xref: /linux/drivers/gpu/drm/ttm/ttm_tt.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <linux/sched.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <drm/drm_cache.h>
39 #include <drm/ttm/ttm_bo_driver.h>
40 #include <drm/ttm/ttm_page_alloc.h>
41 #ifdef CONFIG_X86
42 #include <asm/set_memory.h>
43 #endif
44 
45 /**
46  * Allocates a ttm structure for the given BO.
47  */
48 int ttm_tt_create(struct ttm_buffer_object *bo, bool zero_alloc)
49 {
50 	struct ttm_bo_device *bdev = bo->bdev;
51 	uint32_t page_flags = 0;
52 
53 	reservation_object_assert_held(bo->resv);
54 
55 	if (bdev->need_dma32)
56 		page_flags |= TTM_PAGE_FLAG_DMA32;
57 
58 	if (bdev->no_retry)
59 		page_flags |= TTM_PAGE_FLAG_NO_RETRY;
60 
61 	switch (bo->type) {
62 	case ttm_bo_type_device:
63 		if (zero_alloc)
64 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
65 		break;
66 	case ttm_bo_type_kernel:
67 		break;
68 	case ttm_bo_type_sg:
69 		page_flags |= TTM_PAGE_FLAG_SG;
70 		break;
71 	default:
72 		bo->ttm = NULL;
73 		pr_err("Illegal buffer object type\n");
74 		return -EINVAL;
75 	}
76 
77 	bo->ttm = bdev->driver->ttm_tt_create(bo, page_flags);
78 	if (unlikely(bo->ttm == NULL))
79 		return -ENOMEM;
80 
81 	return 0;
82 }
83 
84 /**
85  * Allocates storage for pointers to the pages that back the ttm.
86  */
87 static int ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
88 {
89 	ttm->pages = kvmalloc_array(ttm->num_pages, sizeof(void*),
90 			GFP_KERNEL | __GFP_ZERO);
91 	if (!ttm->pages)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 static int ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
97 {
98 	ttm->ttm.pages = kvmalloc_array(ttm->ttm.num_pages,
99 					  sizeof(*ttm->ttm.pages) +
100 					  sizeof(*ttm->dma_address),
101 					  GFP_KERNEL | __GFP_ZERO);
102 	if (!ttm->ttm.pages)
103 		return -ENOMEM;
104 	ttm->dma_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages);
105 	return 0;
106 }
107 
108 static int ttm_sg_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
109 {
110 	ttm->dma_address = kvmalloc_array(ttm->ttm.num_pages,
111 					  sizeof(*ttm->dma_address),
112 					  GFP_KERNEL | __GFP_ZERO);
113 	if (!ttm->dma_address)
114 		return -ENOMEM;
115 	return 0;
116 }
117 
118 #ifdef CONFIG_X86
119 static inline int ttm_tt_set_page_caching(struct page *p,
120 					  enum ttm_caching_state c_old,
121 					  enum ttm_caching_state c_new)
122 {
123 	int ret = 0;
124 
125 	if (PageHighMem(p))
126 		return 0;
127 
128 	if (c_old != tt_cached) {
129 		/* p isn't in the default caching state, set it to
130 		 * writeback first to free its current memtype. */
131 
132 		ret = set_pages_wb(p, 1);
133 		if (ret)
134 			return ret;
135 	}
136 
137 	if (c_new == tt_wc)
138 		ret = set_memory_wc((unsigned long) page_address(p), 1);
139 	else if (c_new == tt_uncached)
140 		ret = set_pages_uc(p, 1);
141 
142 	return ret;
143 }
144 #else /* CONFIG_X86 */
145 static inline int ttm_tt_set_page_caching(struct page *p,
146 					  enum ttm_caching_state c_old,
147 					  enum ttm_caching_state c_new)
148 {
149 	return 0;
150 }
151 #endif /* CONFIG_X86 */
152 
153 /*
154  * Change caching policy for the linear kernel map
155  * for range of pages in a ttm.
156  */
157 
158 static int ttm_tt_set_caching(struct ttm_tt *ttm,
159 			      enum ttm_caching_state c_state)
160 {
161 	int i, j;
162 	struct page *cur_page;
163 	int ret;
164 
165 	if (ttm->caching_state == c_state)
166 		return 0;
167 
168 	if (ttm->state == tt_unpopulated) {
169 		/* Change caching but don't populate */
170 		ttm->caching_state = c_state;
171 		return 0;
172 	}
173 
174 	if (ttm->caching_state == tt_cached)
175 		drm_clflush_pages(ttm->pages, ttm->num_pages);
176 
177 	for (i = 0; i < ttm->num_pages; ++i) {
178 		cur_page = ttm->pages[i];
179 		if (likely(cur_page != NULL)) {
180 			ret = ttm_tt_set_page_caching(cur_page,
181 						      ttm->caching_state,
182 						      c_state);
183 			if (unlikely(ret != 0))
184 				goto out_err;
185 		}
186 	}
187 
188 	ttm->caching_state = c_state;
189 
190 	return 0;
191 
192 out_err:
193 	for (j = 0; j < i; ++j) {
194 		cur_page = ttm->pages[j];
195 		if (likely(cur_page != NULL)) {
196 			(void)ttm_tt_set_page_caching(cur_page, c_state,
197 						      ttm->caching_state);
198 		}
199 	}
200 
201 	return ret;
202 }
203 
204 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
205 {
206 	enum ttm_caching_state state;
207 
208 	if (placement & TTM_PL_FLAG_WC)
209 		state = tt_wc;
210 	else if (placement & TTM_PL_FLAG_UNCACHED)
211 		state = tt_uncached;
212 	else
213 		state = tt_cached;
214 
215 	return ttm_tt_set_caching(ttm, state);
216 }
217 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
218 
219 void ttm_tt_destroy(struct ttm_tt *ttm)
220 {
221 	if (ttm == NULL)
222 		return;
223 
224 	ttm_tt_unbind(ttm);
225 
226 	if (ttm->state == tt_unbound)
227 		ttm_tt_unpopulate(ttm);
228 
229 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
230 	    ttm->swap_storage)
231 		fput(ttm->swap_storage);
232 
233 	ttm->swap_storage = NULL;
234 	ttm->func->destroy(ttm);
235 }
236 
237 void ttm_tt_init_fields(struct ttm_tt *ttm, struct ttm_buffer_object *bo,
238 			uint32_t page_flags)
239 {
240 	ttm->bdev = bo->bdev;
241 	ttm->num_pages = bo->num_pages;
242 	ttm->caching_state = tt_cached;
243 	ttm->page_flags = page_flags;
244 	ttm->state = tt_unpopulated;
245 	ttm->swap_storage = NULL;
246 	ttm->sg = bo->sg;
247 }
248 
249 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_buffer_object *bo,
250 		uint32_t page_flags)
251 {
252 	ttm_tt_init_fields(ttm, bo, page_flags);
253 
254 	if (ttm_tt_alloc_page_directory(ttm)) {
255 		ttm_tt_destroy(ttm);
256 		pr_err("Failed allocating page table\n");
257 		return -ENOMEM;
258 	}
259 	return 0;
260 }
261 EXPORT_SYMBOL(ttm_tt_init);
262 
263 void ttm_tt_fini(struct ttm_tt *ttm)
264 {
265 	kvfree(ttm->pages);
266 	ttm->pages = NULL;
267 }
268 EXPORT_SYMBOL(ttm_tt_fini);
269 
270 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_buffer_object *bo,
271 		    uint32_t page_flags)
272 {
273 	struct ttm_tt *ttm = &ttm_dma->ttm;
274 
275 	ttm_tt_init_fields(ttm, bo, page_flags);
276 
277 	INIT_LIST_HEAD(&ttm_dma->pages_list);
278 	if (ttm_dma_tt_alloc_page_directory(ttm_dma)) {
279 		ttm_tt_destroy(ttm);
280 		pr_err("Failed allocating page table\n");
281 		return -ENOMEM;
282 	}
283 	return 0;
284 }
285 EXPORT_SYMBOL(ttm_dma_tt_init);
286 
287 int ttm_sg_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_buffer_object *bo,
288 		   uint32_t page_flags)
289 {
290 	struct ttm_tt *ttm = &ttm_dma->ttm;
291 	int ret;
292 
293 	ttm_tt_init_fields(ttm, bo, page_flags);
294 
295 	INIT_LIST_HEAD(&ttm_dma->pages_list);
296 	if (page_flags & TTM_PAGE_FLAG_SG)
297 		ret = ttm_sg_tt_alloc_page_directory(ttm_dma);
298 	else
299 		ret = ttm_dma_tt_alloc_page_directory(ttm_dma);
300 	if (ret) {
301 		ttm_tt_destroy(ttm);
302 		pr_err("Failed allocating page table\n");
303 		return -ENOMEM;
304 	}
305 	return 0;
306 }
307 EXPORT_SYMBOL(ttm_sg_tt_init);
308 
309 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
310 {
311 	struct ttm_tt *ttm = &ttm_dma->ttm;
312 
313 	if (ttm->pages)
314 		kvfree(ttm->pages);
315 	else
316 		kvfree(ttm_dma->dma_address);
317 	ttm->pages = NULL;
318 	ttm_dma->dma_address = NULL;
319 }
320 EXPORT_SYMBOL(ttm_dma_tt_fini);
321 
322 void ttm_tt_unbind(struct ttm_tt *ttm)
323 {
324 	int ret;
325 
326 	if (ttm->state == tt_bound) {
327 		ret = ttm->func->unbind(ttm);
328 		BUG_ON(ret);
329 		ttm->state = tt_unbound;
330 	}
331 }
332 
333 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem,
334 		struct ttm_operation_ctx *ctx)
335 {
336 	int ret = 0;
337 
338 	if (!ttm)
339 		return -EINVAL;
340 
341 	if (ttm->state == tt_bound)
342 		return 0;
343 
344 	ret = ttm_tt_populate(ttm, ctx);
345 	if (ret)
346 		return ret;
347 
348 	ret = ttm->func->bind(ttm, bo_mem);
349 	if (unlikely(ret != 0))
350 		return ret;
351 
352 	ttm->state = tt_bound;
353 
354 	return 0;
355 }
356 EXPORT_SYMBOL(ttm_tt_bind);
357 
358 int ttm_tt_swapin(struct ttm_tt *ttm)
359 {
360 	struct address_space *swap_space;
361 	struct file *swap_storage;
362 	struct page *from_page;
363 	struct page *to_page;
364 	int i;
365 	int ret = -ENOMEM;
366 
367 	swap_storage = ttm->swap_storage;
368 	BUG_ON(swap_storage == NULL);
369 
370 	swap_space = swap_storage->f_mapping;
371 
372 	for (i = 0; i < ttm->num_pages; ++i) {
373 		gfp_t gfp_mask = mapping_gfp_mask(swap_space);
374 
375 		gfp_mask |= (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY ? __GFP_RETRY_MAYFAIL : 0);
376 		from_page = shmem_read_mapping_page_gfp(swap_space, i, gfp_mask);
377 
378 		if (IS_ERR(from_page)) {
379 			ret = PTR_ERR(from_page);
380 			goto out_err;
381 		}
382 		to_page = ttm->pages[i];
383 		if (unlikely(to_page == NULL))
384 			goto out_err;
385 
386 		copy_highpage(to_page, from_page);
387 		put_page(from_page);
388 	}
389 
390 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
391 		fput(swap_storage);
392 	ttm->swap_storage = NULL;
393 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
394 
395 	return 0;
396 out_err:
397 	return ret;
398 }
399 
400 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistent_swap_storage)
401 {
402 	struct address_space *swap_space;
403 	struct file *swap_storage;
404 	struct page *from_page;
405 	struct page *to_page;
406 	int i;
407 	int ret = -ENOMEM;
408 
409 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
410 	BUG_ON(ttm->caching_state != tt_cached);
411 
412 	if (!persistent_swap_storage) {
413 		swap_storage = shmem_file_setup("ttm swap",
414 						ttm->num_pages << PAGE_SHIFT,
415 						0);
416 		if (IS_ERR(swap_storage)) {
417 			pr_err("Failed allocating swap storage\n");
418 			return PTR_ERR(swap_storage);
419 		}
420 	} else {
421 		swap_storage = persistent_swap_storage;
422 	}
423 
424 	swap_space = swap_storage->f_mapping;
425 
426 	for (i = 0; i < ttm->num_pages; ++i) {
427 		gfp_t gfp_mask = mapping_gfp_mask(swap_space);
428 
429 		gfp_mask |= (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY ? __GFP_RETRY_MAYFAIL : 0);
430 
431 		from_page = ttm->pages[i];
432 		if (unlikely(from_page == NULL))
433 			continue;
434 
435 		to_page = shmem_read_mapping_page_gfp(swap_space, i, gfp_mask);
436 		if (IS_ERR(to_page)) {
437 			ret = PTR_ERR(to_page);
438 			goto out_err;
439 		}
440 		copy_highpage(to_page, from_page);
441 		set_page_dirty(to_page);
442 		mark_page_accessed(to_page);
443 		put_page(to_page);
444 	}
445 
446 	ttm_tt_unpopulate(ttm);
447 	ttm->swap_storage = swap_storage;
448 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
449 	if (persistent_swap_storage)
450 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
451 
452 	return 0;
453 out_err:
454 	if (!persistent_swap_storage)
455 		fput(swap_storage);
456 
457 	return ret;
458 }
459 
460 static void ttm_tt_add_mapping(struct ttm_tt *ttm)
461 {
462 	pgoff_t i;
463 
464 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
465 		return;
466 
467 	for (i = 0; i < ttm->num_pages; ++i)
468 		ttm->pages[i]->mapping = ttm->bdev->dev_mapping;
469 }
470 
471 int ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
472 {
473 	int ret;
474 
475 	if (ttm->state != tt_unpopulated)
476 		return 0;
477 
478 	if (ttm->bdev->driver->ttm_tt_populate)
479 		ret = ttm->bdev->driver->ttm_tt_populate(ttm, ctx);
480 	else
481 		ret = ttm_pool_populate(ttm, ctx);
482 	if (!ret)
483 		ttm_tt_add_mapping(ttm);
484 	return ret;
485 }
486 
487 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
488 {
489 	pgoff_t i;
490 	struct page **page = ttm->pages;
491 
492 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
493 		return;
494 
495 	for (i = 0; i < ttm->num_pages; ++i) {
496 		(*page)->mapping = NULL;
497 		(*page++)->index = 0;
498 	}
499 }
500 
501 void ttm_tt_unpopulate(struct ttm_tt *ttm)
502 {
503 	if (ttm->state == tt_unpopulated)
504 		return;
505 
506 	ttm_tt_clear_mapping(ttm);
507 	if (ttm->bdev->driver->ttm_tt_unpopulate)
508 		ttm->bdev->driver->ttm_tt_unpopulate(ttm);
509 	else
510 		ttm_pool_unpopulate(ttm);
511 }
512