1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: Christian König 24 */ 25 26 /* Pooling of allocated pages is necessary because changing the caching 27 * attributes on x86 of the linear mapping requires a costly cross CPU TLB 28 * invalidate for those addresses. 29 * 30 * Additional to that allocations from the DMA coherent API are pooled as well 31 * cause they are rather slow compared to alloc_pages+map. 32 */ 33 34 #include <linux/export.h> 35 #include <linux/module.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/debugfs.h> 38 #include <linux/highmem.h> 39 #include <linux/sched/mm.h> 40 41 #ifdef CONFIG_X86 42 #include <asm/set_memory.h> 43 #endif 44 45 #include <drm/ttm/ttm_backup.h> 46 #include <drm/ttm/ttm_pool.h> 47 #include <drm/ttm/ttm_tt.h> 48 #include <drm/ttm/ttm_bo.h> 49 50 #include "ttm_module.h" 51 #include "ttm_pool_internal.h" 52 53 #ifdef CONFIG_FAULT_INJECTION 54 #include <linux/fault-inject.h> 55 static DECLARE_FAULT_ATTR(backup_fault_inject); 56 #else 57 #define should_fail(...) false 58 #endif 59 60 /** 61 * struct ttm_pool_dma - Helper object for coherent DMA mappings 62 * 63 * @addr: original DMA address returned for the mapping 64 * @vaddr: original vaddr return for the mapping and order in the lower bits 65 */ 66 struct ttm_pool_dma { 67 dma_addr_t addr; 68 unsigned long vaddr; 69 }; 70 71 /** 72 * struct ttm_pool_alloc_state - Current state of the tt page allocation process 73 * @pages: Pointer to the next tt page pointer to populate. 74 * @caching_divide: Pointer to the first page pointer whose page has a staged but 75 * not committed caching transition from write-back to @tt_caching. 76 * @dma_addr: Pointer to the next tt dma_address entry to populate if any. 77 * @remaining_pages: Remaining pages to populate. 78 * @tt_caching: The requested cpu-caching for the pages allocated. 79 */ 80 struct ttm_pool_alloc_state { 81 struct page **pages; 82 struct page **caching_divide; 83 dma_addr_t *dma_addr; 84 pgoff_t remaining_pages; 85 enum ttm_caching tt_caching; 86 }; 87 88 /** 89 * struct ttm_pool_tt_restore - State representing restore from backup 90 * @pool: The pool used for page allocation while restoring. 91 * @snapshot_alloc: A snapshot of the most recent struct ttm_pool_alloc_state. 92 * @alloced_page: Pointer to the page most recently allocated from a pool or system. 93 * @first_dma: The dma address corresponding to @alloced_page if dma_mapping 94 * is requested. 95 * @alloced_pages: The number of allocated pages present in the struct ttm_tt 96 * page vector from this restore session. 97 * @restored_pages: The number of 4K pages restored for @alloced_page (which 98 * is typically a multi-order page). 99 * @page_caching: The struct ttm_tt requested caching 100 * @order: The order of @alloced_page. 101 * 102 * Recovery from backup might fail when we've recovered less than the 103 * full ttm_tt. In order not to loose any data (yet), keep information 104 * around that allows us to restart a failed ttm backup recovery. 105 */ 106 struct ttm_pool_tt_restore { 107 struct ttm_pool *pool; 108 struct ttm_pool_alloc_state snapshot_alloc; 109 struct page *alloced_page; 110 dma_addr_t first_dma; 111 pgoff_t alloced_pages; 112 pgoff_t restored_pages; 113 enum ttm_caching page_caching; 114 unsigned int order; 115 }; 116 117 static unsigned long page_pool_size; 118 119 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool"); 120 module_param(page_pool_size, ulong, 0644); 121 122 static atomic_long_t allocated_pages; 123 124 static struct ttm_pool_type global_write_combined[NR_PAGE_ORDERS]; 125 static struct ttm_pool_type global_uncached[NR_PAGE_ORDERS]; 126 127 static struct ttm_pool_type global_dma32_write_combined[NR_PAGE_ORDERS]; 128 static struct ttm_pool_type global_dma32_uncached[NR_PAGE_ORDERS]; 129 130 static spinlock_t shrinker_lock; 131 static struct list_head shrinker_list; 132 static struct shrinker *mm_shrinker; 133 static DECLARE_RWSEM(pool_shrink_rwsem); 134 135 /* Allocate pages of size 1 << order with the given gfp_flags */ 136 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags, 137 unsigned int order) 138 { 139 const unsigned int beneficial_order = ttm_pool_beneficial_order(pool); 140 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 141 struct ttm_pool_dma *dma; 142 struct page *p; 143 void *vaddr; 144 145 /* Don't set the __GFP_COMP flag for higher order allocations. 146 * Mapping pages directly into an userspace process and calling 147 * put_page() on a TTM allocated page is illegal. 148 */ 149 if (order) 150 gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | 151 __GFP_THISNODE; 152 153 /* 154 * Do not add latency to the allocation path for allocations orders 155 * device tolds us do not bring them additional performance gains. 156 */ 157 if (beneficial_order && order > beneficial_order) 158 gfp_flags &= ~__GFP_DIRECT_RECLAIM; 159 160 if (!ttm_pool_uses_dma_alloc(pool)) { 161 p = alloc_pages_node(pool->nid, gfp_flags, order); 162 if (p) 163 p->private = order; 164 return p; 165 } 166 167 dma = kmalloc(sizeof(*dma), GFP_KERNEL); 168 if (!dma) 169 return NULL; 170 171 if (order) 172 attr |= DMA_ATTR_NO_WARN; 173 174 vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE, 175 &dma->addr, gfp_flags, attr); 176 if (!vaddr) 177 goto error_free; 178 179 /* TODO: This is an illegal abuse of the DMA API, but we need to rework 180 * TTM page fault handling and extend the DMA API to clean this up. 181 */ 182 if (is_vmalloc_addr(vaddr)) 183 p = vmalloc_to_page(vaddr); 184 else 185 p = virt_to_page(vaddr); 186 187 dma->vaddr = (unsigned long)vaddr | order; 188 p->private = (unsigned long)dma; 189 return p; 190 191 error_free: 192 kfree(dma); 193 return NULL; 194 } 195 196 /* Reset the caching and pages of size 1 << order */ 197 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching, 198 unsigned int order, struct page *p) 199 { 200 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 201 struct ttm_pool_dma *dma; 202 void *vaddr; 203 204 #ifdef CONFIG_X86 205 /* We don't care that set_pages_wb is inefficient here. This is only 206 * used when we have to shrink and CPU overhead is irrelevant then. 207 */ 208 if (caching != ttm_cached && !PageHighMem(p)) 209 set_pages_wb(p, 1 << order); 210 #endif 211 212 if (!pool || !ttm_pool_uses_dma_alloc(pool)) { 213 __free_pages(p, order); 214 return; 215 } 216 217 if (order) 218 attr |= DMA_ATTR_NO_WARN; 219 220 dma = (void *)p->private; 221 vaddr = (void *)(dma->vaddr & PAGE_MASK); 222 dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr, 223 attr); 224 kfree(dma); 225 } 226 227 /* Apply any cpu-caching deferred during page allocation */ 228 static int ttm_pool_apply_caching(struct ttm_pool_alloc_state *alloc) 229 { 230 #ifdef CONFIG_X86 231 unsigned int num_pages = alloc->pages - alloc->caching_divide; 232 233 if (!num_pages) 234 return 0; 235 236 switch (alloc->tt_caching) { 237 case ttm_cached: 238 break; 239 case ttm_write_combined: 240 return set_pages_array_wc(alloc->caching_divide, num_pages); 241 case ttm_uncached: 242 return set_pages_array_uc(alloc->caching_divide, num_pages); 243 } 244 #endif 245 alloc->caching_divide = alloc->pages; 246 return 0; 247 } 248 249 /* DMA Map pages of 1 << order size and return the resulting dma_address. */ 250 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order, 251 struct page *p, dma_addr_t *dma_addr) 252 { 253 dma_addr_t addr; 254 255 if (ttm_pool_uses_dma_alloc(pool)) { 256 struct ttm_pool_dma *dma = (void *)p->private; 257 258 addr = dma->addr; 259 } else { 260 size_t size = (1ULL << order) * PAGE_SIZE; 261 262 addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL); 263 if (dma_mapping_error(pool->dev, addr)) 264 return -EFAULT; 265 } 266 267 *dma_addr = addr; 268 269 return 0; 270 } 271 272 /* Unmap pages of 1 << order size */ 273 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr, 274 unsigned int num_pages) 275 { 276 /* Unmapped while freeing the page */ 277 if (ttm_pool_uses_dma_alloc(pool)) 278 return; 279 280 dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT, 281 DMA_BIDIRECTIONAL); 282 } 283 284 /* Give pages into a specific pool_type */ 285 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p) 286 { 287 unsigned int i, num_pages = 1 << pt->order; 288 289 for (i = 0; i < num_pages; ++i) { 290 if (PageHighMem(p)) 291 clear_highpage(p + i); 292 else 293 clear_page(page_address(p + i)); 294 } 295 296 spin_lock(&pt->lock); 297 list_add(&p->lru, &pt->pages); 298 spin_unlock(&pt->lock); 299 atomic_long_add(1 << pt->order, &allocated_pages); 300 } 301 302 /* Take pages from a specific pool_type, return NULL when nothing available */ 303 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt) 304 { 305 struct page *p; 306 307 spin_lock(&pt->lock); 308 p = list_first_entry_or_null(&pt->pages, typeof(*p), lru); 309 if (p) { 310 atomic_long_sub(1 << pt->order, &allocated_pages); 311 list_del(&p->lru); 312 } 313 spin_unlock(&pt->lock); 314 315 return p; 316 } 317 318 /* Initialize and add a pool type to the global shrinker list */ 319 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool, 320 enum ttm_caching caching, unsigned int order) 321 { 322 pt->pool = pool; 323 pt->caching = caching; 324 pt->order = order; 325 spin_lock_init(&pt->lock); 326 INIT_LIST_HEAD(&pt->pages); 327 328 spin_lock(&shrinker_lock); 329 list_add_tail(&pt->shrinker_list, &shrinker_list); 330 spin_unlock(&shrinker_lock); 331 } 332 333 /* Remove a pool_type from the global shrinker list and free all pages */ 334 static void ttm_pool_type_fini(struct ttm_pool_type *pt) 335 { 336 struct page *p; 337 338 spin_lock(&shrinker_lock); 339 list_del(&pt->shrinker_list); 340 spin_unlock(&shrinker_lock); 341 342 while ((p = ttm_pool_type_take(pt))) 343 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 344 } 345 346 /* Return the pool_type to use for the given caching and order */ 347 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool, 348 enum ttm_caching caching, 349 unsigned int order) 350 { 351 if (ttm_pool_uses_dma_alloc(pool)) 352 return &pool->caching[caching].orders[order]; 353 354 #ifdef CONFIG_X86 355 switch (caching) { 356 case ttm_write_combined: 357 if (pool->nid != NUMA_NO_NODE) 358 return &pool->caching[caching].orders[order]; 359 360 if (ttm_pool_uses_dma32(pool)) 361 return &global_dma32_write_combined[order]; 362 363 return &global_write_combined[order]; 364 case ttm_uncached: 365 if (pool->nid != NUMA_NO_NODE) 366 return &pool->caching[caching].orders[order]; 367 368 if (ttm_pool_uses_dma32(pool)) 369 return &global_dma32_uncached[order]; 370 371 return &global_uncached[order]; 372 default: 373 break; 374 } 375 #endif 376 377 return NULL; 378 } 379 380 /* Free pages using the global shrinker list */ 381 static unsigned int ttm_pool_shrink(void) 382 { 383 struct ttm_pool_type *pt; 384 unsigned int num_pages; 385 struct page *p; 386 387 down_read(&pool_shrink_rwsem); 388 spin_lock(&shrinker_lock); 389 pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list); 390 list_move_tail(&pt->shrinker_list, &shrinker_list); 391 spin_unlock(&shrinker_lock); 392 393 p = ttm_pool_type_take(pt); 394 if (p) { 395 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 396 num_pages = 1 << pt->order; 397 } else { 398 num_pages = 0; 399 } 400 up_read(&pool_shrink_rwsem); 401 402 return num_pages; 403 } 404 405 /* Return the allocation order based for a page */ 406 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p) 407 { 408 if (ttm_pool_uses_dma_alloc(pool)) { 409 struct ttm_pool_dma *dma = (void *)p->private; 410 411 return dma->vaddr & ~PAGE_MASK; 412 } 413 414 return p->private; 415 } 416 417 /* 418 * Split larger pages so that we can free each PAGE_SIZE page as soon 419 * as it has been backed up, in order to avoid memory pressure during 420 * reclaim. 421 */ 422 static void ttm_pool_split_for_swap(struct ttm_pool *pool, struct page *p) 423 { 424 unsigned int order = ttm_pool_page_order(pool, p); 425 pgoff_t nr; 426 427 if (!order) 428 return; 429 430 split_page(p, order); 431 nr = 1UL << order; 432 while (nr--) 433 (p++)->private = 0; 434 } 435 436 /** 437 * DOC: Partial backup and restoration of a struct ttm_tt. 438 * 439 * Swapout using ttm_backup_backup_page() and swapin using 440 * ttm_backup_copy_page() may fail. 441 * The former most likely due to lack of swap-space or memory, the latter due 442 * to lack of memory or because of signal interruption during waits. 443 * 444 * Backup failure is easily handled by using a ttm_tt pages vector that holds 445 * both backup handles and page pointers. This has to be taken into account when 446 * restoring such a ttm_tt from backup, and when freeing it while backed up. 447 * When restoring, for simplicity, new pages are actually allocated from the 448 * pool and the contents of any old pages are copied in and then the old pages 449 * are released. 450 * 451 * For restoration failures, the struct ttm_pool_tt_restore holds sufficient state 452 * to be able to resume an interrupted restore, and that structure is freed once 453 * the restoration is complete. If the struct ttm_tt is destroyed while there 454 * is a valid struct ttm_pool_tt_restore attached, that is also properly taken 455 * care of. 456 */ 457 458 /* Is restore ongoing for the currently allocated page? */ 459 static bool ttm_pool_restore_valid(const struct ttm_pool_tt_restore *restore) 460 { 461 return restore && restore->restored_pages < (1 << restore->order); 462 } 463 464 /* DMA unmap and free a multi-order page, either to the relevant pool or to system. */ 465 static pgoff_t ttm_pool_unmap_and_free(struct ttm_pool *pool, struct page *page, 466 const dma_addr_t *dma_addr, enum ttm_caching caching) 467 { 468 struct ttm_pool_type *pt = NULL; 469 unsigned int order; 470 pgoff_t nr; 471 472 if (pool) { 473 order = ttm_pool_page_order(pool, page); 474 nr = (1UL << order); 475 if (dma_addr) 476 ttm_pool_unmap(pool, *dma_addr, nr); 477 478 pt = ttm_pool_select_type(pool, caching, order); 479 } else { 480 order = page->private; 481 nr = (1UL << order); 482 } 483 484 if (pt) 485 ttm_pool_type_give(pt, page); 486 else 487 ttm_pool_free_page(pool, caching, order, page); 488 489 return nr; 490 } 491 492 /* Populate the page-array using the most recent allocated multi-order page. */ 493 static void ttm_pool_allocated_page_commit(struct page *allocated, 494 dma_addr_t first_dma, 495 struct ttm_pool_alloc_state *alloc, 496 pgoff_t nr) 497 { 498 pgoff_t i; 499 500 for (i = 0; i < nr; ++i) 501 *alloc->pages++ = allocated++; 502 503 alloc->remaining_pages -= nr; 504 505 if (!alloc->dma_addr) 506 return; 507 508 for (i = 0; i < nr; ++i) { 509 *alloc->dma_addr++ = first_dma; 510 first_dma += PAGE_SIZE; 511 } 512 } 513 514 /* 515 * When restoring, restore backed-up content to the newly allocated page and 516 * if successful, populate the page-table and dma-address arrays. 517 */ 518 static int ttm_pool_restore_commit(struct ttm_pool_tt_restore *restore, 519 struct file *backup, 520 const struct ttm_operation_ctx *ctx, 521 struct ttm_pool_alloc_state *alloc) 522 523 { 524 pgoff_t i, nr = 1UL << restore->order; 525 struct page **first_page = alloc->pages; 526 struct page *p; 527 int ret = 0; 528 529 for (i = restore->restored_pages; i < nr; ++i) { 530 p = first_page[i]; 531 if (ttm_backup_page_ptr_is_handle(p)) { 532 unsigned long handle = ttm_backup_page_ptr_to_handle(p); 533 534 if (IS_ENABLED(CONFIG_FAULT_INJECTION) && ctx->interruptible && 535 should_fail(&backup_fault_inject, 1)) { 536 ret = -EINTR; 537 break; 538 } 539 540 if (handle == 0) { 541 restore->restored_pages++; 542 continue; 543 } 544 545 ret = ttm_backup_copy_page(backup, restore->alloced_page + i, 546 handle, ctx->interruptible); 547 if (ret) 548 break; 549 550 ttm_backup_drop(backup, handle); 551 } else if (p) { 552 /* 553 * We could probably avoid splitting the old page 554 * using clever logic, but ATM we don't care, as 555 * we prioritize releasing memory ASAP. Note that 556 * here, the old retained page is always write-back 557 * cached. 558 */ 559 ttm_pool_split_for_swap(restore->pool, p); 560 copy_highpage(restore->alloced_page + i, p); 561 __free_pages(p, 0); 562 } 563 564 restore->restored_pages++; 565 first_page[i] = ttm_backup_handle_to_page_ptr(0); 566 } 567 568 if (ret) { 569 if (!restore->restored_pages) { 570 dma_addr_t *dma_addr = alloc->dma_addr ? &restore->first_dma : NULL; 571 572 ttm_pool_unmap_and_free(restore->pool, restore->alloced_page, 573 dma_addr, restore->page_caching); 574 restore->restored_pages = nr; 575 } 576 return ret; 577 } 578 579 ttm_pool_allocated_page_commit(restore->alloced_page, restore->first_dma, 580 alloc, nr); 581 if (restore->page_caching == alloc->tt_caching || PageHighMem(restore->alloced_page)) 582 alloc->caching_divide = alloc->pages; 583 restore->snapshot_alloc = *alloc; 584 restore->alloced_pages += nr; 585 586 return 0; 587 } 588 589 /* If restoring, save information needed for ttm_pool_restore_commit(). */ 590 static void 591 ttm_pool_page_allocated_restore(struct ttm_pool *pool, unsigned int order, 592 struct page *p, 593 enum ttm_caching page_caching, 594 dma_addr_t first_dma, 595 struct ttm_pool_tt_restore *restore, 596 const struct ttm_pool_alloc_state *alloc) 597 { 598 restore->pool = pool; 599 restore->order = order; 600 restore->restored_pages = 0; 601 restore->page_caching = page_caching; 602 restore->first_dma = first_dma; 603 restore->alloced_page = p; 604 restore->snapshot_alloc = *alloc; 605 } 606 607 /* 608 * Called when we got a page, either from a pool or newly allocated. 609 * if needed, dma map the page and populate the dma address array. 610 * Populate the page address array. 611 * If the caching is consistent, update any deferred caching. Otherwise 612 * stage this page for an upcoming deferred caching update. 613 */ 614 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order, 615 struct page *p, enum ttm_caching page_caching, 616 struct ttm_pool_alloc_state *alloc, 617 struct ttm_pool_tt_restore *restore) 618 { 619 bool caching_consistent; 620 dma_addr_t first_dma; 621 int r = 0; 622 623 caching_consistent = (page_caching == alloc->tt_caching) || PageHighMem(p); 624 625 if (caching_consistent) { 626 r = ttm_pool_apply_caching(alloc); 627 if (r) 628 return r; 629 } 630 631 if (alloc->dma_addr) { 632 r = ttm_pool_map(pool, order, p, &first_dma); 633 if (r) 634 return r; 635 } 636 637 if (restore) { 638 ttm_pool_page_allocated_restore(pool, order, p, page_caching, 639 first_dma, restore, alloc); 640 } else { 641 ttm_pool_allocated_page_commit(p, first_dma, alloc, 1UL << order); 642 643 if (caching_consistent) 644 alloc->caching_divide = alloc->pages; 645 } 646 647 return 0; 648 } 649 650 /** 651 * ttm_pool_free_range() - Free a range of TTM pages 652 * @pool: The pool used for allocating. 653 * @tt: The struct ttm_tt holding the page pointers. 654 * @caching: The page caching mode used by the range. 655 * @start_page: index for first page to free. 656 * @end_page: index for last page to free + 1. 657 * 658 * During allocation the ttm_tt page-vector may be populated with ranges of 659 * pages with different attributes if allocation hit an error without being 660 * able to completely fulfill the allocation. This function can be used 661 * to free these individual ranges. 662 */ 663 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt, 664 enum ttm_caching caching, 665 pgoff_t start_page, pgoff_t end_page) 666 { 667 struct page **pages = &tt->pages[start_page]; 668 struct file *backup = tt->backup; 669 pgoff_t i, nr; 670 671 for (i = start_page; i < end_page; i += nr, pages += nr) { 672 struct page *p = *pages; 673 674 nr = 1; 675 if (ttm_backup_page_ptr_is_handle(p)) { 676 unsigned long handle = ttm_backup_page_ptr_to_handle(p); 677 678 if (handle != 0) 679 ttm_backup_drop(backup, handle); 680 } else if (p) { 681 dma_addr_t *dma_addr = tt->dma_address ? 682 tt->dma_address + i : NULL; 683 684 nr = ttm_pool_unmap_and_free(pool, p, dma_addr, caching); 685 } 686 } 687 } 688 689 static void ttm_pool_alloc_state_init(const struct ttm_tt *tt, 690 struct ttm_pool_alloc_state *alloc) 691 { 692 alloc->pages = tt->pages; 693 alloc->caching_divide = tt->pages; 694 alloc->dma_addr = tt->dma_address; 695 alloc->remaining_pages = tt->num_pages; 696 alloc->tt_caching = tt->caching; 697 } 698 699 /* 700 * Find a suitable allocation order based on highest desired order 701 * and number of remaining pages 702 */ 703 static unsigned int ttm_pool_alloc_find_order(unsigned int highest, 704 const struct ttm_pool_alloc_state *alloc) 705 { 706 return min_t(unsigned int, highest, __fls(alloc->remaining_pages)); 707 } 708 709 static int __ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 710 const struct ttm_operation_ctx *ctx, 711 struct ttm_pool_alloc_state *alloc, 712 struct ttm_pool_tt_restore *restore) 713 { 714 enum ttm_caching page_caching; 715 gfp_t gfp_flags = GFP_USER; 716 pgoff_t caching_divide; 717 unsigned int order; 718 bool allow_pools; 719 struct page *p; 720 int r; 721 722 WARN_ON(!alloc->remaining_pages || ttm_tt_is_populated(tt)); 723 WARN_ON(alloc->dma_addr && !pool->dev); 724 725 if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC) 726 gfp_flags |= __GFP_ZERO; 727 728 if (ctx->gfp_retry_mayfail) 729 gfp_flags |= __GFP_RETRY_MAYFAIL; 730 731 if (ttm_pool_uses_dma32(pool)) 732 gfp_flags |= GFP_DMA32; 733 else 734 gfp_flags |= GFP_HIGHUSER; 735 736 page_caching = tt->caching; 737 allow_pools = true; 738 for (order = ttm_pool_alloc_find_order(MAX_PAGE_ORDER, alloc); 739 alloc->remaining_pages; 740 order = ttm_pool_alloc_find_order(order, alloc)) { 741 struct ttm_pool_type *pt; 742 743 /* First, try to allocate a page from a pool if one exists. */ 744 p = NULL; 745 pt = ttm_pool_select_type(pool, page_caching, order); 746 if (pt && allow_pools) 747 p = ttm_pool_type_take(pt); 748 /* 749 * If that fails or previously failed, allocate from system. 750 * Note that this also disallows additional pool allocations using 751 * write-back cached pools of the same order. Consider removing 752 * that behaviour. 753 */ 754 if (!p) { 755 page_caching = ttm_cached; 756 allow_pools = false; 757 p = ttm_pool_alloc_page(pool, gfp_flags, order); 758 } 759 /* If that fails, lower the order if possible and retry. */ 760 if (!p) { 761 if (order) { 762 --order; 763 page_caching = tt->caching; 764 allow_pools = true; 765 continue; 766 } 767 r = -ENOMEM; 768 goto error_free_all; 769 } 770 r = ttm_pool_page_allocated(pool, order, p, page_caching, alloc, 771 restore); 772 if (r) 773 goto error_free_page; 774 775 if (ttm_pool_restore_valid(restore)) { 776 r = ttm_pool_restore_commit(restore, tt->backup, ctx, alloc); 777 if (r) 778 goto error_free_all; 779 } 780 } 781 782 r = ttm_pool_apply_caching(alloc); 783 if (r) 784 goto error_free_all; 785 786 kfree(tt->restore); 787 tt->restore = NULL; 788 789 return 0; 790 791 error_free_page: 792 ttm_pool_free_page(pool, page_caching, order, p); 793 794 error_free_all: 795 if (tt->restore) 796 return r; 797 798 caching_divide = alloc->caching_divide - tt->pages; 799 ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide); 800 ttm_pool_free_range(pool, tt, ttm_cached, caching_divide, 801 tt->num_pages - alloc->remaining_pages); 802 803 return r; 804 } 805 806 /** 807 * ttm_pool_alloc - Fill a ttm_tt object 808 * 809 * @pool: ttm_pool to use 810 * @tt: ttm_tt object to fill 811 * @ctx: operation context 812 * 813 * Fill the ttm_tt object with pages and also make sure to DMA map them when 814 * necessary. 815 * 816 * Returns: 0 on successe, negative error code otherwise. 817 */ 818 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 819 struct ttm_operation_ctx *ctx) 820 { 821 struct ttm_pool_alloc_state alloc; 822 823 if (WARN_ON(ttm_tt_is_backed_up(tt))) 824 return -EINVAL; 825 826 ttm_pool_alloc_state_init(tt, &alloc); 827 828 return __ttm_pool_alloc(pool, tt, ctx, &alloc, NULL); 829 } 830 EXPORT_SYMBOL(ttm_pool_alloc); 831 832 /** 833 * ttm_pool_restore_and_alloc - Fill a ttm_tt, restoring previously backed-up 834 * content. 835 * 836 * @pool: ttm_pool to use 837 * @tt: ttm_tt object to fill 838 * @ctx: operation context 839 * 840 * Fill the ttm_tt object with pages and also make sure to DMA map them when 841 * necessary. Read in backed-up content. 842 * 843 * Returns: 0 on successe, negative error code otherwise. 844 */ 845 int ttm_pool_restore_and_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 846 const struct ttm_operation_ctx *ctx) 847 { 848 struct ttm_pool_alloc_state alloc; 849 850 if (WARN_ON(!ttm_tt_is_backed_up(tt))) 851 return -EINVAL; 852 853 if (!tt->restore) { 854 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 855 856 ttm_pool_alloc_state_init(tt, &alloc); 857 if (ctx->gfp_retry_mayfail) 858 gfp |= __GFP_RETRY_MAYFAIL; 859 860 tt->restore = kzalloc(sizeof(*tt->restore), gfp); 861 if (!tt->restore) 862 return -ENOMEM; 863 864 tt->restore->snapshot_alloc = alloc; 865 tt->restore->pool = pool; 866 tt->restore->restored_pages = 1; 867 } else { 868 struct ttm_pool_tt_restore *restore = tt->restore; 869 int ret; 870 871 alloc = restore->snapshot_alloc; 872 if (ttm_pool_restore_valid(tt->restore)) { 873 ret = ttm_pool_restore_commit(restore, tt->backup, ctx, &alloc); 874 if (ret) 875 return ret; 876 } 877 if (!alloc.remaining_pages) 878 return 0; 879 } 880 881 return __ttm_pool_alloc(pool, tt, ctx, &alloc, tt->restore); 882 } 883 884 /** 885 * ttm_pool_free - Free the backing pages from a ttm_tt object 886 * 887 * @pool: Pool to give pages back to. 888 * @tt: ttm_tt object to unpopulate 889 * 890 * Give the packing pages back to a pool or free them 891 */ 892 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt) 893 { 894 ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages); 895 896 while (atomic_long_read(&allocated_pages) > page_pool_size) 897 ttm_pool_shrink(); 898 } 899 EXPORT_SYMBOL(ttm_pool_free); 900 901 /** 902 * ttm_pool_drop_backed_up() - Release content of a swapped-out struct ttm_tt 903 * @tt: The struct ttm_tt. 904 * 905 * Release handles with associated content or any remaining pages of 906 * a backed-up struct ttm_tt. 907 */ 908 void ttm_pool_drop_backed_up(struct ttm_tt *tt) 909 { 910 struct ttm_pool_tt_restore *restore; 911 pgoff_t start_page = 0; 912 913 WARN_ON(!ttm_tt_is_backed_up(tt)); 914 915 restore = tt->restore; 916 917 /* 918 * Unmap and free any uncommitted restore page. 919 * any tt page-array backup entries already read back has 920 * been cleared already 921 */ 922 if (ttm_pool_restore_valid(restore)) { 923 dma_addr_t *dma_addr = tt->dma_address ? &restore->first_dma : NULL; 924 925 ttm_pool_unmap_and_free(restore->pool, restore->alloced_page, 926 dma_addr, restore->page_caching); 927 restore->restored_pages = 1UL << restore->order; 928 } 929 930 /* 931 * If a restore is ongoing, part of the tt pages may have a 932 * caching different than writeback. 933 */ 934 if (restore) { 935 pgoff_t mid = restore->snapshot_alloc.caching_divide - tt->pages; 936 937 start_page = restore->alloced_pages; 938 WARN_ON(mid > start_page); 939 /* Pages that might be dma-mapped and non-cached */ 940 ttm_pool_free_range(restore->pool, tt, tt->caching, 941 0, mid); 942 /* Pages that might be dma-mapped but cached */ 943 ttm_pool_free_range(restore->pool, tt, ttm_cached, 944 mid, restore->alloced_pages); 945 kfree(restore); 946 tt->restore = NULL; 947 } 948 949 ttm_pool_free_range(NULL, tt, ttm_cached, start_page, tt->num_pages); 950 } 951 952 /** 953 * ttm_pool_backup() - Back up or purge a struct ttm_tt 954 * @pool: The pool used when allocating the struct ttm_tt. 955 * @tt: The struct ttm_tt. 956 * @flags: Flags to govern the backup behaviour. 957 * 958 * Back up or purge a struct ttm_tt. If @purge is true, then 959 * all pages will be freed directly to the system rather than to the pool 960 * they were allocated from, making the function behave similarly to 961 * ttm_pool_free(). If @purge is false the pages will be backed up instead, 962 * exchanged for handles. 963 * A subsequent call to ttm_pool_restore_and_alloc() will then read back the content and 964 * a subsequent call to ttm_pool_drop_backed_up() will drop it. 965 * If backup of a page fails for whatever reason, @ttm will still be 966 * partially backed up, retaining those pages for which backup fails. 967 * In that case, this function can be retried, possibly after freeing up 968 * memory resources. 969 * 970 * Return: Number of pages actually backed up or freed, or negative 971 * error code on error. 972 */ 973 long ttm_pool_backup(struct ttm_pool *pool, struct ttm_tt *tt, 974 const struct ttm_backup_flags *flags) 975 { 976 struct file *backup = tt->backup; 977 struct page *page; 978 unsigned long handle; 979 gfp_t alloc_gfp; 980 gfp_t gfp; 981 int ret = 0; 982 pgoff_t shrunken = 0; 983 pgoff_t i, num_pages; 984 985 if (WARN_ON(ttm_tt_is_backed_up(tt))) 986 return -EINVAL; 987 988 if ((!ttm_backup_bytes_avail() && !flags->purge) || 989 ttm_pool_uses_dma_alloc(pool) || ttm_tt_is_backed_up(tt)) 990 return -EBUSY; 991 992 #ifdef CONFIG_X86 993 /* Anything returned to the system needs to be cached. */ 994 if (tt->caching != ttm_cached) 995 set_pages_array_wb(tt->pages, tt->num_pages); 996 #endif 997 998 if (tt->dma_address || flags->purge) { 999 for (i = 0; i < tt->num_pages; i += num_pages) { 1000 unsigned int order; 1001 1002 page = tt->pages[i]; 1003 if (unlikely(!page)) { 1004 num_pages = 1; 1005 continue; 1006 } 1007 1008 order = ttm_pool_page_order(pool, page); 1009 num_pages = 1UL << order; 1010 if (tt->dma_address) 1011 ttm_pool_unmap(pool, tt->dma_address[i], 1012 num_pages); 1013 if (flags->purge) { 1014 shrunken += num_pages; 1015 page->private = 0; 1016 __free_pages(page, order); 1017 memset(tt->pages + i, 0, 1018 num_pages * sizeof(*tt->pages)); 1019 } 1020 } 1021 } 1022 1023 if (flags->purge) 1024 return shrunken; 1025 1026 if (ttm_pool_uses_dma32(pool)) 1027 gfp = GFP_DMA32; 1028 else 1029 gfp = GFP_HIGHUSER; 1030 1031 alloc_gfp = GFP_KERNEL | __GFP_HIGH | __GFP_NOWARN | __GFP_RETRY_MAYFAIL; 1032 1033 num_pages = tt->num_pages; 1034 1035 /* Pretend doing fault injection by shrinking only half of the pages. */ 1036 if (IS_ENABLED(CONFIG_FAULT_INJECTION) && should_fail(&backup_fault_inject, 1)) 1037 num_pages = DIV_ROUND_UP(num_pages, 2); 1038 1039 for (i = 0; i < num_pages; ++i) { 1040 s64 shandle; 1041 1042 page = tt->pages[i]; 1043 if (unlikely(!page)) 1044 continue; 1045 1046 ttm_pool_split_for_swap(pool, page); 1047 1048 shandle = ttm_backup_backup_page(backup, page, flags->writeback, i, 1049 gfp, alloc_gfp); 1050 if (shandle < 0) { 1051 /* We allow partially shrunken tts */ 1052 ret = shandle; 1053 break; 1054 } 1055 handle = shandle; 1056 tt->pages[i] = ttm_backup_handle_to_page_ptr(handle); 1057 put_page(page); 1058 shrunken++; 1059 } 1060 1061 return shrunken ? shrunken : ret; 1062 } 1063 1064 /** 1065 * ttm_pool_init - Initialize a pool 1066 * 1067 * @pool: the pool to initialize 1068 * @dev: device for DMA allocations and mappings 1069 * @nid: NUMA node to use for allocations 1070 * @alloc_flags: TTM_ALLOCATION_POOL_ flags 1071 * 1072 * Initialize the pool and its pool types. 1073 */ 1074 void ttm_pool_init(struct ttm_pool *pool, struct device *dev, 1075 int nid, unsigned int alloc_flags) 1076 { 1077 unsigned int i, j; 1078 1079 WARN_ON(!dev && ttm_pool_uses_dma_alloc(pool)); 1080 1081 pool->dev = dev; 1082 pool->nid = nid; 1083 pool->alloc_flags = alloc_flags; 1084 1085 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 1086 for (j = 0; j < NR_PAGE_ORDERS; ++j) { 1087 struct ttm_pool_type *pt; 1088 1089 /* Initialize only pool types which are actually used */ 1090 pt = ttm_pool_select_type(pool, i, j); 1091 if (pt != &pool->caching[i].orders[j]) 1092 continue; 1093 1094 ttm_pool_type_init(pt, pool, i, j); 1095 } 1096 } 1097 } 1098 EXPORT_SYMBOL(ttm_pool_init); 1099 1100 /** 1101 * ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete. 1102 * 1103 * This is useful to guarantee that all shrinker invocations have seen an 1104 * update, before freeing memory, similar to rcu. 1105 */ 1106 static void ttm_pool_synchronize_shrinkers(void) 1107 { 1108 down_write(&pool_shrink_rwsem); 1109 up_write(&pool_shrink_rwsem); 1110 } 1111 1112 /** 1113 * ttm_pool_fini - Cleanup a pool 1114 * 1115 * @pool: the pool to clean up 1116 * 1117 * Free all pages in the pool and unregister the types from the global 1118 * shrinker. 1119 */ 1120 void ttm_pool_fini(struct ttm_pool *pool) 1121 { 1122 unsigned int i, j; 1123 1124 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 1125 for (j = 0; j < NR_PAGE_ORDERS; ++j) { 1126 struct ttm_pool_type *pt; 1127 1128 pt = ttm_pool_select_type(pool, i, j); 1129 if (pt != &pool->caching[i].orders[j]) 1130 continue; 1131 1132 ttm_pool_type_fini(pt); 1133 } 1134 } 1135 1136 /* We removed the pool types from the LRU, but we need to also make sure 1137 * that no shrinker is concurrently freeing pages from the pool. 1138 */ 1139 ttm_pool_synchronize_shrinkers(); 1140 } 1141 EXPORT_SYMBOL(ttm_pool_fini); 1142 1143 /* Free average pool number of pages. */ 1144 #define TTM_SHRINKER_BATCH ((1 << (MAX_PAGE_ORDER / 2)) * NR_PAGE_ORDERS) 1145 1146 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink, 1147 struct shrink_control *sc) 1148 { 1149 unsigned long num_freed = 0; 1150 1151 do 1152 num_freed += ttm_pool_shrink(); 1153 while (num_freed < sc->nr_to_scan && 1154 atomic_long_read(&allocated_pages)); 1155 1156 sc->nr_scanned = num_freed; 1157 1158 return num_freed ?: SHRINK_STOP; 1159 } 1160 1161 /* Return the number of pages available or SHRINK_EMPTY if we have none */ 1162 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink, 1163 struct shrink_control *sc) 1164 { 1165 unsigned long num_pages = atomic_long_read(&allocated_pages); 1166 1167 return num_pages ? num_pages : SHRINK_EMPTY; 1168 } 1169 1170 #ifdef CONFIG_DEBUG_FS 1171 /* Count the number of pages available in a pool_type */ 1172 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt) 1173 { 1174 unsigned int count = 0; 1175 struct page *p; 1176 1177 spin_lock(&pt->lock); 1178 /* Only used for debugfs, the overhead doesn't matter */ 1179 list_for_each_entry(p, &pt->pages, lru) 1180 ++count; 1181 spin_unlock(&pt->lock); 1182 1183 return count; 1184 } 1185 1186 /* Print a nice header for the order */ 1187 static void ttm_pool_debugfs_header(struct seq_file *m) 1188 { 1189 unsigned int i; 1190 1191 seq_puts(m, "\t "); 1192 for (i = 0; i < NR_PAGE_ORDERS; ++i) 1193 seq_printf(m, " ---%2u---", i); 1194 seq_puts(m, "\n"); 1195 } 1196 1197 /* Dump information about the different pool types */ 1198 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt, 1199 struct seq_file *m) 1200 { 1201 unsigned int i; 1202 1203 for (i = 0; i < NR_PAGE_ORDERS; ++i) 1204 seq_printf(m, " %8u", ttm_pool_type_count(&pt[i])); 1205 seq_puts(m, "\n"); 1206 } 1207 1208 /* Dump the total amount of allocated pages */ 1209 static void ttm_pool_debugfs_footer(struct seq_file *m) 1210 { 1211 seq_printf(m, "\ntotal\t: %8lu of %8lu\n", 1212 atomic_long_read(&allocated_pages), page_pool_size); 1213 } 1214 1215 /* Dump the information for the global pools */ 1216 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data) 1217 { 1218 ttm_pool_debugfs_header(m); 1219 1220 spin_lock(&shrinker_lock); 1221 seq_puts(m, "wc\t:"); 1222 ttm_pool_debugfs_orders(global_write_combined, m); 1223 seq_puts(m, "uc\t:"); 1224 ttm_pool_debugfs_orders(global_uncached, m); 1225 seq_puts(m, "wc 32\t:"); 1226 ttm_pool_debugfs_orders(global_dma32_write_combined, m); 1227 seq_puts(m, "uc 32\t:"); 1228 ttm_pool_debugfs_orders(global_dma32_uncached, m); 1229 spin_unlock(&shrinker_lock); 1230 1231 ttm_pool_debugfs_footer(m); 1232 1233 return 0; 1234 } 1235 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals); 1236 1237 /** 1238 * ttm_pool_debugfs - Debugfs dump function for a pool 1239 * 1240 * @pool: the pool to dump the information for 1241 * @m: seq_file to dump to 1242 * 1243 * Make a debugfs dump with the per pool and global information. 1244 */ 1245 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m) 1246 { 1247 unsigned int i; 1248 1249 if (!ttm_pool_uses_dma_alloc(pool) && pool->nid == NUMA_NO_NODE) { 1250 seq_puts(m, "unused\n"); 1251 return 0; 1252 } 1253 1254 ttm_pool_debugfs_header(m); 1255 1256 spin_lock(&shrinker_lock); 1257 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 1258 if (!ttm_pool_select_type(pool, i, 0)) 1259 continue; 1260 if (ttm_pool_uses_dma_alloc(pool)) 1261 seq_puts(m, "DMA "); 1262 else 1263 seq_printf(m, "N%d ", pool->nid); 1264 switch (i) { 1265 case ttm_cached: 1266 seq_puts(m, "\t:"); 1267 break; 1268 case ttm_write_combined: 1269 seq_puts(m, "wc\t:"); 1270 break; 1271 case ttm_uncached: 1272 seq_puts(m, "uc\t:"); 1273 break; 1274 } 1275 ttm_pool_debugfs_orders(pool->caching[i].orders, m); 1276 } 1277 spin_unlock(&shrinker_lock); 1278 1279 ttm_pool_debugfs_footer(m); 1280 return 0; 1281 } 1282 EXPORT_SYMBOL(ttm_pool_debugfs); 1283 1284 /* Test the shrinker functions and dump the result */ 1285 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data) 1286 { 1287 struct shrink_control sc = { 1288 .gfp_mask = GFP_NOFS, 1289 .nr_to_scan = TTM_SHRINKER_BATCH, 1290 }; 1291 unsigned long count; 1292 1293 fs_reclaim_acquire(GFP_KERNEL); 1294 count = ttm_pool_shrinker_count(mm_shrinker, &sc); 1295 seq_printf(m, "%lu/%lu\n", count, 1296 ttm_pool_shrinker_scan(mm_shrinker, &sc)); 1297 fs_reclaim_release(GFP_KERNEL); 1298 1299 return 0; 1300 } 1301 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink); 1302 1303 #endif 1304 1305 /** 1306 * ttm_pool_mgr_init - Initialize globals 1307 * 1308 * @num_pages: default number of pages 1309 * 1310 * Initialize the global locks and lists for the MM shrinker. 1311 */ 1312 int ttm_pool_mgr_init(unsigned long num_pages) 1313 { 1314 unsigned int i; 1315 1316 if (!page_pool_size) 1317 page_pool_size = num_pages; 1318 1319 spin_lock_init(&shrinker_lock); 1320 INIT_LIST_HEAD(&shrinker_list); 1321 1322 for (i = 0; i < NR_PAGE_ORDERS; ++i) { 1323 ttm_pool_type_init(&global_write_combined[i], NULL, 1324 ttm_write_combined, i); 1325 ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i); 1326 1327 ttm_pool_type_init(&global_dma32_write_combined[i], NULL, 1328 ttm_write_combined, i); 1329 ttm_pool_type_init(&global_dma32_uncached[i], NULL, 1330 ttm_uncached, i); 1331 } 1332 1333 #ifdef CONFIG_DEBUG_FS 1334 debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL, 1335 &ttm_pool_debugfs_globals_fops); 1336 debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL, 1337 &ttm_pool_debugfs_shrink_fops); 1338 #ifdef CONFIG_FAULT_INJECTION 1339 fault_create_debugfs_attr("backup_fault_inject", ttm_debugfs_root, 1340 &backup_fault_inject); 1341 #endif 1342 #endif 1343 1344 mm_shrinker = shrinker_alloc(0, "drm-ttm_pool"); 1345 if (!mm_shrinker) 1346 return -ENOMEM; 1347 1348 mm_shrinker->count_objects = ttm_pool_shrinker_count; 1349 mm_shrinker->scan_objects = ttm_pool_shrinker_scan; 1350 mm_shrinker->batch = TTM_SHRINKER_BATCH; 1351 mm_shrinker->seeks = 1; 1352 1353 shrinker_register(mm_shrinker); 1354 1355 return 0; 1356 } 1357 1358 /** 1359 * ttm_pool_mgr_fini - Finalize globals 1360 * 1361 * Cleanup the global pools and unregister the MM shrinker. 1362 */ 1363 void ttm_pool_mgr_fini(void) 1364 { 1365 unsigned int i; 1366 1367 for (i = 0; i < NR_PAGE_ORDERS; ++i) { 1368 ttm_pool_type_fini(&global_write_combined[i]); 1369 ttm_pool_type_fini(&global_uncached[i]); 1370 1371 ttm_pool_type_fini(&global_dma32_write_combined[i]); 1372 ttm_pool_type_fini(&global_dma32_uncached[i]); 1373 } 1374 1375 shrinker_free(mm_shrinker); 1376 WARN_ON(!list_empty(&shrinker_list)); 1377 } 1378