ops = ops;
878 	args.name = name;
879 
880 	return drm_sched_init(&v3d->queue[queue].sched, &args);
881 }
882 
883 int
884 v3d_sched_init(struct v3d_dev *v3d)
885 {
886 	int ret;
887 
888 	ret = v3d_queue_sched_init(v3d, &v3d_bin_sched_ops, V3D_BIN, "v3d_bin");
889 	if (ret)
890 		return ret;
891 
892 	ret = v3d_queue_sched_init(v3d, &v3d_render_sched_ops, V3D_RENDER,
893 				   "v3d_render");
894 	if (ret)
895 		goto fail;
896 
897 	ret = v3d_queue_sched_init(v3d, &v3d_tfu_sched_ops, V3D_TFU, "v3d_tfu");
898 	if (ret)
899 		goto fail;
900 
901 	if (v3d_has_csd(v3d)) {
902 		ret = v3d_queue_sched_init(v3d, &v3d_csd_sched_ops, V3D_CSD,
903 					   "v3d_csd");
904 		if (ret)
905 			goto fail;
906 
907 		ret = v3d_queue_sched_init(v3d, &v3d_cache_clean_sched_ops,
908 					   V3D_CACHE_CLEAN, "v3d_cache_clean");
909 		if (ret)
910 			goto fail;
911 	}
912 
913 	ret = v3d_queue_sched_init(v3d, &v3d_cpu_sched_ops, V3D_CPU, "v3d_cpu");
914 	if (ret)
915 		goto fail;
916 
917 	return 0;
918 
919 fail:
920 	v3d_sched_fini(v3d);
921 	return ret;
922 }
923 
924 void
925 v3d_sched_fini(struct v3d_dev *v3d)
926 {
927 	enum v3d_queue q;
928 
929 	for (q = 0; q < V3D_MAX_QUEUES; q++) {
930 		if (v3d->queue[q].sched.ready)
931 			drm_sched_fini(&v3d->queue[q].sched);
932 	}
933 }
934