xref: /linux/drivers/gpu/drm/ttm/ttm_tt.c (revision 6000fc4d6f3e55ad52cce8d76317187fe01af2aa)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "ttm/ttm_module.h"
38 #include "ttm/ttm_bo_driver.h"
39 #include "ttm/ttm_placement.h"
40 
41 static int ttm_tt_swapin(struct ttm_tt *ttm);
42 
43 #if defined(CONFIG_X86)
44 static void ttm_tt_clflush_page(struct page *page)
45 {
46 	uint8_t *page_virtual;
47 	unsigned int i;
48 
49 	if (unlikely(page == NULL))
50 		return;
51 
52 	page_virtual = kmap_atomic(page, KM_USER0);
53 
54 	for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
55 		clflush(page_virtual + i);
56 
57 	kunmap_atomic(page_virtual, KM_USER0);
58 }
59 
60 static void ttm_tt_cache_flush_clflush(struct page *pages[],
61 				       unsigned long num_pages)
62 {
63 	unsigned long i;
64 
65 	mb();
66 	for (i = 0; i < num_pages; ++i)
67 		ttm_tt_clflush_page(*pages++);
68 	mb();
69 }
70 #elif !defined(__powerpc__)
71 static void ttm_tt_ipi_handler(void *null)
72 {
73 	;
74 }
75 #endif
76 
77 void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
78 {
79 
80 #if defined(CONFIG_X86)
81 	if (cpu_has_clflush) {
82 		ttm_tt_cache_flush_clflush(pages, num_pages);
83 		return;
84 	}
85 #elif defined(__powerpc__)
86 	unsigned long i;
87 
88 	for (i = 0; i < num_pages; ++i) {
89 		struct page *page = pages[i];
90 		void *page_virtual;
91 
92 		if (unlikely(page == NULL))
93 			continue;
94 
95 		page_virtual = kmap_atomic(page, KM_USER0);
96 		flush_dcache_range((unsigned long) page_virtual,
97 				   (unsigned long) page_virtual + PAGE_SIZE);
98 		kunmap_atomic(page_virtual, KM_USER0);
99 	}
100 #else
101 	if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
102 		printk(KERN_ERR TTM_PFX
103 		       "Timed out waiting for drm cache flush.\n");
104 #endif
105 }
106 
107 /**
108  * Allocates storage for pointers to the pages that back the ttm.
109  *
110  * Uses kmalloc if possible. Otherwise falls back to vmalloc.
111  */
112 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
113 {
114 	unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
115 	ttm->pages = NULL;
116 
117 	if (size <= PAGE_SIZE)
118 		ttm->pages = kzalloc(size, GFP_KERNEL);
119 
120 	if (!ttm->pages) {
121 		ttm->pages = vmalloc_user(size);
122 		if (ttm->pages)
123 			ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
124 	}
125 }
126 
127 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
128 {
129 	if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
130 		vfree(ttm->pages);
131 		ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
132 	} else {
133 		kfree(ttm->pages);
134 	}
135 	ttm->pages = NULL;
136 }
137 
138 static struct page *ttm_tt_alloc_page(unsigned page_flags)
139 {
140 	gfp_t gfp_flags = GFP_USER;
141 
142 	if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
143 		gfp_flags |= __GFP_ZERO;
144 
145 	if (page_flags & TTM_PAGE_FLAG_DMA32)
146 		gfp_flags |= __GFP_DMA32;
147 	else
148 		gfp_flags |= __GFP_HIGHMEM;
149 
150 	return alloc_page(gfp_flags);
151 }
152 
153 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
154 {
155 	int write;
156 	int dirty;
157 	struct page *page;
158 	int i;
159 	struct ttm_backend *be = ttm->be;
160 
161 	BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
162 	write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
163 	dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
164 
165 	if (be)
166 		be->func->clear(be);
167 
168 	for (i = 0; i < ttm->num_pages; ++i) {
169 		page = ttm->pages[i];
170 		if (page == NULL)
171 			continue;
172 
173 		if (page == ttm->dummy_read_page) {
174 			BUG_ON(write);
175 			continue;
176 		}
177 
178 		if (write && dirty && !PageReserved(page))
179 			set_page_dirty_lock(page);
180 
181 		ttm->pages[i] = NULL;
182 		ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
183 		put_page(page);
184 	}
185 	ttm->state = tt_unpopulated;
186 	ttm->first_himem_page = ttm->num_pages;
187 	ttm->last_lomem_page = -1;
188 }
189 
190 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
191 {
192 	struct page *p;
193 	struct ttm_bo_device *bdev = ttm->bdev;
194 	struct ttm_mem_global *mem_glob = bdev->mem_glob;
195 	int ret;
196 
197 	while (NULL == (p = ttm->pages[index])) {
198 		p = ttm_tt_alloc_page(ttm->page_flags);
199 
200 		if (!p)
201 			return NULL;
202 
203 		if (PageHighMem(p)) {
204 			ret =
205 			    ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
206 						 false, false, true);
207 			if (unlikely(ret != 0))
208 				goto out_err;
209 			ttm->pages[--ttm->first_himem_page] = p;
210 		} else {
211 			ret =
212 			    ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
213 						 false, false, false);
214 			if (unlikely(ret != 0))
215 				goto out_err;
216 			ttm->pages[++ttm->last_lomem_page] = p;
217 		}
218 	}
219 	return p;
220 out_err:
221 	put_page(p);
222 	return NULL;
223 }
224 
225 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
226 {
227 	int ret;
228 
229 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
230 		ret = ttm_tt_swapin(ttm);
231 		if (unlikely(ret != 0))
232 			return NULL;
233 	}
234 	return __ttm_tt_get_page(ttm, index);
235 }
236 
237 int ttm_tt_populate(struct ttm_tt *ttm)
238 {
239 	struct page *page;
240 	unsigned long i;
241 	struct ttm_backend *be;
242 	int ret;
243 
244 	if (ttm->state != tt_unpopulated)
245 		return 0;
246 
247 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
248 		ret = ttm_tt_swapin(ttm);
249 		if (unlikely(ret != 0))
250 			return ret;
251 	}
252 
253 	be = ttm->be;
254 
255 	for (i = 0; i < ttm->num_pages; ++i) {
256 		page = __ttm_tt_get_page(ttm, i);
257 		if (!page)
258 			return -ENOMEM;
259 	}
260 
261 	be->func->populate(be, ttm->num_pages, ttm->pages,
262 			   ttm->dummy_read_page);
263 	ttm->state = tt_unbound;
264 	return 0;
265 }
266 
267 #ifdef CONFIG_X86
268 static inline int ttm_tt_set_page_caching(struct page *p,
269 					  enum ttm_caching_state c_state)
270 {
271 	if (PageHighMem(p))
272 		return 0;
273 
274 	switch (c_state) {
275 	case tt_cached:
276 		return set_pages_wb(p, 1);
277 	case tt_wc:
278 	    return set_memory_wc((unsigned long) page_address(p), 1);
279 	default:
280 		return set_pages_uc(p, 1);
281 	}
282 }
283 #else /* CONFIG_X86 */
284 static inline int ttm_tt_set_page_caching(struct page *p,
285 					  enum ttm_caching_state c_state)
286 {
287 	return 0;
288 }
289 #endif /* CONFIG_X86 */
290 
291 /*
292  * Change caching policy for the linear kernel map
293  * for range of pages in a ttm.
294  */
295 
296 static int ttm_tt_set_caching(struct ttm_tt *ttm,
297 			      enum ttm_caching_state c_state)
298 {
299 	int i, j;
300 	struct page *cur_page;
301 	int ret;
302 
303 	if (ttm->caching_state == c_state)
304 		return 0;
305 
306 	if (c_state != tt_cached) {
307 		ret = ttm_tt_populate(ttm);
308 		if (unlikely(ret != 0))
309 			return ret;
310 	}
311 
312 	if (ttm->caching_state == tt_cached)
313 		ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
314 
315 	for (i = 0; i < ttm->num_pages; ++i) {
316 		cur_page = ttm->pages[i];
317 		if (likely(cur_page != NULL)) {
318 			ret = ttm_tt_set_page_caching(cur_page, c_state);
319 			if (unlikely(ret != 0))
320 				goto out_err;
321 		}
322 	}
323 
324 	ttm->caching_state = c_state;
325 
326 	return 0;
327 
328 out_err:
329 	for (j = 0; j < i; ++j) {
330 		cur_page = ttm->pages[j];
331 		if (likely(cur_page != NULL)) {
332 			(void)ttm_tt_set_page_caching(cur_page,
333 						      ttm->caching_state);
334 		}
335 	}
336 
337 	return ret;
338 }
339 
340 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
341 {
342 	enum ttm_caching_state state;
343 
344 	if (placement & TTM_PL_FLAG_WC)
345 		state = tt_wc;
346 	else if (placement & TTM_PL_FLAG_UNCACHED)
347 		state = tt_uncached;
348 	else
349 		state = tt_cached;
350 
351 	return ttm_tt_set_caching(ttm, state);
352 }
353 
354 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
355 {
356 	int i;
357 	struct page *cur_page;
358 	struct ttm_backend *be = ttm->be;
359 
360 	if (be)
361 		be->func->clear(be);
362 	(void)ttm_tt_set_caching(ttm, tt_cached);
363 	for (i = 0; i < ttm->num_pages; ++i) {
364 		cur_page = ttm->pages[i];
365 		ttm->pages[i] = NULL;
366 		if (cur_page) {
367 			if (page_count(cur_page) != 1)
368 				printk(KERN_ERR TTM_PFX
369 				       "Erroneous page count. "
370 				       "Leaking pages.\n");
371 			ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
372 					    PageHighMem(cur_page));
373 			__free_page(cur_page);
374 		}
375 	}
376 	ttm->state = tt_unpopulated;
377 	ttm->first_himem_page = ttm->num_pages;
378 	ttm->last_lomem_page = -1;
379 }
380 
381 void ttm_tt_destroy(struct ttm_tt *ttm)
382 {
383 	struct ttm_backend *be;
384 
385 	if (unlikely(ttm == NULL))
386 		return;
387 
388 	be = ttm->be;
389 	if (likely(be != NULL)) {
390 		be->func->destroy(be);
391 		ttm->be = NULL;
392 	}
393 
394 	if (likely(ttm->pages != NULL)) {
395 		if (ttm->page_flags & TTM_PAGE_FLAG_USER)
396 			ttm_tt_free_user_pages(ttm);
397 		else
398 			ttm_tt_free_alloced_pages(ttm);
399 
400 		ttm_tt_free_page_directory(ttm);
401 	}
402 
403 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
404 	    ttm->swap_storage)
405 		fput(ttm->swap_storage);
406 
407 	kfree(ttm);
408 }
409 
410 int ttm_tt_set_user(struct ttm_tt *ttm,
411 		    struct task_struct *tsk,
412 		    unsigned long start, unsigned long num_pages)
413 {
414 	struct mm_struct *mm = tsk->mm;
415 	int ret;
416 	int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
417 	struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
418 
419 	BUG_ON(num_pages != ttm->num_pages);
420 	BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
421 
422 	/**
423 	 * Account user pages as lowmem pages for now.
424 	 */
425 
426 	ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
427 				   false, false, false);
428 	if (unlikely(ret != 0))
429 		return ret;
430 
431 	down_read(&mm->mmap_sem);
432 	ret = get_user_pages(tsk, mm, start, num_pages,
433 			     write, 0, ttm->pages, NULL);
434 	up_read(&mm->mmap_sem);
435 
436 	if (ret != num_pages && write) {
437 		ttm_tt_free_user_pages(ttm);
438 		ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
439 		return -ENOMEM;
440 	}
441 
442 	ttm->tsk = tsk;
443 	ttm->start = start;
444 	ttm->state = tt_unbound;
445 
446 	return 0;
447 }
448 
449 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
450 			     uint32_t page_flags, struct page *dummy_read_page)
451 {
452 	struct ttm_bo_driver *bo_driver = bdev->driver;
453 	struct ttm_tt *ttm;
454 
455 	if (!bo_driver)
456 		return NULL;
457 
458 	ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
459 	if (!ttm)
460 		return NULL;
461 
462 	ttm->bdev = bdev;
463 
464 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
465 	ttm->first_himem_page = ttm->num_pages;
466 	ttm->last_lomem_page = -1;
467 	ttm->caching_state = tt_cached;
468 	ttm->page_flags = page_flags;
469 
470 	ttm->dummy_read_page = dummy_read_page;
471 
472 	ttm_tt_alloc_page_directory(ttm);
473 	if (!ttm->pages) {
474 		ttm_tt_destroy(ttm);
475 		printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
476 		return NULL;
477 	}
478 	ttm->be = bo_driver->create_ttm_backend_entry(bdev);
479 	if (!ttm->be) {
480 		ttm_tt_destroy(ttm);
481 		printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
482 		return NULL;
483 	}
484 	ttm->state = tt_unpopulated;
485 	return ttm;
486 }
487 
488 void ttm_tt_unbind(struct ttm_tt *ttm)
489 {
490 	int ret;
491 	struct ttm_backend *be = ttm->be;
492 
493 	if (ttm->state == tt_bound) {
494 		ret = be->func->unbind(be);
495 		BUG_ON(ret);
496 		ttm->state = tt_unbound;
497 	}
498 }
499 
500 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
501 {
502 	int ret = 0;
503 	struct ttm_backend *be;
504 
505 	if (!ttm)
506 		return -EINVAL;
507 
508 	if (ttm->state == tt_bound)
509 		return 0;
510 
511 	be = ttm->be;
512 
513 	ret = ttm_tt_populate(ttm);
514 	if (ret)
515 		return ret;
516 
517 	ret = be->func->bind(be, bo_mem);
518 	if (ret) {
519 		printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
520 		return ret;
521 	}
522 
523 	ttm->state = tt_bound;
524 
525 	if (ttm->page_flags & TTM_PAGE_FLAG_USER)
526 		ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
527 	return 0;
528 }
529 EXPORT_SYMBOL(ttm_tt_bind);
530 
531 static int ttm_tt_swapin(struct ttm_tt *ttm)
532 {
533 	struct address_space *swap_space;
534 	struct file *swap_storage;
535 	struct page *from_page;
536 	struct page *to_page;
537 	void *from_virtual;
538 	void *to_virtual;
539 	int i;
540 	int ret;
541 
542 	if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
543 		ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
544 				      ttm->num_pages);
545 		if (unlikely(ret != 0))
546 			return ret;
547 
548 		ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
549 		return 0;
550 	}
551 
552 	swap_storage = ttm->swap_storage;
553 	BUG_ON(swap_storage == NULL);
554 
555 	swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
556 
557 	for (i = 0; i < ttm->num_pages; ++i) {
558 		from_page = read_mapping_page(swap_space, i, NULL);
559 		if (IS_ERR(from_page))
560 			goto out_err;
561 		to_page = __ttm_tt_get_page(ttm, i);
562 		if (unlikely(to_page == NULL))
563 			goto out_err;
564 
565 		preempt_disable();
566 		from_virtual = kmap_atomic(from_page, KM_USER0);
567 		to_virtual = kmap_atomic(to_page, KM_USER1);
568 		memcpy(to_virtual, from_virtual, PAGE_SIZE);
569 		kunmap_atomic(to_virtual, KM_USER1);
570 		kunmap_atomic(from_virtual, KM_USER0);
571 		preempt_enable();
572 		page_cache_release(from_page);
573 	}
574 
575 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
576 		fput(swap_storage);
577 	ttm->swap_storage = NULL;
578 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
579 
580 	return 0;
581 out_err:
582 	ttm_tt_free_alloced_pages(ttm);
583 	return -ENOMEM;
584 }
585 
586 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
587 {
588 	struct address_space *swap_space;
589 	struct file *swap_storage;
590 	struct page *from_page;
591 	struct page *to_page;
592 	void *from_virtual;
593 	void *to_virtual;
594 	int i;
595 
596 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
597 	BUG_ON(ttm->caching_state != tt_cached);
598 
599 	/*
600 	 * For user buffers, just unpin the pages, as there should be
601 	 * vma references.
602 	 */
603 
604 	if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
605 		ttm_tt_free_user_pages(ttm);
606 		ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
607 		ttm->swap_storage = NULL;
608 		return 0;
609 	}
610 
611 	if (!persistant_swap_storage) {
612 		swap_storage = shmem_file_setup("ttm swap",
613 						ttm->num_pages << PAGE_SHIFT,
614 						0);
615 		if (unlikely(IS_ERR(swap_storage))) {
616 			printk(KERN_ERR "Failed allocating swap storage.\n");
617 			return -ENOMEM;
618 		}
619 	} else
620 		swap_storage = persistant_swap_storage;
621 
622 	swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
623 
624 	for (i = 0; i < ttm->num_pages; ++i) {
625 		from_page = ttm->pages[i];
626 		if (unlikely(from_page == NULL))
627 			continue;
628 		to_page = read_mapping_page(swap_space, i, NULL);
629 		if (unlikely(to_page == NULL))
630 			goto out_err;
631 
632 		preempt_disable();
633 		from_virtual = kmap_atomic(from_page, KM_USER0);
634 		to_virtual = kmap_atomic(to_page, KM_USER1);
635 		memcpy(to_virtual, from_virtual, PAGE_SIZE);
636 		kunmap_atomic(to_virtual, KM_USER1);
637 		kunmap_atomic(from_virtual, KM_USER0);
638 		preempt_enable();
639 		set_page_dirty(to_page);
640 		mark_page_accessed(to_page);
641 		page_cache_release(to_page);
642 	}
643 
644 	ttm_tt_free_alloced_pages(ttm);
645 	ttm->swap_storage = swap_storage;
646 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
647 	if (persistant_swap_storage)
648 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
649 
650 	return 0;
651 out_err:
652 	if (!persistant_swap_storage)
653 		fput(swap_storage);
654 
655 	return -ENOMEM;
656 }
657