xref: /linux/drivers/gpu/drm/ttm/ttm_pool.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Christian König
24  */
25 
26 /* Pooling of allocated pages is necessary because changing the caching
27  * attributes on x86 of the linear mapping requires a costly cross CPU TLB
28  * invalidate for those addresses.
29  *
30  * Additional to that allocations from the DMA coherent API are pooled as well
31  * cause they are rather slow compared to alloc_pages+map.
32  */
33 
34 #include <linux/export.h>
35 #include <linux/module.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/debugfs.h>
38 #include <linux/highmem.h>
39 #include <linux/sched/mm.h>
40 
41 #ifdef CONFIG_X86
42 #include <asm/set_memory.h>
43 #endif
44 
45 #include <drm/ttm/ttm_backup.h>
46 #include <drm/ttm/ttm_pool.h>
47 #include <drm/ttm/ttm_tt.h>
48 #include <drm/ttm/ttm_bo.h>
49 
50 #include "ttm_module.h"
51 #include "ttm_pool_internal.h"
52 
53 #ifdef CONFIG_FAULT_INJECTION
54 #include <linux/fault-inject.h>
55 static DECLARE_FAULT_ATTR(backup_fault_inject);
56 #else
57 #define should_fail(...) false
58 #endif
59 
60 /**
61  * struct ttm_pool_dma - Helper object for coherent DMA mappings
62  *
63  * @addr: original DMA address returned for the mapping
64  * @vaddr: original vaddr return for the mapping and order in the lower bits
65  */
66 struct ttm_pool_dma {
67 	dma_addr_t addr;
68 	unsigned long vaddr;
69 };
70 
71 /**
72  * struct ttm_pool_alloc_state - Current state of the tt page allocation process
73  * @pages: Pointer to the next tt page pointer to populate.
74  * @caching_divide: Pointer to the first page pointer whose page has a staged but
75  * not committed caching transition from write-back to @tt_caching.
76  * @dma_addr: Pointer to the next tt dma_address entry to populate if any.
77  * @remaining_pages: Remaining pages to populate.
78  * @tt_caching: The requested cpu-caching for the pages allocated.
79  */
80 struct ttm_pool_alloc_state {
81 	struct page **pages;
82 	struct page **caching_divide;
83 	dma_addr_t *dma_addr;
84 	pgoff_t remaining_pages;
85 	enum ttm_caching tt_caching;
86 };
87 
88 /**
89  * struct ttm_pool_tt_restore - State representing restore from backup
90  * @pool: The pool used for page allocation while restoring.
91  * @snapshot_alloc: A snapshot of the most recent struct ttm_pool_alloc_state.
92  * @alloced_page: Pointer to the page most recently allocated from a pool or system.
93  * @first_dma: The dma address corresponding to @alloced_page if dma_mapping
94  * is requested.
95  * @alloced_pages: The number of allocated pages present in the struct ttm_tt
96  * page vector from this restore session.
97  * @restored_pages: The number of 4K pages restored for @alloced_page (which
98  * is typically a multi-order page).
99  * @page_caching: The struct ttm_tt requested caching
100  * @order: The order of @alloced_page.
101  *
102  * Recovery from backup might fail when we've recovered less than the
103  * full ttm_tt. In order not to loose any data (yet), keep information
104  * around that allows us to restart a failed ttm backup recovery.
105  */
106 struct ttm_pool_tt_restore {
107 	struct ttm_pool *pool;
108 	struct ttm_pool_alloc_state snapshot_alloc;
109 	struct page *alloced_page;
110 	dma_addr_t first_dma;
111 	pgoff_t alloced_pages;
112 	pgoff_t restored_pages;
113 	enum ttm_caching page_caching;
114 	unsigned int order;
115 };
116 
117 static unsigned long page_pool_size;
118 
119 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool");
120 module_param(page_pool_size, ulong, 0644);
121 
122 static atomic_long_t allocated_pages;
123 
124 static struct ttm_pool_type global_write_combined[NR_PAGE_ORDERS];
125 static struct ttm_pool_type global_uncached[NR_PAGE_ORDERS];
126 
127 static struct ttm_pool_type global_dma32_write_combined[NR_PAGE_ORDERS];
128 static struct ttm_pool_type global_dma32_uncached[NR_PAGE_ORDERS];
129 
130 static spinlock_t shrinker_lock;
131 static struct list_head shrinker_list;
132 static struct shrinker *mm_shrinker;
133 static DECLARE_RWSEM(pool_shrink_rwsem);
134 
135 /* Allocate pages of size 1 << order with the given gfp_flags */
136 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags,
137 					unsigned int order)
138 {
139 	const unsigned int beneficial_order = ttm_pool_beneficial_order(pool);
140 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
141 	struct ttm_pool_dma *dma;
142 	struct page *p;
143 	void *vaddr;
144 
145 	/* Don't set the __GFP_COMP flag for higher order allocations.
146 	 * Mapping pages directly into an userspace process and calling
147 	 * put_page() on a TTM allocated page is illegal.
148 	 */
149 	if (order)
150 		gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN |
151 			__GFP_THISNODE;
152 
153 	/*
154 	 * Do not add latency to the allocation path for allocations orders
155 	 * device tolds us do not bring them additional performance gains.
156 	 */
157 	if (beneficial_order && order > beneficial_order)
158 		gfp_flags &= ~__GFP_DIRECT_RECLAIM;
159 
160 	if (!ttm_pool_uses_dma_alloc(pool)) {
161 		p = alloc_pages_node(pool->nid, gfp_flags, order);
162 		if (p)
163 			p->private = order;
164 		return p;
165 	}
166 
167 	dma = kmalloc_obj(*dma, GFP_KERNEL);
168 	if (!dma)
169 		return NULL;
170 
171 	if (order)
172 		attr |= DMA_ATTR_NO_WARN;
173 
174 	vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE,
175 				&dma->addr, gfp_flags, attr);
176 	if (!vaddr)
177 		goto error_free;
178 
179 	/* TODO: This is an illegal abuse of the DMA API, but we need to rework
180 	 * TTM page fault handling and extend the DMA API to clean this up.
181 	 */
182 	if (is_vmalloc_addr(vaddr))
183 		p = vmalloc_to_page(vaddr);
184 	else
185 		p = virt_to_page(vaddr);
186 
187 	dma->vaddr = (unsigned long)vaddr | order;
188 	p->private = (unsigned long)dma;
189 	return p;
190 
191 error_free:
192 	kfree(dma);
193 	return NULL;
194 }
195 
196 /* Reset the caching and pages of size 1 << order */
197 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching,
198 			       unsigned int order, struct page *p)
199 {
200 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
201 	struct ttm_pool_dma *dma;
202 	void *vaddr;
203 
204 #ifdef CONFIG_X86
205 	/* We don't care that set_pages_wb is inefficient here. This is only
206 	 * used when we have to shrink and CPU overhead is irrelevant then.
207 	 */
208 	if (caching != ttm_cached && !PageHighMem(p))
209 		set_pages_wb(p, 1 << order);
210 #endif
211 
212 	if (!pool || !ttm_pool_uses_dma_alloc(pool)) {
213 		__free_pages(p, order);
214 		return;
215 	}
216 
217 	if (order)
218 		attr |= DMA_ATTR_NO_WARN;
219 
220 	dma = (void *)p->private;
221 	vaddr = (void *)(dma->vaddr & PAGE_MASK);
222 	dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr,
223 		       attr);
224 	kfree(dma);
225 }
226 
227 /* Apply any cpu-caching deferred during page allocation */
228 static int ttm_pool_apply_caching(struct ttm_pool_alloc_state *alloc)
229 {
230 #ifdef CONFIG_X86
231 	unsigned int num_pages = alloc->pages - alloc->caching_divide;
232 
233 	if (!num_pages)
234 		return 0;
235 
236 	switch (alloc->tt_caching) {
237 	case ttm_cached:
238 		break;
239 	case ttm_write_combined:
240 		return set_pages_array_wc(alloc->caching_divide, num_pages);
241 	case ttm_uncached:
242 		return set_pages_array_uc(alloc->caching_divide, num_pages);
243 	}
244 #endif
245 	alloc->caching_divide = alloc->pages;
246 	return 0;
247 }
248 
249 /* DMA Map pages of 1 << order size and return the resulting dma_address. */
250 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order,
251 			struct page *p, dma_addr_t *dma_addr)
252 {
253 	dma_addr_t addr;
254 
255 	if (ttm_pool_uses_dma_alloc(pool)) {
256 		struct ttm_pool_dma *dma = (void *)p->private;
257 
258 		addr = dma->addr;
259 	} else {
260 		size_t size = (1ULL << order) * PAGE_SIZE;
261 
262 		addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL);
263 		if (dma_mapping_error(pool->dev, addr))
264 			return -EFAULT;
265 	}
266 
267 	*dma_addr = addr;
268 
269 	return 0;
270 }
271 
272 /* Unmap pages of 1 << order size */
273 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr,
274 			   unsigned int num_pages)
275 {
276 	/* Unmapped while freeing the page */
277 	if (ttm_pool_uses_dma_alloc(pool))
278 		return;
279 
280 	dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT,
281 		       DMA_BIDIRECTIONAL);
282 }
283 
284 /* Give pages into a specific pool_type */
285 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p)
286 {
287 	unsigned int i, num_pages = 1 << pt->order;
288 
289 	for (i = 0; i < num_pages; ++i) {
290 		if (PageHighMem(p))
291 			clear_highpage(p + i);
292 		else
293 			clear_page(page_address(p + i));
294 	}
295 
296 	spin_lock(&pt->lock);
297 	list_add(&p->lru, &pt->pages);
298 	spin_unlock(&pt->lock);
299 	atomic_long_add(1 << pt->order, &allocated_pages);
300 }
301 
302 /* Take pages from a specific pool_type, return NULL when nothing available */
303 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt)
304 {
305 	struct page *p;
306 
307 	spin_lock(&pt->lock);
308 	p = list_first_entry_or_null(&pt->pages, typeof(*p), lru);
309 	if (p) {
310 		atomic_long_sub(1 << pt->order, &allocated_pages);
311 		list_del(&p->lru);
312 	}
313 	spin_unlock(&pt->lock);
314 
315 	return p;
316 }
317 
318 /* Initialize and add a pool type to the global shrinker list */
319 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool,
320 			       enum ttm_caching caching, unsigned int order)
321 {
322 	pt->pool = pool;
323 	pt->caching = caching;
324 	pt->order = order;
325 	spin_lock_init(&pt->lock);
326 	INIT_LIST_HEAD(&pt->pages);
327 
328 	spin_lock(&shrinker_lock);
329 	list_add_tail(&pt->shrinker_list, &shrinker_list);
330 	spin_unlock(&shrinker_lock);
331 }
332 
333 /* Remove a pool_type from the global shrinker list and free all pages */
334 static void ttm_pool_type_fini(struct ttm_pool_type *pt)
335 {
336 	struct page *p;
337 
338 	spin_lock(&shrinker_lock);
339 	list_del(&pt->shrinker_list);
340 	spin_unlock(&shrinker_lock);
341 
342 	while ((p = ttm_pool_type_take(pt)))
343 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
344 }
345 
346 /* Return the pool_type to use for the given caching and order */
347 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool,
348 						  enum ttm_caching caching,
349 						  unsigned int order)
350 {
351 	if (ttm_pool_uses_dma_alloc(pool))
352 		return &pool->caching[caching].orders[order];
353 
354 #ifdef CONFIG_X86
355 	switch (caching) {
356 	case ttm_write_combined:
357 		if (pool->nid != NUMA_NO_NODE)
358 			return &pool->caching[caching].orders[order];
359 
360 		if (ttm_pool_uses_dma32(pool))
361 			return &global_dma32_write_combined[order];
362 
363 		return &global_write_combined[order];
364 	case ttm_uncached:
365 		if (pool->nid != NUMA_NO_NODE)
366 			return &pool->caching[caching].orders[order];
367 
368 		if (ttm_pool_uses_dma32(pool))
369 			return &global_dma32_uncached[order];
370 
371 		return &global_uncached[order];
372 	default:
373 		break;
374 	}
375 #endif
376 
377 	return NULL;
378 }
379 
380 /* Free pages using the global shrinker list */
381 static unsigned int ttm_pool_shrink(void)
382 {
383 	struct ttm_pool_type *pt;
384 	unsigned int num_pages;
385 	struct page *p;
386 
387 	down_read(&pool_shrink_rwsem);
388 	spin_lock(&shrinker_lock);
389 	pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list);
390 	list_move_tail(&pt->shrinker_list, &shrinker_list);
391 	spin_unlock(&shrinker_lock);
392 
393 	p = ttm_pool_type_take(pt);
394 	if (p) {
395 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
396 		num_pages = 1 << pt->order;
397 	} else {
398 		num_pages = 0;
399 	}
400 	up_read(&pool_shrink_rwsem);
401 
402 	return num_pages;
403 }
404 
405 /* Return the allocation order based for a page */
406 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p)
407 {
408 	if (ttm_pool_uses_dma_alloc(pool)) {
409 		struct ttm_pool_dma *dma = (void *)p->private;
410 
411 		return dma->vaddr & ~PAGE_MASK;
412 	}
413 
414 	return p->private;
415 }
416 
417 /*
418  * Split larger pages so that we can free each PAGE_SIZE page as soon
419  * as it has been backed up, in order to avoid memory pressure during
420  * reclaim.
421  */
422 static void ttm_pool_split_for_swap(struct ttm_pool *pool, struct page *p)
423 {
424 	unsigned int order = ttm_pool_page_order(pool, p);
425 	pgoff_t nr;
426 
427 	if (!order)
428 		return;
429 
430 	split_page(p, order);
431 	nr = 1UL << order;
432 	while (nr--)
433 		(p++)->private = 0;
434 }
435 
436 /**
437  * DOC: Partial backup and restoration of a struct ttm_tt.
438  *
439  * Swapout using ttm_backup_backup_page() and swapin using
440  * ttm_backup_copy_page() may fail.
441  * The former most likely due to lack of swap-space or memory, the latter due
442  * to lack of memory or because of signal interruption during waits.
443  *
444  * Backup failure is easily handled by using a ttm_tt pages vector that holds
445  * both backup handles and page pointers. This has to be taken into account when
446  * restoring such a ttm_tt from backup, and when freeing it while backed up.
447  * When restoring, for simplicity, new pages are actually allocated from the
448  * pool and the contents of any old pages are copied in and then the old pages
449  * are released.
450  *
451  * For restoration failures, the struct ttm_pool_tt_restore holds sufficient state
452  * to be able to resume an interrupted restore, and that structure is freed once
453  * the restoration is complete. If the struct ttm_tt is destroyed while there
454  * is a valid struct ttm_pool_tt_restore attached, that is also properly taken
455  * care of.
456  */
457 
458 /* Is restore ongoing for the currently allocated page? */
459 static bool ttm_pool_restore_valid(const struct ttm_pool_tt_restore *restore)
460 {
461 	return restore && restore->restored_pages < (1 << restore->order);
462 }
463 
464 /* DMA unmap and free a multi-order page, either to the relevant pool or to system. */
465 static pgoff_t ttm_pool_unmap_and_free(struct ttm_pool *pool, struct page *page,
466 				       const dma_addr_t *dma_addr, enum ttm_caching caching)
467 {
468 	struct ttm_pool_type *pt = NULL;
469 	unsigned int order;
470 	pgoff_t nr;
471 
472 	if (pool) {
473 		order = ttm_pool_page_order(pool, page);
474 		nr = (1UL << order);
475 		if (dma_addr)
476 			ttm_pool_unmap(pool, *dma_addr, nr);
477 
478 		pt = ttm_pool_select_type(pool, caching, order);
479 	} else {
480 		order = page->private;
481 		nr = (1UL << order);
482 	}
483 
484 	if (pt)
485 		ttm_pool_type_give(pt, page);
486 	else
487 		ttm_pool_free_page(pool, caching, order, page);
488 
489 	return nr;
490 }
491 
492 /* Populate the page-array using the most recent allocated multi-order page. */
493 static void ttm_pool_allocated_page_commit(struct page *allocated,
494 					   dma_addr_t first_dma,
495 					   struct ttm_pool_alloc_state *alloc,
496 					   pgoff_t nr)
497 {
498 	pgoff_t i;
499 
500 	for (i = 0; i < nr; ++i)
501 		*alloc->pages++ = allocated++;
502 
503 	alloc->remaining_pages -= nr;
504 
505 	if (!alloc->dma_addr)
506 		return;
507 
508 	for (i = 0; i < nr; ++i) {
509 		*alloc->dma_addr++ = first_dma;
510 		first_dma += PAGE_SIZE;
511 	}
512 }
513 
514 /*
515  * When restoring, restore backed-up content to the newly allocated page and
516  * if successful, populate the page-table and dma-address arrays.
517  */
518 static int ttm_pool_restore_commit(struct ttm_pool_tt_restore *restore,
519 				   struct file *backup,
520 				   const struct ttm_operation_ctx *ctx,
521 				   struct ttm_pool_alloc_state *alloc)
522 
523 {
524 	pgoff_t i, nr = 1UL << restore->order;
525 	struct page **first_page = alloc->pages;
526 	struct page *p;
527 	int ret = 0;
528 
529 	for (i = restore->restored_pages; i < nr; ++i) {
530 		p = first_page[i];
531 		if (ttm_backup_page_ptr_is_handle(p)) {
532 			unsigned long handle = ttm_backup_page_ptr_to_handle(p);
533 
534 			if (IS_ENABLED(CONFIG_FAULT_INJECTION) && ctx->interruptible &&
535 			    should_fail(&backup_fault_inject, 1)) {
536 				ret = -EINTR;
537 				break;
538 			}
539 
540 			if (handle == 0) {
541 				restore->restored_pages++;
542 				continue;
543 			}
544 
545 			ret = ttm_backup_copy_page(backup, restore->alloced_page + i,
546 						   handle, ctx->interruptible);
547 			if (ret)
548 				break;
549 
550 			ttm_backup_drop(backup, handle);
551 		} else if (p) {
552 			/*
553 			 * We could probably avoid splitting the old page
554 			 * using clever logic, but ATM we don't care, as
555 			 * we prioritize releasing memory ASAP. Note that
556 			 * here, the old retained page is always write-back
557 			 * cached.
558 			 */
559 			ttm_pool_split_for_swap(restore->pool, p);
560 			copy_highpage(restore->alloced_page + i, p);
561 			__free_pages(p, 0);
562 		}
563 
564 		restore->restored_pages++;
565 		first_page[i] = ttm_backup_handle_to_page_ptr(0);
566 	}
567 
568 	if (ret) {
569 		if (!restore->restored_pages) {
570 			dma_addr_t *dma_addr = alloc->dma_addr ? &restore->first_dma : NULL;
571 
572 			ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
573 						dma_addr, restore->page_caching);
574 			restore->restored_pages = nr;
575 		}
576 		return ret;
577 	}
578 
579 	ttm_pool_allocated_page_commit(restore->alloced_page, restore->first_dma,
580 				       alloc, nr);
581 	if (restore->page_caching == alloc->tt_caching || PageHighMem(restore->alloced_page))
582 		alloc->caching_divide = alloc->pages;
583 	restore->snapshot_alloc = *alloc;
584 	restore->alloced_pages += nr;
585 
586 	return 0;
587 }
588 
589 /* If restoring, save information needed for ttm_pool_restore_commit(). */
590 static void
591 ttm_pool_page_allocated_restore(struct ttm_pool *pool, unsigned int order,
592 				struct page *p,
593 				enum ttm_caching page_caching,
594 				dma_addr_t first_dma,
595 				struct ttm_pool_tt_restore *restore,
596 				const struct ttm_pool_alloc_state *alloc)
597 {
598 	restore->pool = pool;
599 	restore->order = order;
600 	restore->restored_pages = 0;
601 	restore->page_caching = page_caching;
602 	restore->first_dma = first_dma;
603 	restore->alloced_page = p;
604 	restore->snapshot_alloc = *alloc;
605 }
606 
607 /*
608  * Called when we got a page, either from a pool or newly allocated.
609  * if needed, dma map the page and populate the dma address array.
610  * Populate the page address array.
611  * If the caching is consistent, update any deferred caching. Otherwise
612  * stage this page for an upcoming deferred caching update.
613  */
614 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order,
615 				   struct page *p, enum ttm_caching page_caching,
616 				   struct ttm_pool_alloc_state *alloc,
617 				   struct ttm_pool_tt_restore *restore)
618 {
619 	bool caching_consistent;
620 	dma_addr_t first_dma;
621 	int r = 0;
622 
623 	caching_consistent = (page_caching == alloc->tt_caching) || PageHighMem(p);
624 
625 	if (caching_consistent) {
626 		r = ttm_pool_apply_caching(alloc);
627 		if (r)
628 			return r;
629 	}
630 
631 	if (alloc->dma_addr) {
632 		r = ttm_pool_map(pool, order, p, &first_dma);
633 		if (r)
634 			return r;
635 	}
636 
637 	if (restore) {
638 		ttm_pool_page_allocated_restore(pool, order, p, page_caching,
639 						first_dma, restore, alloc);
640 	} else {
641 		ttm_pool_allocated_page_commit(p, first_dma, alloc, 1UL << order);
642 
643 		if (caching_consistent)
644 			alloc->caching_divide = alloc->pages;
645 	}
646 
647 	return 0;
648 }
649 
650 /**
651  * ttm_pool_free_range() - Free a range of TTM pages
652  * @pool: The pool used for allocating.
653  * @tt: The struct ttm_tt holding the page pointers.
654  * @caching: The page caching mode used by the range.
655  * @start_page: index for first page to free.
656  * @end_page: index for last page to free + 1.
657  *
658  * During allocation the ttm_tt page-vector may be populated with ranges of
659  * pages with different attributes if allocation hit an error without being
660  * able to completely fulfill the allocation. This function can be used
661  * to free these individual ranges.
662  */
663 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt,
664 				enum ttm_caching caching,
665 				pgoff_t start_page, pgoff_t end_page)
666 {
667 	struct page **pages = &tt->pages[start_page];
668 	struct file *backup = tt->backup;
669 	pgoff_t i, nr;
670 
671 	for (i = start_page; i < end_page; i += nr, pages += nr) {
672 		struct page *p = *pages;
673 
674 		nr = 1;
675 		if (ttm_backup_page_ptr_is_handle(p)) {
676 			unsigned long handle = ttm_backup_page_ptr_to_handle(p);
677 
678 			if (handle != 0)
679 				ttm_backup_drop(backup, handle);
680 		} else if (p) {
681 			dma_addr_t *dma_addr = tt->dma_address ?
682 				tt->dma_address + i : NULL;
683 
684 			nr = ttm_pool_unmap_and_free(pool, p, dma_addr, caching);
685 		}
686 	}
687 }
688 
689 static void ttm_pool_alloc_state_init(const struct ttm_tt *tt,
690 				      struct ttm_pool_alloc_state *alloc)
691 {
692 	alloc->pages = tt->pages;
693 	alloc->caching_divide = tt->pages;
694 	alloc->dma_addr = tt->dma_address;
695 	alloc->remaining_pages = tt->num_pages;
696 	alloc->tt_caching = tt->caching;
697 }
698 
699 /*
700  * Find a suitable allocation order based on highest desired order
701  * and number of remaining pages
702  */
703 static unsigned int ttm_pool_alloc_find_order(unsigned int highest,
704 					      const struct ttm_pool_alloc_state *alloc)
705 {
706 	return min_t(unsigned int, highest, __fls(alloc->remaining_pages));
707 }
708 
709 static int __ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
710 			    const struct ttm_operation_ctx *ctx,
711 			    struct ttm_pool_alloc_state *alloc,
712 			    struct ttm_pool_tt_restore *restore)
713 {
714 	enum ttm_caching page_caching;
715 	gfp_t gfp_flags = GFP_USER;
716 	pgoff_t caching_divide;
717 	unsigned int order;
718 	bool allow_pools;
719 	struct page *p;
720 	int r;
721 
722 	WARN_ON(!alloc->remaining_pages || ttm_tt_is_populated(tt));
723 	WARN_ON(alloc->dma_addr && !pool->dev);
724 
725 	if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC)
726 		gfp_flags |= __GFP_ZERO;
727 
728 	if (ctx->gfp_retry_mayfail)
729 		gfp_flags |= __GFP_RETRY_MAYFAIL;
730 
731 	if (ttm_pool_uses_dma32(pool))
732 		gfp_flags |= GFP_DMA32;
733 	else
734 		gfp_flags |= GFP_HIGHUSER;
735 
736 	page_caching = tt->caching;
737 	allow_pools = true;
738 	for (order = ttm_pool_alloc_find_order(MAX_PAGE_ORDER, alloc);
739 	     alloc->remaining_pages;
740 	     order = ttm_pool_alloc_find_order(order, alloc)) {
741 		struct ttm_pool_type *pt;
742 
743 		/* First, try to allocate a page from a pool if one exists. */
744 		p = NULL;
745 		pt = ttm_pool_select_type(pool, page_caching, order);
746 		if (pt && allow_pools)
747 			p = ttm_pool_type_take(pt);
748 		/*
749 		 * If that fails or previously failed, allocate from system.
750 		 * Note that this also disallows additional pool allocations using
751 		 * write-back cached pools of the same order. Consider removing
752 		 * that behaviour.
753 		 */
754 		if (!p) {
755 			page_caching = ttm_cached;
756 			allow_pools = false;
757 			p = ttm_pool_alloc_page(pool, gfp_flags, order);
758 		}
759 		/* If that fails, lower the order if possible and retry. */
760 		if (!p) {
761 			if (order) {
762 				--order;
763 				page_caching = tt->caching;
764 				allow_pools = true;
765 				continue;
766 			}
767 			r = -ENOMEM;
768 			goto error_free_all;
769 		}
770 		r = ttm_pool_page_allocated(pool, order, p, page_caching, alloc,
771 					    restore);
772 		if (r)
773 			goto error_free_page;
774 
775 		if (ttm_pool_restore_valid(restore)) {
776 			r = ttm_pool_restore_commit(restore, tt->backup, ctx, alloc);
777 			if (r)
778 				goto error_free_all;
779 		}
780 	}
781 
782 	r = ttm_pool_apply_caching(alloc);
783 	if (r)
784 		goto error_free_all;
785 
786 	kfree(tt->restore);
787 	tt->restore = NULL;
788 
789 	return 0;
790 
791 error_free_page:
792 	ttm_pool_free_page(pool, page_caching, order, p);
793 
794 error_free_all:
795 	if (tt->restore)
796 		return r;
797 
798 	caching_divide = alloc->caching_divide - tt->pages;
799 	ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide);
800 	ttm_pool_free_range(pool, tt, ttm_cached, caching_divide,
801 			    tt->num_pages - alloc->remaining_pages);
802 
803 	return r;
804 }
805 
806 /**
807  * ttm_pool_alloc - Fill a ttm_tt object
808  *
809  * @pool: ttm_pool to use
810  * @tt: ttm_tt object to fill
811  * @ctx: operation context
812  *
813  * Fill the ttm_tt object with pages and also make sure to DMA map them when
814  * necessary.
815  *
816  * Returns: 0 on successe, negative error code otherwise.
817  */
818 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
819 		   struct ttm_operation_ctx *ctx)
820 {
821 	struct ttm_pool_alloc_state alloc;
822 
823 	if (WARN_ON(ttm_tt_is_backed_up(tt)))
824 		return -EINVAL;
825 
826 	ttm_pool_alloc_state_init(tt, &alloc);
827 
828 	return __ttm_pool_alloc(pool, tt, ctx, &alloc, NULL);
829 }
830 EXPORT_SYMBOL(ttm_pool_alloc);
831 
832 /**
833  * ttm_pool_restore_and_alloc - Fill a ttm_tt, restoring previously backed-up
834  * content.
835  *
836  * @pool: ttm_pool to use
837  * @tt: ttm_tt object to fill
838  * @ctx: operation context
839  *
840  * Fill the ttm_tt object with pages and also make sure to DMA map them when
841  * necessary. Read in backed-up content.
842  *
843  * Returns: 0 on successe, negative error code otherwise.
844  */
845 int ttm_pool_restore_and_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
846 			       const struct ttm_operation_ctx *ctx)
847 {
848 	struct ttm_pool_tt_restore *restore = tt->restore;
849 	struct ttm_pool_alloc_state alloc;
850 
851 	if (WARN_ON(!ttm_tt_is_backed_up(tt)))
852 		return -EINVAL;
853 
854 	if (!restore) {
855 		gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
856 
857 		ttm_pool_alloc_state_init(tt, &alloc);
858 		if (ctx->gfp_retry_mayfail)
859 			gfp |= __GFP_RETRY_MAYFAIL;
860 
861 		restore = kzalloc_obj(*restore, gfp);
862 		if (!restore)
863 			return -ENOMEM;
864 
865 		restore->snapshot_alloc = alloc;
866 		restore->pool = pool;
867 		restore->restored_pages = 1;
868 
869 		tt->restore = restore;
870 	} else {
871 		alloc = restore->snapshot_alloc;
872 		if (ttm_pool_restore_valid(restore)) {
873 			int ret = ttm_pool_restore_commit(restore, tt->backup,
874 							  ctx, &alloc);
875 
876 			if (ret)
877 				return ret;
878 		}
879 		if (!alloc.remaining_pages)
880 			return 0;
881 	}
882 
883 	return __ttm_pool_alloc(pool, tt, ctx, &alloc, restore);
884 }
885 
886 /**
887  * ttm_pool_free - Free the backing pages from a ttm_tt object
888  *
889  * @pool: Pool to give pages back to.
890  * @tt: ttm_tt object to unpopulate
891  *
892  * Give the packing pages back to a pool or free them
893  */
894 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt)
895 {
896 	ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages);
897 
898 	while (atomic_long_read(&allocated_pages) > page_pool_size)
899 		ttm_pool_shrink();
900 }
901 EXPORT_SYMBOL(ttm_pool_free);
902 
903 /**
904  * ttm_pool_drop_backed_up() - Release content of a swapped-out struct ttm_tt
905  * @tt: The struct ttm_tt.
906  *
907  * Release handles with associated content or any remaining pages of
908  * a backed-up struct ttm_tt.
909  */
910 void ttm_pool_drop_backed_up(struct ttm_tt *tt)
911 {
912 	struct ttm_pool_tt_restore *restore;
913 	pgoff_t start_page = 0;
914 
915 	WARN_ON(!ttm_tt_is_backed_up(tt));
916 
917 	restore = tt->restore;
918 
919 	/*
920 	 * Unmap and free any uncommitted restore page.
921 	 * any tt page-array backup entries already read back has
922 	 * been cleared already
923 	 */
924 	if (ttm_pool_restore_valid(restore)) {
925 		dma_addr_t *dma_addr = tt->dma_address ? &restore->first_dma : NULL;
926 
927 		ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
928 					dma_addr, restore->page_caching);
929 		restore->restored_pages = 1UL << restore->order;
930 	}
931 
932 	/*
933 	 * If a restore is ongoing, part of the tt pages may have a
934 	 * caching different than writeback.
935 	 */
936 	if (restore) {
937 		pgoff_t mid = restore->snapshot_alloc.caching_divide - tt->pages;
938 
939 		start_page = restore->alloced_pages;
940 		WARN_ON(mid > start_page);
941 		/* Pages that might be dma-mapped and non-cached */
942 		ttm_pool_free_range(restore->pool, tt, tt->caching,
943 				    0, mid);
944 		/* Pages that might be dma-mapped but cached */
945 		ttm_pool_free_range(restore->pool, tt, ttm_cached,
946 				    mid, restore->alloced_pages);
947 		kfree(restore);
948 		tt->restore = NULL;
949 	}
950 
951 	ttm_pool_free_range(NULL, tt, ttm_cached, start_page, tt->num_pages);
952 }
953 
954 /**
955  * ttm_pool_backup() - Back up or purge a struct ttm_tt
956  * @pool: The pool used when allocating the struct ttm_tt.
957  * @tt: The struct ttm_tt.
958  * @flags: Flags to govern the backup behaviour.
959  *
960  * Back up or purge a struct ttm_tt. If @purge is true, then
961  * all pages will be freed directly to the system rather than to the pool
962  * they were allocated from, making the function behave similarly to
963  * ttm_pool_free(). If @purge is false the pages will be backed up instead,
964  * exchanged for handles.
965  * A subsequent call to ttm_pool_restore_and_alloc() will then read back the content and
966  * a subsequent call to ttm_pool_drop_backed_up() will drop it.
967  * If backup of a page fails for whatever reason, @ttm will still be
968  * partially backed up, retaining those pages for which backup fails.
969  * In that case, this function can be retried, possibly after freeing up
970  * memory resources.
971  *
972  * Return: Number of pages actually backed up or freed, or negative
973  * error code on error.
974  */
975 long ttm_pool_backup(struct ttm_pool *pool, struct ttm_tt *tt,
976 		     const struct ttm_backup_flags *flags)
977 {
978 	struct file *backup = tt->backup;
979 	struct page *page;
980 	unsigned long handle;
981 	gfp_t alloc_gfp;
982 	gfp_t gfp;
983 	int ret = 0;
984 	pgoff_t shrunken = 0;
985 	pgoff_t i, num_pages;
986 
987 	if (WARN_ON(ttm_tt_is_backed_up(tt)))
988 		return -EINVAL;
989 
990 	if ((!ttm_backup_bytes_avail() && !flags->purge) ||
991 	    ttm_pool_uses_dma_alloc(pool) || ttm_tt_is_backed_up(tt))
992 		return -EBUSY;
993 
994 #ifdef CONFIG_X86
995 	/* Anything returned to the system needs to be cached. */
996 	if (tt->caching != ttm_cached)
997 		set_pages_array_wb(tt->pages, tt->num_pages);
998 #endif
999 
1000 	if (tt->dma_address || flags->purge) {
1001 		for (i = 0; i < tt->num_pages; i += num_pages) {
1002 			unsigned int order;
1003 
1004 			page = tt->pages[i];
1005 			if (unlikely(!page)) {
1006 				num_pages = 1;
1007 				continue;
1008 			}
1009 
1010 			order = ttm_pool_page_order(pool, page);
1011 			num_pages = 1UL << order;
1012 			if (tt->dma_address)
1013 				ttm_pool_unmap(pool, tt->dma_address[i],
1014 					       num_pages);
1015 			if (flags->purge) {
1016 				shrunken += num_pages;
1017 				page->private = 0;
1018 				__free_pages(page, order);
1019 				memset(tt->pages + i, 0,
1020 				       num_pages * sizeof(*tt->pages));
1021 			}
1022 		}
1023 	}
1024 
1025 	if (flags->purge)
1026 		return shrunken;
1027 
1028 	if (ttm_pool_uses_dma32(pool))
1029 		gfp = GFP_DMA32;
1030 	else
1031 		gfp = GFP_HIGHUSER;
1032 
1033 	alloc_gfp = GFP_KERNEL | __GFP_HIGH | __GFP_NOWARN | __GFP_RETRY_MAYFAIL;
1034 
1035 	num_pages = tt->num_pages;
1036 
1037 	/* Pretend doing fault injection by shrinking only half of the pages. */
1038 	if (IS_ENABLED(CONFIG_FAULT_INJECTION) && should_fail(&backup_fault_inject, 1))
1039 		num_pages = DIV_ROUND_UP(num_pages, 2);
1040 
1041 	for (i = 0; i < num_pages; ++i) {
1042 		s64 shandle;
1043 
1044 		page = tt->pages[i];
1045 		if (unlikely(!page))
1046 			continue;
1047 
1048 		ttm_pool_split_for_swap(pool, page);
1049 
1050 		shandle = ttm_backup_backup_page(backup, page, flags->writeback, i,
1051 						 gfp, alloc_gfp);
1052 		if (shandle < 0) {
1053 			/* We allow partially shrunken tts */
1054 			ret = shandle;
1055 			break;
1056 		}
1057 		handle = shandle;
1058 		tt->pages[i] = ttm_backup_handle_to_page_ptr(handle);
1059 		put_page(page);
1060 		shrunken++;
1061 	}
1062 
1063 	return shrunken ? shrunken : ret;
1064 }
1065 
1066 /**
1067  * ttm_pool_init - Initialize a pool
1068  *
1069  * @pool: the pool to initialize
1070  * @dev: device for DMA allocations and mappings
1071  * @nid: NUMA node to use for allocations
1072  * @alloc_flags: TTM_ALLOCATION_POOL_* flags
1073  *
1074  * Initialize the pool and its pool types.
1075  */
1076 void ttm_pool_init(struct ttm_pool *pool, struct device *dev,
1077 		   int nid, unsigned int alloc_flags)
1078 {
1079 	unsigned int i, j;
1080 
1081 	WARN_ON(!dev && ttm_pool_uses_dma_alloc(pool));
1082 
1083 	pool->dev = dev;
1084 	pool->nid = nid;
1085 	pool->alloc_flags = alloc_flags;
1086 
1087 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1088 		for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1089 			struct ttm_pool_type *pt;
1090 
1091 			/* Initialize only pool types which are actually used */
1092 			pt = ttm_pool_select_type(pool, i, j);
1093 			if (pt != &pool->caching[i].orders[j])
1094 				continue;
1095 
1096 			ttm_pool_type_init(pt, pool, i, j);
1097 		}
1098 	}
1099 }
1100 EXPORT_SYMBOL(ttm_pool_init);
1101 
1102 /**
1103  * ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete.
1104  *
1105  * This is useful to guarantee that all shrinker invocations have seen an
1106  * update, before freeing memory, similar to rcu.
1107  */
1108 static void ttm_pool_synchronize_shrinkers(void)
1109 {
1110 	down_write(&pool_shrink_rwsem);
1111 	up_write(&pool_shrink_rwsem);
1112 }
1113 
1114 /**
1115  * ttm_pool_fini - Cleanup a pool
1116  *
1117  * @pool: the pool to clean up
1118  *
1119  * Free all pages in the pool and unregister the types from the global
1120  * shrinker.
1121  */
1122 void ttm_pool_fini(struct ttm_pool *pool)
1123 {
1124 	unsigned int i, j;
1125 
1126 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1127 		for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1128 			struct ttm_pool_type *pt;
1129 
1130 			pt = ttm_pool_select_type(pool, i, j);
1131 			if (pt != &pool->caching[i].orders[j])
1132 				continue;
1133 
1134 			ttm_pool_type_fini(pt);
1135 		}
1136 	}
1137 
1138 	/* We removed the pool types from the LRU, but we need to also make sure
1139 	 * that no shrinker is concurrently freeing pages from the pool.
1140 	 */
1141 	ttm_pool_synchronize_shrinkers();
1142 }
1143 EXPORT_SYMBOL(ttm_pool_fini);
1144 
1145 /* Free average pool number of pages.  */
1146 #define TTM_SHRINKER_BATCH ((1 << (MAX_PAGE_ORDER / 2)) * NR_PAGE_ORDERS)
1147 
1148 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink,
1149 					    struct shrink_control *sc)
1150 {
1151 	unsigned long num_freed = 0;
1152 
1153 	do
1154 		num_freed += ttm_pool_shrink();
1155 	while (num_freed < sc->nr_to_scan &&
1156 	       atomic_long_read(&allocated_pages));
1157 
1158 	sc->nr_scanned = num_freed;
1159 
1160 	return num_freed ?: SHRINK_STOP;
1161 }
1162 
1163 /* Return the number of pages available or SHRINK_EMPTY if we have none */
1164 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink,
1165 					     struct shrink_control *sc)
1166 {
1167 	unsigned long num_pages = atomic_long_read(&allocated_pages);
1168 
1169 	return num_pages ? num_pages : SHRINK_EMPTY;
1170 }
1171 
1172 #ifdef CONFIG_DEBUG_FS
1173 /* Count the number of pages available in a pool_type */
1174 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt)
1175 {
1176 	unsigned int count = 0;
1177 	struct page *p;
1178 
1179 	spin_lock(&pt->lock);
1180 	/* Only used for debugfs, the overhead doesn't matter */
1181 	list_for_each_entry(p, &pt->pages, lru)
1182 		++count;
1183 	spin_unlock(&pt->lock);
1184 
1185 	return count;
1186 }
1187 
1188 /* Print a nice header for the order */
1189 static void ttm_pool_debugfs_header(struct seq_file *m)
1190 {
1191 	unsigned int i;
1192 
1193 	seq_puts(m, "\t ");
1194 	for (i = 0; i < NR_PAGE_ORDERS; ++i)
1195 		seq_printf(m, " ---%2u---", i);
1196 	seq_puts(m, "\n");
1197 }
1198 
1199 /* Dump information about the different pool types */
1200 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt,
1201 				    struct seq_file *m)
1202 {
1203 	unsigned int i;
1204 
1205 	for (i = 0; i < NR_PAGE_ORDERS; ++i)
1206 		seq_printf(m, " %8u", ttm_pool_type_count(&pt[i]));
1207 	seq_puts(m, "\n");
1208 }
1209 
1210 /* Dump the total amount of allocated pages */
1211 static void ttm_pool_debugfs_footer(struct seq_file *m)
1212 {
1213 	seq_printf(m, "\ntotal\t: %8lu of %8lu\n",
1214 		   atomic_long_read(&allocated_pages), page_pool_size);
1215 }
1216 
1217 /* Dump the information for the global pools */
1218 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data)
1219 {
1220 	ttm_pool_debugfs_header(m);
1221 
1222 	spin_lock(&shrinker_lock);
1223 	seq_puts(m, "wc\t:");
1224 	ttm_pool_debugfs_orders(global_write_combined, m);
1225 	seq_puts(m, "uc\t:");
1226 	ttm_pool_debugfs_orders(global_uncached, m);
1227 	seq_puts(m, "wc 32\t:");
1228 	ttm_pool_debugfs_orders(global_dma32_write_combined, m);
1229 	seq_puts(m, "uc 32\t:");
1230 	ttm_pool_debugfs_orders(global_dma32_uncached, m);
1231 	spin_unlock(&shrinker_lock);
1232 
1233 	ttm_pool_debugfs_footer(m);
1234 
1235 	return 0;
1236 }
1237 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals);
1238 
1239 /**
1240  * ttm_pool_debugfs - Debugfs dump function for a pool
1241  *
1242  * @pool: the pool to dump the information for
1243  * @m: seq_file to dump to
1244  *
1245  * Make a debugfs dump with the per pool and global information.
1246  */
1247 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m)
1248 {
1249 	unsigned int i;
1250 
1251 	if (!ttm_pool_uses_dma_alloc(pool) && pool->nid == NUMA_NO_NODE) {
1252 		seq_puts(m, "unused\n");
1253 		return 0;
1254 	}
1255 
1256 	ttm_pool_debugfs_header(m);
1257 
1258 	spin_lock(&shrinker_lock);
1259 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1260 		if (!ttm_pool_select_type(pool, i, 0))
1261 			continue;
1262 		if (ttm_pool_uses_dma_alloc(pool))
1263 			seq_puts(m, "DMA ");
1264 		else
1265 			seq_printf(m, "N%d ", pool->nid);
1266 		switch (i) {
1267 		case ttm_cached:
1268 			seq_puts(m, "\t:");
1269 			break;
1270 		case ttm_write_combined:
1271 			seq_puts(m, "wc\t:");
1272 			break;
1273 		case ttm_uncached:
1274 			seq_puts(m, "uc\t:");
1275 			break;
1276 		}
1277 		ttm_pool_debugfs_orders(pool->caching[i].orders, m);
1278 	}
1279 	spin_unlock(&shrinker_lock);
1280 
1281 	ttm_pool_debugfs_footer(m);
1282 	return 0;
1283 }
1284 EXPORT_SYMBOL(ttm_pool_debugfs);
1285 
1286 /* Test the shrinker functions and dump the result */
1287 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data)
1288 {
1289 	struct shrink_control sc = {
1290 		.gfp_mask = GFP_NOFS,
1291 		.nr_to_scan = TTM_SHRINKER_BATCH,
1292 	};
1293 	unsigned long count;
1294 
1295 	fs_reclaim_acquire(GFP_KERNEL);
1296 	count = ttm_pool_shrinker_count(mm_shrinker, &sc);
1297 	seq_printf(m, "%lu/%lu\n", count,
1298 		   ttm_pool_shrinker_scan(mm_shrinker, &sc));
1299 	fs_reclaim_release(GFP_KERNEL);
1300 
1301 	return 0;
1302 }
1303 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink);
1304 
1305 #endif
1306 
1307 /**
1308  * ttm_pool_mgr_init - Initialize globals
1309  *
1310  * @num_pages: default number of pages
1311  *
1312  * Initialize the global locks and lists for the MM shrinker.
1313  */
1314 int ttm_pool_mgr_init(unsigned long num_pages)
1315 {
1316 	unsigned int i;
1317 
1318 	if (!page_pool_size)
1319 		page_pool_size = num_pages;
1320 
1321 	spin_lock_init(&shrinker_lock);
1322 	INIT_LIST_HEAD(&shrinker_list);
1323 
1324 	for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1325 		ttm_pool_type_init(&global_write_combined[i], NULL,
1326 				   ttm_write_combined, i);
1327 		ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i);
1328 
1329 		ttm_pool_type_init(&global_dma32_write_combined[i], NULL,
1330 				   ttm_write_combined, i);
1331 		ttm_pool_type_init(&global_dma32_uncached[i], NULL,
1332 				   ttm_uncached, i);
1333 	}
1334 
1335 #ifdef CONFIG_DEBUG_FS
1336 	debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL,
1337 			    &ttm_pool_debugfs_globals_fops);
1338 	debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL,
1339 			    &ttm_pool_debugfs_shrink_fops);
1340 #ifdef CONFIG_FAULT_INJECTION
1341 	fault_create_debugfs_attr("backup_fault_inject", ttm_debugfs_root,
1342 				  &backup_fault_inject);
1343 #endif
1344 #endif
1345 
1346 	mm_shrinker = shrinker_alloc(0, "drm-ttm_pool");
1347 	if (!mm_shrinker)
1348 		return -ENOMEM;
1349 
1350 	mm_shrinker->count_objects = ttm_pool_shrinker_count;
1351 	mm_shrinker->scan_objects = ttm_pool_shrinker_scan;
1352 	mm_shrinker->batch = TTM_SHRINKER_BATCH;
1353 	mm_shrinker->seeks = 1;
1354 
1355 	shrinker_register(mm_shrinker);
1356 
1357 	return 0;
1358 }
1359 
1360 /**
1361  * ttm_pool_mgr_fini - Finalize globals
1362  *
1363  * Cleanup the global pools and unregister the MM shrinker.
1364  */
1365 void ttm_pool_mgr_fini(void)
1366 {
1367 	unsigned int i;
1368 
1369 	for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1370 		ttm_pool_type_fini(&global_write_combined[i]);
1371 		ttm_pool_type_fini(&global_uncached[i]);
1372 
1373 		ttm_pool_type_fini(&global_dma32_write_combined[i]);
1374 		ttm_pool_type_fini(&global_dma32_uncached[i]);
1375 	}
1376 
1377 	shrinker_free(mm_shrinker);
1378 	WARN_ON(!list_empty(&shrinker_list));
1379 }
1380