1 /* 2 * Copyright (C) 2012 Red Hat 3 * based in parts on udlfb.c: 4 * Copyright (C) 2009 Roberto De Ioris <roberto@unbit.it> 5 * Copyright (C) 2009 Jaya Kumar <jayakumar.lkml@gmail.com> 6 * Copyright (C) 2009 Bernie Thompson <bernie@plugable.com> 7 * 8 * This file is subject to the terms and conditions of the GNU General Public 9 * License v2. See the file COPYING in the main directory of this archive for 10 * more details. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/fb.h> 16 #include <linux/prefetch.h> 17 18 #include <drm/drmP.h> 19 #include "udl_drv.h" 20 21 #define MAX_CMD_PIXELS 255 22 23 #define RLX_HEADER_BYTES 7 24 #define MIN_RLX_PIX_BYTES 4 25 #define MIN_RLX_CMD_BYTES (RLX_HEADER_BYTES + MIN_RLX_PIX_BYTES) 26 27 #define RLE_HEADER_BYTES 6 28 #define MIN_RLE_PIX_BYTES 3 29 #define MIN_RLE_CMD_BYTES (RLE_HEADER_BYTES + MIN_RLE_PIX_BYTES) 30 31 #define RAW_HEADER_BYTES 6 32 #define MIN_RAW_PIX_BYTES 2 33 #define MIN_RAW_CMD_BYTES (RAW_HEADER_BYTES + MIN_RAW_PIX_BYTES) 34 35 /* 36 * Trims identical data from front and back of line 37 * Sets new front buffer address and width 38 * And returns byte count of identical pixels 39 * Assumes CPU natural alignment (unsigned long) 40 * for back and front buffer ptrs and width 41 */ 42 #if 0 43 static int udl_trim_hline(const u8 *bback, const u8 **bfront, int *width_bytes) 44 { 45 int j, k; 46 const unsigned long *back = (const unsigned long *) bback; 47 const unsigned long *front = (const unsigned long *) *bfront; 48 const int width = *width_bytes / sizeof(unsigned long); 49 int identical = width; 50 int start = width; 51 int end = width; 52 53 prefetch((void *) front); 54 prefetch((void *) back); 55 56 for (j = 0; j < width; j++) { 57 if (back[j] != front[j]) { 58 start = j; 59 break; 60 } 61 } 62 63 for (k = width - 1; k > j; k--) { 64 if (back[k] != front[k]) { 65 end = k+1; 66 break; 67 } 68 } 69 70 identical = start + (width - end); 71 *bfront = (u8 *) &front[start]; 72 *width_bytes = (end - start) * sizeof(unsigned long); 73 74 return identical * sizeof(unsigned long); 75 } 76 #endif 77 78 static inline u16 pixel32_to_be16p(const uint8_t *pixel) 79 { 80 uint32_t pix = *(uint32_t *)pixel; 81 u16 retval; 82 83 retval = (((pix >> 3) & 0x001f) | 84 ((pix >> 5) & 0x07e0) | 85 ((pix >> 8) & 0xf800)); 86 return retval; 87 } 88 89 /* 90 * Render a command stream for an encoded horizontal line segment of pixels. 91 * 92 * A command buffer holds several commands. 93 * It always begins with a fresh command header 94 * (the protocol doesn't require this, but we enforce it to allow 95 * multiple buffers to be potentially encoded and sent in parallel). 96 * A single command encodes one contiguous horizontal line of pixels 97 * 98 * The function relies on the client to do all allocation, so that 99 * rendering can be done directly to output buffers (e.g. USB URBs). 100 * The function fills the supplied command buffer, providing information 101 * on where it left off, so the client may call in again with additional 102 * buffers if the line will take several buffers to complete. 103 * 104 * A single command can transmit a maximum of 256 pixels, 105 * regardless of the compression ratio (protocol design limit). 106 * To the hardware, 0 for a size byte means 256 107 * 108 * Rather than 256 pixel commands which are either rl or raw encoded, 109 * the rlx command simply assumes alternating raw and rl spans within one cmd. 110 * This has a slightly larger header overhead, but produces more even results. 111 * It also processes all data (read and write) in a single pass. 112 * Performance benchmarks of common cases show it having just slightly better 113 * compression than 256 pixel raw or rle commands, with similar CPU consumpion. 114 * But for very rl friendly data, will compress not quite as well. 115 */ 116 static void udl_compress_hline16( 117 const u8 **pixel_start_ptr, 118 const u8 *const pixel_end, 119 uint32_t *device_address_ptr, 120 uint8_t **command_buffer_ptr, 121 const uint8_t *const cmd_buffer_end, int bpp) 122 { 123 const u8 *pixel = *pixel_start_ptr; 124 uint32_t dev_addr = *device_address_ptr; 125 uint8_t *cmd = *command_buffer_ptr; 126 127 while ((pixel_end > pixel) && 128 (cmd_buffer_end - MIN_RLX_CMD_BYTES > cmd)) { 129 uint8_t *raw_pixels_count_byte = 0; 130 uint8_t *cmd_pixels_count_byte = 0; 131 const u8 *raw_pixel_start = 0; 132 const u8 *cmd_pixel_start, *cmd_pixel_end = 0; 133 134 prefetchw((void *) cmd); /* pull in one cache line at least */ 135 136 *cmd++ = 0xaf; 137 *cmd++ = 0x6b; 138 *cmd++ = (uint8_t) ((dev_addr >> 16) & 0xFF); 139 *cmd++ = (uint8_t) ((dev_addr >> 8) & 0xFF); 140 *cmd++ = (uint8_t) ((dev_addr) & 0xFF); 141 142 cmd_pixels_count_byte = cmd++; /* we'll know this later */ 143 cmd_pixel_start = pixel; 144 145 raw_pixels_count_byte = cmd++; /* we'll know this later */ 146 raw_pixel_start = pixel; 147 148 cmd_pixel_end = pixel + (min(MAX_CMD_PIXELS + 1, 149 min((int)(pixel_end - pixel) / bpp, 150 (int)(cmd_buffer_end - cmd) / 2))) * bpp; 151 152 prefetch_range((void *) pixel, (cmd_pixel_end - pixel) * bpp); 153 154 while (pixel < cmd_pixel_end) { 155 const u8 * const repeating_pixel = pixel; 156 157 if (bpp == 2) 158 *(uint16_t *)cmd = cpu_to_be16p((uint16_t *)pixel); 159 else if (bpp == 4) 160 *(uint16_t *)cmd = cpu_to_be16(pixel32_to_be16p(pixel)); 161 162 cmd += 2; 163 pixel += bpp; 164 165 if (unlikely((pixel < cmd_pixel_end) && 166 (!memcmp(pixel, repeating_pixel, bpp)))) { 167 /* go back and fill in raw pixel count */ 168 *raw_pixels_count_byte = (((repeating_pixel - 169 raw_pixel_start) / bpp) + 1) & 0xFF; 170 171 while ((pixel < cmd_pixel_end) 172 && (!memcmp(pixel, repeating_pixel, bpp))) { 173 pixel += bpp; 174 } 175 176 /* immediately after raw data is repeat byte */ 177 *cmd++ = (((pixel - repeating_pixel) / bpp) - 1) & 0xFF; 178 179 /* Then start another raw pixel span */ 180 raw_pixel_start = pixel; 181 raw_pixels_count_byte = cmd++; 182 } 183 } 184 185 if (pixel > raw_pixel_start) { 186 /* finalize last RAW span */ 187 *raw_pixels_count_byte = ((pixel-raw_pixel_start) / bpp) & 0xFF; 188 } 189 190 *cmd_pixels_count_byte = ((pixel - cmd_pixel_start) / bpp) & 0xFF; 191 dev_addr += ((pixel - cmd_pixel_start) / bpp) * 2; 192 } 193 194 if (cmd_buffer_end <= MIN_RLX_CMD_BYTES + cmd) { 195 /* Fill leftover bytes with no-ops */ 196 if (cmd_buffer_end > cmd) 197 memset(cmd, 0xAF, cmd_buffer_end - cmd); 198 cmd = (uint8_t *) cmd_buffer_end; 199 } 200 201 *command_buffer_ptr = cmd; 202 *pixel_start_ptr = pixel; 203 *device_address_ptr = dev_addr; 204 205 return; 206 } 207 208 /* 209 * There are 3 copies of every pixel: The front buffer that the fbdev 210 * client renders to, the actual framebuffer across the USB bus in hardware 211 * (that we can only write to, slowly, and can never read), and (optionally) 212 * our shadow copy that tracks what's been sent to that hardware buffer. 213 */ 214 int udl_render_hline(struct drm_device *dev, int bpp, struct urb **urb_ptr, 215 const char *front, char **urb_buf_ptr, 216 u32 byte_offset, u32 byte_width, 217 int *ident_ptr, int *sent_ptr) 218 { 219 const u8 *line_start, *line_end, *next_pixel; 220 u32 base16 = 0 + (byte_offset / bpp) * 2; 221 struct urb *urb = *urb_ptr; 222 u8 *cmd = *urb_buf_ptr; 223 u8 *cmd_end = (u8 *) urb->transfer_buffer + urb->transfer_buffer_length; 224 225 line_start = (u8 *) (front + byte_offset); 226 next_pixel = line_start; 227 line_end = next_pixel + byte_width; 228 229 while (next_pixel < line_end) { 230 231 udl_compress_hline16(&next_pixel, 232 line_end, &base16, 233 (u8 **) &cmd, (u8 *) cmd_end, bpp); 234 235 if (cmd >= cmd_end) { 236 int len = cmd - (u8 *) urb->transfer_buffer; 237 if (udl_submit_urb(dev, urb, len)) 238 return 1; /* lost pixels is set */ 239 *sent_ptr += len; 240 urb = udl_get_urb(dev); 241 if (!urb) 242 return 1; /* lost_pixels is set */ 243 *urb_ptr = urb; 244 cmd = urb->transfer_buffer; 245 cmd_end = &cmd[urb->transfer_buffer_length]; 246 } 247 } 248 249 *urb_buf_ptr = cmd; 250 251 return 0; 252 } 253 254